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A family of effective equations that capture the long time dispersive effects of wave propagation in
heterogeneous media in an arbitrary large periodic spatial domain Q C R? over long time is proposed
and analyzed. For a wave equation with highly oscillatory periodic spatial tensors of characteristic
length €, we prove that the solution of any member of our family of effective equations are e-close in
the L>°(0, 7%, L2(Q)) norm to the true oscillatory wave over a time interval of length 7% = O(¢~2). We
show that the previously derived effective equation in [Dohnal, Lamacz, Schweizer, Multiscale Model.
Simul., 2014] belongs to our family of effective equation. Moreover, while Bloch waves techniques were
previously used, we show that asymptotic expansion techniques give an alternative way to derive such
effective equations. An algorithm to compute the tensors involved in the dispersive equation and
allowing for efficient numerical homogenization methods over long time is proposed.
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1. Introduction

The wave equation in heterogeneous media is used to model various engineering problems such
as seismic inversion, medical imaging or the manufacture of composite materials. Given initial
conditions, a source f and a periodic tensor a®, we look for the wave displacement u® such that

Ofus(t, ) — Vi - (a°(2)(Vous (t,2)) = f(t,z) in (0,7] x RY, (1.1)

where af(z) = a(%) = a(y) is Y-periodic in y (a unit cell e.g., ¥ = (—1/2,1/2)%). We assume
for simplicity that d < 3 ®. As the heterogeneities of the medium described by a® arise at
the microscopic scale O(e), which is much smaller than the scale of interest O(1), standard
numerical methods (finite difference method (FDM) or finite element method (FEM)) lead to
a prohibitive computational cost as they require the resolution of the microscopic scale for the
mesh size. Mathematically, the homogenization theory has been developed to deal with such
problem (see Ref. 7, 18, 10, 21 for general theory, Ref. 9 for the wave equation). It provides
the existence of a so called homogenized equation

020 (t, ) — Z%a? u’(t,x) = f(t,x) in (0,T] x R%, (1.2)

17=1

whose solution u° no longer oscillates at the microscopic scale and describes at short times
O(1) the macroscopic behaviour O(1) of the wave u®. In this work, we assume the tensor a® to

aResults for d > 3 can be obtained following the lines of the proof of our main results provided higher regularity
assumptions for a(y).
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be periodic. In such case, the so-called homogenized tensor a® € R%*? in (1.2) can be computed
explicitly via the solutions of d cell problems. These cell problems are elliptic partial differential
equations associated with a, with periodic boundary conditions.

However, it is known that at long times of order O(¢~2), dispersion effects appear in the
macroscopic behaviour of the wave u°, that are not captured by the homogenized solution u°.
In the literature, several papers have addressed this problem, with the purpose to define a
higher order effective equation, i.e., an equation whose solution capture the dispersive effects
of u® over long times O(¢72). In all the results, this equation consists of (1.2) with some
additional higher order constant differential operators. The challenge lies first in exhibiting
the form of these operators, then defining the coefficients driving them and finally give an
efficient algorithm to compute these coefficients. In Ref. 22, Santosa and Symes formally build
an approximation of u® (for f = 0) over times O(e~2) that solves with a higher order remainder
an equation of the form

Z ag; 07 u(t, x) Z Cijk10 ]klu (t,z) =0 in (0,7] x R%. (1.3)
ij=1 ijkl=1

Unfortunately, ¢ being negative semidefinite, equation (1.3) is ill-posed. Nevertheless, numerical
experiments show that a regularized approximation captures the desired dispersive effects of
u®. Recently, several authors proposed a well-posed version of (1.3). The first rigorous result
has been given by Lamacz in Ref. 19, in the one-dimensional case. An error estimate is proved
over times O(e~2) between u° (for f = 0) and the solution of a Boussinesq type equation given
by

O2u(t, ) — a0 u(t, x) — e2b020%u(t,z) =0 in (0,7] x R, (1.4)

where the coefficient b is computed via a cascade of 3 elliptic cell problems (including the cell
problem necessary for a”). In Ref. 4, the one-dimensional result from Ref. 19 was generalized
and using the same technique it was proved that there exists a family of (well-posed) effective
equations of the form (1.5) (for d = 1) where the effective coefficients b, ¢ are computed with
the help of a single cell problem (the same as to compute a?).

The first rigorous error estimate over long times O(e~2) in the multi-dimensional case was
proved by Dohnal, Lamacz and Schweizer in Ref. 14, 15. The (well-posed) effective equation is
of the form (for f = 0)

d
Z a;;0 Z] u(t, ) — & Z b”628 u(t, ) 4 & Z cijklﬁfjklu(t,x) =0, (1.5)

ij=1 ij=1 ijkl=1

in (0, 7] x R? where the tensors b, ¢ are computed via an algebraic decomposition of a 4th order
tensor, which is computed via a cascade of d + (dH) + (d;)rZ) cell problems.

In this paper, we generalize the result from Ref. 4 to the multi-dimensional case, using the
adaptation technique arising from asymptotic development introduced in Ref. 19. Our first
main result is the definition of a family of well-posed effective equations of the same form as
(1.5) and an error estimate that establish that any member of our family of effective equations
is e-close in the L°°(0, T%; L2(£2)) norm to the true oscillatory wave over a time interval of length
T¢ = O(¢72). The computation of the effective quantities involves only d+ (dH) cell problems.
The error estimate holds in an arbitrarily large periodic domain Q € R¢, which makes our result
comparable to the one from Ref. 14, 15 (valid in the whole space R?). We also deal with more
general settings than in Ref. 14, 15 as we allow for a source term in the equation and an initial
speed. Finally, while the norm |[ul|y2(ra)r00 (ray = inf{|Ju1][r2ray + U2l ey : u = ur +uz}
on two Banach space was used in Ref. 14, 15, we obtain our error estimates in the stronger
L>°(0,7¢, L*(£2)) norm.

Error estimates between the oscillatory and the effective solutions can be obtained in dif-
ferent frameworks. In this paper (as in Ref. 4 and Ref. 19), the proof of the error estimate is



done via the definition of an adaptation operator arising from asymptotic expansion, while in
Ref. 14, 15 the expression of u° in Bloch wave expansion is used (as it was formally introduced
in Ref. 22). The interesting conclusion is that both techniques lead to the definition of valid
effective equations. Our second result is to show that the effective equation from Ref. 14, 15
belongs to the family of effective equation that we define in this paper. We explicitly derive a
correspondence between the solutions of the cell problems obtained with Bloch wave technique
and the ones we obtain with asymptotic expansion. We note that this comparison has also
been discussed independently in Ref. 5, with a focus on elliptic equations and an application
to the wave equation.

Finally, we also derive an efficient computational algorithm to compute numerically the
effective wave. We briefly discuss some related numerical strategies. In Ref. 16, Engquist, Holst
and Runborg introduce a finite difference method (FDM) based on a regularized scheme for the
ill-posed effective equation (1.3). The method is built in the framework of the heterogeneous
multiscale method (HMM). In Ref. 6, this method is shown to capture the effective flux of
the ill-posed equation given in Ref. 22 for the one-dimensional case. The finite heterogeneous
method (FE-HMM) introduced in Ref. 1 has been modified in Ref. 2, 3 to approximate the
effective model from Ref. 19. This method, the FE-HMM-L, has been fully analyzed in Ref. 4.

The paper is organized as follows. First, we introduce in Section 2 an error estimate to
motivate the use of the asymptotic expansion that we then perform to obtain constraints on
the effective coefficients. In Section 3, we state and prove our main result, the error estimate
that leads to the definition of the family of effective equations. We then give in Section 4
a constructive method to obtain some elements of the family and describe an algorithm to
compute the necessary effective quantities. In Section 5, we relate our family of effective models
to the effective model obtained in Ref. 14, 15 via Bloch wave expansion. Finally, in Section 6
we illustrate our theoretical findings through numerical experiments.

Definitions and notations

Let us denote the space of tensors of order n by Ten™(R?). A tensor b € Ten™(R?) is also
denoted {bj,...;, }. In the whole text, we drop the notation of the sum symbol for the dot
product between two tensors and use the convention that the repeated indices are summed,
e.g., for b € Ten3(Rd),c € Tenz(Rd), bijrcij = Z?jzl bijrcij. Also, for a tensor of functions
v : R? — Ten™(R?) the sum symbol is omitted in terms of the form 0,  vi,..m..i, (T) =
an:l Oz, Viy-em-i,, (). Let us mention that the notation of the differentiation variable is
sometimes omitted when there is no confusion. The subspace of Ten™ (R?) of symmetric tensors
is denoted as Sym"(R%), i.e., b € Sym™(R%) satisfies b;,...;, = biy 1y ipmy fOr any o € Sy
(permutations of order n). Finally, we introduce the symmetrization operator S™ : Ten"(R?) —
Sym”(R%), defined as

1
(Sn(b))il..-i” -yl Z bia(l)"'iaw)' (1.6)

oeS,

In the text, (S”(b))ilm is denoted as SP ., {bj,..i,}. Clearly, for b € Ten"(R?) we have
bil- aﬁzn = Sﬁu'in{bil'”in}a’inl'nin'

Let © C R? be an open hypercube and define the standard space of square integrable

.

