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Abstract

The modern web critically depends on aggregation of
information from self-interested agents, for example
opinion polls, product ratings, or crowdsourcing. We
consider a setting where multiple objects (questions,
products, tasks) are evaluated by a group of agents.
We first construct a minimal peer prediction mecha-
nism that elicits honest evaluations from a homoge-
neous population of agents with different private be-
liefs. Second, we show that it is impossible to strictly
elicit honest evaluations from a heterogeneous group
of agents with different private beliefs. Nevertheless,
we provide a modified version of a divergence-based
Bayesian Truth Serum that incentivizes agents to report
consistently, making truthful reporting a weak equilib-
rium of the mechanism.

Introduction
The main idea behind a participatory web approach is that
any participant can provide her private information which
is then aggregated into the web content. There are numer-
ous examples, ranging from hotel reviews on TripAdvisor1

to human intelligence tasks on MTurk2. Since private infor-
mation cannot be easily verified, one of the key challenges is
to incentivize participants to invest effort and provide their
true opinions.

We model this scenario with a group of agents evaluating
a set of similar objects. The agents represent rational partici-
pants, while objects can be anything that the participants can
provide their opinions about: questions in case of opinion
polling, product evaluations in case of product reviewing, or
subjective tasks in case of crowdsourcing.

The standard information elicitation techniques often
score responses against the ground truth, as it is for proper
scoring rules or prediction markets (Savage 1971; Gneit-
ing and Raftery 2007; Lambert and Shoham 2009; Hanson
2003; Chen and Pennock 2007). However, in our scenario
the ground truth is not known to a mechanism designer, or
might not even be well defined.

Copyright c© 2015, Association for the Advancement of Artificial
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Instead of using the ground truth, peer evaluation tech-
niques score an agent against her peers, i.e. against agents
who also participate in the evaluation process. Many peer
evaluation methods have been developed in recent years,
most of them fitting one of the following categories.

Knowledge dependent mechanisms require knowledge
about agents’ beliefs. The peer prediction methods (Miller,
Resnick, and Zeckhauser 2005; Jurca and Faltings 2006;
2007) are representatives of this category. These mecha-
nisms are minimal in a sense that they only elicit desired
information. The collective revelation of (Goel, Reeves, and
Pennock 2009) can also be placed in this category.

Common prior mechanisms are a group of mechanisms
that assume common prior belief among agents, but this
prior does not need to be known to the mechanism. A typical
representative of this group is the Bayesian Truth Serum (Pr-
elec 2004), with its variants (Witkowski and Parkes 2012b;
Radanovic and Faltings 2013; 2014), in which agents pro-
vide an additional report along with the information that the
mechanism wants to elicit. In this group, we can also in-
clude the knowledge-free mechanism of (Zhang and Chen
2014) and the minimum truth serum of (Riley 2014).

The private prior mechanism of (Witkowski and Parkes
2012a) for elicitation of binary information does not require
knowledge about agents’ beliefs nor do the agents have to
have a common prior. However, the mechanism assumes a
temporal separation in the elicitation process, i.e. agents first
provide their prior beliefs to the mechanism, and then they
make evaluations that they report to the mechanism.

Weakly truthful mechanisms do not necessarily provide
strong incentives for truthfulness (Lambert and Shoham
2008) or may not necessarily be truthful (Jurca and Faltings
2011). In this group of mechanisms, we can also add the
output agreement mechanism of (Waggoner and Chen 2013;
2014) that elicits common knowledge, rather than agents’
private information.

It is not surprising that all the aforementioned mech-
anisms require a certain restriction on either: knowledge
about agents’ beliefs, homogeneity of agents’ beliefs, struc-
ture of elicitation process or structure of the information
being elicited. In fact, several impossibility results (Ju-
rca and Faltings 2011; Waggoner and Chen 2013; 2014;
Radanovic and Faltings 2013; 2014) indicate that in a sin-
gle shot elicitation process, one cannot do much better.
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It is often the case, however, that one wants to elicit in-
formation about several statistically similar objects from the
same group of agents. For example, in product reviewing, a
certain group of agents might rate several products that are a
priori similar to each other. Another example is crowdsourc-
ing where a single agent solves multiple (subjective) tasks.

