Micro-architectural Analysis of In-memory OLTP

Utku Sirin*
utku.sirin@epfl.ch

Pinar Tézlnt
ptozun@us.ibm.com

*Ecole Polytechnique
Fédérale de Lausanne

ABSTRACT

Micro-architectural behavior of traditional disk-based on-
line transaction processing (OLTP) systems has been inves-
tigated extensively over the past couple of decades. Re-
sults show that traditional OLTP mostly under-utilize the
available micro-architectural resources. In-memory OLTP
systems, on the other hand, process all the data in main-
memory, and therefore, can omit the buffer pool. In addi-
tion, they usually adopt more lightweight concurrency con-
trol mechanisms, cache-conscious data structures, and clean-
er codebases since they are usually designed from scratch.
Hence, we expect significant differences in micro-architectural
behavior when running OLTP on platforms optimized for in-
memory processing as opposed to disk-based database sys-
tems. In particular, we expect that in-memory systems ex-
ploit micro architectural features such as instruction and
data caches significantly better than disk-based systems.

This paper sheds light on the micro-architectural behavior
of in-memory database systems by analyzing and contrast-
ing it to the behavior of disk-based systems when running
OLTP workloads. The results show that despite all the de-
sign changes, in-memory OLTP exhibits very similar micro-
architectural behavior to disk-based OLTP systems: more
than half of the execution time goes to memory stalls where
L1 instruction misses and the long-latency data misses from
the last-level cache are the dominant factors in the overall
stall time. Even though aggressive compilation optimiza-
tions can almost eliminate instruction misses, the reduction
in instruction stalls amplifies the impact of last-level cache
data misses. As a result, the number of instructions retired
per cycle barely reaches one on machines that are able to
retire up to four for both traditional disk-based and new
generation in-memory OLTP.

Keywords

OLTP; Workload characterization; In-memory OLTP sys-
tems; Micro-architectural analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. .. $15.00
DOL: http://dx.doi.org/10.1145/2882903.2882916

Danica Porobic*
danica.porobic@epfl.ch

t1BM Almaden
Research Center

Anastasia Ailamaki *
anastasia.ailamaki@epfl.ch

*RAW Labs SA

1. INTRODUCTION

Recent years have witnessed the rise of the in-memory or
main-memory optimized OLTP systems [5, 19, 31]. Tradi-
tional OLTP engines are disk-based since they are designed
in an era where the server hardware had a main-memory
size in megabytes. Today, however, a server hardware with
1TB main-memory is a commodity. Therefore, the database
management systems (DBMSs) are able to process the data
working set of most OLTP applications in memory. This
has led various vendors and researchers to design brand new
OLTP engines optimized for the case where the hot dataset
resides in memory [12, 14, 15, 27].

In-memory OLTP systems have several significant differ-
ences compared to disk-based systems. First, since the data
working set resides mostly in memory, they omit the buffer
pool component, which acts as the virtual memory of a
DBMS and is, therefore, essential for the disk-based systems.
Then, they tend to adopt more lightweight concurrency con-
trol mechanisms to avoid the scalability bottlenecks that
arise due to traditional centralized locking. They also opt
for cache-conscious indexes instead of the disk-optimized B-
trees. Finally, since their codebases are written from scratch,
they tend to have lighter storage engines in terms of the in-
struction footprint.

OLTP benchmarks are famous for their suboptimal micro-
architectural behavior. There is a large body of work that
characterizes OLTP benchmarks at the micro-architectural
level [3, 6, 11, 23, 25, 28, 29]. They all conclude that OLTP
exhibits high stall time (> 50% of the execution cycles),
and a low instructions-per-cycle (IPC) value (< 1 IPC on
machines that can retire up to 4 instructions in a cycle) [6].
The L1 instruction misses that mainly stem from the large
instruction footprint of transactions are the main source of
the stall time, while the next contributing factor is the long-
latency data misses from the last-level cache (LLC) [28].

All the previous workload characterization studies, how-
ever, run the OLTP benchmarks on a disk-based OLTP
engine. Considering the lighter components, cache-friendly
data structures, and cleaner codebase of in-memory systems,
one expects them to exhibit better cache locality (especially
for the L1-I cache) and less memory stall time. Due to the
distinctive design features of the in-memory systems from
the disk-based ones, however, it is not straightforward to
extrapolate how OLTP benchmarks behave at the micro-
architectural level when run on an in-memory engine solely
by looking at the results of previous studies.

In this paper, we perform a detailed analysis of the micro-
architectural behavior of the in-memory OLTP systems. More

specifically, we compare three in-memory OLTP systems
(VoltDB [31], HyPer [9], and the in-memory OLTP engine
of a closed-source commercial vendor) to two disk-based
OLTP systems (Shore-MT [24] and a disk-based commer-
cial DBMS) in terms of their IPC values, stall cycles, and
cache misses while running simple micro-benchmarks as well
as the more complex TPC benchmarks (TPC-B and TPC-C)
[1]. Our analysis demonstrates the following:

e Despite all the design differences, in-memory OLTP be-
haves very similarly to the traditional disk-based OLTP
at the micro-architectural level. More specifically, it
spends more than half of the execution cycles in memory
stalls, mostly due to L1-I misses, and exhibits low IPC.

e Even though the main-memory optimized DBMS compo-
nents reduce the total instruction footprint at the storage
manager side for the in-memory OLTP systems, the in-
struction footprint and code complexity of the rest of the
components overshadow the benefits of these optimiza-
tions at the micro-architectural level.

e Transaction-specific compilation optimizations eliminate
almost all the L1-I misses. However, the reduction in
the instruction related stall time amplifies the impact of
long-latency data misses when the data does not fit in
LLC, and further reduces the IPC value.

The rest of the paper is organized as follows. Section 2
gives an overview of the in-memory OLTP systems and sur-
veys related work on workload characterization and micro-
architectural analysis studies. Section 3 describes the exper-
imental methodology. Section 4 and Section 5 present the
analysis results with a micro-benchmark and TPC bench-
marks, respectively. Section 6 analyzes the effects of transac-
tion compilation, index structures, and data types, whereas
Section 7 investigates the impact of multithreading on the
micro-architectural behavior. Finally, Section 8 discusses
the results and Section 9 concludes.

2. BACKGROUND AND RELATED WORK

In-memory DBMSs have gained a lot of popularity in the
last decade. In Section 2.1, we detail the underlying fac-
tors for this trend and the main design characteristics of
in-memory OLTP systems. Then, in Section 2.2, we go over
the recent workload characterization studies that focus on
OLTP applications and highlight why they are not represen-
tative for in-memory OLTP systems.

2.1 In-memory OLTP

Commodity servers of the last decade follow two funda-
mental trends: (1) main-memory becoming cheaper and (2)
number of cores increasing exponentially. Simply increasing
the buffer pool size and the number of worker threads in the
system to exploit the large main-memory and all the avail-
able cores, respectively, lead to marginal gains. Therefore,
these two hardware trends have triggered alternative design
opportunities for the new generation DBMSs.

As DRAM prices become cheap enough to buy 1TB main-
memory for ~$30K, today it is possible for most OLTP
applications to keep all of their data working set in main-
memory while running on a commodity server hardware.
This has led to the development of various in-memory or
main-memory optimized OLTP systems. These systems ei-
ther manage all the data in main-memory or make sure that

the hot data resides in main-memory. Since they manage
to eliminate/minimize the disk I/O for the data page ac-
cesses, the overheads associated with managing the buffer
pool overweigh its benefits [8]. Therefore, the in-memory
OLTP systems omit the buffer pool component even though
it is essential for the traditional disk-based DBMSs as it
gives the illusion of an infinite main-memory to the system.

On the other hand, in step with Moore’s law, the hard-
ware vendors keep providing more and more opportunities
for parallelism. Modern servers tend to have multiple mul-
ticore processors in the same machine and allow OLTP sys-
tems to handle increasing number of transactional requests
in parallel. However, the traditional concurrency control
mechanisms that ensure isolation among concurrent trans-
actions using a centralized lock manager and two-phase lock-
ing are designed at an era where the server hardware were
uniprocessors. Therefore, they do not scale on multicores
preventing OLTP systems from exploiting the sheer number
of cores available to them [22, 33].