il

functions L2(O) and the Sobolev space H¥(O). Equipped with their usual inner products,
L2(0) and H™(O) are Hilbert spaces. The mean of an integrable function v : O — R is defined
as (v)o = |0|7! [, v(z) dz. We define the quotient space £2(0) = L*(O0)/R and denote by a
bracket [v] the equivalence class in £2(O) of v € L?(0). Equipped with the inner product

([U] ) [w] )EQ(O) = (U - <U>(9aw - <w>O)L2(@) = (’U, w)L2(O) - |O‘<U>O<w>0
where v, w € L2(0), £L2(0) is a Hilbert space. Let C32,(O) be the space of O-periodic functions

per

of C*°(0) and define the space H! . (O) as the closure of C9,(O) for the H! norm. We define

per per



the quotient space Wyer(O) = H! . (O)/R and denote by a bold face letter v the elements of

per

Wier(O). Equipped with the inner product
(vvw)wpcr(O) = ([v], [w] )Lz(o) + (Okv, ak:w)LQ(O)7 Yv € v,w € w,

and the induced norm vy, .. (0) = 1/(V;V)w,..(0), Wrer(O) is a Hilbert space. Note that

the k-th partial derivative of v € Wy (O) is simply Oxv = dpv € L*(O) for all v € v and
that thanks to the Poincaré-Wirtinger inequality, v — [[Vv||12 (o) is also a norm on Wy (0),

equivalent to [|-[|y, ., (o). The dual space Wy, (O) is characterized as follows : for F' € Wy, (O),
there exists [fY] € £2(0), fi,..., [} € L?(O) such that
0 1
<F7 v>Wr’§er(O),Wper(0) = ([f ] 7v)£2(0) + (fk7ak:'u)L2(O)‘ (17)

Furthermore, ||Fllw- (o) = mf{|[[f°]llz2(0) + [I/']lL2(0)}, where the infimum is taken over
all [f°] € £2(0), f! € L*(0O) satisfying (1.7). From characterization (1.7), we verify that a
functional of [HIl,er(O)]* given by w — (%, w)12(0y + (f}, Okw)12(0) for some fO, f1,... fi €

L2(0), belongs to W, (O) if and only if
0 —
(f ) 1)L2((9) =0, (18)

or equivalently f° has zero mean. Define LZ(O) (resp. Wpe (0)) as the set constituted with
the zero mean representative of £2(Q) (resp. of Wyer(O)). Equipped with the standard L2
inner product (resp. H'), L3(0) is a Hilbert space (resp. Wpe(O)). Note that the following
embeddings are dense Wy, (0) C L§(O) € W5.(O).

For a Banach space X and p € [0,00), L?(0,T; X) is the space of functions v : [0,T] — X
such that ||v||re0,7;x) = (fOT |v(®)]% dt) P < 5. The definition is similar for p = oo, with
the L°° norm in time. To simplify the notation we will often use the shorthand notation
I llees |- e (x), (- -)o instead of || - [lLe(oy, || - llLro,r;x) and (-, -)L2(0) respectively.

The wave equation in a heterogeneous medium

Let us now introduce precisely the settings for equation (1.1) in an arbitrarily large periodic
domain. Let 2, Y € R? be open hypercubes such that € is a union of cells of volume £|Y|, as
in Figure 1. We assume that a is a Y-periodic d x d tensor and hence a(£) is Q-periodic (a is
extended by periodicity).

EEEEEE

Q

Fig. 1. The hypercube  is assumed to be a union of unit cells of volume £|Y| (in the picture d = 2).

For T¢ = 2T, we consider the wave equation : find u° : [0,T¢] x  — R such that
Ofus(t,x) — V- (a(E)Vous (t, ) = f(t,2)  in (0,T°] x Q,
x = uf(t,x) Q-periodic in [0,7¢], (1.9)
uf(0,2) = ¢°(x), Ow(0,z) = g'(z) in Q,
where g%, g! are given initial conditions and f is a source. The following notation is used for the
differential operator A° = =V, - (a(£)V,(-)). We assume that a € [L°°(Y)]**¢ is symmetric,
uniformly elliptic and bounded, i.e. there exists A, A > 0 such that

MNP <a(y)e-€ < AE)? forae yeY VEeRY (1.10)



For the well-posedness of problem (1.9), we refer to Lions and Magenes in Ref. 20. A detailed
proof may be found in Ref. 17. If ¢° € Wy (Q2), ¢' € LE(Q), f € L3(0,7¢;L?(2)) then there
exists a unique weak solution u® € L2(0,T¢; Wy, (2)) with 9;u® € L2(0,7; LE(Q)) and 97w’ €
L2(0,7¢; W5, (). We note that u is proved to be even more regular, u® € C°([0, T¢]; Wyer (Q2))

and dyuf € CO([0,T¢]; LE(Q)).

2. Effective coefficients via asymptotic expansion

Asymptotic expansion is a formal technique systematically used in homogenization theory
to derive effective equations (see Ref. 7, 18, 10). In this section, we explain how asymptotic
expansion is used to define an adaptation operator and prove a rigorous estimate of ||u® —
|2 (0,72;1.2()), @ being an effective solution. First, we prove an energy estimate that is central
in the proof of the error estimate. Second, we proceed to the asymptotic expansion and obtain
constraints for the definition of the tensors of the effective equations.

2.1. An error estimate to motivate asymptotic erpansion

Consider B°4, an adaptation of the effective solution % (as defined in (3.7)). The following
abstract lemma gives a general error estimate that clarifies the requirements needed B¢ for the
adaptation to be a good approximation of 4 on a long time interval.

Lemma 2.1. Let T° = =%, a > 0. Assume that @ : [0,7°] x Q@ — R is a function such
that @(0) = ¢°, 0,u(0) = g'. Furthermore, assume that B° is an operator such that B°a
belongs to L°(0,T¢; Wper(Q2)), with 9,80 € L>(0,T%; L*(2)), 9784 € L*(0,T%; Wi (2))
and OB%u(0) = B°gl. Finally, assume that it holds

(0F + A*) (B — [u])(t) =7r°(t) in Wi (Q) for ae. t €[0,T°], (2.1)
where ¢ € L°(0, 7% W, (). Then, the following error estimate holds
B0 — [u®]lLee 0,72522(02)) < C(HBsgl - [4'] HW;er(m +B%9° - [¢°] l22(2)
+ e 7 Lo 0,75 s ) (2.2)

where C' depends only on \, A and T.

Proof. To simplify the notations we note (-, -) instead of (-, )w=_ w,,, and A= A°. Thanks
to Lax-Milgram theorem, define the inverse of A, noted .A~'. Using the properties of a, we can
show that A~ is self-adjoint, elliptic ((F, A~1F) > A*1||F||$,V;er) and bounded (||A7]] < A71).
Let n = B°4 — [uf]. Using (2.1) with the test function w = A~'9;n(t), we obtain for a.e.
te[0,T°]

L& (@m0, A7 am(®) + In(®)12:) = (r°(), A Om(0)). (2.3)

Setting En(t) = (9 (t), A719m(t)) + [[n(t)||%2, we integrate (2.3) over [0,£] to get

3
BEn() = En(0) +2[ (r*(t). A am(n) dt e € [0.7°].
Using Hoélder and Young inequalities and the bounededness of A~!, we obtain
En(€) < En(0) + 20/ X r s gus ) + 1/ @A) [0m]2 v, (2.4

Using the ellipticity of A~! we have 1/A[|0;n(&) |13 < En(€), hence, taking the L norm with
respect to &, we obtain 1/(2A)||8m||ioc(wgcr) < E"(O)+2A/A2||7"Ellil(wgcr>- As Hn(f)”iw(ﬁz) <
En(&), estimate (2.4) and the boundedness of A~! gives

1112 22y < 2/ M0 (0) s, + 20lm(0)[Z2 + 40/ N[ Es s - (2.5)



Thanks to Holder inequality we have [|7¢|[Lioys ) < Te™||r|lLo(wy,,). Finally, we have

9m(0) = B¢t — [g'], n(0) = B°g° — [¢"]. The proof of the lemma is complete. O

Let us explain how Lemma 2.1 and the asymptotic expansion (2.9) lead to an error estimate
for effective equations. On a time interval [0,7¢], T° = ¢~ T, let B be an adaptation of the
effective solution @ of the form B4 = [a] + C°u, where [|C%@|r~(,2) < Ce. Then, since
w(0) = ¢°, 9;w(0) = g*, the error estimate (2.2) becomes

B0 — [u” ]| o,r:2(0)) < Ce+e |78 |lLe 0,02 my,, (9))-

.
As we also have || [@] — B @||p(0,7¢:22(0)) < Ce, we obtain via the triangle inequality (and
using (@)o = (u%)a),

[u® = @l o,7e502(0) = | [u® — @] [[Loc0,72322(0) < Ce+e 7% llLe0,02m,, ). (2:6)

er
Estimate (2.6) implies the following : if a function @ is such that we can define an Q-periodic
adaptation B°1 satisfying (02 + .A%) (B0 — [uf]) = O(g7), where v > «, then @ approximates
u® up to times e~ *T with accuracy O(e7~*). The construction of B4 is done via asymptotic
expansion as explained in Section 2.2.

Note that the presence of the L norm in time for the term 7¢ in estimate (2.2) (and (2.6))
is “responsible” for the e~ factor. As we will see, in practice, asymptotic development leads to
aremainder in (2.1) of the form r¢ = R"@, where [RG[[Lwz,,) < €7 32405 105|100 1o ) -
As the energy estimate for hyperbolic problems gives a bound for [|8f4||ye (i), the L> norm
is the “right” quantification in time for the remainder €.