These type of settings have already been analyzed by
(Witkowski and Parkes 2013) and (Dasgupta and Ghosh
2013) that introduce private prior mechanisms for elicitation
of binary information. The key difference between the two
settings is that (Witkowski and Parkes 2013) assumes that
agents receive their private information in a similar fashion,
while (Dasgupta and Ghosh 2013) does not. In other words,
for the former setting, agents have homogeneous character-
istics, although their beliefs are private, while for the latter,
agents are considered to be entirely heterogeneous, both in
how they obtain their private information and in their beliefs.

We build on their ideas and construct two private prior
mechanisms, one for a homogeneous population of agents,
and another for a heterogeneous population. For a homo-
geneous population, we show a minimal mechanism that
requires only a single report. Unlike the mechanism from
(Witkowski and Parkes 2013), our minimal mechanism does
not require a knowledge of a belief change bound, and can
be applied to non-binary domains.

For heterogeneous populations, we show that for non-
binary values, no minimal mechanism is incentive compati-
ble in general case. The mechanism in (Dasgupta and Ghosh
2013) can achieve truthfulness because it is restricted to elic-
itation of binary information, and makes additional assump-
tions. We show another alternative that works for any num-
ber of values but is not minimal, i.e. requires an additional
prediction report. It modifies the approach of (Radanovic
and Faltings 2014) to encourage consistent (non-random) re-
ports. Since truthful reporting is a consistent behaviour, the
novel mechanism is (weakly) incentive compatible.

The Setting
We are interested in a scenario where a group of agents are
asked to provide their opinions regarding a priori similar
objects. We follow the usual peer prediction setting, where
agents’ opinions are formed stochastically. Our setting has
the following structure.

There are M >> 1 different objects {o1, ..., oM} with
properties defined by a random variable Ω that takes values
in a finite discrete set {ω, ...}. For each object, Ω is gener-
ated stochastically according to a distribution Q(Ω = ω).

When an agent evaluates an object o, she receives a pri-
vate signalXo that represents her evaluation of object o. The
private signal takes values in {x, y, z, ...} and is obtained
by sampling a distribution Q(Xo|Ω = ω). Naturally, this
means that objects with the same properties Ω should gen-
erate the same histogram of opinions, though a single agent
might have different opinion about different objects.

As in the standard peer prediction settings (e.g. (Miller,
Resnick, and Zeckhauser 2005; Prelec 2004)), private sig-
nals Xo

a1
and Xo

a2
of two different agents a1 and a2 who

evaluate the same object o are conditionally independent

given Ω = ω, i.e. Q(Xo
a2
|Xo

a1
,Ω = ω) = Q(Xo

a2
|Ω = ω).

Moreover, distributionsQ(Ω) andQ(Xo|Ω) are fully mixed,
i.e. Q(Ω = ω) > 0 and Q(Xo = x|Ω = ω) > 0, while sig-
nalsXo

a1
andXo

a2
are stochastically relevant, i.e. there exists

z such that Q(Xo
a2

= z|Xo
a1

= x) 6= Q(Xo
a2

= z|Xo
a1

= y)
for x 6= y.

A mechanism does not have access to the true values of
Q(Ω) and Q(X|Ω). On the other hand, agents form beliefs
regarding the true values, and these beliefs can be different
for different agents, i.e. agents do not have a common belief.

We distinguish two types of populations. In a homoge-
neous population, agents might have different private be-
liefs, but their private signals are generated in a similar fash-
ion, i.e. Q(Xo

a1
|Ω = ω) = Q(Xo

a2
|Ω = ω) for two differ-

ent agents a1 and a2 who evaluate an object o of type ω.
Again, notice that agents a1 and a2 might have different be-
liefs about distribution Q(X|Ω = ω). In a heterogeneous
population, agents might have different beliefs and their pri-
vate signals might be generated using different probability
distribution functions, i.e. Q(Xo

a1
|Ω = ω) can differ from

Q(Xo
a2
|Ω = ω).

