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Abstract—After a brief review of the principle of correlated
multiple sampling (CMS) and its implementation techniques in
CIS readout chains, a simple CMS passive circuit that (i) requires
no additional active circuitry, (ii) has no impact on the output
dynamic range and (iii) does not need multiple analog-to-digital
conversions (faster) is presented. The proposed circuit uses n
switched capacitors to perform a CMS on 2" samples. It is
validated using transient noise simulations on a CIS readout
chain based on a 4T pixel, designed with a 180nm CIS process.
For a line readout time of 35 us and a column amplifier
bandwidth of 256 kHz, the proposed circuit reduces the input-
referred noise as expected by an ideal CMS.
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I. INTRODUCTION

It is known that for low light CMOS image sensors (CIS)
based on pinned photodiodes, the combined 1/f and thermal
readout circuit noise becomes the dominant source in low
light conditions [1]. Thermal noise can be drastically reduced
using column level amplification and bandwidth control. 1/f
noise originating from the in-pixel source follower, despite
the impact of the correlated double sampling (CDS), remains
the dominant noise source in low light CIS readout chains.
In the last few years, correlated multiple sampling (CMS)
has been used at column level for more efficient 1/f and
thermal noise reduction. Two main implementations have been
introduced, one using additional column level active circuitry
to integrate multiple samples in one capacitor [2] and the other
one performs the CMS after the analog-to-digital conversion
using multiple conversions [3]. This paper presents a new
simple analog implementation of CMS that (i) requires no
additional active circuitry, (ii) has no impact on the output
dynamic range and (iii) does not need multiple analog-to-
digital conversions.

This paper is organized as follows. Section II reviews the
CMS principle and its impact on 1/f and thermal noise.
Section III reports the current implementations of CMS in
state-of-the-art CIS readout chains. Section IV presents the
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Fig. 1. Schematic of a classical CIS readout chain showing the pixel-level
and column-level- amplification circuits with the timing diagram

new circuit implementation and, in Section V, the proposed
circuit implementation of CMS is validated using transient
noise simulations.

II. CORRELATED MULTIPLE SAMPLING IN CIS

Fig. 1 shows a classical CIS readout chain based on a
classical 4T pixel with a pinned photodiode and a column
level amplifier. The row selector is first turned on (RS high)
to select the pixel. Then, the sense node is reset to a voltage
Vrst higher than the pinning voltage. The transfer gate is
clocked down to sink photo-generated electrons in the sense
node. After auto-zeroing of the column amplifier, the reset
voltage level is sampled at the output of the column amplifier.
Then, the transfer gate (TX) is activated to allow the charge
transfer from the pinned photodiode to the sense node. The
voltage drop in the sense node is amplified and sampled at
the column level amplifier output. The first (reset) and second
(transfer) samples are then differentiated. This CDS process
cancels the reset K7'C thermal noise and reduces the 1/f
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Fig. 2. Timing diagram of aclassical pixel showing the reset and transfer
samples used for a correlated mutiple sampling of order M

noise. Moreover, the pinned photodiode is emptied of charges
at each transfer showing no frozen noise. Correlated multiple
sampling (CMS) is a generalized form of CDS. It combines
the CDS with averaging. The CMS consists in the difference
between the average of M samples at the reset level and the
average of M samples after transferring the charge to the sense
node. Fig. 2 shows the timing diagram of a 4T pixel and times
of the different samples of the CMS. the voltage at the output
of the CMS is given by
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In order to evaluate the impact of CMS on thermal noise,
we consider, at the input of the CMS stage, a thermal noise
voltage source with a PSD NNy, band-limited at the first order
with a cut-off frequency f.. The corresponding autocorrelation
is given by [4]

R(7) = 7 feNype~ 2 el )

Thus, the correlation between each two different samples of
the 2M is lower than R(T¢ss). For enough settling of the
signal between the samples 27 f.Tcprs must be higher than
5. Thus the correlation between two different samples is lower
than e~ and can therefore be neglected. Thus, the samples
can be considered uncorrelated. Consequently, the variance of
the thermal noise voltage at the output of the CMS stage can
be derived using (1) as

2 2
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Note that 7 f. Ny, is the thermal noise variance at the input of
the CMS stage. Thus CMS results in a thermal noise reduction
by %