2.2. Asymptotic expansion and constraints on the effective coefficients

We now perform the asymptotic expansion. All the computations are done formally, i.e., we
assume as much regularity as required. The rigorous result with its detailed proof is presented
in the next section.

We are looking for an effective solution on a time interval [0, T¢], T¢ = 2T As discussed in
the previous section, we thus need to construct an adaptation B°a(t) such that (97 +.4%)(B% i —
[u])(t) = O(?) for a.e. t. We first construct B°u(t) € H} (), such that (87 + A°)(B°a —
u)(t) = O(e?) and we will then set B = [Ba] in W, (Q). The construction of B4 leads
to cell problems that are elliptic PDEs with periodic boundary conditions, whose solutions
are called correctors. We will see that the well-posedness of these cell problems constraint the
definition of the effective tensors.

First, we introduce the effective solution u. Referring to Ref. 15, 14, 4, we make the ansatz
that the effective equation is of the form

02t — a0, 0% + €2 (02,0 i — W, 02,000) = £ in (0,T] x 9,
x — u(t,xz) Q-periodic in [0,77], (2.7)
u(0,2) = ¢°(x), Gu(0,2) = g'() in €,
where b° € Ten?(R?), a® € Ten?(R?) are coefficients to determine and a® € Sym?(R¢) is the
homogeneous tensor defined by Ref. 7, 18, 10
a?j = (e] a(Vx; + €j))y s (2.8)
where x; belongs to the class of solutions of (2.12). Next, we make a second ansatz : the
adaptation of u is of the form
Bea(t,x) = a(t,z) +eu' (t,2, L) +%u?(t, 2, 2) + %uP(t, 2, 2) + '’ (t,2, 2), (2.9)

where the u'(t,z,y) are Q-periodic in z and Y-periodic in y. We introduce the differential
operators

A’ = -V, (a)V, ), A==V, (a(y)Ve-)—Va- (a(y)V,-),
.A2 = —Vm . (a(y)vz : )7



so that for v (x,y) smooth enough, using the chain rule, we have A%)(z,2) = (e72A° +
e A + A%)y(z, £). We fix a t € [0,7] and using equations (1.9), (2.7) and ansatz (2.9), we
compute

(07 + A%) (B u—u®)(t,2) = 92B%u(t,x) + A°B%u(t,x) — f(t,z)
(AW AT )
( A%u? + Alut + A0 +al;0}0 )
tel (2ul + A% + Alu? )
+e% (OFu? + Aut + AMuB 4 A% — a2, 08 i+ b), 07,070 )
+0(e?*), (2.10)

= £

where the u' are evaluated at (¢, z,y = Z). We now define successively u' to u* so that the
terms of order O(e72) to O(g?) in (2.10) cancel. At order O(e~!), we obtain the equation
A% 4+ A% = 0 which reads

—V, - (a(y)(Vyu'(t, z,y) + V,a(t, z))) = 0.

We can show that any solution of this elliptic equation is of the form x;(y)9;u(t, z) + c1(t, x),
where ¢; is a function independent of y and for all 1 < i < d, x; is Y-periodic and solves the
cell problem

—Vy - (a(Vyxi +e)) =0 inY.

For simplicity, we choose ui(t,x,y) = xi(y)0;u(t, x). Consider now the O(1) order term in
(2.10), which reads now

=V (aly)Vyu® (t,2,9)) = (Vy - (aly)eix; () + el a(y) (Vyx; (y) + e;) — afy) O a(t, o).

The solution is given by u?(t,z,y) = éij(y)afja(t,a:) + ¢o(t, ), where for 1 < 4,5 < d 6, is
Y -periodic and solves the cell problem
-V - (aVyHNij) =Vy- (aeixj) + e;fpavyxj +ai; — a?j inY.
Once again, we let ¢y = 0 for simplicity. We note here that for sufficiently smooth %, u? can
also be written as 0:5(y)0Zu(t, ©), where 0;5 = 5(0i; + 055) = S7{0i;} is the symmetrization
(1.6) of ;; and solves the cell problem
=V, - (aVybi;) = Sfj{vy (aeix;) + e aVyx; + aij — a(i)j} n Y.

The advantage of the second form of u? is that there are only (d;rl

{6:;} compared to the d? for {6;;}. Before canceling the O(g) and O(e2) order terms, we rewrite
(2.10) taking into account the definition of u' and 2. Using (2.7), we have

) cell problems describing

OFu' = xi0:071 = xi0i f + af;xu0 0 + O(e2),
OFfu® = 0;;07,071 = 0,02, f + 20101+ O(e),
V07070 = bY,07 f + ag;b 00+ O(e),
hence (2.10) reads
(07 + A%) (B0 — uf)(t,2) = &' (AP + Al + af x4 10)
+ &% (A%t + AMu® + A% + (a?j(bgl +0r) — afjkl)afjklﬂ)
+etxi0i f + 2 (b)) + 055)07 f+ O (). (2.11)
Let us first assume that f = 0. To cancel the O(¢) and O(e?) order terms in (2.11), we can

set w3 (t,2,y) = Rije(y)05;,a, and u'(t,z,y) = pijri(y));, 0, where ijp and pijp are the

, .

solutions of cell problems obtained in a similar manner as for x; and 6;;. As previously, in
order to minimize the number of cell problems, we use the symmetrization operators S* and



S%. In summary, we obtain the following cell problems : for 1 < 4,75, k,I < d, find Y-periodic
functions x;, 0;j, Kijk, pijrke such that

g1 (aVyXi,Vyw)Y = —(aei,Vyw)Y, (2.12a)
et (aVy by, Vyw)y = SZ{ — (aeixs, Vyw)y + (a(Vyx; + €5) — aoej,eiw)y}, (2.12b)
el (aVym—jk,Vyw)Y = Sf}k{ — (aeﬂjhvyw)

Y
+ (alVybsn + e5xn) — a’ejxn, iw)y, b, (2.12¢)
62 : (aVypijthyw)Y = fj]kl{ — (aei/{jthyw)Y + (a(Vyﬁjkl + eﬂkl),eiw)y
+ (a?jkl - a?jgkl - a?jbgsz)y}, (2.12d)

for Y-periodic test functions w € Hlljer(Y). We now explain how the well-posedness of these

cell problems leads to the definition of the effective tensors a’,a? and b°. To show that (2.12a)
to (2.12d) are well-posed in the quotient space Wyer(Y'), we apply Lax-Milgram theorem (we
thus obtain a solution unique up to a constant). As the bilinear form (v,w) — (aVv, Vw)y
is elliptic and bounded, we have to verify that the right hand sides belong to W*_.(Y). In

per

other words, the right hand sides have to satisfy the solvability condition (1.8) and that gives
constraints on the effective tensors. Let us now explicit these constraints. First, note that the
right hand side of (2.12a) trivially satisfies this condition. Next, if we let w = 1 in the right
hand side of (2.12b), we obtain

SH{(a(Vx; +€;) —a’ej,ei)y } = VIS5 {(e] a(Vx; + ;) } — YIS {ad;} =0, (2.13)

where we used the definition of the homogenized tensor (2.8). Hence, the cell problem (2.12b)
is well-posed. Next, letting w = 1 in the right hand side of (2.12c) we obtain

Siind = (aVljr, ei)y — (ejxns i)y +ad; (xas 1)y} (2.14)

and we need this quantity to vanish for any 1 < i, j, k < d. Using the symmetry of a, equations
(2.12a) with the test function w = ;3 and (2.12b) with w = x;, we have

—(aVij,ei)Y = (avejk,vxi)y
= ]Qk{ - (aerkvai)y + (G(VXk + ek)veri)y - (afgkaXi)y}a
and we can thus rewrite (2.14) as
Sl — (aeixr, Vxi + ei)y + (a(Vxr +er),eixi)y — ady (1, Xi)y + ag; (X, 1), }=0.

It follows that the cell problem (2.12¢) is well-posed. Finally, we apply the solvability condition
(1.8) to the right hand side of equation (2.12d) in order to obtain a constraint on a? and b°.
Letting w = 1, we have

|Y|Sfjkl{afjkl — agjbgl} = Sfjkl{ — (aVK:jk.l,ei)Y — (aejﬁkl,ei)y + (a?j,ﬁkl)y}. (2.15)

We use the symmetry of a, equation (2.12a) with test function w = k;i; and equation (2.12c)
with w = y; to get

—(aVKjri,ei)y = (Vi VXi)y
=S0u{ — (ae;0k, Vxi)y + (a(VOr + exxa), €5xi)y — adx (X1 Xi) }
which combined with (2.15) gives (using the symmetry of a)
|Y|Sz4jkz{a?jkz - agjbgl} = Sfjkl{ (a@ina Vekl)y - (a(in + i), ejekl)y + (a’?jvekl)y
— a(;k (le Xi)y + (Cl@k)(l, 6in)y}~

Using equation (2.12b) with test function w = 6y, we obtain then the following constraint on
2 0
a” and b

Y[S{aii — albly} = Sfjkl{(aijl,Xi)y — (aV0;i, V), — ad (x5 Xi)y}-  (2.16)



We just showed that the cell problem (2.12d) is well-posed in Wye,(Y)) if and only if the
coefficients a2, b° satisfy (2.16). In particular, if this constraint is satisfied, we can define the
adaptation B°G as in (2.9) and show that (07 + A°)(B°u — u®) = O(e®) (under sufficient
regularity of @ and the correctors). Hence, applying Lemma 2.1 with B°a = [B®a] leads to
the estimate ||u® — @||g(0,7-;1.2(q)) < Ce (as done in (2.6)). This result is rigorously proved in
the next section.