We denote an agent a’s belief about true distributions
Q(Xo|Ω) and Q(Ω) with Ra(Xo|Ω) and Ra(Ω). An agent
a1, who evaluated object o1, has two important components
in her belief system. The prior belief Pr(Xo2

a2
= x), also

denoted by Pr(x), is a belief regarding the private signal of
another agent a2 who evaluated object o2 that is not evalu-
ated by agent a1. This belief can be easily calculated from
Ra1(Ω) and Ra1(Xo|Ω) using:

Pr(Xo2
a2

= x) =
∑
ω

Ra1(Xo2
a2

= x|Ω = ω)Ra1
(Ω = ω)

The posterior belief Pr(Xo1
a2

= y|Xa1 = x), also denoted
by Pr(y|x), is a belief regarding a private signal of another
agent a2, often called peer agent, that evaluated the same
object as agent a1. This belief can be calculated using the
conditional independence of Xo1

a1
and Xo1

a2
:

Pr(Xo1
a2

= y|Xo1
a1

= x) =∑
ω

Ra1
(Xo1

a2
= y|Xo1

a1
= x,Ω = ω)Ra1

(Ω = ω|Xo1
a1

= x)

where by Bayes’ rule:

Ra1
(Ω|Xo1

a1
= x) =

Ra1(Xo1
a1

= x|Ω)Ra1
(Ω)

Pr(Xo1
a1 = x)

Pr(Xo1
a1

= x) is agent a1’s prior belief regarding her own
evaluation. In our analysis, Pr refers to a belief of an agent
that is being scored, so we do not additionally index it.

Once an agent evaluates an object, she reports her pri-
vate signal (evaluation) to the mechanism. Since an agent
might lie, we denote her report by Y . Moreover, an agent
might also be asked to report her prediction regarding the
frequency of reports for an object she evaluated; we denote
this prediction by F. When an agent is honest, F corre-
sponds to her posterior belief.

Quadratic Scoring Rule
One of the main tools for elicitation of private beliefs is
a class of mechanisms called strictly proper scoring rules.
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Suppose that an agent is asked to report her prediction (be-
lief) F regarding an event whose outcome x eventually be-
comes known to the mechanism. For example, in a weather
forecast, prediction F is a probability distribution function
over possible weather conditions, while x is the realized
weather condition. If the agent is rewarded with a strictly
proper scoring rule S(F, x), her reward is in expectation
maximized for reporting the true prediction.

In peer prediction settings, prediction F corresponds to an
agent’s posterior or prior belief Pr regarding private signals
of the other agents. Notice that a proper scoring rule takes
as an input an agent’s belief (probability distribution func-
tion), and not her private signal (scalar value), so it cannot
be directly applied in the elicitation of agents’ private sig-
nals. However, agents’ beliefs depend on their private sig-
nals, which can be utilized in the elicitation process.

There is a wide variety of strictly proper scoring rules,
e.g. logarithmic, spherical or quadratic scoring rules (Gneit-
ing and Raftery 2007). In this paper, we use the quadratic
scoring rule defined as:

S(F, x) =
1

2
+ F(x)− 1

2

∑
y

F(y)2 (1)

which produces bounded payoffs that take values in [0, 1].

Homogeneous Populations
We first consider a homogeneous population of agents where
opinions of different agents are formed in a similar fashion.
Unlike (Witkowski and Parkes 2013), we do not try to learn
(estimate) agents’ priors, but rather construct an incentive
scheme from finite and small number of samples.

We demonstrate that the elicitation of private signals can
be done with a minimal mechanism that asks agents to report
only their evaluations. We define proxy events linked to the
evaluations of other agents whose probabilities are the same
as those that would be reported in a prediction report, and
use these to construct an expression that an agent expects to
be the same as the quadratic scoring rule.

