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Abstract 

Rational metabolic engineering methods are increasingly employed in designing the 

commercially viable processes for the production of chemicals relevant to 

pharmaceutical, biotechnology, and food and beverage industries. With the growing 

availability of omics data and of methodologies capable to integrate the available 

data into models, mathematical modeling and computational analysis are becoming 

important in designing recombinant cellular organisms and optimizing cell 

performance with respect to desired criteria. In this contribution, we used the 

computational framework ORACLE (Optimization and Risk Analysis of Complex Living 

Entities) to analyze the physiology of recombinant E. coli producing 1,4-butanediol 

(BDO) and to identify potential strategies for improved production of BDO. The 

framework allowed us to integrate data across multiple levels and to construct a 

population of large-scale kinetic models despite the lack of available information 

about kinetic properties of every enzyme in the metabolic pathways. We analyzed 

these models and we found that the enzymes that primarily control the fluxes 

leading to BDO production are part of central glycolysis, the lower branch of 

tricarboxylic acid (TCA) cycle and the novel BDO production route. Interestingly, 

among the enzymes between the glucose uptake and the BDO pathway, the 

enzymes belonging to the lower branch of TCA cycle have been identified as the 

most important for improving BDO production and yield.  We also quantified the 

effects of changes of the target enzymes on other intracellular states like energy 

charge, cofactor levels, redox state, cellular growth, and byproduct formation. 

Independent earlier experiments on this strain confirmed that the computationally 
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obtained conclusions are consistent with the experimentally tested designs, and the 

findings of the present studies can provide guidance for future work on strain 

improvement. Overall, these studies demonstrate the potential and effectiveness of 

ORACLE for the accelerated design of microbial cell factories.   

Keywords: ORACLE | 1,4-butanediol | Metabolic Control Analysis | Kinetic Models | 
Thermodynamics | Flux Balance Analysis| Uncertainty. 
 

List of abbreviations 

ORACLE – Optimization and Risk Analysis of Complex Living Entities 

TFA – Thermodynamics-based Flux Balance Analysis 

GEM – GEnome-scale Model 

LG – Low Growth phase  

 

1 Introduction 

Microbial cell factories are becoming a norm for commercially viable production of 

chemicals for pharmaceutical, biotechnology, food and beverage industries 

(Borodina et al., 2015; Chen and Nielsen, 2013; Choi et al., 2015; Jenkins et al., 1998; 

Lee et al., 2012; Pfleger et al., 2015). However, engineering of microbial cell factories 

requires a simultaneous optimization of several criteria such as productivity, yield, 

titer, stress tolerance, all the while retaining the efficient, cost-effective and robust 

process. Several metabolic engineering strategies capable of integrating available 

proteomics, transcriptomics, metabolomics, fluxomics, and other types of ‘omics’ 

data into a systems design have been developed to meet this kind of specifications 

(Chen and Nielsen, 2013; Kim et al., 2012; Lewis et al., 2012; Thomas et al., 2007). An 

essential part of these strategies are in silico tools that can help in: (i) improving the 
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production of the desired chemicals from the natural producers; (ii) identifying 

enzymes from other organisms capable of performing desired catalytic activity; or 

even (iii) synthetizing pathways not present in any known organism (Hatzimanikatis 

et al., 2005; Leonard et al., 2008; Soh and Hatzimanikatis, 2010a; Yim et al., 2011). 

One of the most prominent examples where a rational metabolic engineering 

strategy played a key role is the production of 1,4-butanediol (BDO) in E. coli (Yim et 

al., 2011). Therein, as no known organism does naturally produce BDO, the authors 

have used a variant of BNICE algorithm (Hatzimanikatis et al., 2005; Soh and 

Hatzimanikatis, 2010a) to discover all pathways from E. coli central metabolites to 

BDO. Based on this information, the authors constructed a new synthetic pathway 

using enzymes known in other organisms, and then they have used another in silico 

modeling tool, the OptKnock algorithm (Burgard et al., 2003), to optimize so 

obtained synthetic strain. However, strain optimization for improved specific 

productivity and yield will require kinetic models. 

