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Abstract—Transformation-based synthesis is a well established
systematic approach to determine a circuit implementation from
a reversible function specification. Due to the inherent bidirec-
tionality of reversible circuits the basic method can be applied in
a bidirectional manner. In the approaches to date, gates are added
either to the input side or the output side of the circuit on each
iteration. In this paper, we introduce a new variation where gates
may be added at both ends during a single iteration when this
is advantageous to reducing the cost of the circuit. Experimental
results show the advantage of the new approach over previous
transformation-based synthesis methods and that the additional
computation is justified by the possibility of improved circuit
costs.

I. INTRODUCTION

Reversible circuits have been widely studied because of
their potential for reducing power consumption [1] and because
of their connection to quantum computation [2]. A key issue is
the synthesis of reversible circuits. This is a difficult problem
that is significantly different from the synthesis of circuits
employing traditional irreversible gates. Exact synthesis is only
possible for very small circuits. The methods discussed here
are heuristic and greedy relying on local optimization.

Transformation-based reversible circuit synthesis was in-
troduced in [3] where two algorithms, a basic (unidirectional)
approach and a bidirectional extension, were given. The bidi-
rectional approach exploits the reversibility of both gates and
circuits and while the basic algorithm builds a circuit in only
one direction, typically from output to input, the bidirectional
approach builds the circuit from both the output and the
input sides. The bidirectional approach outperforms the basic
algorithm.

In this paper, we introduce a new generalized approach
which as experimental results will show can yield significantly
smaller circuits in some cases. On each iteration, the bidirec-
tional algorithm adds gates to either the input or the output side
of the circuit, but not both. The new algorithm better exploits
the structure of the reversible function being synthesized and
can add gates at both ends on each iteration when that is of
advantage.

II. BACKGROUND

A multiple-output Boolean function is reversible if it maps
each input assignment to a unique output assignment, i.e. it is
a bijection; otherwise the function is irreversible. A reversible
function can be realized by a cascade of reversible gates with
no fan-out or feedback [2]. A completely or incompletely-
specified irreversible function can be embedded into a re-

versible function, usually with more inputs (constants) and
outputs (garbage), and then realized by a reversible circuit [4].

A multiple-control Toffoli (MCT) gate with target line xj

and control lines {xi1 , xi2 , . . . , xik}, maps (x1 . . . xj . . . xn)
to (x1 . . . (xi1xi2 · · ·xik) ⊕ xj . . . xn). Note that all controls
must be 1 (positive) for the target to be inverted. An MCT
gate with no control is a NOT gate. An MCT gate with a
single control line is called a controlled-NOT (CNOT) gate.
Note that while we do not consider the option of negative
controls (i.e. controls sensitive to 0 rather than 1), the methods
discussed here can be extended to allow them. Also, while in
this paper we concentrate on MCT gates, the approach can be
modified to allow other reversible gates such as Fredkin [5],
[6], Peres and inverse-Peres gates [7].

Many quantum gates have been defined and studied in the
literature [2]. In this paper, we concentrate on the following
gates which we assume have unit cost: NOT and CNOT (as
defined above); the 2-line controlled-V gate which changes
the target line using the transformation defined by the matrix
V = 1+i

2

(
1 −i
−i 1

)
if the single control line has the value 1; and

the 2-line controlled-V + gate which changes the target line
using the transformation V+ = V−1 = 1−i

2

(
1 i
i 1

)
if the single

control line has the value 1. Gates V and V + are referred to
as controlled-square-root-of-NOT gates since V2 = (V+)2 =(
0 1
1 0

)
.

A circuit line not used as the target or as a control of a
gate is an ancillary line for that gate. Such lines are used in
realizing an MCT gate using quantum gates, see [8], [9]

III. TRANSFORMATION-BASED SYNTHESIS ALGORITHMS

In this paper for ease of description, we present
transformation-based synthesis in terms of the truth table rep-
resentation of a reversible function. Note that transformation-
based methods can be implemented using more efficient rep-
resentations such as decision diagrams [10].

A. Basic Algorithm

Given a truth table representing a reversible function f , the
basic transformation-based synthesis algorithm [3] proceeds
through the truth table rows in order 0 ≤ i < 2n − 1. At each
row i, if f(i) 6= i MCT gates are selected to map f(i) to i.
These gates are chosen such that they do not affect any row
j for j < i, i.e. those that have already been considered. The
gates are added to the circuit being constructed from the output
towards the input and the reversible specification is updated by
applying the gates to the output side of the specification. When
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all rows 0 ≤ i < 2n−1 have been considered the resulting truth
table is the identity function and the gates chosen represent an
implementation of the original reversible function. Note that
row 2n−1 does not have to be considered as f(2n−1) = 2n−1
after all previous rows are made to match.