Minimal Peer Prediction with Private Priors
Consider an agent a1 that is asked to provide her opinion
regarding an object o1. Once agent a1 evaluates her object to
Xo1

a1
, she updates her belief regarding her peer agent a2, who

has also evaluated object o1, to Pr(·|Xo1
a1

), where · denotes
any possible evaluation {x, y, z, ...}. If agent a1 believes that
other agents are honest, Pr(·|Xo1

a1
) is also her belief about

her peer’s report.
Now, consider another object o2 6= o1 evaluated by a third

agent a3 and not evaluated by agent a1. Agent a1’s belief
about the evaluation of agent a3 is Pr(·). However, agents
obtain their private signals in a similar fashion. So, if agent
a1 knows about a proxy agent aproxy who evaluated ob-
ject o2 with y, agent a1’s belief about agent a3’s evaluation
changes from Pr(·) to Pr(·|y). This means that the indica-
tor variable 1X

o2
a3

=z is in expectation equal to Pr(z|y).
Now, suppose that a3 is honest, i.e. Y o2

a3
= Xo2

a3
, and that

the evaluation of honest aproxy is equal to agent a1’s re-
port, i.e. Y o2

aproxy
= Xo2

aproxy
= Y o1

a1
. Then, the indicator

variable 1Y
o2
a3

=z is in expectation equal to agent a1’s belief
Pr(z|Y o1

a1
) that would make up her prediction report regard-

ing her peer’s evaluation.
The idea is to arrange indicators 1Y

o2
a3

=z so that they cor-
respond to the scoring rule (1), where prediction Pr(·|Y o1

a1
)

is scored by how well it predicts the report of peer a2. Pro-
vided that the peer is honest, the expected score is maxi-
mized when prediction is equal to Pr(·|Xo1

a1
), which implies

truthfulness of agent a1.

Minimal Peer Prediction with Private Priors. The mech-
anism has the following structure:

1. Ask an agent a1 and her peer a2 to evaluate object o1, and
report their evaluations Y o1

a1
and Y o1

a2
to the mechanism.

2. Randomly sample one response for all objects o 6= o1 that
are not evaluated by agent a1. We denote this sample by
Σ and we call it double-mixed if it contains all possible
values from {x, y, z, ...} at least twice.

3. If sample Σ is not double-mixed, agent a1’s score is equal
to u(Y o1

a1
, Y o1

a2
) = 0.

4. Otherwise, take two different objects o2 6= o3 6= o1 whose
Σ samples are equal to Y o1

a1
, and randomly select another

sample for each of them to obtain two responses Y o2
a3

and
Y o3
a4

. Finally, the score of an agent a is equal to:

u(Y o1
a1
, Y o1

a2
) =

1

2
+ 1Y

o2
a3

=Y
o1
a2
− 1

2

∑
z

1Y
o2
a3

=z1Y
o3
a4

=z

Notice that the fourth step of the mechanism is only ap-
plied when Σ is double-mixed, and this is important to pre-
vent potential bias towards more likely evaluations. Namely,
if the fourth step is executed whenever Σ contains two re-
ports equal to report Y o1

a1
, which is sufficient for the score

u(Y o1
a1
, Y o1

a2
), agent a1 might report dishonestly in the hope

of increasing the probability of getting non-zero payoff.
To illustrate the principle of the minimal peer prediction,

consider an agent a1 with evaluation for object o1 equal to
Xo1

a1
. Her belief about the report of her peer is Pr(·|Xo1

a1
),

while her belief about the report of an agent who evaluated a
different object is Pr(·). Here, · denotes any possible evalu-
ation {x, y, z, ...}. The mechanism works as follows. If Σ is
not double-mixed - which happens with probability strictly
less than 1 for |Σ| ≥ 2|{x, y, z, ...}| - agent a1’s reward is
0. Otherwise, the mechanism searches in Σ for two objects
o2 and o3 whose Σ samples are equal to Y o1

a1
. Since agent

a1 knows that samples of o2 and o3 are equal to Y o1
a1

, and
agents observe signals in a similar way, agent a1 updates
her belief about the other evaluations of objects o2 and o3:
Pr(·) → Pr(·|Y o1

a1
). This means that a1’s belief about re-

ports of agent a3 (who evaluates o2 and whose report is not
in Σ) and agent a4 (who evaluates o3 and whose report is
not in Σ) is equal to Pr(·|Y o1

a1
).

Furthermore, the indicators 1a3=z and 1a4=z in score
u(Y o1

a1
, Y o1

a2
) are in expectation equal to Pr(z|Y o1

a1
). There-

fore, assuming that agents other than a1 are honest and that
sample Σ is double-mixed, the score is in expectation equiv-
alent to the quadratic scoring rule S(Pr(Xo1

a2
|Y o1

a1
), Xo1

a2
),

which is in expectation maximized for Y o1
a1

= Xo1
a1

.
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Figure 1: Minimal Peer Prediction with Private Priors.