In this contribution, we used the kinetic modeling framework ORACLE (Optimization 

and Risk Analysis of Complex Living Entities) (Chakrabarti et al., 2013; Miskovic and 

Hatzimanikatis, 2011; Soh et al., 2012; Wang et al., 2004; Wang and Hatzimanikatis, 

2006a; Wang and Hatzimanikatis, 2006b) to analyze possible enhancements of an E. 

coli strain engineered for production of BDO. ORACLE framework allowed us to 

integrate thermodynamics and available omics and kinetic data into a population of 

large-scale kinetic models. Many of these data have been acquired during the early 

stages of the strain development. The resulting kinetic models were then used to 

postulate metabolic engineering alternatives ensuring optimal performance with 

reduced byproduct secretion and fine-tuned redox balance and cofactor levels. More 
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precisely, we identified three modules that exert control over BDO/glucose yield and 

over the specific productivity of BDO: (M1) central glycolysis; (M2) the lower branch 

of TCA cycle; and (M3) the BDO production pathway (Fig. 1). Metabolic engineering 

strategies involving enzymes from the three modules differed in terms of their 

effects on cellular growth, byproduct formation, and intracellular states such as 

cytosolic redox. Our analysis revealed that selection of a strategy involving 

phosphoenolpyruvate carboxylase (PPC) and citrate synthase (CS) from module M2 

would result in the most significant improvement in BDO/glucose yield. In terms of 

process conditions, our models predicted that reduction of oxygen levels would lead 

to increase of BDO/glucose yield, which is consistent with the maximum theoretical 

yield analysis and with experimental studies. 

 

2 Materials and Methods  

2.1 Cultivation conditions  

Replicate fermentations were performed with 1 L initial culture volume in 2-L Biostat 

B+ bioreactors (Sartorius Stedim Biotech) using modified M9 minimal medium (6.78 

g/L Na2HPO4, 3.0 g/L KH2PO4, 1.5 g/L NH4Cl, 1.0 g/L (NH4)2SO4, 0.5 g/L NaCl, 0.1 mM 

CaCl2, 2 mM MgSO4, 1 mL 1000x trace metals mixture (Teknova) supplemented with 

10 g l−1 D-glucose and 0.2 mM IPTG to induce expression of plasmid-borne genes. 

The temperature was held at 35 °C, and the pH was held at 6.75 using 13.5% NH4OH. 

The bioreactors were inoculated to initial ODs of 4.74 and 4.86 and immediately 

induced with 1.5 mM IPTG (0.5 M). Sparge and agitation were held constant at 0.4 

sLPM and 800 rpm enabling a peak oxygen transfer rate of 60 mmol/kg/hr. 
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Concentrated glucose was fed in to maintain the glucose concentrations in the 

vessels between 10 and 30 g l−1. 

 

2.2 Bacterial Strain  

Host Strain: E. coli strain 2731, the production strain for this study, is a derivative of 

strain 432 described by (Yim et al., 2011). Notable modifications include deletions in 

adhE, ldhA, pflB, mdh, and mutated versions of gltA, lpdA, and arcA. The arcA 

mutation, resulting in an 8 amino acid insertion in the ArcA protein (Iuchi and Lin, 

1988; Silverman et al., 1991) renders the regulator largely inactive, and thus 

activates the oxidative TCA flux under low O2 conditions (Yim et al., 2011). The gltA 

and lpdA mutations are the same as described in (Yim et al., 2011). Strain 2731 

contains chromosomally integrated copies of sucD (encoding CoA-dependant 

succinate semialdehyde dehydrogenase), sucA (encoding alpha-ketoglutarate 

decarboxylase), 4hbd (encoding 4-hydroxybutyrate dehydrogenase), cat2 (4-

hydroxybutyryl CoA:acetyl-CoA transferase), and a GBL-hydrolyzing esterase. The 

sequences of heterologous genes are given in (Yim et al., 2011) and (Pharkya et al., 

2014). The strain also contains deletions in sad, gabD, aspA, poxB, ltaE, pckA, gltBD, 

and ndh. The strain was transformed with the pZS*-13S-ald-adh plasmid as 

described below to enable conversion of 4-hydroxybutyryl-CoA into 4-

hydroxybutyraldehyde and subsequently to 1,4-butanediol (BDO). More details 

regarding the construction of strain 2731 can be found in  (Pharkya et al., 2014). 