In order to achieve better scalability on multicore archi-
tectures, in-memory OLTP systems adopt alternative con-
currency control mechanisms. These mechanisms can be
broadly grouped into two categories based on whether they
partition the data or not. The ones that partition the data
choose an extreme form of physical partitioning where there
is a data partition for each core and a single worker thread
for each partition. Systems like VoltDB [27] (or its ances-
tor H-Store [26]) and HyPer [12] deploy this approach. As
a result, they can avoid any form of locking within a par-
tition and need to coordinate worker threads only when a
transaction requires data from multiple partitions (i.e., in
the case of distributed transactions). On the other hand,
the systems that prefer avoiding any kind of data partition-
ing, like Hekaton [14] or SAP HANA [15], rely on optimistic
and multiversion concurrency control [4].

In addition to alternative concurrency control mechanisms,
in-memory database systems also deploy cache-conscious in-
dex structures. They align the index page sizes to the size
of a cache line as opposed to the size of a disk page and/or
adopt lock-free index page access mechanisms rather than
using traditional page latches [17, 30]. Moreover, the in-
memory OLTP systems tend to depend on pre-determined
stored procedures instead of ad-hoc queries [12, 14, 27] and
apply efficient compilation optimization techniques that op-
timize the instruction stream for a particular transaction [14,
21]. Finally, the new-age in-memory OLTP systems have
codebases that are implemented from scratch. Therefore,
they are expected to have a cleaner codebase compared to
the traditional disk-based systems where the codebase con-
sists of many branch statements and patches due to different
release versions spanning several decades of development.

Overall, in-memory OLTP engines deploy lighter storage
manager components compared to the traditional disk-based
systems aiming to utilize the resources of the modern server
hardware in a more effective way.

2.2 OLTP at the Micro-architectural Level

There is a large body of related work analyzing the micro-
architectural behavior of OLTP workloads. Barrosso et al.
[3] investigate the memory system behavior of OLTP and
DSS style workloads both on a real machine and with a
full-system simulation. They argue that these two types of
workloads would benefit from different architectural designs

in terms of the memory system. Ranganathan et al. [23] per-
form a similar analysis. However, they only focus on the ef-
fectiveness of out-of-order execution on SMPs while running
these workloads in a simulation environment. On the other
hand, Keeton et al. [11] and Stets et al. [25] experiment only
with OLTP benchmarks (TPC-B and TPC-C) on real hard-
ware. All of these studies agree that OLTP workloads uti-
lize the underlying micro-architectural resources very poorly,
wasting most of the execution cycles on memory stalls and
exhibiting a low IPC value.

Ailamaki et al. [2] examine where the time goes on four
commercial DBMSs using a micro-benchmark to have a fine-
grain understanding of the memory system behavior on mul-
tiprocessors, whereas Hardavellas et al. [7] analyze TPC-C
and TPC-H on both in-order and out-of-order machines in
a simulation environment. These studies focus on the impli-
cations for the DBMSs rather than the hardware to achieve
better hardware utilization.

More recent workload characterization studies [6, 29] ad-
ditionally analyze the TPC-E benchmark and show that
micro-architecturally TPC-E behaves very similarly to the
TPC-B and TPC-C benchmarks. These studies also cor-
roborate the findings of the previous studies in terms of
the inefficient use of the memory hierarchy when running
OLTP. They highlight that the L1-I stalls are the dominant
factor in the overall stall time followed by the long-latency
data misses. Our experimental methodology while measur-
ing various hardware events using counters on real hardware
is very similar to the methodologies of these studies.

Harizopoulos et al. [8] demonstrate that traditional OLTP
systems spend more than half of their execution time within
the buffer pool, latching, locking, and logging components.
On the other hand, Wenisch et al. [32] and Tozun et. al [28]
tie the micro-architectural behavior of the disk-based OLTP
into specific code modules by presenting the breakdown of
the cache misses into specific code parts of the traditional
OLTP software stack at different code granularities.

As Section 2.1 explains, the in-memory OLTP systems ei-
ther remove or simplify most of the traditional disk-based
OLTP components. Therefore, the micro-architectural be-
havior of OLTP workloads when run on disk-based systems
cannot be representative for the in-memory systems. Even
worse, the previous findings might mislead researchers and
developers that aim to improve utilization at the micro-
architectural level when running OLTP workloads using in-
memory OLTP systems. Therefore, the focus of this paper
is to perform a workload characterization study for OLTP
benchmarks running on in-memory OLTP systems to under-
stand the low-level differences between in-memory and disk-
based OLTP; and based on these findings, provide valuable
insights for OLTP systems’ design.

3. SETUP AND METHODOLOGY

The experiments presented in this paper are executed
on real hardware and performance is measured using event
counters as opposed to hardware simulators since we are not
investigating the impact of changing some of the hardware
parameters on the micro-architectural behavior. The rest of
this section details the setup and methodology for our study.

Hardware: We run experiments on a modern commod-
ity server with Intel’s Ivy Bridge processors. Table 1 shows
the architectural details of this server. To collect numbers
about various hardware events and break down the time

Table 1: Server Parameters

P Intel(R) Xeon(R) CPU
rocessor E5-2640 v2 (Ivy Bridge)
#Sockets 2
#Cores per Socket 8
#HW Contexts 16
Hyper-threading Off
Clock Speed 2.00GHz
Memory 256GB
32KB / 32KB
LAT/ LID (per core) 8-cycle miss latency
256KB
L2 (per core) 19-cycle miss latency
20MB
LLC (shared) 167-cycle miss latency

spent in specific code modules, we use Intel VTune Ampli-
fier XE 2015 [10], which provides an API for lightweight
hardware counter sampling. We disable hyper-threading to
obtain more precise hardware sampling values and increase
predictability in measurements.

OS: We run all the experiments using RHEL 6.5 with
Linux kernel version 2.6.32.

Benchmarks: We run two types of benchmarks: micro-
benchmarks and TPC benchmarks [1]. Our goal is to per-
form sensitivity analysis and have a more detailed under-
standing of the systems using the micro-benchmark, while
the experiments using the TPC benchmarks serve to give
an idea about the behavior of the systems when running
well-known real-world applications.

The micro-benchmark uses a randomly generated table
with two columns (key and value) of the type Long. It
has two versions: read-only and read-write. The read-only
version reads N random rows from the table, whereas the
read-write version updates N random rows. Both versions
use an index lookup operation on the randomly picked key
value to reach the row to be read or updated. We also use a
modified version of the micro-benchmark where we use the
type String for both columns to quantify the impact of data
type on micro-architectural utilization in Section 6.2.

As for the TPC benchmarks, we use TPC-B and TPC-C.
We omit the more recent TPC-E benchmark since recent
workload characterization studies demonstrate that TPC-E
exhibits similar micro-architectural behavior to the TPC-B
and TPC-C benchmarks [6, 29].

Analyzed Systems: We analyze three in-memory OLTP
systems: VoltDB [31] (Community Edition Version 4.8), Hy-
Per [9] (online demo-version), and the in-memory OLTP
engine of a closed-source commercial vendor (DBMS M).

We pick these three systems as they are well-known in
the community and their design characteristics represent
a good variety among today’s in-memory OLTP systems.
While VoltDB and HyPer use physical data partitioning,
DBMS M adopts optimistic multiversioned concurrency con-
trol. VoltDB uses traditional B-tree with node size tuned to
the last-level cache line size [26]. HyPer implements adaptive
radix tree with adaptive compact node sizes [16]. DBMS M
implements both hash index and a variant of cache-conscious
B-tree index similar to [17, 18]. For this system, we use
the hash index for micro-benchmarks and TPC-B, and the
B-tree index for TPC-C. Lastly, HyPer and DBMS M use

transaction compilation techniques for the stored procedures
[21], whereas VoltDB does not.

In order to gain better insights about the differences be-
tween the in-memory and disk-based OLTP systems, we also
include two disk-based systems: the open-source Shore-MT
[24] storage manager and a commercial system (DBMS D).

To implement benchmarks, we use VoltDB’s Java-based
developer front-end, HyPer’s SQL-based programming lan-
guage HyPerScript, Shore-MT’s Shore-Kits suite that pro-
vides an environment to implement benchmarks for Shore-
MT in C++, and the SQL frontend the closed-source com-
mercial systems, DBMS M and DBMS D.

For all the systems, we use asynchronous logging. There-
fore, there is no delay due to I/O in the critical path of the
transaction execution.

Measurements: We populate the databases from scratch
before each experiment and the data remains memory-resident
throughout the experiment. In the following sections, we in-
dicate the database sizes used in each experiment before dis-
cussing the results. In our experiments, both the database
server process executing the transactions and the client pro-
cesses generating the transactions run on the same machine.
We first start the server process, populate the database, and
then start the experiment by simultaneously launching all
clients that generate and submit transactional requests to
the database server.