Recall that we assumed f = 0. It is in fact not necessary as we can also “correct” the terms
coming from f as follows. In order to cancel the non-vanishing terms ex;0; f + 2 (b?j + 0ij)a§j f
n (2.11), we add a correction term in the adaptation (2.9). Namely, we replace (2.9) by

B (p;a)(t, z) =u(t, x) +€X1( )8 u(t, x) —&—520”( )82 (t,x)
+e /{ijk(f)aijku(t,x) +e Hijkl(g)aijklu(t, T) + o(t, 1), (2.17)
where ¢(t, -) belongs to the class @(t) € Wper(€2) that solves
(07 + A%)p(t,z) = — [exi (2)0if (t, ) + 2 (b9, + 05 (£))07 f (£, x)] ae. t €[0,T7],
©(0,z) = drp( 0 ) = [0].
The standard well-posedness of the wave equation ensures that if f € L2(0,7%;H%(Q)) and
Xi»0i; € CO(Y), there exists a unique solution ¢ of (2.18), satisfying
@ € C([0, T Wher (), Dep € C([0,T°; £2(), 07 € L2(0, T% Wper (). (2.19)
Observe then that B°(p; ) defined in (2.17) satisfies
(0 +A4°) ([B(ps )] — [0°]) = [15(8) ~exs (2)0h ) —2 (865 (2))0% (8.1

where 7€ is the right hand side of (2.11), so that (07 +.A4%) ([B*(¢;a)] — [u]) = O(e®). As we
verify that 9; [B°(¢;@)](0) = [B(¢;¢')](0), the application of Lemma 2.1 leads to ||Ba —
[u®] [|lLe (0,7=;22(0)) = O(e). However, in order to obtain an error estimate on |[u® — |1, (r2)
(as done in (2.6)), we have to verify that the estimate || [@ — B*(p; )] |10 (£2) < Ce holds.
Following the lines of Lemma 2.1, provided xj € C°(Y),0;; € C°(Y), f € L2(O T¢;H%(2)), we
obtain the estimate

(2.18)

lellLe 0,722 (0)) < Cell fllLo,re:12(0)) (2.20)

where C' only depends on A, A, maxy [|xkllco(yy and max;; [|0;5|co(y). This estimate ensures
that || [@ — B(p;@)] [lLee(c2) < C€(||U||LOC<H4) + £ llLr 0,212 (0)))-

To conclude this section, let us discuss the correctors and their dependence. First, as (2.12a-
2.12d) are well-posed in Wy (Y'), we obtain the unique (class of) solutions xy,, 0ij, Kijk, Pijx €
Wier(Y) for 1 < 4,5, k,1 < d. Note that 6,; depends on the choice xi € X, kijr depends on the
choices xi € X}, 0ij € 055, etc. A natural choice for the normalization of the correctors is the
zero-mean function. However, observe that the constraint (2.16) has been derived independently
of the choice of normalization. Hence, any normalization can be used.

3. Main result : a priori error estimate and definition of the family of
effective equations

Let a® € Sym?(R%) be the homogeneous tensor defined as (2.8) and let ° € Ten?(R?) and
a? € Ten*(R?) be constant tensors such that

i) b° e Sym?(R?Y), b'n-n>0 VneRY
i) Ay = aj a*(mn™) = (™) =0 Vn e R
Consider the following linear Boussinesq equation : we look for @ : [0,7¢] x € — R such that

d7u — af;0fu + & (a ”kl(‘?”klu bY; 07,07 @)= f in(0,7°] x Q
x — u(t,xz) Q-periodic in [0,7¢], (3.2)

w(0,7) = ¢°(x), 9:u(0,x) = g'(x) in €,

(3.1)
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where the initial conditions ¢°, g' and the source f are the same as in the equation for u¢ (1.9).
As a® is symmetric and elliptic (see Ref. 7, 18) and under assumptions (3.1), the well-posedness
of equation (3.2) can be proved as follows. Define the spaces

H={veLli() : [[v]f. +*(°Vv, Vv) < 00},
V={veWu(Q) : (aOVv,Vv)L2 +3(a®V?v, V?v) < oo},

and the bilinear forms

(v,w)y = (v, w)r20) + £2(b°Vw, Vw)iz), Yv,weH,
A(v,w) = (a"Vu, Vw)z2q) + e2(a*V?v, V2w)L2(Q) Yo, w € V,

where V2v denotes the Hessian matrix of v. We call a function @ € L°°(0,T¢;V), with 9% €
L>(0,7T%;H), a weak solution of (3.2) if for all test functions v € C?([0,7¢]; V), with v(T¢) =
0wv(T*) = 0, u satisfies

fOT(a(t), Pu(t)),, + A(a(t), (b)) dt :fOT(f(t), V(D) 2
+ (g%, 0(0),, = (¢°, 00(0)),,,. (3.3)

Following the Faedo—Galerkin method, we construct a sequence {u"},,>0 and we show with
an energy estimate that {u™},,>0 is bounded in L*°(0,7%;V). We thus obtain the existence
of a subsequence that weakly* converges in L°°(0,7¢; V). We prove then that the weak™ limit
@ is the unique weak solution of (3.2). In order to derive the energy estimate, we need the
assumptions (3.1). In particular, note that (3.1) ) implies (a?V?v, V2U)L2(Q) >0veV.

The following theorem is our main result. It gives a sufficient condition on the coefficients
a?,b° such that (3.2) is an effective equation up to times O(e~2).

Theorem 3.1. Assume that the Y -periodic tensor satisfies a(y) € C*(Y'). Furthermore, assume
that the solution @ of (3.2), the initial conditions and the right hand side satisfy the regularity
@ € L>(0,T5; H5(Q2)), 0yu € L>°(0,7¢;H*(Q)), 021 € L>(0,7¢;H3(Q)),

@ e HI(Q), gl e H(Q), feL2(0,T5H3(Q).

Let x;, be the (class of ) solution of (2.12a), fix any xr € Xy, let 0;; be the corresponding (class

of ) solution of (2.12b) and fix 0;; € 0;;. Assume then that b° and a® satisfy the relation

S?jkl{azzjkl - a'?jbgl} = S?jkl{<aijlXi>y - <aV0ﬂ : V9k1>y - a?k<XlXi>y}' (3.4)
Then, the following error estimate holds

| = @lnee(0,7e512(02)) < Ce( gt luz) + 19° ) + 1 F L o,mem2(0)) (3.5)

+lal| e 0,72 585(02)) + 11078l Lo (0,72:13(02)) )
where C' depends only on T, Y, a, X\ and A.

Let us emphasize that the constant C' in estimate (3.5) does not depend on . Hence, for
an arbitrarily large domain €2, if the quantities

g 20, 119° Iy, 1 lio,7em2(0))s NllLeeo,mem5(0)), 1078l 0,715 (0))

are bounded independently of ¢, estimate (3.5) reads |[u® — |1, (0,7<;1.2()) = O(€).
Thanks to Theorem 3.1, we can define the family of effective equations.

Definition 3.1. The family £ of effective equations is the set of equations (3.2) where 6°, a?

satisfy both (3.1) and (3.4). Note that & is used to denote both the family of effective equations
and the corresponding solutions.

The proof of Theorem 3.1 follows two steps. We first define the adaptation operator B®
using the correctors defined in Section 2.2. Then, we show that B satisfies the same wave
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equation as u® up to a remainder of order O(¢?®) (Lemma 3.1). Finally, we use the triangle
inequality and apply Lemma 2.1 to obtain the error estimate.

First, note that the cell problems (2.12a) and (2.12b) are well-posed (a° is defined as (2.8)).
Then, as (3.4) is equivalent to (2.16), the cell problems (2.12c) and (2.12d) are well-posed.
Let x; and 6;; be as in Theorem 3.1, let k;;; be the corresponding solution of (2.12c), fix
Kijk € Kijk, and similarly fix p;;x; in the corresponding class Pijkl of solution of (2.12d). As
we assume a € C3(Y) (in Theorem 3.1), elliptic regularity result (see Ref. 8) and Sobolev
embeddings ensure that x;, 0;j, Kijk, pijrl € 61(17) and for any 1 <1,j,k,l < d it holds

IXiller(vys 10:5]lcr vy, [Eajkller vy lpijriller vy < Cmi?x laijllc2 vy (3.6)
where C' depends only on A\, A in (1.10) and Y. Finally, let ¢ € C°([0,7¢]; Wper(2)) be the

unique (class of) solution of (2.18).
We now define the adaptation operator as

B (ip:) : L2(0,T% Hi,, () NHA(Q)) — L2(0, T Wi (), v = B (g30),

per per

<BE(‘P§ v)(t), w>w;er7wpe, =

([0(t) + 205 = By buns)50() + € (500 = Dy i) B (D)) w

- (ezemjajw) D R ORO

)52(9)

T (plt).w),, (3.7)
for a.e. t € [0,T¢], where the correctors x;, 0;;, kijk and p;;r; are evaluated at y = Z. Using the
Green formula (as in Remark 3.1), we verify that for v € L2(0,7¢;H._ () N H*(Q)), we have

per

)
perawper

L2(Q)

(B (g5 v)(t), w) = ([(B*(g;v)()], w )[:2 where B¢(p; -) is defined in (2.17). Furthermore, note
that for v E H?(0,7%; H,.(€) NH3(€2)) it holds 87B° (p;v) = B (07 ; 07v). Finally, note that

under the assumptions of Theorem 3.1, B°(¢; ) verifies the hypotheses of Lemma 2.1.