Plasmid: We used the base vector, pZS*13S, to express the aldehyde dehydrogenase 

(ALD-5B) and alcohol dehydrogenase genes (Barton et al., 2015) under control of the 

PA1lacO-1 promoter. The vector backbone, pZS*13luc, was obtained from R. Lutz 
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(Expressys) and is based on the pZ Expression System (Lutz and Bujard, 1997). 

pZS*13luc contained the luciferase gene as a stuffer fragment. The luciferase stuffer 

fragment was replaced as described in (Yim et al., 2011). The plasmid contains the 

pSC101 origin of replication and an ampicillin resistance marker. The analytical tools 

and cloning methods were described in (Yim et al., 2011). 

 

2.3 Core Reduced Stoichiometric Model 

The core reduced stoichiometric model of E. coli was derived from the latest E. coli 

reconstruction iJO1366 (Orth et al., 2011)(Supplementary material S1 and S2). After 

adding the reactions and mass balances corresponding to the BDO production 

pathway, the resulting core model of recombinant BDO-producing E. coli strain is 

composed by 175 intracellular reactions, including the biomass reaction, and 106 

metabolites distributed over the cytosol and the extracellular space (Fig. 1).  

 

2.4 Construction of large-scale kinetic models 

We used the well-established ORACLE (Optimization and Risk Analysis of Complex 

Living Entities) methodology that integrates in a consistent way thermodynamic and 

physicochemical constraints of the cellular metabolism along with diverse 

experimental data (fluxomics, metabolomics, transcriptomics, proteomics, and 

kinetics) into mathematical descriptions of the responses of the cellular metabolism 

to genetic and environmental perturbations (Chakrabarti et al., 2013; Miskovic and 

Hatzimanikatis, 2010; Soh et al., 2012; Wang et al., 2004; Wang and Hatzimanikatis, 

2006a; Wang and Hatzimanikatis, 2006b). ORACLE allows us to build a population of 
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large-scale kinetic models that account for the uncertain and scarce information 

about the kinetic properties of enzymes. Uncertainty and lack of sufficient 

information in biological systems do not allow identifying a unique set of parameter 

values, and therefore many alternative sets of parameters can make the resulting 

kinetic models consistent with the available experimental information. ORACLE 

overcomes this limitation by “generating” a population of alternative kinetic models, 

which are consistent with the available information and which differ in the values of 

the estimated parameters. ORACLE is composed of several computational 

procedures that we have used in the following sequence (Fig. 2)  

2.4.1 Computation of thermodynamically consistent flux profiles 

The introduction of Second Law of Thermodynamics in the context of flux balance 

analysis (FBA) allows coupling the directionality of the fluxes and the levels of 

metabolite concentrations (Ataman and Hatzimanikatis, 2015; Henry et al., 2007; 

Kummel et al., 2006; Soh and Hatzimanikatis, 2010c; Soh and Hatzimanikatis, 2014).  

While we can eliminate infeasible loops in the steady-state metabolic models with 

no information about thermodynamics (Lewis et al., 2010; Schellenberger et al., 

2011a), the Thermodynamics-based Flux Balance Analysis (TFA) additionally allows 

to eliminate thermodynamically infeasible flux directionalities and to integrate  

metabolomics data in the constraint-based analyses (Ataman and Hatzimanikatis, 

2015; Henry et al., 2006; Henry et al., 2007; Soh and Hatzimanikatis, 2010b; Soh and 

Hatzimanikatis, 2014; Soh et al., 2012). TFA also allows to integrate information 

about other factors that can affect the metabolic responses by altering the standard 

change of Gibbs free energy of reactions such as pH, ionic strength and temperature. 

Using the core stoichiometric model of E. coli metabolism we incorporated the 
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thermodynamic constraints based on the available information on the Gibbs free 

energies of reactions (Alberty, 1994; Goldberg et al., 2004; Hadadi et al., 2015; 

Jankowski et al., 2008) and the available fluxomics and metabolomics data, and we 

performed TFA analysis to compute a thermodynamically feasible flux profile. Within 

this thermodynamically feasible flux profile each reaction is unidirectional, therefore 

its flux solution space is convex. We sampled this flux space, and we performed the 

Principal Component Analysis (PCA) on the obtained samples to find the 

representative steady-state flux vector that would characterize the studied 

physiology (Jolliffe, 2002; Soh et al., 2012). 