B. Bidirectional Algorithm

The bidirectional transformation-based synthesis which is
an extension of the basic algorithm was also introduced in [3].
For each row i, the gates G0 required to transform the output
pattern f(i) to i are determined as in the basic algorithm.
In addition, there must be a row j later in the table where
f(j) = i. MCT gates G1 that transform j to i are determined.
The less expensive of G0 and G1 is determined and those
gates are added to the circuit and used to update f . Note that
if G1 is chosen the gates apply from the input toward the
output of the circuit and are used to update the input side of
the specification. The cost of a set of gates can be simply
the MCT gate count or can be based on the quantum cost of
implementing the MCT gates. We use the latter in this work.

C. A New Algorithm

Our new method is shown in Algorithm 1. For each row
i, the new generalized algorithm tries every row from i to
2n − 1 mapping the input and the output patterns to i thereby
potentially adding gates to both the input and the output side
of the circuit. The algorithm chooses the first such mapping
that has lowest cost. To see the new algorithm subsumes the
previous two, note that the basic algorithm is the case of only
considering j = i, while the bidirectional algorithm is the case
of only considering two cases: j = i and j such that f(j) = i.

Algorithm 1 employs three functions: Cost(G) which re-
turns the quantum cost of a list of MCT gates G; RMdist(f)
which determines the Hamming distance between the Reed-
Muller spectra [11] of a reversible function f and the identity
function; and Map(y, x) which returns a set of MCT gates that
map the pattern y to x where y > x such that the gates to do
not affect any z < x.

In this work, we use a simple version of Cost(G) that
sums the quantum cost of each MCT gate in G using the
MCT quantum gates costs from [12]. It does not look for
simplifications between MCT gates.

RMdist(f) computes the Hamming distance between the
Reed-Muller spectrum of f and the Reed-Muller spectrum
of the identity function with the same number of inputs and
outputs as f . The identity function is the reversible function
that maps each input pattern to itself. The Hamming distance
between two spectra is the sum of the Hamming distances
between the corresponding output patterns. The Reed-Muller
spectrum is used since it measures global rather than local
function information. The Hamming distance is used to mea-
sure how close two spectra are to each other.

Map(y, x) is described in Algorithm 2. It identifies a
sequence of MCT gates to map the bit pattern y to x where
y > x which is a consequence of going through the rows
of the truth table in ascending order. As noted, the gates are
selected so that they have no effect on any bit pattern z < x.
Map uses a function MakeGate(target, controls) that creates
the representation of an MCT gate with specified target and
controls.

Algorithm 1 Generalized Transformation-Based Synthesis
procedure SYNTHESIZE(f, n)

Cin = Cout = empty
for 0 ≤ i < 2n − 1 do

bestCost =∞
if f(i) 6= i then

for i ≤ j < 2n do
Gin = Map(j, i) Gout = Map(f(j), i)
if Cost(Gin) + Cost(Gout) < bestCost then

Bin = Gin Bout = Gout

bestCost = Cost(Gin) + Cost(Gout)
fB = f
apply gates in Gout to the output side of fB
apply gates in Gin to the input side of fB

end if
if Cost(Gin) + Cost(Gout) = bestCost then

ft = f
apply gates in Gout to the output side of ft
apply gates in Gin to the input side of ft
if RMdist(ft) < RMdist(fB) then

Bin = Gin Bout = Gout

fB = ft
end if

end if
end for
apply gates in Bout to the output side of f
apply gates in Bin to the input side of f
Cin = concatenate(Cin, Bin)
Cout = concatenate(reverse(Bout), Cout)

end if
end for
return concatenate(Cin, Cout)

end procedure

Algorithm 2 MCT Gate Selection to map y to x
procedure MAP(y, x)

glist = empty
if x = y then

return glist
end if
c = y
remove 1 bits from the right of c while c ≥ x
p = (x⊕ y)&(∼ c)
for each bit position pj = 1 do

g = MakeGate(j, c)
glist = concatenate(glist, g)

end for
q = c&(∼ x)
c = x
for each bit position qj = 1 do

g=MakeGate(j, c)
glist = concatenate(glist, g)

end for
return glist

end procedure

Algorithm 2 begins by setting the control specification c to
have as few 1’s as possible from y such that c ≥ x. The latter
condition is required to be sure the gates will not affect earlier
rows in the truth table. The first for loop generates MCT gates
with controls c with one gate for each variable outside c that
has to be flipped to make y match x. The second for loop then
uses x as the control and generates one gate for each variable
in c that has to be made 0 to match x. In both loops each gate
generated has a variable whose value is to change as its target.