We profile the database server process by attaching VTune
to it during a 60-second benchmark run following a 60-
second warm-up period. We report VTune counter results
that correspond to the middle 30 seconds of the 60-second
run in order to eliminate any peripheral effect that might
happen during the initial or final part of the run. We repeat
every experiment three times and report the average result.

In terms of micro-architectural efficiency, our goal is to ob-
serve how well each system exploits the resources of a single
core regardless of the parallelism in the system. Therefore,
all the experiments except for the ones in Section 7, use a
single worker thread executing the transactions of the cor-
responding benchmark.

The choice of a single worker thread also eliminates con-
tention due to several threads trying to access the shared
data in the case of non-partitioned systems and distributed
transactions in the case of partitioning-based systems. This
way we avoid possible misleading micro-architectural conclu-
sions. For example, high contention for a shared data page
could lead to multiple threads spinning on a latch for that
data page, thus artificially increasing the cache hit ratio.

‘We use one client to generate request in the single-threaded
experiments. Shore-MT, DBMS D, HyPer, and DBMS M
assign one worker thread per client. VoltDB, on the other
hand, generates one worker thread per data partition, so
we configure it to have only one partition. From VTune,
we filter the hardware counter results particularly for the
identified worker thread excluding the other threads that
are responsible for background tasks, e.g., communication
between the server and client, parsing transactions, etc.

In multi-threaded experiments (Section 7), we use mul-
tiple clients to generate requests for all systems except for
HyPer whose online demo-version only supports single-client
and single-threaded execution. For VoltDB, we also use mul-
tiple data partitions and ensure that all transactions ac-
cess only a single partition. For each system, we gradu-
ally increase the number of clients, and profile the execution

Read-only

Database size

Figure 1: Effect of database size on the IPC value.

with the number of clients that give the highest aggregate
throughput. From VTune, we filter hardware counter results
for each worker thread separately and report their average.

Using the hardware performance counters, we measure the
number instructions retired per cycle (IPC), and the instruc-
tion and data stall cycles from all the levels of the memory
hierarchy. While reporting the stall cycles, we multiply the
number of misses from each cache level with the expected
penalty for that particular miss as specified in Table 1. For
the last-level cache (LLC) misses, we average the penalty of
going to local and remote memory. We note that one can-
not be precise while showing the stall cycles breakdown on
an out-of-order processor due to the overlapping of different
execution components. Therefore, we draw the stall cycles
due to different misses side-by-side rather than on top of
each other.

4. MICRO-BENCHMARK

Before performing an analysis using the community stan-
dard TPC benchmarks, we devise a sensitivity study on the
micro-architectural behavior of in-memory OLTP systems
using the micro-benchmark. The goal of this study is to
answer the following questions:

e How much instruction-level parallelism do OLTP bench-
marks exhibit when run on an in-memory system? In
other words, what is the number of instructions they
can retire per cycle?

e Where do CPU cycles go when running in-memory OLTP?
Are they wasted on memory stalls or used to retire in-
structions?

e Where do memory stalls come from within the memory
hierarchy? Are they mainly due to instructions or data
for in-memory OLTP?

e What is the impact of the database size on the above
metrics?

e Does the amount of work done per transaction affect the
results and, if yes, how?

To answer these questions, we break the analysis into two
parts. The first part (Section 4.1) varies the database size
by varying the number of rows in the table while keeping
the amount of work done per transaction constant. On the
other hand, the second part (Section 4.2) varies the amount

BL1 mL2] OLCI @ALID @mL2D ELLCD
600

500
400
300 |f
200
100

1IMB &=

100GB ===

10MB (===

IMB ==

Emssmam
=
e

1MB
10MB |
10GB &

Stall Cycles per k-Insruction
100GB E

Shore-MT

o
@
<
]
|w)

Figure 2: Stall cycles per 1000 instructions from the different levels of the memory hierarchy as we

the database size.

of work done per transaction by increasing the number of
rows read in a transaction while keeping the database size
constant. Both parts measure the IPC value and stall cycles
that arise due to different types of cache misses.

Since the trends are similar across the read-only and read-
write versions of the micro-benchmark, we present the dis-
cussions about the read-only version of the micro-benchmark,
and place the results and discussions about the read-write
version in the Appendix, Section A.

4.1 Sensitivity to Data Size

To investigate the impact of database size on the micro-
architectural behavior, we populate databases of size 1MB,
10MB, 10GB, and 100GB. Then, we collect hardware events
as the systems run the micro-benchmark with a single trans-
action type that just reads/updates one random row after
an index probe operation. While the results for the read-
only version of the micro-benchmark are in the following
sub-sections, the results for the read-write version of the
micro-benchmark are in Section A.1 of the Appendix.

4.1.1 Instructions-per-Cycle

Figure 1 shows the number of instructions retired per cy-
cle (IPC) on the y-axis for each system as the database
size increases on the x-axis. The IPC values are similar
for databases of sizes 1MB and 10MB since the data work-
ing set mainly fits in the last-level cache, which is 20MB
(see Table 1). As we increase the database size to 10GB
and 100GB, the TPC decreases since the data working set
no longer fits in caches and the long-latency data misses
become more significant (as shown in Section 4.1.2).

Where the two disk-based systems (Shore-MT and DBMS
D) exhibit similar behavior in terms of their IPC values,
the in-memory systems exhibit a slightly higher IPC value
compared to the disk-based systems, except for HyPer with
large database sizes.

Among the in-memory systems, VoltDB achieves a higher
IPC value than DBMS M. On the other hand, HyPer achieves
twice as high IPC value compared to the other systems when
the data fits in the last-level cache. However, when the data
does not fit in the last-level cache, HyPer suffers from long-
latency data stalls, and hence, it has the lowest IPC value
among all the systems.

Overall, even though the server used in our experiments
is a 4-way issue one where each core has the ability to re-

~900 ~1000
Read-only
" Al H @ {H o i Hg g 0D
::a:!§:|E| ll [OH Al Al Al Al
S & 3| £ & G| & & &

S o S o S o
S =B R
VoltDB HyPer DBMS M

Database size
increase

tire up to four instructions in a cycle, except for HyPer on
datasets that fit in last-level cache, both the disk-based and
in-memory OLTP systems barely achieve an IPC value of 1.
Since we investigate the impact of various memory-related
stalls on the micro-architectural inefficiencies, we also con-
ducted an experiment to measure IPC when there are no
instruction or data misses in a program, which would be the
ideal scenario in our study. For this experiment, we run a
while loop accessing the same two integer variables repeat-
edly and assigning one’s value to the other. The IPC value
for this program after its cold start (after the compulsory
data and instruction misses are over) is 3. Further investi-
gation of this result is out of the scope of this paper.

4.1.2 Stall Cycles per 1000 instructions

Next, we analyze the causes of the low IPC values. Fig-
ure 2 plots the stall cycles per 1000 (k-)instructions coming
from all the three levels of the cache hierarchy as we increase
the data size on the x-axis. It also separates the instruction
and data related stall cycles. For example, L2D represents
the stall cycles due to data misses from the L2 cache.

From Figure 2, we observe that regardless of the database
size, instruction stalls (mainly from L1I cache) are the most
significant component in the overall stall cycles both for the
disk-based and in-memory systems, except for HyPer. This
shows that, despite all the optimizations described in Sec-
tion 2.1, in-memory OLTP systems still dramatically suffer
from instruction misses similar to the disk-based OLTP sys-
tems. On the other hand, these optimizations still help in
reducing the instruction related stall time to some extent.

Among the traditional disk-based systems, Shore-MT’s
instruction stalls are significantly lower than that of DBMS
D. This is because Shore-MT is a storage manager and does
not include the layers outside the storage manager compo-
nent of an OLTP system such as query parser, query opti-
mizer, and communication facilities. It hard-codes the query
plan of the transaction in C++.

As the data size increases, HyPer’s data stalls increase
dramatically, 5-10x more compared to the other systems.
This mainly stems from HyPer’s high instruction locality.
HyPer compiles transactions directly into machine code [20,
21]. Therefore, its transactions have an aggressively opti-
mized instruction stream — small instruction footprint, few
number of branches in the code, etc. As a result, HyPer
is able to finish more transactions using the same number

HL1l mL2] OLLCI @L1D @mL2D ELLCD
20K +

Read-only

15K

10K

5K

Stall Cycles per Transaction

Shore-MT DBMSD VoltDB HyPer DBMSM

Figure 3: Stall cycles per transaction from the dif-
ferent levels of the memory hierarchy for a database
of size 100GB.

of instructions compared to the other systems. Hence, it
touches more data randomly in a unit of time, which causes
higher stall time due to long-latency data misses when the
whole data set does not fit in LLC.