2.4.2 Sampling of network consistent metabolite concentration levels  

The space of metabolite concentrations that is coupled through the reaction 

directionalities with the computed thermodynamically feasible flux profile is convex. 

Moreover, the Gibbs free energy,   , of reactions is a linear function of the natural 

logarithms of metabolite concentrations. This allowed us to use the Artificial-

Centering Hit-and-Run sampler from the COBRA Toolbox for the sampling of 

metabolite concentration levels (Becker et al., 2007; Schellenberger et al., 2011b). 

The sampled levels of the metabolite concentrations were consistent with values of 

the Gibbs free energy,   , and with the directionality of the reactions. Available 

estimates of metabolite concentration ranges acquired from experiments under 

similar physiological conditions were used as the bounds for the computational 

sampling of the metabolite levels (Soh et al., 2012). Using the values of the Gibbs 

free energy we computed the displacement of the enzymatic reactions from the 

thermodynamic equilibrium, which were consistent with the previously determined 

metabolite levels and flux profiles.  
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2.4.3 Estimation of reaction equilibrium displacements 

For a uni-uni reaction with a substrate S and a product P, the displacement from the 

thermodynamic equilibrium is as follows: 

   
 

   

 

 
  

where keq denotes the equilibrium constant defined as a ratio between the 

concentrations of the product and the substrate at the thermodynamic equilibrium. 

For a reaction which operates in the direction of a net production of the product  Γ < 

1, i.e. the Gibbs free energy difference is negative. 

We computed the displacements of the reactions from thermodynamic equilibrium 

corresponding to the sampled metabolite concentrations (see Section 2.4.2), and we 

classified the reactions according to these displacements in the following sets:  

reactions that operate (i) strictly far from equilibrium (FE), i.e. with displacements 0 

≤ Γ < 0.1; (ii) with the middle displacement (MD), i.e. with displacements 0.1 ≤ Γ ≤ 

0.9; and (iii) strictly near equilibrium (NE), i.e. with displacements 0.9 < Γ ≤ 1. Some 

reactions could belong to more than one of these sets and we classified them as: (iv) 

FM, i.e. where 0 ≤ Γ ≤ 0.9; (v) MN, i.e. where 0.1 ≤ Γ≤ 1; and (vi) FMN, i.e. these 

reactions could have any displacement from FE to NE (0 ≤ Γ≤ 1). 

2.4.4 Integration of kinetic information and parameterization of models 

For each of enzymatic reactions within the metabolic network we assigned a kinetic 

mechanism using available information from the literature (Heinrich and Schuster, 

1996; Reich and Sel'kov, 1981; Segel, 1975; Teusink et al., 2000) where this 

information was unavailable, we used generalized approximations of enzymatic 

mechanisms such as generalized reversible Hill (Hofmeyr  and Cornish-Bowden, 

1997), or convenience kinetics (Liebermeister and Klipp, 2006). The used kinetics 
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laws included reversible Michaelis-Menten kinetics, Uni-Bi, Bi-Uni, random Bi-Bi, 

ordered Bi-Bi, Bi-Ter, and Ter-Bi, etc. (Segel, 1975). Detailed information about the 

kinetic mechanisms used in these studies is available in the Supplementary Material 

S3. 

We then integrated available values of kinetic parameters of enzymes from the 

literature and databases (Schomburg et al., 2013; Teusink et al., 2000; Wittig et al., 

2012). For the enzymes with no prior or incomplete knowledge of  values, we 

sampled the space of  values through sampling of the degree of saturation of the 

enzyme active site (Wang et al., 2004), which is an alternative to sampling of the 

enzyme states and therefore to sampling of the  space (Miskovic and 

Hatzimanikatis, 2011). We found experimental information about 69 Michaelis 

constants (Schomburg et al., 2013; Wittig et al., 2012), for 37 out of 153 enzymatic 

reactions in the model (Supplementary material S5). Within these reactions, 

complete kinetic information (i.e.,  values for every substrate and product) was 

available for 8 reactions (22%), whereas for 16 (43%) of the reactions  values for 

only one metabolite were found in the databases. Whenever a  value was 

available, we biased the distribution of the parameter samples toward this value 

such that the generated samples of kinetic constants were in the close proximity of 

the observed .  