The impact of CMS on 1/f noise has been discussed in
previous works [5] [2], we only recall the result. Consider
at the input of the CMS stage a 1/f noise voltage source
with a PSD of /% band limited at the first order with a
cut-off frequency f.. The 1/f noise variance at the output of
the CMS is calculated numerically and plotted as a function
of 27 f. To s in Fig. 3 together with the normalised thermal
noise variance. The 1/f noise reduction efficiency increases
with the CMS order M and reaches a plateau for M higher
than 8, especially when 27 f. T s is high.
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III. OVERVIEW OF CMS IMPLEMENTATIONS
A. Analog CMS

A CMS of order M can be implemented using a SC
amplifier that accumulates M consecutive samples in its
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Fig. 3. Impact of CMS on 1/f and thermal noise variance

feedback capacitor [2]. The drawback of this technique is that
accumulation of voltages reduces the dynamic range of the
readout chain by a factor of M. An alternative of the analog
integration technique is the folding integration technique [2]. It
allows performing CMS without reducing the dynamic range
at the cost of adding two voltage references, one comparator,
and some control logics. This additional circuitry introduces
a feedback effect in order to prevent the output of the SC
amplifier from saturation.

B. Digital CMS

Another implementation of the CMS is used in [3][6]. It
consists in the addition of the first M samples (reset) after
analog-to-digital conversion and then subtract consecutively
the next M ones (transfer). The main drawback of this
technique is the fact that analog-to-digital conversion has to
be performed 2M times during each readout.

IV. A NEW CMS IMPLEMENTATION

In this Section, an alternative to the CMS implementations
reported above is presented. It avoids using additional active
circuitry or multiple analog-to-digital conversions. It is based
on the passive SC network using an optimal number of
capacitors. Consider two capacitors, C; and C5, each one
holding respectively voltages V; and V5. When connecting
both capacitors, the charges held in C; and C5 are shared
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Fig. 4. Tllustration of the progressive processing of the average of 2"

consecutive samples with a sampling frequency T's
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Fig. 5. Passive switched capacitors circuit averaging 2™ samples using n
capacitors
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Fig. 6. Implementation of the new circuit performing a 2" order CMS using
n switched capacitors in a classical CIS readout chain

leading to a common voltage V' across both capacitors given

by

V= Cl‘/l + 02‘/2 C1=C> ‘/1 + ‘/2
C1+ Cy 2

The simplest way to perform an average of M samples
using switched capacitors consists of holding M consecutive
samples with a period of sampling T's in M capacitors and
connecting them all, at MTg, to obtain the average. This
process is faster than the state-of-the-art techniques reported
in the previous Section at the cost of silicon area occupied
by the sampling capacitors. In order to use less capacitors to
average the same number of samples, one has to process the
average progressively and hold the intermediate results in the
capacitors instead of holding the initial samples. Consider the
case where M = 2". One can find that the average of the
2™ consecutive samples can be calculated recursively. In fact
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Fig. 7. Timing digram for the CIS readout chain of figure 7 that incompass
the new CMS circuit of order 8 (n = 3)

the average of 2™ samples is calculated by connecting two
capacitors, each one storing the average of 2"~! consecutive
samples as
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Fig. 4 illustrates the progressive processing of the samples
average over the duration needed to sample and process
the total 2" samples (2"Ts). Equation (5) and Fig. 4 show
that at 2”7, the average of 2™ samples is processed by
connecting two capacitors, one storing the average of the
first 27~ ! samples processed at 2" 'Tg, and the other one
storing the average of the next 2" ~! samples. One can notice
that the capacitors used to compute the average of the first
27~1 samples are not all needed to hold this value during
the processing of the next samples. Only one capacitor is
needed to hold the average of the first 2”1 samples and the
other capacitors can be reused to process the next samples.
Consequently, if one considers U,,_1, the number of capacitors
needed to calculate the average of 2"~! consecutive samples.
The average of 2" samples can be calculated using U,,_1 + 1.
Thus

Up=Up—1+ 1 (6)

Finally, the number of capacitors needed to calculate the
average of 2" consecutive samples is given by

U, =n+1. )

This result is very important because it shows that a CMS of
order 2" can be performed using n+1 capacitors instead of 2.
Therefore, the implementation of CMS using this technique
results in CMS layout footprint reduction of order %