4.1.3 Stall Cycles per Transaction

The number of stall cycles per 1000 instructions provides
an aggregated and normalized view of the stall cycles across
different systems. In this section, we analyze the stall cy-
cles per single transaction. Figure 3 shows the results for a
database of size 100GB only since the results with different
database sizes show similar trends.

The first observation is the dramatic decrease in HyPer’s
LLC data stalls. While the LLC data stalls per 1000 in-
structions are 5-10x higher for HyPer than all the other
systems, HyPer’s data stalls per transaction are among the
lowest ones. This shows that HyPer executes large number
of transactions in a period of time, and makes large number
of random data accesses, hence, incurs many data stalls per
1000 instructions.

Except Shore-MT, all the other four systems have low LLC
data stalls per transaction implying that they implement
some variant of cache-conscious index structures. VoltDB
implements a tree index where the node size is tuned to size
of the last-level cache line [26]. While HyPer uses adaptive
radix tree with adaptive compact node sizes [16], DBMS
M implements hash index. DBMS D uses a traditional B-
tree with page size of 8KB; however, we could not find any
publicly available information about tuning the node size
of DBMS D for being more cache-conscious. On the other
hand, Shore-MT exhibits high LLC data stalls due to its
non-cache-conscious index structure.

In terms of the instruction stalls, we observe that disk-
based DBMS D’s instruction stalls are significantly higher
than that of the in-memory systems. This highlights that
the optimizations in-memory systems adopt help lower the
instruction stalls. On the other hand, DBMS M has sig-
nificantly higher L1I stalls than VoltDB and HyPer. This
shows the relatively larger instruction footprint of DBMS
M than that of the other in-memory systems. DBMS M is
main-memory optimized OLTP engine of a traditional disk-
based OLTP system similar to [5, 13, 18]. Therefore, it uses
a lot of legacy code for the components outside the storage

Read-only

Number of rows read

Figure 4: Effect of the amount of work per transac-
tion on the IPC value with a database of size 100GB.

manager resulting in its relatively higher instruction foot-
print among the in-memory OLTP systems.

4.2 Sensitivity to Work per Transaction

To investigate the impact of the amount of work per trans-
action on the micro-architectural behavior, we increase the
number of rows that a transaction accesses from 1 to 10 and
then to 100. We perform these experiments with 100GB
dataset. In the following sub-sections, we present the re-
sults for the read-only version of the micro-benchmark. The
results for the read-write version of the micro-benchmark
can be found in Section A.2 of the Appendix.

4.2.1 Instructions-per-Cycle

Figure 4 presents the IPC values as the number of rows
read in a transaction increases on the x-axis. We observe
that as the work done per transaction increases, the IPC
values of the disk-based systems (Shore-MT and DBMS D)
slightly increase, whereas the IPC values of the in-memory
systems (HyPer, VoltDB and DBMS M) decrease. This
stems from the changes in the instruction and the data stalls
as more rows are read per transaction.

Instruction stalls decrease as the number of rows read in-
creases. This is due to the repetitive work in a transaction
which improves the instruction locality. On the other hand,
increasing work per transaction in the micro-benchmark leads
to more distinct data accesses in a period of time, which hin-
ders data locality in caches and either limit the increase or
cause a decrease in the IPC value.

4.2.2 Stall Cycles per 1000 instructions

To better understand the trends in the IPC values in Fig-
ure 4, we quantify the stall cycles per 1000 (k-)instructions
coming from the different levels of the cache hierarchy simi-
larly to Section 4.1.2. Figure 5 plots the results. The x-axis
shows the number of rows read in a transaction.

As briefly explained in Section 4.2.1, the instruction stalls
decrease as the number of rows read per transaction increase
for all the systems. On the one hand, the repetitive behav-
ior within a transaction leads to a better instruction cache
locality. On the other hand, the code for the other layers
of the system that surround a transaction’s execution (e.g.,
the code outside the storage manager) is executed less fre-
quently since the transactions get longer as we increase the
amount of work done per transaction. For example, where

=Ll W2l OLCI @LID mL2D ELLCD
800
700
600
500
400
300
200
100

Read-only

Stall Cycles per k-Instruction

Shore-MT

VoltDB

~1000 ~3000

HyPer

Number of rows read

Figure 5: Stall cycles per 1000 instructions from the different levels of the memory hierarchy as we increase
the amount of work done per transaction with a database of size 100GB.

250K 7oK

200 K
150K
100 K

50 K

Stall Cycles per Transaction

Shore-MT

~3g0x BL1l L2l OLLCI @LID WL2D BELLCD

Read-only

VoltDB

Number of rows read

Figure 6: Stall cycles per transaction from the different levels of the memory hierarchy as we increase the
amount of work done per transaction with a database of size 100GB.

probing 100 rows per transaction stresses purely the stor-
age manager component of a system, probing 1 row also
stresses the other layers such as query parsing, work done
while starting/ending a transaction, etc.

While DBMS M'’s instruction stalls are small for prob-
ing 100 rows, they are significantly higher for probing 1 and
10 rows compared to the other in-memory systems. This is
because DBMS M inherits a lot of legacy code from the tra-
ditional disk-based OLTP system it belongs to. This brings
a significant overhead on the total instruction footprint that
can only be compensated by probing 100 rows per transac-
tion. On the other hand, the low instruction stalls while
probing 100 rows shows that the instruction footprint of the
DBMS M'’s storage manager (OLTP engine) is small. One
reason for that is DBMS M compiles transactions into op-
timized machine code similar to, but less aggressively than,
HyPer. Therefore, when stressed at the storage manager
side, the compilation optimizations of DBMS M are also ef-
fective in reducing the instruction stalls. Section 6 quantifies
the effect of compilation optimizations in DBMS M in more
detail.

The data stalls increase as we increase the work done per
transaction for all the systems. As we read more random
rows per transaction, we access more distinct rows in a pe-
riod of time. The more frequent random data accesses lead
to a higher data miss rate for all the systems. HyPer has
the highest data stalls for all the cases in Figure 5, since it

executes more transactions, and hence, performs more fre-
quent random data accesses compared to the other systems.
For Shore-MT, VoltDB, and DBMS M, the LLC data stalls
are also the dominant contributor to the stall time when
accessing many rows per transaction. On the other hand,
since DBMS D exhibits very high instruction stalls even
when probing 100 rows per transaction, its throughput is
lower and random data accesses are less frequent. There-
fore, DBMS D’s LLC data stalls are the lowest.

4.2.3 Stall Cycles per Transaction

To better quantify the impact of accessing more data per
unit of time, this section analyzes the stall cycles per trans-
action as the number of rows read increases from 1 to 100.
Figure 6 plots the results. The x-axis shows the number of
rows read in a transaction.

Unlike the results in the previous section, instruction stalls
per transaction increase as the number of rows accessed in
a transaction increases. When the instruction footprint of
the loop that probes a random row in each iteration does
not fit in the L1l and L2I caches, increasing the number
of rows probed in a transaction increases the number of in-
struction stalls per transaction. We observe this effect for
all the systems except for HyPer.

As we increase the number of rows read from 1 to 10,
and then to 100, LLC data stalls increase almost linearly for
all the systems. We observe that Shore-MT has the largest

ODBMSD mVoltbDB @DBMS M

=

» D [o] o

o o o o
1 1 1]

N
o
1

% Inside OLTP Engine

o
!

1 10 100
Number of rows read

Figure 7: The percentage of the time spent inside
the OLTP engine as we increase the amount of work
done per transaction with a database of size 100GB.

data stalls per transaction while probing 100 rows, followed
by VoltDB and DBMS D. DBMS M’s hash-based index and
HyPer’s adaptive radix tree lead to fewer random memory
accesses during an index probe compared to the other sys-
tem’s B-tree-based index structures. Therefore, DBMS M
and HyPer have the lowest LLC data stalls per transaction.

4.2.4 Code Modules Breakdown

To better understand the impact of legacy code, as well
as components outside the storage manager, we quantify the
percentage of the execution time spent in the OLTP engine
as the amount of work per transaction increases for the disk-
based system DBMS D, and the in-memory systems VoltDB
and DBMS M. While performing this breakdown, we have
done a best-effort categorization based on the code modules
reported by VTune as part of the worker thread execution
of each system. Figure 7 shows the results.