2.4.5 Stability and consistency verification 

We test the local stability of the steady state, and we reject samples for which their 

Jacobian matrix have positive eigenvalues (Andreozzi et al., 2015; Chakrabarti et al., 

2013; Wang et al., 2004). This test is based on the assumption that the observable 

Km

Km

Km

Km

Km

Km

Km
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flux profile is in a stable steady state at the studied time point. Furthermore, we 

consider pruning of the samples that are inconsistent with the experimentally 

measured responses of the metabolic network to gene perturbations and to changes 

in process conditions.  

2.4.6 Computational analysis 

We computed control coefficients based on the MCA framework to quantify the 

responses of the metabolic fluxes and intracellular metabolite concentrations to the 

change in (i) activities of each enzyme in the network, and (ii) the concentrations of 

extracellular metabolites (Wang et al., 2004; Wang and Hatzimanikatis, 2006b). 

2.4.7 Data mining and identification of metabolic engineering strategies 

We analyzed the populations of obtained control coefficients, and we postulated 

hypotheses about the expected responses of the studied metabolic network to 

changes in the system parameters. This analysis provided additional information 

about the couplings between fluxes within the network. 

 

2.5 Control coefficients for multiple enzyme changes 

Advancements in metabolic engineering and synthetic biology allowed manipulation 

of multiple genes simultaneously (Demeke et al., 2013), which emphasized the need 

to asses in silico the overall effect of these interventions on the states of the 

metabolic network such as product and by-product fluxes, substrate uptake, and 

redox potential. In order to quantify the responses of these states to alterations of 

the activities of multiple enzymes, we use the control coefficients for multiple 

enzyme changes for production of a certain compound as follows: 
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    ∑      

   
  

 (1) 

where Ce j

VPi

 represents the flux control coefficient of the production rate of Pi
 with 

respect to an enzyme activity, e j . The sum in Equation (1) is over all altered enzyme 

activities, E . The quantity a j  represents a relative factor of enzyme activity change 

e j , which can be used to model different degrees of change of enzyme activity for all 

altered enzymes. For example, if ek  is increased by 50%, whereas for all other 

altered enzymes the enzyme activity is increased by 100%, then 
  
a

k
= ln(0.5)  and 

  
a

j
= ln(2)  for all other enzymes. In analogous manner, it is possible to define the 

control coefficient for multiple enzyme changes for the byproduct formation, carbon 

uptake, and other metabolic functions. The above mentioned control coefficients for 

multiple enzyme changes are a special case of the general formulation of control 

coefficients of metabolic functions with respect to a vector of parameters as 

proposed in (Hatzimanikatis et al., 1996). 

 

2.6 Control coefficients for product selectivity 

When there are several byproducts, we need to assess at the same time how 

metabolic engineering strategies affect the product formation, but also the overall 

carbon uptake and carbon loss. The product selectivity, i.e. the proportion of carbon 

flow toward the product Pi
 with respect to the carbon flow toward all byproducts, is 

defined as follows 

    
   
    

∑    

 
   

 
   

  (2) 
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We use the general formalism presented in (Hatzimanikatis et al., 1996) to derive 

from Eq. (2) the product selectivity control coefficient, 
 
C

q

S
i : 

   
  

 
        

       
   

    ∑     

    
     (3) 

where Cq

VPi represents the flux control coefficient of the flux leading to product Pi
 

with respect to a parameter q . The sum in the abovementioned definition (3) is over 

all byproducts. The values of this control coefficient will be high if a parameter  

has a positive effect on the flux leading to product   , but a negative or negligible 

effect on the fluxes leading to other byproducts. This control coefficient allows us to 

assess the simultaneous impact of a change in a parameter, such as an enzyme 

activity, on production of several byproducts or on production of BDO. For example, 

for the selectivity of a group, G, of m products,  S
G , 

    
∑    

    
     
   

∑    

 
   

 
   

 ∑        
     (4) 

the corresponding control coefficient is as follows: 

   
  

 
 

  
∑     

        
    ∑     

    
   . (5) 