Remark 3.1. The following formula (applications of the Green formula) will be useful : for
any Y-periodic ¢ € [CH(Y)]4, v € H. () and w = [w] € Wper (),

([eer(2) O] w) raq) = (ecr (2) v w) gy = IQU(eer () Ov)q (w)g
= = (Oynem(2)v.w) ) = (e6m (2)0: 0mw) Lo + 121Dy, em (2) ) (w)q
~([9ynem(2)0]sw) paq) — (Ecm(é)“’amw)m(ﬂ)’ (3.8)

where we recall the notation 9,,, ¢;,, = S

m=1 Oy, Cm.-

Lemma 3.1. Under the assumptions of Theorem 3.1, B (yp; @) satisfies
(0F + A°)B () (t) = [f(t)] + REa(t) in Wi (Q)  for a.e. t € [0,T7],

where the remainder R0 € L>°(0, T, W5, (Q2)) satisfies the estimate

IR (0,75 wx. (9)) < C&%(|iil|r.oe (0,715 () + |07 8|1 (0,751 (2)) ) » (3.9)

per

for a constant C that only depends on X\, A, a and Y.
Proof. To simplify the notation, (-, -)w:_ w,., is denoted by (-,-). First, using equation (3.2)
and the assumptions on the regularity of @, note that the following equalities hold in L2(Q) for
a.e. t € [0,7¢] and for 1 < p < d,

62~ = f+a” L_/ —€2a§]kl8i§kla+€2buafj82~ (310)
0,0kt = O, f + a” p”ﬂ € a”kla ikt U +€2b2]62”62~ (3.11)

Then, we fix ¢t € [0,7¢] and develop the terms 9?B°(¢p;)(t) and A°B°(p;u)(t) separately.
Using (3.10) and formula (3.8), we have

([5‘?&] ,w)ﬁ2 =([f+ a?jﬁfjﬂ — €2afjklﬁfjklﬂ] ,w)L2 — (52b9nj8j8t211, amw)L2. (3.12)
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As 07B°(p; ) (t) = B (07p; 07u)(t) in W, (), using (3.7) and (3.12) we obtain
(0287 (3 0), w) = ([ + a0 + (s — Dy Oun) 0070 — 20300l
+ &% (Wt — Oy, Pmjit) 0107 7’w) L
- (EQ(Qmj + 02,0002 + £ P05, 026, amw) L+ (0P w).
Using now (3.11) to substitute 9;0?, we obtain
(028 (ip; 1), w) = ([f + 0,021 + £y (xo — Dy )02, 02 — 202,301 ,w)m
(52a0 (O + by ) 051 T, amw) L
o+ ([e0tk = 0y Orar) O f],w)ﬁ — (22O + 85,005, amw)L2
+ (0}, w) + (Ri1,w),
where
(Rit, w) = ([63(%1 + 05Xt = Dy, (Pt + b30mi)) 05 07
- 53@?;‘1@1()@ Iy Hmp)azgklpu] )EQ
+ (54(pmijk. b? Omk + b” mk)ajkazu +e awkl(ﬂmp + bmp)ﬁmklpu 8mw)£2.
Finally, applying formula (3.8), we obtain
(0?B° W) = ([f+alj82u+sa”x,€6wku+€ (a0 + aQ;bR) — aZjp) O] )£2
+ ([xu0uf + 220, + W) flow) |+ (Fp.w) + (Ridw). (313)

Next, the second term is computed as

(AB (i), w)=([ = (= V- (@l + ek»)aka
+ (= V- (a(Vylsy +eixy)) —ef a(Vyx; + ej))32 0
! ( - Vy - (a(Vykijr + eZHJk)) €; a(V Oir + ejxk))amku
(= V- (a(Vypijur + eirjnn) — € a(Vykju + e0n)) z’jklﬂ] ’w)az
+ (A, w) + (R50, w), (3.14)

where
<’R§ﬂ, w> = 53([—e?a(vypjklp + ejnklp)afjklpﬂ] , w)£2 + (amipjklpafjklp@ amw)L2.

Now, we combine (3.13) and (3.14) and use cell problems (2.12a-2.12d) and (2.18) and obtain
(02 + A%)B*(p;a)(t) = [f(t)] + R°a(t), where R°% = R4 + R54. Thanks to the regularity
of the correctors and using (3.6), we verify estimate (3.9) for the remainder R°% and the proof
of the lemma is complete. O

Proof of Theorem 3.1. As (i)q = (u®)q it holds |[u® — ||y (r2) = || [u® — @] ||L=(22),
hence using the triangle inequality we split the error as
= il ) < 1B — [l (o) + | (0] — BFallees)- (3.15)

Let us bound the two terms of the right hand side. The equation for u¢ (1.9) implies that
(07 + A%) [us(t)] = [f(t)] in W..() for a.e. t € [0,T¢]. Lemma 3.1 implies thus that

(2 + AS)(BE(p: 1) — [uf])(t) = REaG(t) in Wi (Q) for ae. t € [0, TF].

per
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Applying Lemma 2.1, using estimate (3.9) and the definition of B®(¢;-) in (3.7), we obtain
1B° (@) — [w ] lLo(e2) < Cc(llg'llms + l9°llms + l|lluo usy + 1107 AL us)),  (3.16)

where C depends only on A, A, a, Y and T. For the second term of (3.15), we use the definition
of B°(y;+) (3.7) and estimate (2.20) and obtain

I[a] = B (5 @)L (c2) < Ce(llilLee @y + [ fllLrqme)) (3.17)
where C depends only on A, A, ¢ and Y. Combining (3.15), (3.16) and (3.17), we obtain
estimate (3.5) and the proof of Theorem 3.1 is complete. |

4. Computing the tensors of an effective equation

In Definition 3.1 a family of effective solutions £ is defined in an implicit way. This does not
yet give a way to compute a? and b°, nor even ensure the existence of an effective equation.
In this section, we prove in a constructive way that there exists coefficients a2, b° satisfying
both (3.4) and (3.1). In the one-dimensional case, we show that Theorem 3.1 reduces to the
result obtained in Ref. 4, where a family of such functions is defined in an explicit way. In
the multidimensional case, we will give an algorithm to compute the coefficients to obtain an

effective solution (the algorithm can be easily modified to obtain other effective solutions).

One-dimensional case

The computation of the effective coefficients in the one-dimensional case is very particular. As
showed in Ref. 4, the coefficients ° and a? in the effective equation (3.2) can be computed
with the solution of one single cell problem. That leads to the explicit parametric definition
of a family of effective equations. For completeness, we show here how this result is obtained
with Theorem 3.1.

Let us rewrite the constraint (3.4) on the coefficients 0%, a? as

V| (a? — a®b°) = (a(y)(ayG +Xx),x — 5'y9)y —a’ (X, X)Y' (4.1)

We now derive two relations that are only valid in the one-dimensional case. Noting that
a(0yx + 1) € H(div,Y'), we use integration by parts, the periodicity of a(dyx + 1) and the cell
problem for x (2.12a) to obtain for any y1,y2 € Y

- Jo (= )0, a0, + D) =0,

where H,, is the Heaviside step function centered in y;. Hence, a(9yx+1) is constant on Y and
thanks to the definition of a® we conclude that a(y) (8yx(y) + 1) =a" Yy € Y. In a similar way,
using this equality in the cell problem for 6 (2.12b), we verify that a(y)(9,0(y) + x(y)) = C
is constant on Y. Dividing this equality by a(y), taking the mean over Y and using that
(1/a)y = 1/a°, we verify that C' = a®(x)y. This equality used in (4.1) leads to a constraint
independent of 6 :

a(Oyx +1)

Y2
" = a(ayX +1) (Hyz - Hyl)

oY

a® —a’b” = a®(x)y (x — 9,0)y — a®(x*), = a" ()} —a"(x?)y., (4.2)
Now observe that any non-negative b°, a? satisfying (4.2) can be written as
0 ={((x - 0Ov)?)y + ()Y, a®=a"(07F, (4.3)

where we note that <(X — <X>y)2> is independent of (x)y. We can then explicitly define para-
metrically the family of effective solutions as

& = {ii(yy solution of (3.2) where b°, a® are defined as in (4.3)}.