Fig. 5 shows a passive SC circuit implementing this technique.
It uses n + 1 identical capacitors. Consider the case n = 2.
First, switches ®; and ®, are closed. ®5 is opened to hold a
sample V7 in C,,:. Then ®; is opened after Ts in order to
hold the next sample V5 in C;. @4 is closed to calculate the
average and opened to hold a voltage %(Vl +V3) in Cyyy. The
same process is iterated with capacitors C; and Cs and ends

with a voltage %(Vg + V4) held in capacitor Cs. Finally &4



is closed to connect C'; and C,,; and then opened to hold a
voltage i(Vl +Vo+ Va+Vy) in Cpyy.

Fig. 6 shows the implementation of the averaging circuit
presented in Fig. 5 in a classical CIS readout chain to perform
CMS of order 2™. Notice that the input capacitor of the ADC
comparator Ceomyp is used as Coy. The corresponding timing
diagram for the case n = 3 is depicted in Fig. 7. the voltage
at the input of the comparator corresponds to the difference
between the voltage levels before and after opening the auto-
zeroing switch (AZ). The same averaging circuit computes the
average of 2" samples during the reset phase and the average
is stored in capacitor Ccomyp. Then, the auto-zeroing switch
(AZ) is opened and the voltage at the input of the comparator
becomes the difference between the average current output and
the average calculated at the reset phase. Once the average of
the 2™ samples of the transfer phase is calculated, the ramp is
activated together with the counter as shown in Fig. 7 for the
case n = 3. Compared to a classical CIS readout chain, only
two additional capacitors are needed with no active circuitry.
The logic circuit needed to control the switches is common
to all the columns of the imager, thus its footprint is not
significant.

V. TRANSIENT NOISE SIMULATION RESULTS

In order to validate the new CMS circuit presented in this
paper. The CIS readout chain presented in Fig. 6, using the
analog averager for the case n = 3 to perform a CMS of
order 8, is simulated using ELDO transient noise simulation.
The line readout time is set to 35us for a column amplifier
bandwidth of 265 kHz and gain of 8 (in order to minimize
the contribution of the ADC comparator to the input referred
noise). The design kit used for this simulation is a 180 nm
process dedicated to CIS. Simulations of 1/f and thermal
noise are performed separately. Note that the averaging circuit
can perform CMS of orders from 1 (correponding to the
simple CDS) up to 8. Fig. 8 shows the input-referred thermal
noise as a function of the CMS order M together with a
1/ VM theoretical decrease expectation curve. This figure
shows that, as expected, thermal noise reduction follows a
1/+v/M decrease. Fig. 9 shows the 1/ f component of the input
referred noise for M varying between 1 and 8. It shows that
CMS reduces 1/f noise by about 30% for a CMS of order 4
and 33% for order 8. Thus for 1/ f noise using CMS of orders
higher than 4 does not bring any significant decrease.

VI. CONCLUSION

In a CIS readout chain based on a 4T pixel, a CMS of
order M reduces thermal noise by % CMS is a general case
of CDS. Thus it reduces significantly 1/f noise and offset.
The 1/f noise reduction using CMS increases with M and
reaches a plateau at M = 8. In state-of-the-art CIS readout
chains, CMS is performed after analog-to-digital conversion
or using analog active circuitry.

In this paper, a new implementation of CMS is introduced. It
uses only n additional switched capacitors at the bottom of
each column to perform a CMS of order 2". The proposed
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Fig. 8. Simulations of the input-referred thermal noise rms charge of the CIS
readout chain presented in Fig. 6 using the proposed CMS circuit
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Fig. 9. Simulations of the input-referred 1/f noise rms charge of the CIS
readout chain presented in Fig. 6 using the proposed CMS circuit

CMS circuit (i) requires no additional active circuitry, (ii) has
no impact on the output dynamic range and (iii) does not
need multiple analog-to-digital conversions. The new imple-
mentation is validated by transient noise simulations for the
case of an 8" order CMS. The simulation results confirm
the theoretical results. They show that the thermal noise is

decreased as expected as ﬁ, whereas the 1/f noise is
reduced by 30% for M = 4 but no significant additional

decrease occurs for M larger than 8.
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