2.7 List of enzymes in three identified modules with abbreviations 

Module M1: glucose-6-phosphate isomerase (PGI), phosphofructokinase (PFK), 

fructose bisphosphate aldolase (FBA), phospho-glycerate mutase (PGM) and enolase 

(ENO). Module M2: aconitase, half-reaction A (ACONTa), NADP-dependent isocitrate 

dehydrogenase (ICDHyr), citrate synthase (CS) and phosphoenolpyruvate 

carboxylase (PPC). Module M3: 2-oxoglutarate carboxy-lyase (AKGD), semi-aldehyde 

dehydrogenase (SUCSALD), NAD-dependent 4-hydroxybutyrate dehydrogenase 

(4HBD), acetyl-CoA: 4-hydroxybutanoate CoA transferase (4HBCOAT), NADH-

q
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dependent 4-hydroxybutyraldehyde dehydrogenase (4HBCOAR1), and NADPH-

dependent 4-hydroxybutyraldehyde reductase (4HBDH2). 

The complete list of enzymes and metabolites with the corresponding abbreviations 

is given in supplementary material S1. 

 

3 Results and Discussion 

3.1 Integration of quantitative physiology   

The fermentation of BDO producing strain 2731 was performed as described in 

Materials and Methods. The data were analyzed and specific uptake and production 

rates were determined over the late growth phase, subsequently referred to as LG 

phase (i.e. at 24.5 hrs). Rates were determined by the best fit of the analytical and 

off-gas data within the constraints of carbon and electron balances (Table 1).  

Table 1:  The specific uptake and production rates higher than 0.002 mmol/gDW-hr at the LG phase. 

Reaction Uptake 
(mmol/gDW-hr) 

Production 
(mmol/gDW-hr) 

Glucose 2.77 - 
Oxygen 3.28 - 

CO2 - 6.65 
BDO - 2.12 
4HB - 0.045 
GBL - 0.002 

Glutamate - 0.148 
Acetate 0.076 - 
Ethanol - 0.234 
Alanin 0.004 - 
Lactate - 0.018 

  

Complete set of the data used for the study (i.e. measured exchange fluxes, 

extracellular concentrations in the culture medium and the intracellular metabolite 
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concentration measurements) to further constrain the solution space is provided in 

the supplementary material S4. 

The stoichiometric model was configured with the following assumptions: 

(i) The splitting ratio between glycolysis and pentose-phosphate pathway (PPP) was 

set to be 9:1 in accordance to the low PPP fluxes observed in this strain; 

(ii) The model has three glucose transport reactions via the phosphoenolpyruvate-

pyruvate phosphotransferase system in the periplasm (GLCptspp), simple 

diffusion (GLCt2pp), and ATP-dependent active transport (GLCabspp). We 

assumed that 95% of the glucose was uptaken through GLCptspp as it is the main 

glucose uptake system under batch conditions (Steinsiek and Bettenbrock, 2012);  

(iii) Eleven knockouts were modeled by setting the corresponding fluxes to a minimal 

value of 10-4
mmol/gDW-h; while the gene knockouts could result in zero fluxes 

through the corresponding reactions, we choose to keep a minimal basal activity. 

While such basal activities do not impact significantly the main control analysis, it 

allows us to account for uncertain basal activity and describe potential 

reintroduction of the enzymes for future studies. The corresponding reactions 

were: pyruvate formate lyase (PFL), lactate dehydrogenase (LDH_D), malate 

dehydrogenase (MDH), cytochrome oxidase bo3 involving ubiquinol-8 with 4 

protons (CYTBO3_4pp), NADPH-dependent glutamate synthase (GLUSy), Glycine 

Cleavage System (GLYCL), NADH dehydrogenase involving menaquinone-8 

(NADH10), NADH dehydrogenase involving ubiquinone-8 (NADH5), NADH 
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dehydrogenase involving demethylmenaquinone-8 (NADH9), pyruvate oxidase 

(POX), and phosphoenolpyruvate carboxykinase (PPCK); 

(iv) The minimum bound for the flux of ATP maintenance (ATPM) was set to 3.15 

mmol/gDW-hr as it was assumed that the process operates in low-oxygen 

conditions (Feist et al., 2007);  

(v) The reaction catalyzed by fructose 6-phosphate aldolase (F6PA) was assumed to 

operate in the condensation direction from glyceraldehyde 3-phosphate (g3p) to 

fructose 6-phosphate (f6p), as suggested in (Schurmann and Sprenger, 2001); 