Observe that for (x)y = 0, the coefficient a? vanishes and hence there is no fourth order
operator a?9% in the effective equation. This particular equation was the one given in Ref. 19.
It is also the effective model on which the FE-HMM-L from Ref. 4 is based.
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Multidimensional case

In order to obtain an effective equation, following Definition 3.1, we look for a pair of tensors
b0 € Ten?(R?), a? € Ten*(R?) such that

b0 € Sym?(R%), bon-n>0 VneRY (4.4a)

ik = Ajjis a*(m™) : (") =0 VneRY, (4.4b)

Simtatim — albi} = Shu{{aimxaxi)y — (aVsi - V), — af(xaxi)y ) (4.4c)
where x; € x;,0i; € 0;; and X;,0;; are the unique (class of) solutions of the cell problems
(2.12a) and (2.12b), respectively. In the multidimensional case, constructing a pair a2, b° sat-
isfying (4.4) is not as straightforward as in the one-dimensional case. As discussed in the
introduction, the issue when looking for an effective equation is to obtain a well-posed equa-

tion. In particular, the sign of the tensor a? is crucial. We recall that a tensor ¢ € Ten4(Rd) is
positive semidefinite if

(™) : (m™) = cgamngmem >0 ¥y € RY. (4.5)
Let us investigate the signs of the tensors involved in the right hand side of (4.4c). First, the
tensor <aijlXi>y - <aV9ji . V9M>Y - a’?k<XlXi>y is known to be negative semidefinite (this
is shown in Ref. 12 in the framework of the Bloch wave theory see also Ref. 11, 14 and Section
5). Second, note that <Xin>Y is a symmetric positive semidefinite matrix. However, as the
tensor ¢k = <aijlXi>Y—<aV9ji . V9k5>y has no sign (see e.g. Ref. 5), the pair b° = <Xin>yv
a?j w1 = Gijki does not satisfy the requirements (4.4). In fact, to construct a valid pair of effective
tensors a2, b°, we need to use the “freedom” provided by the minus sign in the constraint (4.4c).
Indeed, we verify that if R € Sym?(R?) is positive definite, then the tensor a?ijl is positive
definite

ag; Rmingmem = (0" a®n)(n" Ry) ¥y € R,
where a® is positive definite. Hence, if we consider a sequence of parametrized positive definite

matrices {R" },~o C Sym?(R%), such that the smallest eigenvalue of R” increases as 7 increases,
then, for sufficiently large values of r, the tensors

a?jkl = <aijin>y —(aVly; - V9k1>y + a?kRZ, szj = (Xixj)y + Rij, (4.6)

satisfy all the requirements (4.4). This construction proves that the family of effective equations
&, defined in Definition 3.1, is not empty (see Figure 2, Section 6).

We now need a process to construct a matrix R" with sufficiently large eigenvalues for a?
in (4.6) to be positive semidefinite. For that purpose, we introduce the following concept of
positivity for a fourth order tensor ¢ € Ten*(R?) :

€ €= ciymbiiéa >0 VE € Sym*(RY). (4.7)
As 7 € R satisfies nn” € Sym?(R?), assertion (4.7) implies (4.5). The advantage of (4.7) is that
it can be seen as a simple eigenvalue problem. Indeed, consider the linear map Sym?(R?) —
Sym?(R%), ¢ + ¢£ defined by (c€)ij = cijrér and note M(c) the associated N(d) x N(d)
matrix, where N(d) = (5!). Then, we can construct a bijective map v : Sym?(R?) — RN(?)
such that

c€: &= M(c)(§) v(€) VE e Sym*(RY). (4.8)
Hence, the tensor c¢ satisfies (4.7) if and only if the matrix M (c) is positive semidefinite and
similarly, c€ : € > 0 V& € Sym?(R%)\{0} if and only if M(c) is positive definite. In Appendix
A, we give the details on one possible constructions for M (c) and v.
Now, we still need to ensure that increasing r in (4.6) increases the eigenvalues of M (a?).
This is proved by the following lemma.

Lemma 4.1. Let A,R € Symz(Rd) be positive definite matrices. Then, the tensor ciji =
ARy satisfies ¢ 1 € >0V € Symz(Rd)\{O}.
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Proof. As R is symmetric positive definite, the Cholesky factorization ensures the existence
of an invertible matrix H € Ten®(R?) such that R = HTH. As A is positive definite, for
¢ € Sym*(R%) we have

c€ &= ARyl = Aji (Hmifij> (Hmlfm> = (¢H,n) T AEH,, > 0,

where we denoted H,,, = (Hpy1,- .. ,Hmd)T. Now, assume that the equality holds. Then, as A
is positive definite it must hold ¢H,, = 0 for all m = 1,...,d or equivalently EH” = 0. As H
is regular so is H” and we conclude that & = 0. The proof of the lemma is complete. O

We now have a constructive method to obtain effective equations. Indeed, in the following
lemma, we consider (4.6) with R™ = rI (note that we could use R" = ra® as well).

Lemma 4.2. Let d?jkz = <aijin>Y — <av9ﬁ-vekl>y and denote A% = M(a?), A° =
M({agk&-l}) and their respective minimal eigenvalues Amin(A%) and Auin(A°). Then, the tensor

Amin(A?) } 7

2 ~2 0
A = Gy + 1500,  Vr > r* = max {0, -~ 10\
)\min(A )

satisfies a*€ : € >0 VE € Sym?(RY).

Proof. First, as A2 and A° are symmetric matrices it is clear that Apin(A?) and Apin(A°)
are real and thanks to Lemma 4.1 and (4.8) it holds Apin(A%) > 0. Furthermore, Apin(A42%) <
(A%v-v)/(v-v) for any v € RN(4) and similarly for A°. Now, if A2 is positive semidefinite, then
r* = 0 and the tensor a? is positive semidefinite for any r > 0. Next, assume that Apin(A?) < 0.
We verify then that for any v € RN(@),
o _/\min(AQ) < _A2v v
= A% .o’

Amin(AO)
Hence, for ¢ € Sym?(R?%) we note v = v(€) (see (4.8)), set 7 = r* + Ar with Ar > 0 and obtain

a’¢ =A% -v+r A% v+ ArA% v > 0.

The proof of the lemma is complete. O

Algorithm to compute the coefficients of an effective equation

As discussed in the previous section, Theorem 3.1 and Lemma 4.2 give a way to construct an
effective equation. We give here the full algorithm to compute the effective tensors a°, v° and
a?. This algorithm is appropriate for dimensions d > 2 as a much simpler one can be obtained
ford=1.

In order to state the algorithm in an optimal way, let us make an observation. We first
introduce two sets of indices. Let I(d) C {1,...,s}* be the set of indices of distinct entries of
a tensor in Sym*(R%). In particular, |I(d)| = (dZS) so that |I(2)| = 5 and |I(3)] = 15. Next,
a tensor ¢ € Ten4(Rd) is said to satisfies the major and minor symmetries if ¢;;x; = ¢4 and
Cijkl = Cjiki = Cijik for all 1 < i, j,k,l < d, respectively. We denote J(d) C {1,...,s}* the
set of indices of distinct entries of a tensor satisfying the major and minor symmetries. In
particular, |J(d)| = (V) where N(d) = (*1') so that |J(2)| = 6 and |J(3)| = 21. Now,
note that to compute the operator a;,0;;;; we only need the entries {a?;; : (i,7,k,1) € I(d)}.
Furthermore, to construct the matrix A2 from Lemma 4.2 associated to the tensor a2, we only
need the entries {a7,, = (a2 + a3, + @iy, + @5qx) : (,4,k,1) € J(d)}. The conclusion is
that to compute the coefficients of ag;;;d;;;,, computing the |J(d)| distinct entries of a7, is
sufficient.

We are now ready to give the algorithm to compute the effective quantities a®, %, a? of an

effective equation in the family &£.
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Algorithm 1.

(1) for 1 <k <d find x € Wper(Y') such that Vw € Wpe, (Y)
(aVXk, Vw)y = —(aek, Vw)y,
(2) for 1 <4< j <d compute
a?j = a?i = <aij + eiTaVXj>Y,
(3) for 1 <i<j<dfind 0;; = 0j; € Wper(Y') such that Yw € Wpe (Y)
(aVGij, Vw)y :—%(a(xl-ej —|—Xjei),Vw)Y + %(eiTaVXj +e?aVXi,w)Y + (aij — a%,w)y,
(4) for (i,7,k,1) € J(d) compute
aZ = 1(alxie; + xjei) - Oaer + xwer) )y — (aV8ij - Vi),
(5) build the matrices A* = M(a?), A = M({a3;,0u}) (see Lemma Appendix A.1) and set

* _ Amin(4?)
r = max {0’ Axnin(AO) ’

(6) for 1 <i < j <d compute
0y = b = (Xixy )y + 77035,
(7) for (i,7,k,1) € J(d) compute
*% (a?k(sq;l + a?k(SjZ + ag?léik + a?léjk).

2  _ 2
Qi = Qjpy T 7

5. Comparison with the coefficients obtained via Bloch wave expansion

We have seen in Section 2.2 how to compute the effective coefficients using asymptotic expan-
sion. Yet we mentioned in the introduction that the existing effective model uses the expansion
of u® in Bloch waves. This approach has been used in a formal way by Santosa and Symes
Ref. 22 and led to the rigorous well-posed effective model obtained by Dohnal, Lamacz and
Schweizer in Ref. 14, 15. Note that it has also been widely used in the elliptic case (see Ref. 13
and the references therein). In this section, we compare the effective tensors obtained in this
paper with the ones obtained in Ref. 14, 15. We show that the two approaches lead to similar
cell problems and to the same tensors. Furthermore, we prove that the effective equation from
Ref. 14, 15 belongs to the family of effective equations £ defined in Definition 3.1. Note that,
this comparison has recently been done in Ref. 5, with a focus on the elliptic case.