Figure 1 shows one possible outcome of the elicitation
process for a binary evaluation space {x, y}. To score agent
a1, the minimal peer prediction first builds Σ sample based
on the reports of the proxy agents. Since Σ is double-mixed,
the mechanism acquires the reports of agents a3 and a4, that,
together with the report of agent a2, define agent a1’s score.
In this case, the (ex post) score of agent a1 is equal to 1

2 .

Theorem 1. The Minimal Peer Prediction with Private Pri-
ors is strictly Bayes-Nash incentive compatible whenever
sample Σ contains at least two times more elements than
the evaluation space {x, y, z, ...}, i.e. |Σ| ≥ 2|{x, y, z, ...}|.

Proof. Consider an agent a1 whose evaluation is equal to
x, and suppose other agents are honest, including an agent
a2 whose evaluation is equal to y. Due to the independence
of Y o2

a3
and Y o3

a4
and linearity of expectations, the expected

score of agent a1 for reporting x̃ is equal to:

ū(x̃, y) = π(Σ)

[
1

2
+ Pr(y|x̃)− 1

2

∑
z

Pr(z|x̃)2

]
where π(Σ) is the probability that Σ is double-mixed. Fully
mixed priors and |Σ| ≥ 2|{x, y, z, ...}| imply that π(Σ) > 0,
so ū(x̃, y) has the structure of the quadratic scoring rule,
scaled by π(Σ), that rewards agent a1’s posterior beliefs
Pr(·|x̃) with the realization of the outcome specified by
agent a2’s report. Since the quadratic scoring rule is in ex-
pectation maximized when agent a1 reports her true belief
Pr(·|x), agent a1 is incentivized to report honestly her eval-
uation, i.e. x̃ = x. Moreover, agent a1 is strictly incentivized
to do so because of the stochastic relevance of her posterior
beliefs.

The mechanism requires 2|{x, y, z, ...}| statistically sim-
ilar objects in addition to the object rated by agent a. This
is usually not the issue since the answer space {x, y, z, ...}
is often significantly smaller than the amount of objects that
the mechanism wants to evaluate. For example, Amazon’s
ratings consists of only 5 discrete elements (5 stars), while
large number of products have statistically similar features.

Notice that the score u(Y o1
a1
, Y o1

a2
) takes values in [0, 32 ], so

the payments are ex post individually rational and bounded.

By multiplying it with a constant α > 0 and adding a con-
stant β, we can achieve that payoffs take values from an ar-
bitrary interval. Furthermore, for Na agents, α = 2

3
B
Na

and
β = 0, the sum of all payoffs does not exceed a budget B.

The main drawback of the minimal peer prediction is that
it assumes evaluations of different agents to be generated in
a similar fashion. In the following section, we analyze a sce-
nario that relaxes this assumption, and examine a protocol
that elicits agents’ beliefs along with their evaluations.

Heterogeneous Population
Unlike the previous section, a group of agents is now consid-
ered to have heterogeneous characteristics. More precisely,
for two different agents a1 and a2, private signals for ob-
ject o are obtained by sampling two different distributions,
Q(Xo

a1
|Ω = ω) and Q(Xo

a2
|Ω = ω), respectively. This sit-

uation describes agents who form their opinions in different
ways, e.g. an agent can be aware that her preferences signifi-
cantly deviate from the rest of the population. In the general
case, when two agents a1 and a2 can have arbitrary beliefs,
it is not possible to create strict incentives that would elicit
both agent a1’s and agent a2’s private signals.
Proposition 1. No mechanism can provide incentives to het-
erogeneous agents that would make honest reporting a strict
Bayes-Nash equilibrium.
Proof (Sketch). Consider two agents a1 and a2 that eval-
uate object o. Assume agent a1 believes that her peers a3
sample from the distribution:

Ra1
(Xo

a3
= x|Ω = ω) = Ra1

(Xo
a1

= x|Ω = ω),∀x
while agent a2 believes that her peers a4 sample from the
distribution:

Ra2
(Xo

a4
= x|Ω = ω) = Ra2

(Xo
a2

= y|Ω = ω)

Ra2
(Xo

a4
= y|Ω = ω) = Ra2

(Xo
a2

= x|Ω = ω)

Ra2(Xo
a4

= z|Ω = ω) = Ra2(Xo
a2

= z|Ω = ω), ∀z 6= x, y

Notice that peers a3 include agent a2, peers a4 include agent
a1, and peers a3 and a4 have common agents. What matters
here, however, is that agents a1 and a2 have different beliefs
regarding the private signals of their peers.