We observe that the amount of time spent inside the
OLTP engine increases as the number of rows read increases
for all three systems. This increase is modest for the disk-
based system DBMS D showing the high overhead of the
code outside the OLTP engine. For DBMS M, when we in-
crease the number of rows from 1 to 10, the percentage inside
the OLTP engine increases modestly showing the dominance
of the legacy code overhead that DBMS M borrows from the
traditional disk-based OLTP system it belongs to. However,
when we increase the number of rows read from 10 to 100, we
observe almost 2x increase in the percentage of time spent
in the OLTP engine. For VoltDB, on the other hand, the
amount of time spent inside the storage manager is small
for probing 1 row showing the high overhead of the code
outside the storage manager for light transactions. How-
ever, when we increase the number of probed rows to 10
or 100, the percentage increases more than 2x showing that
VoltDB compensates this overhead for medium/large-sized
transactions.

4.3 Summary

Overall, while the traditional disk-based systems, Shore-
MT and DBMS D, have large instruction footprints and bad
instruction locality; the in-memory-optimized systems, Hy-
Per, VoltDB, and DBMS M (when stressed enough on the
storage manager) have small, optimized instruction foot-
prints and good instruction locality. The reduction in in-

3.5

2.5

IPC
N)

1.5

°'ZJIIIL

Shore-MT DBMSD VoltDB HyPer DBMS M

Figure 8: The IPC values while running TPC-B.

struction footprint and the increase in instruction locality,
however, lead to more random data accesses in a unit of time
and, hence, increase long-latency data stalls when the data
working set does not fit in the last-level cache. Therefore, all
the systems suffer either from instruction or data stalls re-
sulting in severe under-utilization of the micro-architectural
resources having executed barely one instruction-per-cycle
on a machine that has the ability of retiring up to four
instruction-per-cycle.

5. TPC BENCHMARKS

Section 4 performs a sensitivity analysis using a simple
micro-benchmark to gain a fine-grained understanding of the
in-memory OLTP systems compared to the disk-based ones
at the micro-architectural level. This section investigates
the behavior of the same systems while running the more
complex and community standard TPC-B (Section 5.1) and
TPC-C (Section 5.2) benchmarks. All the experiments in
this section use a database of size 100GB. Similar to Sec-
tion 4, we analyze the IPC values, and the stall cycles per
1000 instructions and per transaction from different levels of
the cache hierarchy. Our goal is to observe how the bench-
mark complexity affects the micro-architectural behavior of
the in-memory OLTP systems.

5.1 TPC-B

TPC-B is an update-heavy benchmark that simulates a
banking system. AccountUpdate is its only transaction type,
which updates one row each in three tables, Branch, Teller,
and Account, and appends a row to the History table.

5.1.1 Instructions-per-Cycle

Figure 8 shows the number of instructions retired per cy-
cle (IPC) on the y-axis as each system runs TPC-B. HyPer
exhibits the highest IPC value among all the systems, which
is in contrast with its IPC being the lowest when running
the micro-benchmark (Section 4.2.1). Moreover, we see that
the IPC values are in general higher than the IPC values for
the read-only micro-benchmark with 100GB data for prob-
ing 1 row (Figure 4). This is due to the higher data locality
in TPC-B (see also Section 5.1.2). Since Branch and Teller
tables have low cardinality, the probability of a randomly
read row from one of these two tables being in LLC' is high.
In addition, History table accesses are only appends, which
also increases the probability of the History table pages be-

HL1ImL21 OLLCI OLID @L2D @LLCD
500

400

300

200

100

Stall Cycles per k-Instruction

o

Shore-MT DBMSD VoltDB HyPer

DBMS M

Figure 9: Stall cycles per 1000 instructions while
running TPC-B.

4

3.5

3

2.5

g 2

1.5

‘sl

Shore-MT DBMSD VoltDB HyPer DBMS M

Figure 10: The IPC values while running TPC-C.

ing accessed residing in the caches. Therefore, the only table
that exhibits low data locality in TPC-B is the Account ta-
ble.

5.1.2 Stall Cycles

Per 1000 instructions. To investigate the major causes
of the stall cycles when running TPC-B, Figure 9 plots the
instruction and data stalls per 1000 (k-)instructions for each
level of the cache hierarchy for all the systems.

Figure 9 follows similar trends with Figure 5 for instruc-
tion stalls for probing 1 row. It demonstrates that the in-
struction stalls (from both LI and L2 caches) are the dom-
inant factor in the overall stall cycles for all the systems.
DBMS D has the highest instruction stalls whereas HyPer
exhibits very high instruction cache locality because of its
aggressive query compilation techniques.

On the other hand, none of the systems suffer severely
from the long-latency data misses even though we run TPC-
B with 100GB data. This is mainly because TPC-B has bet-
ter data locality compared to the micro-benchmark. When
running the micro-benchmark, we randomly probe rows from
a 100GB table, which includes more than one billion rows.
On the other hand, TPC-B first probes one of the ~ 20K
Branches randomly. Then, it probes one of the ~ 200K
Tellers and one of the ~ 2 billion Accounts. Finally, it in-
serts on row into the History table. Hence, the probability
of re-accessing the same branch or teller as well as the same
History table page is quite high compared to re-accessing a
row from the micro-benchmark’s single large table.

L1l WL2l OLLCI OL1D @EL2D ELLCD
~500

N
o
o

=
wv
o

100

(%)
o

Stall Cycles per k-Instructions

o

Shore-MT DBMSD VoltDB HyPer

Figure 11: Stall cycles per 1000 instructions while
running TPC-C.

BL1l EL2] OLLCI OLID mEL2D ELLCD
300K

B R NN
o u o wun
o O O o
R RN X

50K

Stall Cycles per Transaction

Shore-MT DBMSD VoltDB HyPer DBMSM

Figure 12: Stall cycles per transaction while running
TPC-C.

Per transaction. The stall cycles per transaction fol-
lows similar trends with the stall cycles per 1000 instruc-
tions. Therefore, we omit the discussion for stall cycles per
transaction for TPC-B.

5.2 TPC-C

After investigating the micro-architectural behavior of the
systems using TPC-B, this section focuses on the more com-
plex TPC-C benchmark. TPC-C models a wholesale sup-
plier with nine tables and five transaction types (2 of which
are read-only and form 8% of the benchmark mix). In terms
of the database operations, the TPC-C transactions contain
probes, inserts, updates, and joins covering a richer set of
operations than TPC-B. Therefore, we expect a different
behavior for TPC-C than TPC-B.

5.2.1 Instructions-per-Cycle

Figure 10 reports the IPC values when the systems under
analysis run TPC-C. Similar to the TPC-B results, the IPC
values are in general higher than the IPC values observed
with the micro-benchmark when probing 1 row (Figure 4).
Unlike the TPC-B results, however, DBMS D and DBMS M
exhibit the highest IPC among all the systems. In addition,
except for HyPer, all the systems exhibit a higher IPC value
for TPC-C than TPC-B. The differences between the TPC-
B and TPC-C results stem from the lower data and higher
instruction locality of TPC-C compared to TPC-B which
also corroborates the results from [28, 29].

2Ll mL2l OLLClI @LID mL2D @LLCD

" 700

c Read-only

.© 600

i3]

2 500

7

£ 400

¥4

5 300

o

¢ 200

<

S 100

T 0

@ Hash w/ Hash w/o B-tree w/ B-tree w/o
compilation compilation compilation compilation

Figure 13: Stall cycles per 1000 instructions for
different index structures with and without com-
pilation optimizations while running the micro-
benchmark.

5.2.2 Stall Cycles

Per 1000 instructions. To better understand the IPC
values in Figure 10, Figure 11 shows the instruction and
data stalls per 1000 (k-)instructions for each level of the
cache hierarchy.

The instruction stall cycles are considerably lower for TPC-
C than TPC-B for all the systems. There are two main
reasons for this outcome: the longer transactions of TPC-C
compared to TPC-B and the number of scan-based accesses
in TPC-C. TPC-C’s longer transactions reduce the execu-
tion frequency of the components outside the storage man-
ager increasing the instruction locality, which is similar to
the difference between probing 100 rows vs probing 1 or 10
rows in Section 4.2. TPC-C also performs index-scans in
several of its transactions, which increases instruction and
data locality for this benchmark since a scan operation is
a short loop that keeps fetching the next data item from a
page or nearby pages.

With respect to the data stalls, unlike its TPC-B results,
HyPer exhibits quite high LLC data stalls similar to the
micro-benchmark experiments, which is due to the lower
data locality of TPC-C compared to TPC-B. Even though
the index-scans of TPC-C increase the locality of data ac-
cesses during the scan operation, in general, the TPC-C
transactions access multiple tables with many rows and very
little re-use.