Let us first summarize the result from Ref. 14, 15. The starting point is the expression of
u® in Bloch waves. We consider hence the solution u¢ of equation (1.1) (with a zero right hand
side) with the initial conditions u®(0,z) = g(x), du®(0,z) = 0. The Y-periodic symmetric
tensor a is assumed in [C}(Y)]?*¢ and g € L2(RY) N L*(RY) is such that its Fourier transform
G has a compact support K CC R™. We fix the period Y = (-, 7)¢ and define the reciprocal
periodicity cell Z = (—1/2,1/2)%. Then, for a fixed k € Z we construct {pm (k), ¥m (v, k) }_,
the eigenvalues and eigenfunctions of the problem

—(Vy +ik) - (a(y)(Vy + k)Y (Y, k) = pim (k) m (y, k),
where ., (k) are real and p,y1(k) > pm(k) > 0. We define then the rescaled Bloch waves
w, (x,k) = m(%,ek)e’™ ™ and the rescaled eigenvalues uf,(k) = pm(ck). In particular,
{uin (k) wr, (z, k)} satisty
—Vo - (a(2)Vows, (2, k)) = pr, (k)wy, (2, k),
and the Bloch waves {wS,(z,k)}m>0 form a basis of L2(R). Then, u¢ can be expressed as

u(t,z) = 3 gy, (K)wm (z etV H (k) gs = x)ws, (z x .
0= [ G oREEO) ik gm0 = [ R 6

where Z denotes the complex conjugate of z. First, it is proved in Ref. 14 that only the term
with m = 1 is relevant for the homogenization process. Then, the approximation

US(t, ) = (2m) "2 / G(k)e* "R (VIR dk,
K
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where G is the Fourier transform of g and K is its support, is proved to satisfy the error
estimate

||u€ - U€||Loo(O,OO;L2(Rd)+Lm(Rd)) < CE, (52)
where the norm ||u|y2(ra) 100 re) = Inf{[|u1 |2 ray + [[u2]|Loe me) : u = u1 +us} is weaker than
both norms ||+ ||1,2(ray and || - ||, ra). The next step is the approximation of R (e'V “S(k)) using

Taylor expansion. Noting uf(k) = A;jk;k; + EQC’ijmnkikjkmkn + O(e*), where Ay = fjuo(O)
and Cijmn = ijmnuo(O), we obtain the approximation

v (¢, x) = (27) —d4/22 Z/ 1]“”exp +it Aijkikj)exp(:ticj—J).

2 VAijkik;
The function v¢ satisfies then the error estimate
HUE - UE||Loo(0’€—2T;L2(Rd)+Loo(Rd)) < Ce. (53)

As shown in Ref. 15, it holds in fact A;; = i2j wo(0) = aw, where a” is the homogenized tensor
defined in (2.8). Hence, v° satisfies

62 ¢ = a; 82 - SQCijmna4» 1}6 — 84(Cijmnk‘ik‘jk’mk’n>2/(4a?jk‘ikj)’l}€

i zg ijmn

However, C' being negative, the equation 97+ = a% 8123 Cijmnafjmn- is ill-posed and cannot
be used. An algebraic procedure is then applied in Ref. 14, 15 to build the tensors F €
Ten?(R%), F € Ten(R?), satisfying the symmetry and positivity (3.1), such that the following

decomposition holds :

—~CijmnOiimn = Fij0%a%,,02, — Fjmn0f: (5.4)

ijmn ©j AynOmn ijmn:*

We observe that decomposition (5.4) is a preparation to a “Boussinesq trick”, i.e., to use the
effective equation to replace the operator al,, 02, with 87 (with a higher order error term).

Then, it is proved that the solution w® of the (well-posed) equation
OPw® = ad;0%w + €2 (B0} 08w — Fijmn0f,,w®)  in (0,7¢] x RY,

15 Vi) ijmn
w(0,z) = g(x), Qw*(0, ) =0,
satisfies ||V (v° — w®) |10 (0, 12512 (re)) < Ce?, which combined with the estimates (5.2), (5.3)
allows to prove that [[u® — w® ||y (0, re;12 (R) 4L (r)) < Ct.
Let us now give the explicit formulas from Ref. 14 to compute Ozjkl = ijkluo(()). We
consider the following cell problems : for 1 < i < j < k < d, find o5, 95 45T the

Y -periodic zero mean solutions of
- V- (aVyg') =iV - (aej), (5.5a)
V- (avig ) = 292 {iV - (aew’) + i€l avVy§ —ai; +al) }, (5.5b)

V- (aVug ) = 855, {1V - (aey ) il a2y ()t + 2005 |
(5.5¢)
Then, C is given for 1 <7, j,k Il <dby

Ciji = 3Sh{ (et )y} = $iSEu{ (el avyy ™) 1. (5.6)

The cell problems (5.5&)7 (5.5b) and (5.5¢) are very similar to the ones we obtain in (2.12a),
(2.12b) and (2.12c¢) with asymptotic expansion. Let us determine their exact relation. First, note
that 1/10 and 1/)61+e’+e’“ are pure complex valued and z[;eﬁ_ef are real valued (that ensures that
Cijit is real). Second, consider xg,0i;, kijx the zero mean solutions of respectively problems
(2.12a), (2.12b) and (2.12c). Using the unicity of a solution of an elliptic boundary value
problem, we see that

e . e;+e; eitejter .
QZJOJ = 1Xj, 0 7= 7291"7', o / == 761/431'3']6. (57)
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We now show that the computed effective quantities are in fact exactly the same. Using (5.7),
we rewrite Cjjk; in (5.6) as

Cijit = St = (aijb)y — (el aVegu)y } = YVISEu{ — (aVhju,ei)y — (ej0h,ei)y }-

As (01)y = 0, this expression is equal to the right hand side of (2.15). Hence, from (2.15) we
have

Cijir = St { (aexixi)y — (aVli - V), —afy, (xi xi) y }- (5.8)

Now, as E, F' defined in Ref. 15 satisfies (5.4), thanks to (5.8) we can infer that they satisfy the
constraint (3.4) from Theorem 3.1. As E, F satisfy by construction (3.1), the effective equation
defined in Ref. 15 belongs to the family £ defined in Definition 3.1.

Let us make a final remark. If we perform the asymptotic expansion as in Section 2.2 with
the ansatz that the effective equation is of the form 974 — af;07;u + €2Cijkl8;1jklﬂ = 0 (instead
of (2.7)), we obtain on ¢ the constraint S}, {cijri} = Sjj5;{Cijri}- Hence, we end up with the
operator cijklafjkl = C’ijklafjkl and thus the same ill-posed equation as obtained in the first
place in Ref. 22. As it happens here, there is no possible remedy to the non positivity of c. The
conclusion is that when performing asymptotic expansion, the form of the effective equation
that we postulate is a crucial ansatz.

6. Numerical experiments

Let Y = (-1/2,1/2) and consider the Y-periodic diagonal tensor given by

a11(y) = az2(y) = a(yz) = 1 — 0.5 cos(2my2), a12(y) = a21(y) = 0.

The oscillatory tensor a(f) describes a layered material and it is well known (see Ref. 7, 18,
10) that the homogenized tensor is given by

afy = [y al)dye =1, %y = (1, (al2) " dya) T = V3/2, (6.1)

and af, = a9; = 0. Furthermore, we have an analytic expression for the first correctors
X1, x2- Nevertheless, in order to test the numerical procedure (Algorithm 1), the cell func-
tions x1, X2, 011, 012,022 are computed with a P1 finite element method on a uniform mesh of
Y with 1024 points in both directions. We verify that we obtain a very accurate approximation
of a®. Then, we compute accurately the 6 distinct entries of the tensor @ and find

a2, = —0.00339360, a2y, =0, a2y = 0.00086375,
29, = 0.00339360, a2, =0, a2y =0.

We construct then the 3 x 3 symmetric matrix A2 = M(a?) and compute its eigenval-

ues as spec(A4?) = {—0.0054909, 0.0020973, 0.0034550}. so that the matrix A? is not pos-

2

itive semidefinite. Hence, in order to compute the positive tensor a“, we build the ma-

trix A% = M({a},0u}) (observe that A% is diagonal because a’ is diagonal) and obtain
spec(A%) = {a}, a3y, ad; + a3,}. We then compute * = max {0, —i‘mnigﬁg} = 0.006340411,

the tensors b°, a? are

a2, = @3y + r*ad; = 0.00294681,
= 3990 + a3y = 0.00549097,

2
B, = (x2). +r* = 0.00634041, 22227 ¢ \
0, — gxéiy 001004512 iz = @2+ §r7(ady + aby) = 0003821594,
e = )y " a3y = a2y = 0.0033935973,

277 5 1,500 0y _

afye = aiq1p + 377 (ajs +ay) =0,
2 T 3 1/.0 0y _

a3o19 = 1290 + 7(ajz +az;) =0,

and we obtain the corresponding effective differential operators b;07;, aZ;4,07;-

We recall that other effective equations can be obtained by defining the tensors as in (4.6),
where R" € Symz(Rd) is a positive definite matrix with sufficiently large eigenvalues. In order
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to illustrate that, we let r = (ry,72) € R?, R" = diag(ry,2), and denote a2, bY as defined in
(4.6), where the subscript specify the dependence in r. For several values of r, we compute the
minimal eigenvalue Ayin(r) of M(a2). In Figure 2, we plot r = (ry,72) with a red square (m) if
Amin () < 0 and a green square (m) if Ay () > 0. Hence, each green square corresponds to a
different well-posed effective equation in the family and we call the corresponding r valid. We
observe that there is a distinct frontier between valid and invalid values of r. The black square
is (r*,r*), where r* is obtained in Lemma 4.2 and Algorithm 1. As expected, (r*,r*) lies in
the domain of valid values. The subset of the diagonal in the valid values {(r,7) : r > r*}
corresponds to the effective equations obtained using Lemma 4.2. In what follows, we denote
by i, the solution of the effective equation (3.2) with a? = a2, b° = b2, for r > r*. The effective

solution given by Algorithm 1 is denoted by @ = ..