Furthermore, let Ra1
(Xo

a1
= z|Ω = ω) = Ra2

(Xo
a2

=
z|Ω = ω) for all evaluations z. Since Xo

a3
= x from

agent a1’s perspective has the same statistical properties as
Xo

a4
= y from agent a2’s perspective, the expected payoff of

agent a1 for reporting x is the same as the expected payoff
of agent a2 for reporting y when agents have equal evalua-
tions Xo

a1
= Xo

a2
. Therefore, the mechanism cannot strictly

incentivize the agents to report honestly both evaluations x
and y.

While truthfulness cannot be achieved in this scenario,
one can incentivize an agent to report consistently, i.e. to
report the same report for equal evaluations. More formally:
Definition 1. An agent a’s strategy of reporting her private
signals (evaluations) is consistent if it can be described by a
bijective function σ : {x, y, z, ...} → {x, y, z, ...} that maps
evaluations to reports. That is, whenever agent a’s evalua-
tion is equal to x, her report is equal to σ(x).
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Bayesian Truth Serum with Private Priors
We present a mechanism that is based on the principles of
the Bayesian Truth Serum (BTS) (Prelec 2004), where an
agent is rewarded for providing two reports: information
report that corresponds to her private signal, and predic-
tion report that corresponds to her posterior belief regarding
the distribution of information reports. We develop on the
divergence-based BTS from (Radanovic and Faltings 2014),
which penalizes agents who have similar information re-
ports, but significantly different prediction reports. In our
setting we cannot utilize such comparison as the setting does
not assume a common prior among agents. Instead, we in-
centivize an agent to be consistent by comparing her own
reports for different objects.

In this section, we consider a slightly different scenario,
in which a single agent a evaluates multiple objects, one af-
ter another, until a certain stopping criterion is reached. We
model the criterion probabilistically by assuming that after
each round the process terminates with a probability equal
to τ ∈ (0, 1). That is, an agent at round i is asked to evaluate
more objects with probability τ , or stated slightly differently,
the number of objects to be evaluated by agent a is sampled
from the geometric distribution with parameter τ , and this
number is not announced to agent a.

Consider an agent a who evaluates objects {o1, ..., om}
in a sequential manner, and is asked to provide for each of
them: her evaluation Y oi

a and her prediction Foi
a regarding

how other agents have evaluated oi. Our approach of elicit-
ing consistent behaviour is based on linking an agent’s eval-
uations Y to her predictions F. Namely, an agent’s predic-
tions should be similar for similar evaluations, so we can
use this fact to construct incentives that encourage consis-
tent reporting. In order to apply such a principle, one needs
to define a similarity measure of predictions.

Notice that each scoring rule is associated with a diver-
gence function that measures the difference between the ex-
pected scores of the true (optimal) prediction Ftrue and the
reported prediction Frep. For example, the divergence of the
quadratic score (1) is equal to:

D(Ftrue||Frep) =
1

2

∑
z

(Ftrue(z)− Frep(z))2 (2)

The divergence function (2) is, in fact, the Euclidean dis-
tance between two predictions, so it represents a suitable
candidate for a similarity measure of predictions. As al-
ready mentioned, equal evaluations lead to similar predic-
tions, which we can utilize to detect inconsistencies in re-
ports, and, thus, penalize inconsistent behaviour. In particu-
lar, in our approach we penalize an agent if the divergence
(2) between her two predictions that correspond to equal
evaluations is larger than a random threshold.
Bayesian Truth Serum with Private Priors. The mecha-
nism has the following structure:

1. Sample a number m from the geometric distribution with
parameter τ ∈ (0, 1), and randomly select m a priori sim-
ilar objects {o1, ..., om}.3

3Number of tasks m can be controlled by both the total number
of tasks M and parameter τ

2. Ask an agent a to rate objects {o1, ..., om} in a sequen-
tial manner - when rating an object oi, the agent does not
know if there are more objects to rate, she only knows that
the probability of having additional objects is equal to τ .