Per transaction. Figure 12 shows instruction and data
stall cycles per transaction for TPC-C. We observe the sharp
decrease in HyPer’s LLC data stalls compared to per 1000
instructions results, similarly to the micro-benchmark case
(Section 4.1.3). DBMS D’s instruction stalls are the highest
among all the systems showing the large instruction foot-
print of the traditional disk-based DBMS D. DBMS D is
followed by the disk-based system, Shore-MT, and the main-
memory optimized OLTP engine DBMS M. While DBMS
M'’s instruction stalls are lower than the disk-based systems,
they are still considerably large due to its legacy code com-
ponents.

5.3 Summary
Overall, TPC experiments show similar trends to the micro-

benchmark ones. The higher micro-architectural utiliza-
tion (the higher IPC values) stems from the higher data

SL1 w2l mLLCI @ALID @L2D @LLCD
500

400

w
o
o

=
o
o

o

Stall Cycles per k-Instructions
S
o

Hash w/
compilation

Hash w/o
compilation

B-tree w/o
compilation

B-tree w/
compilation

Figure 14: Stall cycles per 1000 instructions for dif-
ferent index structures with and without compila-
tion while running TPC-C.

(mainly TPC-B) and instruction (mainly TPC-C) locality
in the TPC workloads compared to the micro-benchmark,
which especially the in-memory systems can effectively ex-
ploit thanks to their optimized code and data structures.

6. INDEX AND COMPILATION OPTIMIZA -
TIONS, AND DATA TYPES

This section analyzes the impact of index and compila-
tion optimizations the in-memory systems adopt, as well
as the impact of the data types, at the micro-architectural
level. Among the systems used in this study, DBMS M is
the only one that allows enabling/disabling the compilation
optimizations and using two different index structures; hash
index and a variant of cache-conscious B-tree index similar
to [17, 18]. Therefore, while we use DBMS M for analyz-
ing the impact of index and compilation optimizations, we
experiment with all the three in-memory systems (VoltDB,
HyPer, and DBMS M) to quantify the effect of different
data types.

6.1 Impact of index type and compilation

To quantify the impact of the type of index and compi-
lation on the micro-architectual utilization, we start with
the read-only variant of the micro-benchmark and plot the
stall cycles per 1000 instructions in Figure 13. The results
for the read-write version of the micro-benchmark can be
found in Section A.3 of the Appendix. We use the version
of the micro-benchmark where we access 10 rows per trans-
action from the 100GB dataset. As expected, compilation
optimizations have significant effect on the instruction stalls,
resulting in ~ 50% reduction regardless of the index type.
On the other hand, while the choice of index does not change
the instruction stalls behavior significantly, we observe that
LLC data stalls are 2 — 4z larger for the B-tree index than
the hash index. B-trees require traversing the entire index
to probe a single row potentially touching many internal
nodes of the B-tree. Hash index, on the other hand, directly
goes to the hash bucket that corresponds to the probed keys.
Therefore, hash index requires fewer random data requests
incurring fewer data misses.

We repeat the experiment above using the TPC-C bench-
mark. Figure 14 shows the stall cycles per 1000 instructions
from different levels of the cache hierarchy. Once again, com-
pilation optimizations reduce instruction stalls significantly

QLI mL2IOLCI ALID @L2D ALLCD
1200 -

1000 -~
800
600
400
200

Read-only

on

o

Stall Cycles per k-Instruct

Long | String | Long

VoltDB HyPer DBMS M

Figure 15: Stall cycles per 1000 instructions for
String and Long data types while running the micro-
benchmark.

for both index types. However, unlike the results with the
micro-benchmark, instruction stalls are much higher for the
B-tree index than the hash index without the presence of
transaction compilation optimizations. This shows compi-
lation is also effective in eliminating inefficiencies in the in-
struction stream when using a B-tree index. In the case
of data stalls, since the TPC-C benchmark requires fewer
random data reads compared to the micro-benchmark, we
do not observe significant data stall time in Figure 14 for
TPC-C regardless of the index types.

6.2 Impact of data type

To quantify the impact of different data types on micro-
architectural utilization, we use the read-only version of the
micro-benchmark where we probe 1 row per transaction over
a 100GB database. The results for the read-write version of
the micro-benchmark can be found in Section A.3 of the
Appendix. We modify the micro-benchmark to use two 50
bytes String columns instead of two Long columns in the
table and compare the two versions.

Figure 15 shows the results for VoltDB, HyPer, and DBMS
M. We observe that the LLC data stalls are lower for String
data type than for Long for VoltDB and HyPer. This is
because larger data items such as 50 bytes Strings, provide
better spatial locality than the smaller, 8 bytes Longs. While
traversing a B-tree, comparing two 50 bytes of Strings would
re-use the same cache line more frequently than comparing
two 8 bytes of Longs. On the other hand, DBMS M does
not have a significant difference in its data stalls while using
String or Long. This is partly because of the larger instruc-
tion footprint of DBMS M and partly because of using a
hash index structure rather than a B-tree.

6.3 Summary

Overall, we once again corroborate that the transaction
compilation optimizations decrease the instruction related
stall time fundamentally for OLTP systems by both reducing
the instruction footprint and leading to a smoother instruc-
tion stream. The choice of index structures mainly affects
the data locality especially for workloads that require fre-
quent random data accesses. The data type, on the other
hand, can affect the spatial locality of the workload, how-
ever, it does not affect the conclusions fundamentally.

35
2.5

1.5

gl BN BN B B

Shore-MT DBMS D VoltDB DBMS M

Figure 16: The IPC values for the multi-threaded
experiments while running the micro-benchmark.

4

35

3

2.5

g 2

1.5

1

NN EE

Shore-MT DBMS D VoltDB DBMS M

Figure 17: The IPC values for the multi-threaded
experiments while running TPC-C.

7. IMPACT OF MULTI-THREADING

This section analyzes the effect of running multiple server
side threads on the micro-architectural behavior. The single-
threaded experiments aim to present an idealized case for all
the systems since it avoids cache invalidations due to data
sharing across different worker threads or misleading artifi-
cially high TPC values due to threads spinning under possible
contention. On the other hand, multi-threaded experiments
aim to investigate a more realistic scenario where systems
are loaded with multiple threads executing transactions from
multiple clients.

Figure 16 and Figure 17 show the IPC values while run-
ning the read-only version of the micro-benchmark when
reading 1 row, and TPC-C benchmark, respectively. We
use a database of size 100GB in both of the experiments.
As can be seen from the figures, the IPC values are smaller
than one for all the systems under both workloads (except
for DBMS D running TPC-C) similar to the results from the
single-threaded experiments (see Figure 1 and Figure 10).

Figure 18 and Figure 19 show the stall cycles per 1000 in-
structions while running the read-only version of the micro-
benchmark and TPC-C benchmark, respectively. All the
systems in Figure 18 and Figure 19 have similar stall cy-
cles results for both the multi-threaded and single-threaded
configurations.

As a side note, VoltDB adopts further optimizations in
its concurrency control mechanism when it knows that there

=Ll WmL2] MLLCI OL1D @L2D @LLCD
500

400

300

200

100

Stall Cycles per k-Instructions

o

Shore-MT DBMS D VoltDB DBMS M
Figure 18: Stall cycles per 1000 instructions for
the multi-threaded experiments while running the

micro-benchmark.

are no multi-partition transactions (as in the case for all the
experiments with VoltDB in this paper). If we do not en-
sure single-site transactions, the instruction stalls of VoltDB
increase significantly (by ~ 60%).

Summary. Overall, the results in a multi-threaded con-
figuration do not change the high-level conclusions from the
results with a single-threaded configuration for the systems
under analysis.

8. SUMMARY AND IMPLICATIONS

This section summarizes the highlights of our experimen-
tal study and discusses their implications.

In-memory OLTP systems implement a series of optimiza-
tions to reduce the instruction footprint and improve cache
utilization. However, despite all of the optimizations, they
severely under-utilize the micro-architectural features simi-
larly to the traditional disk-based systems. The IPC values
barely reach one on a machine that is capable of retiring
four instructions per cycle.

Instruction stalls. DBMS M incurs the highest num-
ber of instruction stalls among the in-memory systems per
transaction due to the large amount of legacy code it bor-
rows from the traditional OLTP system it belongs to. On
the other hand, HyPer is able to reduce the instruction stalls
to almost zero thanks to its aggressive transaction compila-
tion. However, high instruction locality amplifies the long
latency data stalls resulting in low IPC values.