IV. EXPERIMENTAL RESULTS

We have implemented the basic, bidirectional and new
synthesis algorithms in Python which is convenient as it has ef-
ficient built-in list handling and reversible and quantum circuits
are lists of gates. Table I shows the results of applying each



TABLE I. 3 VARIABLE FUNCTIONS

Basic Bidirectional New
Algorithm Algorithm Algorithm

Max MCT Gates 17 15 14
Avg. MCT Gates 8.67 7.06 6.85
Max NCV Gates 29 29 29
Avg. NCV Gates 17.87 16.16 15.72

of the algorithms to all 40,320 3-variable reversible functions.
The bidirectional method reduces the average numbers of MCT
and NCV gates required and the new algorithm reduces the
averages further. The differences are not particularly large
because there is little scope for optimization with 3 variables.

Table II shows the results of applying transformation-based
synthesis for a selection of benchmarks of varying size taken
from RevLib [13]. The first section of the table gives the
name and the number of circuit lines for each benchmark The
next three sections show the number of MCT gates in the
circuits produced by the basic, the bidirectional and the new
transformation-based synthesis methods respectively (labeled
Synth.), and the number of gates after application of MCT
template reduction [14] (labeled Opt.). Note that in this paper
we restrict our attention to circuits with positive controls.
Further reduction can be achieved if negative controls are used,
assuming they are permitted in the target technology.

The lowest synthesized and optimized gate counts for each
benchmark are indicated in bold. The final section of the table
shows the percentage improvements (a few are negative) for
the new algorithm compared to the better of the results from
the basic and the bidirectional algorithms. Percentages are
shown for the synthesized and the optimized gate counts.

The techniques presented including the new generalized
transformation-based synthesis algorithm employ heuristic and
greedy techniques. Hence no approach is best in all cases
and is the reason for the negative improvements in Tables II.
However these results do illustrate the potential benefit of the
new algorithm and show that our new approach is generally
as good or better than the unidirectional and bidirectional
transformation approaches. Several of the benchmarks show
that the advantage can be very significant so that the new
algorithm can be considered an important addition to previous
transformation based approaches.

Table III shows results for mapping the MCT circuits
summarized in Table II to NCV circuits. The mapping method
developed by Sasanian [15] was used first with the NCV gate
counts shown as Map. A * beside the gate count means an
extra helper line had to be added to the circuit during the
MCT to NCV mapping. This occurs when there is at least one
MCT gate that uses every line in the circuit.

The NCV circuits were then optimized using NCV template
matching [14] yielding smaller circuits with the gate counts
shown as Opt. Minimums are shown in bold and the percentage
improvements are shown as before. Once again, because the
methods are heuristic and because the optimization depends on
the actual circuit structure, some unexpected results arise. For
example, for benchmark hwb5 21 the NCV circuit is largest
for the basic algorithm, but after optimization it becomes the
smallest of the three options. However, in general, except
for the hwb (hidden weight bit) functions and ckt3 cycle 68
mapping and optimizing the circuits from the new algorithm
gives the best results and in some cases they are significantly
better. We are studying the structure of the hwb functions and
ckt3 in an effort to improve the new algorithm.

V. CONCLUSION

This paper has presented a new approach to transformation-
based synthesis of reversible and quantum circuits. The ex-
perimental results show this approach can in some cases
give significantly better circuits than do the basic and the
bidirectional transformation-based algorithms.

It is clear from Algorithms 1 and 2 that the over-
all procedure has complexity O(n22n) whereas the ba-
sic transformation-based synthesis procedure has complexity
O(n2n). The space requirement is the more restrictive param-
eter for truth-table based approaches and is the same, O(2n),
for all three synthesis approaches considered. As noted earlier,
this can be improved by using decision diagrams.

Ongoing work will consider variants of the Map function
in order to further reduce the quantum cost of the synthesized
circuits. We plan to consider implementation of the method
using symbolic function representations rather then truth tables
and to examine the extension of the method to partially-
specified reversible functions. We will also consider how the
concepts in [5] apply to our method.
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TABLE II. MCT EXPERIMENTAL RESULTS