3. For each object oi agent a reports:
• information report Y oi

a , i.e. her evaluation of the object;
• prediction report Foi

a , i.e. her prediction regarding the
frequency of information reports for the object.

4. Agent a is rewarded with two scores: a prediction score,
that she receives after rating each object, and an informa-
tion score, that she receives after rating all the objects.

5. Prediction score u1 rewards an agent a for her predic-
tion report Foi

a using the quadratic scoring rule and the
information report of a randomly chosen peer agent pwho
evaluated object oi:

u1 = S(Foi
a , Y

oi
p )

6. Information score u2 rewards an agent a for her infor-
mation reports {Y o1

a , ..., Y om
a } using the fact that simi-

lar evaluations should lead to similar prediction reports.
More precisely, the agent is penalized (not rewarded by
1) if the divergence (defined by (2)) between any two
prediction reports whose corresponding information re-
ports are equal is larger than a randomly chosen threshold
θ ∈ (0, 1):

u2 =

{
0 if max

Y
oi
a =Y

oj
a
D(F oi

a ||F
oj
a ) > θ

1 otherwise

If there are no two equal information reports Y oi
a = Y

oj
a ,

we set the information score to u2 = 1.
When rating object oi, agent a does not know whether

there are more objects to rate. This is important in order to
ensure strict incentives for consistent reporting at each round
of the mechanism. Namely, if agent a knows that object om,
evaluated as y, is the last object to evaluate, and all objects
prior to om are evaluated as x, then she is indifferent be-
tween reporting y and z. This is due to the fact that there
does not exist any other object evaluated by agent a as y or
z, so the information score is unaffected for reports y and z.

To illustrate the principle of the mechanism, consider an
agent a who evaluates object o1 as x. Her belief about the
evaluations of other agents who evaluated the same object
o1 is Pr(·|x), where · denotes a possible evaluation. Thus,
if she believes that others are honest, her best response is
to report the prediction Fo1

a = Pr(·|x). Now, consider an-
other object o2, that agent a evaluates as y. Naturally, agent
a’s belief about the evaluations of other agents for object
o2 is equal to Pr(·|y), and her best response to truthful be-
haviour of others is to report the prediction Fo2

a = Pr(·|y).
To maximize her information score, agent a should report
different information reports for objects o1 and o2, because
D(Fo1

a ||Fo2
a ) > 0 could be larger than random threshold

θ > 0. In other words, in order to avoid the information
score equal to 0, agent a should report consistently.
Theorem 2. Consider the Bayesian Truth Serum with Pri-
vate Priors. The strictly best response of an agent a to truth-
ful behaviour of the other agents is to report at each stage i
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her true prediction report Foi
a = Pr(Xoi

p |Xoi
a ) and a con-

sistent information report Y oi
a = σ(Xoi

a ).

Proof. Consider an agent a and suppose all the other agents
are honest. The maximal values of the prediction scores are
obtained when the agent reports her true prediction reports.
Due to the stochastic relevance, this is a strict optimum.

We also need to show that agent a is strictly incentivized
to use a strategy σ when reporting her information reports,
and that the information score does not change strict incen-
tives for the prediction reports. It suffices to prove that when
agent a reports her true predictions, the maximum of the in-
formation report is obtained when she uses σ reporting strat-
egy. Suppose that agent a does report her honest predictions.
If she uses σ strategy, her information score is indeed equal
to 1, which is its optimal value. Namely, in that case we have
max

Y
oi
a =Y

oj
a
D(Foi

a ||F
oj
a ) = 0 < θ. Therefore, the agent

is incentivized to report honestly her prediction report and
consistently her information report.