0.02

" {T : /\min(r) < 0}
° {T : Amin("’) > 0}
= (%)

0.015

T2 0,01

0.005

0 0.005 0.01 0.015 0.02
1

Fig. 2. Sorting of the minimal eigenvalues of M (a2), where a2 is defined in (4.6) with R" = diag(r1,r2). Each
green square corresponds to an effective equation in the family €. The black square is (r*,r*), where r* is
computed in Algorithm 1.

Let us now consider the model problem given by the initial conditions and source term

_af+ed
e=1/10, ¢(@)=e 77, gi(x)=0,  f(t,z)=0. (6.2)

Let us describe how to approximate the homogenized solution u® (1.2) and the solution
@ of the effective equation (3.2) for the data of the model problem (6.2) . Both equations
involves constant coefficients differential operators and hence we have an explicit form of the
solution with Fourier transform (see for example Ref. 17). Let us denote F(-) and F~1(-) the
(normalized) Fourier transform and its (normalized) inverse. Then, we verify that the solution
of (3.2) is given for every time ¢t by

3 . 0 a®k -k +e2a?kk” : kkT

a(t)=F (.7-'(9 ) cos (Vs(k)t)), s(k) = T 200k " . (6.3)
Similarly, the homogenized solution is obtained by replacing s(k) with a%k - k in (6.3). Thus,
u®(t), i, (t) can be approximated very accurately. We approximate the Fourier transform and
its inverse on a uniform grid using the FEFTW library (C library for computing the discrete
Fourier transforms using fast Fourier transform (FFT) algorithms). Note that Matlab’s native
FFT implementation (which is based on FFTW) can also be used.

First, we consider the small periodic domain 2 = (-2,2)2. On such a small domain we
are able to approximate u¢, the solution of (1.9) (¢° must be replaced with ¢° — (¢°)q to
fit the settings of (1.9)). To do so, we consider a uniform grid of  of size h = ¢/10 and
use a pseudo spectral method (see for example Ref. 23 for an introduction) using the FFTW
library. The time integration of the obtained second order ordinary differential equation is
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done with the leap frog scheme with a small time step At = h/100. The solutions u° and
u are approximated as described previously on the same grid as u®. We compute the relative
errors ||(u® —u®)(t)|lL2() /v () ||L2(@) and [|(u® — @) (¢)||L2(0)/[[u®(t)||L2(0) on the time interval
[0,200]. The result is displayed in Figure 3. We observe that the homogenized solution quickly
drift away from the fine scale solution u®. As we know, this is due to the dispersion effects that
develop in u°. On the contrary, we see that for times O(e~2) the error u® — i is very small, as
predicted by Theorem 3.1.

08— [[(v = ") (D) Iz / 1w (1) |2 @) ]
o7 — (@ = @) () [z /[ (1) 120 1
3 Sy YRy DYy Ry f
Y Sy YRy R YRy A

1 R I I

l
08 e VRN R IO S S
(XY AR T | SO
(IR E—— Sl ]
0 1 1 1 1 1
0 50 100 150 200 250 300

Fig. 3. Plot of the time evolution of the normalized L2(Q2) errors u® — u° and u® — 4.

Let us now consider the wave equation with the settings (6.2) in the unbounded case.
As the homogenized tensor (6.1) is diagonal, we know the form of the homogenized solution
u? : the pulse g° centered at the origin spreads in all directions with speeds \/E along the
r axis and \/(LTQQ along the y axis. To obtain 4(t) at a time ¢, we thus apply the formula
(6.3) and approximate the Fourier transforms on a periodic truncation R? given by Q =
(=L1,L1) x (—La, Ly), where L; = \/aT-)it + R; and R; > 0 is large enough (R; = 4 in the
experiment). We proceed similarly to approximate u°(t). In Figure 4 is displayed the global
form of @ at ¢ = 300 and in the zooms we can see the dispersion effects. Note that although
a(f) oscillates only in the y direction, the dispersion is as strong in the x direction as in the
y direction. In the top-left plot of Figure 5, we can see a 3D view of the dispersion of @ on a
small domain. Furthermore, the same view of u° is displayed in the top-right plot of Figure 5
and we see that there is no dispersion after the main pulse. In the bottom plot of Figure 5, we
can compare cuts at y = 0 of @, {1, }, for several values of r € [r*, 117*] and u°. We see that
all the effective solution {@,}, and 4 have almost the same dispersive behavior. As Theorem
3.1 ensures that @ and @, approximate well ¢ in the L>°(L?) norm, we conclude that u is a
poor approximation of u® at ¢ = 300.

Acknowledgements. This work was partially supported by the Fonds National Suisse, project
No. 200021_150019.

Appendix A. Matrix associated to a major symmetric tensor of order 4

Let a € Ten* (R?) be a tensor of order 4 satisfying the major symmetry relation, i.e. Qijkl = Qlkji
1 <i,j,k, 1 < d. We say that a is positive definite (resp. semidefinite) if a€ : £ > 0 for any
¢ € Sym?(RH)\{0} (resp. > 0). In what follows, we define a matrix M (a) such that a is positive
(semi)definite if and only if M (a) is positive (semi)definite.

Without loss of generality, we can assume that a satisfies the minor symmetry relations

Qijil = Gjikl = Qi 1 < 4,5,k 1 < d. (A1)
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100 150
T

Fig. 4. Global view of @ at ¢ = 300 and zooms on the subdomains (294, 302) x (—20, 20) and (—20, 20) x (273, 281).

0.01 J

u®(t=300)

-0.01

" oo ——u(t=300) f
0.07 L4, (t=300)
——-u%(t=300)

0.04

0.02

_0.01 . . . . .
296 297 298 299 300 301 302
T

Fig. 5. Top : 3d views of @ (top-left) and u® (top-right) at ¢t = 300 for (z,y) € (296,302) x (—3,3) Bottom :
cuts through y = 0 at t = 300 of u® and the effective solutions @, @, for several values of r € [r*, 11r*].

Indeed, if a € Ten*(R?) does not satisfy the minor symmetries (A.1), then a;;; can be replaced
by aijn = %L(aijkl + ajikt + Qijik + ajik) which satisfies (A.1) and a€ : n = a& : n for any
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¢,n € Sym?(R%). The tensor a defines a linear map Sym?(R%) — Sym?(R%), ¢ — af as

d d d
(a&)ij = aijrin = Zaijkkfkk +2 Z Z @ijk1Ehl- (A.2)
k=1 k=11=k+1

In order to build a matrix associated to this linear map, we define the sets of indices J =
{(i,j):1<i<j<d}yand I ={1,...,N(d)}, where N(d) = (“}') is the number of distinct
entries of a symmetric matrix in Sym?(R%). Let ¢~ : J — I be the one to one map given
by £71(i,5) = Kldj, where K¢ is the symmetric d x d matrix given by (fill the diagonal, then
successively the d — 1 upper diagonal rows)

1d+1-- - 2d — 1
2 2d---3d—3
K? =
. N(d)
d

Define then the bijective map v : Sym?(R%) — RN(@ ¢ — 1(€), by (V(é))m = &y(m) and note
that its inverse is given for v € RN(@ by (y_l(v))ij = Up-1(4,5)- The linear map associated to
(A.2) is then given as A : RN — RN(D A = poaovt. We verify that for v € RN(@),

d N(d)
(AU) m Z Ae(m)e(k)Vk +2 Z Ag(m)e(k)Vk-
k=1 k=d+1

Hence, noting {ei}f\;(ld ) the canonical basis of RY (d) | the matrix associated to A is given in
the basis {ej,...eq, %ed+17 ey %61\/((1)} by Amn = @y(m)en). We can then show that for any
¢,n € Sym?(R%), we have

d d d d
al:n =" airkinek + 2( > aimine + Y aijkkfijnkk) F 4 i
ik—1 k=1 jh=1 i<j
k<l i<j k<l

= v(&)" PTAPv(n),
where

1if1 <n<d,

Hence, we define the matrix associated to a as M (a) = PT AP, given by
(M(a)),,m = ZmZnGe(m)e(n)- (A.3)
For d=2,3 M(a) is given respectively as

a1111 @1122 41133 201112 261113 201123
9 (2222 2233 202212 202213 202223
a1111 A1122 241112 a 2 2 2
~ ~ 3333 2a3312 203313 203323
M(a) M(a)

= (2222 2a2212
’ 4a1212 4a1213 4a1223

4ai212
4a1313 4a1323

dazsos
We summarize the results of this section in the following lemma.
Lemma Appendix A.1. Let a € Ten®(R?) be a tensor satisfying ajur = ;i and define
)

Qijkl = i(aijkl + ajip + aijik + ajilk) and M(a) = M(a), where M is defined in (A.3). Then,
a is positive (semi)definite if and only if M (a) is positive (semi)definite.
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