Data stalls. The data stalls when running OLTP work-
loads are affected by two factors: (1) whether the index is
cache-conscious or not and (2) what the number of random
data accesses per unit of time is. We observe that, except for
Shore-MT, all the systems we analyze adopt some variant
of cache-conscious index structures to improve data cache
locality. On the other hand, systems that optimize instruc-
tion streams by transaction compilation, such as HyPer and
DBMS M, perform more frequent random data accesses. De-
spite having cache-conscious index structures, they both suf-
fer dramatically from long latency data stalls when requests
do not exhibit data locality.

Implications. In this study, we conclude that software-
level optimizations do not directly translate into more effi-
cient utilization of micro-architectural resources, and might
even hinder it, on modern processors. One needs to optimize
the hardware and software together as the next step putting

=Ll mL2l OLC! @LID mL2D @LLCD
200

150

100

50

Stall Cycles per k-Instruction

Shore-MT DBMS D VoltDB DBMS M

Figure 19: Stall cycles per 1000 instructions for the
multi-threaded experiments while running TPC-C.

micro-architectural utilization as a high priority goal. This
will, in turn, improve not only overall performance but also
energy efficiency.

Exhibiting low instruction- and memory- level parallelisms,
OLTP workloads are unable to utilize the wide-issue aggres-
sive out-of-order cores that implement complex hardware
mechanisms. Majority of the execution cycles go to the
memory stalls for bringing either instructions from the L1
cache or data items from the LLC. L1 instruction cache sizes
have been unchanged for the last decade due to the strict la-
tency limitations and we cannot expect them to increase. On
the other hand, whatever the size of the LLC is, megabytes
of LLC will not be enough to keep the gigabytes of the data
footprint of most standard OLTP benchmarks. Hence, in-
stead of using beefy and complex out-of-order cores consum-
ing large amount of energy, using simpler cores with caching
mechanisms tailored toward the instruction and data ac-
cesses of typical OLTP applications would lead to higher
energy-efficiency with better or similar performance.

9. CONCLUSION

In this paper, we perform a detailed micro-architectural
analysis of the in-memory OLTP systems contrasting them
to the disk-based OLTP systems. Our study demonstrates
that in-memory OLTP system behave very similarly to the
disk-based OLTP systems despite all the design differences
and lighter storage manager components of the memory-
optimized systems. The lighter storage manager compo-
nents reduce the instruction footprint at the storage man-
ager layer, but the overall instruction footprint of an in-
memory OLTP system is still large, which leads to a poor L1-
I locality and high number of LI instruction misses. Even
though optimized compilation techniques help in minimizing
the L1 instruction misses, in the absence of the instruction
misses the impact of long-latency data misses surfaces re-
sulting in low IPC values.

Acknowledgements

We would like to thank the members of the DIAS laboratory
for their constructive feedback and support throughout this
work. The work in this paper has been partially funded
by the Swiss National Science Foundation, project “200021-
146407/1”.

10.

1]

2]

3]

[16]

REFERENCES
TPC transcation processing performance council.
http://www.tpc.org/default.asp.
A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. DBMSs on a Modern Processor: Where Does
Time Go? In VLDB, pages 266-277, 1999.
L. A. Barroso, K. Gharachorloo, and E. Bugnion.
Memory System Characterization of Commercial
Workloads. In ISCA, pages 3-14, 1998.
P. A. Bernstein and N. Goodman. Multiversion
Concurrency Control—Theory and Algorithms. ACM
TODS, 8(4):465-483, 1983.
C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL Server’s Memory-optimized OLTP
Engine. In SIGMOD, pages 1243-1254, 2013.
M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the Clouds: A
Study of Emerging Scale-out Workloads on Modern
Hardware. In ASPLOS, pages 37-48, 2012.
N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
A. Ailamaki, and B. Falsafi. Database Servers on Chip
Multiprocessors: Limitations and Opportunities. In
CIDR, pages 79-87, 2007.
S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP Through the Looking Glass,
and What We Found There. In SIGMOD, pages
981-992, 2008.
HyPer. http://hyper-db.de/.
Intel. Intel VTune Amplifier XE Performance Profiler.
http://software.intel.com/en-us/articles/intel-vtune-
amplifier-xe/.
K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael,
and W. E. Baker. Performance Characterization of a
Quad Pentium Pro SMP Using OLTP Workloads. In
ISCA, pages 15-26, 1998.
A. Kemper, T. Neumann, J. Finis, F. Funke, V. Leis,
H. Miithe, T. Miihlbauer, and W. Rodiger. Processing
in the Hybrid OLTP & OLAP Main-Memory Database
System Hyper. IEEE DEBull, 36(2):41-47, 2013.
T. Lahiri, M. Neimat, and S. Folkman. Oracle
TimesTen: An In-Memory Database for Enterprise
Applications. IEEE DEBull, 36(2):6-13, 2013.
P. Larson, M. Zwilling, and K. Farlee. The Hekaton
Memory-Optimized OLTP Engine. IEEE DEBull,
36(2):34-40, 2013.
J. Lee, M. Muehle, N. May, F. Faerber, V. Sikka,
H. Plattner, J. Kriiger, and M. Grund.
High-Performance Transaction Processing in SAP
HANA. IEEE DEBull, 36(2):28-33, 2013.
V. Leis, A. Kemper, and T. Neumann. The Adaptive

(17]

(18]

(19]
20]

(21]

(22]

23]

(24]

25]

[26]

27]

(28]

29]

(30]

(31]
(32]

(33]

Radix Tree: ARTful Indexing for Main-memory
Databases. In ICDE, pages 38—49, 2013.

J. Levandoski, D. Lomet, and S. Sengupta. The
Bw-Tree: A B-tree for New Hardware Platforms. In
ICDE, pages 302-313, 2013.

J. Lindstrom, V. Raatikka, J. Ruuth, P. Soini, and

K. Vakkila. IBM solidDB: In-Memory Database
Optimized for Extreme Speed and Availability. IEEE
DEBull, 36(2):14-20, 2013.

MemSQL. http://www.memsql.com/.

T. Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. PVLDB, 4(9):539-550,
2011.

T. Neumann and V. Leis. Compiling Database Queries
into Machine Code. IEEE DEBull, 37(1):3-11, 2014.
I. Pandis, R. Johnson, N. Hardavellas, and

A. Ailamaki. Data-oriented Transaction Execution.
PVLDB, 3(1):928-939, 2010.

P. Ranganathan, K. Gharachorloo, S. V. Adve, and
L. A. Barroso. Performance of Database Workloads on
Shared-memory Systems with Out-of-Order
Processors. In ASPLOS, pages 307-318, 1998.
Shore-MT. Shore-MT Official Website.
http://diaswww.epfl.ch /shore-mt/.

R. Stets, K. Gharachorloo, and L. Barroso. A Detailed
Comparison of Two Transaction Processing
Workloads. In WWC, pages 37-48, 2002.

M. Stonebraker, S. Madden, D. J. Abadi,

S. Harizopoulos, N. Hachem, and P. Helland. The End
of An Architectural Era: (It’s Time for a Complete
Rewrite). In VLDB, pages 1150-1160, 2007.

M. Stonebraker and A. Weisberg. The VoltDB Main
Memory DBMS. IEEE DEBull, 36(2):21-27, 2013.

P. T6ziin, B. Gold, and A. Ailamaki. OLTP in
Wonderland — Where Do Cache Misses Come From in
Major OLTP Components? In DaMoN, pages 8:1-8:6,
2013.

P. T6ziin, 1. Pandis, C. Kaynak, D. Jevdjic, and

A. Ailamaki. From A to E: Analyzing TPC’s OLTP
Benchmarks — The Obsolete, The Ubiquitous, The
Unexplored. In EDBT, pages 17-28, 2013.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and

S. Madden. Speedy Transactions in Multicore
In-memory Databases. In SOSP, pages 18-32, 2013.
VoltDB. http://www.voltdb.com.

T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi,
and A. Moshovos. Temporal Streams in Commercial
Server Applications. In IISWC, pages 99-108, 2008.
X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and

M. Stonebraker. Staring into the Abyss: An
Evaluation of Concurrency Control with One
Thousand Cores. PVLDB, 8(3):209-220, 2014.

HL1l mL2l OLLCI @LID @L2D OLLCD
30K +

Read-write
25K -

20K 4

15K A

10K

v
~

Stall Cycles per Transaction

Shore-MT DBMSD VoltDB HyPer DBMSM

Figure 22: Stall cycles per transaction from the dif-

ferent levels of the memory hierarchy for a database
of size 100GB.