Lastly, we need to show that not using a bijective function
σ only lowers the expected payoff of her information score.
Namely, at each stage i, there is always a strictly positive
probability p that agent a will experience all possible evalu-
ations {x, y, z, ...}, and that threshold θ will be small enough
so that D(Pr(·|Xoi

a = x)||Pr(·|Xoj
a = y)) > θ, ∀x 6= y.

Hence, her information score is in expectation less than or
equal to: (1−p)·1+p·0 < 1. Therefore, reporting honest pre-
dictions F oi

a and consistent evaluations σ(Xoi
a ) is agent a’s

best response to honest behaviour of the other agents.

The direct consequence of Theorem 2 is that truthful re-
porting is an equilibrium strategy.
Theorem 3. Truthful reporting is a weak Perfect Bayes-
Nash equilibrium in the Bayesian Truth Serum with Private
Priors.

Proof. The claim follows from Theorem 2 and the fact that
σ can also be an identity function, i.e. σ(x) = x,∀x.

Note that among all bijective functions σ, the identity
function corresponding to truthful reporting is the only one
that can be implemented without coordination among agents
and thus has the lowest cost, so that in practice the truthful
equilibrium can be expected to be strict.

One might be worried that the number of tasks m eval-
uated by an agent a could potentially be large. However,
the analysis of the mechanism is valid for any parameter
τ ∈ (0, 1), so τ can be set to arbitrarily small value to make
probability of having large number of tasks m very small.

Score u1 of the the Bayesian Truth Serum with Private
Priors is the quadratic scoring rule that takes values in [0, 1],
while score u2 is either 0 or 1, so the mechanism is ex-
post individually rational and provide bounded incentives.
As shown in the previous section, this implies that the scores
can be scaled so that participants receive positive payments,
while the total payoff does not exceed a fixed budget.

As making and interpreting observations is costly, some
agents can be expected to take shortcuts and submit reports
that are independent of the object and chosen according to
some distribution rand (which may also be deterministic

and always chose the same value). We call such a strategy
heuristic reporting. Suppose that α fraction4 of all agents do
not respond to incentives, but instead they generate reports
randomly according to a distribution rand. If the other 1−α
agents are honest, consistent reporting remains the best re-
sponse. The intuition is that an agent’s belief regarding the
reports of other agents changes, but she is still incentivized
to report consistently. Having in mind that truthfulness is
a consistent behaviour, we obtain that truthful reporting re-
mains to be an equilibrium strategy for agents who respond
to the incentives.

Proposition 2. Suppose that α < 1 fraction of agents re-
ports heuristically according to some random distribution
rand. Then for the other agents, truthful reporting is a
weak Perfect Bayes-Nash equilibrium of the Bayesian Truth
Serum with Private Priors.

Proof (Sketch). Consider an agent a and suppose there are
α agents who report heuristically and 1− α agents who are
honest. An agent a’s posterior belief regarding her peer’s re-
port Pr(Y oi

p |Xoi
a ) is not anymore equal to Pr(Xoi

p |Xoi
a ),

so to avoid confusion let us denote Pr(Y oi
p = y|Xoi

a = x)

by P̂ r(y|x), and Pr(Xoi
p = y|Xoi

a = x), as usual, by
Pr(y|x). The connection between the two is P̃ r(y|x) =

(1 − α) · Pr(y|x) + α · rand(y). Since P̃ r can be seen
as a possible belief of agent a that has the same properties
as the belief Pr, including stochastic relevance, the analysis
from the proof of Theorem 2 applies here as well. Hence,
the claim follows from Theorem 3.

Conclusion
In this paper we designed two mechanisms that allow agents
to have private prior beliefs. We showed that when agents’
characteristics are homogeneous, there exists a simple and
intuitive mechanism for truthful elicitation of agents’ pri-
vate information. On the other hand, for agents with hetero-
geneous characteristics, it is not possible to produce strict
incentives for truthfulness. However, agents can be incen-
tivized to report consistently, even in the presence of pres-
ence of agents who do not respond to the incentives. This
further implies that truthful reporting is a (weak) equilib-
rium, but robust to the noise of heuristic reports. The most
interesting direction for future work would be to analyze set-
tings that lie in between the two explained in this paper, i.e.
to explore settings that do not assume agents who have fully
homogeneous characteristics, but do place some restrictions
on how agents obtain their private information.
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