Basic Bidirectional New
Algorithm Algorithm Algorithm

Benchmark Lines Synth. Opt. Synth. Opt. Synth. Opt. Synth. % Opt. %
3 17 6 3 14 11 7 7 7 7 0.0% 0.0%
fredkin 3 3 3 3 3 3 3 3 0.0% 0.0%
ham3 47 3 6 5 6 5 6 5 0.0% 0.0%
miller 5 3 6 6 6 6 5 5 16.7% 16.7%
peres 4 3 2 2 2 2 2 2 0.0% 0.0%
4 49 7 4 30 24 20 19 20 20 0.0% -5.3%
hwb4 20 4 22 22 16 16 13 12 18.8% 25.0%
hwb5 21 5 60 51 49 47 49 47 0.0% 0.0%
mod5d1 24 5 8 8 8 8 8 8 0.0% 0.0%
mod5d2 25 5 17 14 9 9 9 9 0.0% 0.0%
mod5mils 26 5 9 8 5 5 5 5 0.0% 0.0%
graycode6 19 6 5 5 5 5 5 5 0.0% 0.0%
hwb6 22 6 147 134 102 97 108 101 -5.9% -4.1%
mod5adder 56 6 39 39 28 28 28 28 0.0% 0.0%
ham7 48 7 286 254 98 88 59 53 39.8% 39.8%
hwb7 23 7 376 345 346 307 316 286 8.7% 6.8%
ckt2 cycle 67 8 890 787 709 640 685 642 3.4% -0.3%
hwb8 54 8 925 822 710 647 674 627 5.1% 3.1%
ckt1 cycle 66 9 1966 1746 1680 1509 1619 1480 3.6% 1.9%
ckt5 cycle 69 9 1318 1173 909 843 845 774 7.0% 8.2%
hwb9 55 9 2078 1851 1802 1623 1763 1604 2.2% 1.2%
ckt3 cycle 68 10 4038 3545 3519 3162 3460 3156 1.7% 0.2%
cycle10 2 51 12 19 19 19 19 19 19 0.0% 0.0%
plus63mod4096 72 12 394 392 394 392 18 18 95.4% 95.4%
plus127mod8192 71 13 781 779 781 779 19 19 97.6% 97.6%
plus63mod8192 73 13 457 455 457 455 20 20 95.6% 95.6%
04101+B7:C33+B7:C3384 77 14 48 48 37 37 37 37 0.0% 0.0%

TABLE III. NCV EXPERIMENTAL RESULTS

Basic Bidirectional New
Algorithm Algorithm Algorithm

Benchmarl\k Map Opt. Map Opt. Map Opt. Map % Opt%
3 17 6 22 12 13 11 13 11 0.0% 0.0%
fredkin 3 14 7 14 7 14 7 0.0% 0.0%
ham3 47 9 7 9 7 9 7 0.0% 0.0%
miller 5 9 8 9 8 9 8 0.0% 0.0%
peres 4 4 4 4 4 4 4 0.0% 0.0%
4 49 7 69* 48 80* 61 68* 41 1.4% 14.6%
hwb4 20 67* 52 50* 37 22 20 56.0% 45.9%
hwb5 21 308* 207 284* 228 284* 228 0.0% -10.1%
mod5d1 24 11 9 11 9 11 9 0.0% 0.0%
mod5d2 25 18 15 14 11 14 11 0.0% 0.0%
mod5mils 26 10 9 9 9 9 9 0.0% 0.0%
graycode6 19 5 5 5 5 5 5 0.0% 0.0%
hwb6 22 957* 722 580* 372 672* 472 -15.9% -26.9%
mod5adder 56 402* 349 237 235 237 235 0.0% 0.0%
ham7 48 2241* 1703 568 554 286 270 49.6% 51.3%
hwb7 23 3132* 2517 2773* 2087 2759* 2088 0.5% 0.0%
ckt2 cycle 67 8527* 7009 7222* 5696 6895* 5413 4.5% 5.0%
hwb8 54 8846* 7409 6469* 5049 7222 5696 -11.6% -12.8%
ckt1 cycle 66 21261* 17948 18703* 15442 18402 15132 1.6% 2.0%
ckt5 cycle 69 16615* 13939 13170* 10716 11685* 9419 11.3% 12.1%
hwb9 55 21283* 17869 19557* 16080 19364* 16248 1.0% -1.0%
ckt3 cycle 68 49063* 41935 44114* 37280 46411 40065 -5.2% -7.5%
cycle10 2 51 724 724 724 724 724 724 0.0% 0.0%
plus63mod4096 72 1556* 1283 1556* 1283 601* 464 61.4% 63.8%
plus127mod8192 71 2068* 1726 2068* 1726 726* 607 64.9% 64.8%
plus63mod8192 73 2012* 1716 2012* 1716 751* 634 62.7% 63.1%
04101+B7:C33+B7:C3384 77 851 845 560 554 560 554 0.0% 0.0%