4

3.5

3

25

g 2

15

1

0.5

0

Read-write

Number of rows updated

Figure 23: Effect of the amount of work per transac-
tion on the IPC value with a database of size 100GB.

4
3'2 Read-write
2.5

g 2

— 15

1

0.5

0
Shore-MT

Database size

Figure 20: Effect of database size on the IPC value.

APPENDIX

In this appendix, we extend our sensitivity analysis with the
results of experiments while running the read-write version
of the micro-benchmark.

A. READ-WRITE MICRO-BENCHMARK
A.1 Sensitivity to Data Size

We start with the experiment where we increase the data
size from 1MB, to 10MB, 10GB and 100GB. Figure 20 shows

the IPC values when we run the read-write version of the
micro-benchmark for 1 row.

The trends in IPC value do not differ much across read-
only and read-write benchmarks, although, in general, the
IPC values are higher for the read-only benchmark (see Sec-
tion 4.1.1). The instruction footprint of the read-write micro-
benchmark is larger than that of the read-only benchmark
since, in the read-write benchmark, transactions both read
and update the probed row as opposed to the read-only
benchmark only reading the probed row. Therefore, all
the systems, except for HyPer, have poorer instruction lo-
cality while running the read-write micro-benchmark (Sec-
tion 4.1.2). This leads to the lower IPC value for this bench-
mark. HyPer, on the other hand, suffers less from the in-
struction stalls and more from the data stalls (Section 4.1.2),
so it exhibits a higher IPC value for the read-write micro-
benchmark compared to the read-only one.

As is for the read-only version of the micro-benchmark,
IPC values are similar to each other when the data size is less
than the capacity of the last-level cache (LLC), i.e., 20MB.
As the data size increases to 10GB and 100GB exceeding the
LLC capacity, IPC values decrease as the misses from LLC
require accessing the main memory. This effect is dramatic
for HyPer due to its sensitivity to the data stalls, and less
observable for DBMS D and DBMS M due to their large
instruction footprints. Even for small data sizes, e.g., IMB
and 10MB, the large instruction footprint of DBMS D and
DBMS M causes high instruction stalls resulting in low IPC.

Figure 21 shows the stall cycles per 1000 (k-)instructions
as we increase the dataset size for the read-write micro-
benchmark. We observe that the instruction stalls are higher
for the read-write micro-benchmark compared to the read-
only micro-benchmark showing the larger instruction foot-
print of the read-write micro-benchmark. Similar to the
read-only micro-benchmark, instruction stalls dominate the
overall stall time.

Lastly, Figure 22 shows the stall cycles per transaction.
Once again, we observe that the instruction stalls are higher
for the read-write micro-benchmark compared to the read-
only micro-benchmark.

A.2 Sensitivity to Work per Transaction

This section presents the results while running the read-
write version of the micro-benchmark as we increase the
amount of work per transaction by increasing the number
of rows updated per transaction from 1, to 10 and 100.

Figure 23 plots the IPC values as the amount of work
per transaction increases on the x-axis. We observe similar
trends to the read-only micro-benchmark where IPC values
increase for the disk-based systems (Shore-MT and DBMS
D), and decrease for the in-memory systems (VoltDB, Hy-
Per, and DBMS M). Moreover, IPC values are in general
lower for the read-write micro-benchmark compared to the
read-only micro-benchmark.

Figure 24 plots the stall cycles per 1000 (k-)instructions.
We observe that the instruction stalls are higher and the
data stalls are lower for the read-write micro-benchmark
compared to the read-only micro-benchmark. Similarly to
the read-only case, instruction stalls decrease as the num-
ber of rows updated per transaction increases due to higher
locality within the instruction stream. DBMS D’s instruc-
tion stalls are high even when probing 100 rows implying
the large instruction footprint of the commercial disk-based

600 ™L1l mL2] OLLCI @LID mL2D LLCD
S 500
§ 400 1 A 4 ¢
e f o 1 A 1 1 9 ¢
SR R R R R (R (e PR S
g 100 (f :i:l:l:.:':l:u
flflfiflflfa:'..fl,fn
Q
|z zso8lszoe ogle
= - g 8 8| g 2 8|
O i i
&H

Shore-MT DBMS D

~630 ~740
Read-write
'E'E‘f : [IS: Ji: (I: |
!zf'gfl " d i Uil e N 1 1
S & %] £ G G| £ & &
228|788 g% 82
VoltDB HyPer DBMS M

Database size

Figure 21: Stall cycles per 1000 instructions from the different levels of the memory hierarchy as we increase

the database size.

=Ll EL2] OLLCI ALID @EL2D EOLLCD
800
700
600
500
400
300
200
100

0

Read-write

Stall Cycles per k-Instruction

Shore-MT

~1200 ~1300
1 10 100 1 10 100
VoltDB HyPer DBMS M

Number of rows updated

Figure 24: Stall cycles per 1000 instructions from the different levels of the memory hierarchy as we increase
the amount of work done per transaction with a database of size 100GB.

~400K

”1-1M'(f /"“SOOK
250 K ~430K ~700K

c - 3

2 200K .

O .

© -

2 150K ;

© -

= 100K .

8 .

%) 50 K -

@ .

3 o :

= 1 10 100 1 10 100

&

Shore-MT DBMS D

~350« EL1l WL2l OLLC| EL1D EL2D BELLCD

Read-write

A
10 100 1 10
VoltDB HyPer

Number of rows updated

Figure 25: Stall cycles per transaction from the different levels of the memory hierarchy as we increase the
amount of work done per transaction with a database of size 100GB.

OLTP system. DBMS M’s instruction stalls dominate for
probing 1 and 10 rows showing the high overhead of the
legacy code DBMS M uses from the traditional disk-based
OLTP system it belongs to. For probing 100 rows, however,
its instruction stalls become significantly smaller.

Lastly, Figure 25 shows the stall cycles per transaction as
we increase the number of rows updated per transaction on

the x-axis. Once again, we observe higher instruction stalls
for the read-write micro-benchmark compared to the read-

only micro-benchmark. Moreover, as the number of rows
updated per transaction increases, the instruction stalls sig-
nificantly increase for Shore-MT and DBMS D, and stay
the same or slightly increase for VoltDB, HyPer, and DBMS
M. The data stalls, on the other hand, increase almost lin-
early for all the systems as the number of rows updated
increases. We observe that the data stalls of Shore-MT are
2-3.5x higher than the other systems suggesting that all the

SL1l mL2] DLLCI BLID EL2D @LLCD

~
o
o

Read-write

vl

Hash w/ Hash w/o B-tree w/ B-tree w/o
compilation compilation compilation compilation

= N W b U O
O ©O ©O O O o
O O O o o o

o

Stall Cycles per k-Instructions

Figure 26: Stall cycles per 1000 instructions for
different index structures with and without com-
pilation optimizations when running the micro-
benchmark.

L1l WL2I MLLCI OL1D @L2D @LLCD
1200 +

1000 -+
800 -
600
400
200

0

Read-write

Stall Cycles per k-Instruction

Figure 27: Stall cycles per 1000 instructions for
String and Long data types when running the micro-
benchmark.

other systems implement some variant of cache-conscious
index structure.

A.3 Index, Compilation, and Data Type

Finally, this section presents the results while running the
read-write version of the micro-benchmark as we use differ-
ent index and compilation optimizations as well as different
data types.

Figure 26 depicts the stall cycles per 1000 (k-)instructions
for different index and compilation configurations for the
read-write micro-benchmark. We observe similar trends to
the read-only micro-benchmark. The instruction stalls de-
crease significantly when we use the compilation optimiza-
tion for both hash and B-tree indexes, while different index
structures do not affect the instruction stalls. On the other
hand, B-tree index causes significantly higher data stalls
than the hash index.

Figure 27 plots the stall cycles per 1000 (k-)instructions
while running the read-write micro-benchmark with differ-
ent data types, i.e, String and Long. We observe the slightly
higher data stalls for Long than for String when using VoltDB
and HyPer. Although this effect is similar to the one we
observe while running the read-only micro-benchmark, the
differences between the data stalls for String and Long are
lower for the read-write micro-benchmark. This is because
the read-write micro-benchmark has better spatial locality
than the read-only micro-benchmark since the read-write
micro-benchmark, after reading the cache line correspond-
ing to the probed value, accesses the same cache line to write
the updated value. DBMS M, on the other hand, exhibits
similar data stalls for both of the data types, and has higher
L2 instruction stalls for the String data type.