(vi) NADH-dependent flavin adenine dinucleotide reductase (FADRx) and NADPH-

dependent flavin adenine dinucleotide reductase (FADRx2) are either 

simultaneously reducing flavin adenine dinucleotide (fad), or simultaneously 

oxidizing reduced flavin adenine dinucleotide (fadh2), in order to prevent flux 

loop cycling; 

(vii) The 4-hydroxybutyraldehyde dehydrogenase favors NADPH cofactor (Burk et 

al., 2011), and therefore the flux through NADH-dependent BDO dehydrogenase 

(4HBDH1) was set to 10-4
mmol/gDW-h. 

 

3.2 Physiology of BDO production: insights from TFA analysis  

We used the stoichiometric model with integrated physiology data from Section 3.1 

to perform the TFA analysis with the objective of maximizing biomass yield on 

glucose and we obtained the thermodynamically feasible steady state flux profile 

and the corresponding representative steady-state flux vector (see Section 2.4.1 and 
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supplementary material S6). The directionalities in the computed flux profile and the 

assumed directionalities in the genome-scale iJO1366 model (Orth et al., 2011) 

differed in three reactions: D-amino acid dehydrogenase (DAAD), NADPH-dependent 

flavodoxin reductase (FLDR2) and formate transport via proton symport (FORt2pp). 

Under given physiological conditions, we found that directionality of DAAD was 

coupled with directionality of FADRx2. Consequently, its directionality was 

determined by the assumption (vi) above. The network thermodynamics analysis 

suggested that, under the fermentation conditions, FLDR2 must operate in oxidative 

direction, which was in contrast to what had been suggested in (Orth et al., 2011). 

However, it was argued in the literature that Flavodoxin-NADP+ oxidoreductases are 

catalytically reversible reactions (Jenkins and Waterman, 1998) and therefore we 

used here the direction that is consistent with the network thermodynamics. 

 

Flux Variability Analysis 

We sampled the convex space of the computed flux profile and we analyzed the 

samples with respect to their variability (Fig. 3). As a measure of the variability of the 

flux solution space we used the coefficient of variation (CV), defined as ratio of the 

standard deviation to the mean of population of the analyzed quantity (Chakrabarti 

et al., 2013; Lequieu et al., 2011). Values of CV close to zero indicate a very tightly 

constrained flux. In contrast, large values of CV mark relatively weakly constrained 

flux. 

In the studied case, flux variability results indicate: (i) the fluxes that are tightly 

constrained and therefore precisely determined by the stoichiometry and integrated 
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data; and (ii) the loosely constrained fluxes, i.e. the fluxes whose values in the 

reference steady-state flux vector have been estimated from the PCA analysis (see 

Section 2.4.1, Materials and Methods). 

CV of the analyzed flux samples ranged from 0 to 1 implying a relatively well-

constrained flux space (Fig. 3). Approximately 32% of the reactions were very tightly 

constrained (CV < 0.05), and they belonged to different pathways of the network 

(Fig. 3). For example, 40% of the reactions of the tricarboxylic acid cycle (TCA) were 

tightly constrained: aconitase: half reaction A (ACONTa), aconitase: half reaction B 

(ACONTb), NADP-dependent isocitrate dehydrogenase (ICDHyr), malate 

dehydrogenase (MDH) and citrate synthase (CS) (Fig. 3). In the 

Glycolysis/Gluconeogenesis pathway, seven of seventeen reactions were also tightly 

constrained: glyceraldehyde-3-phosphate dehydrogenase (GAPD), enolase (ENO), 

glucose-6-phosphate isomerase (PGI), phosphoglycerate kinase (PGK), 

phosphoglycerate mutase (PGM), and triose-phosphate isomerase (TPI).  

Network thermodynamics and reaction displacements from thermodynamic 

equilibrium 

We sampled metabolite concentrations that are thermodynamically consistent with 

the flux directionalities of the computed flux profile, and we compared the results 

obtained by the thermodynamics of individual reactions to the ones obtained from 

the network thermodynamics. Specifically, we found that considering only standard 

Gibbs free energies for 43 reactions (28%) could result in erroneous conclusions 

about the thermodynamically favorable reaction directionalities. For example, the 

standard Gibbs free energy corrected for pH and ionic strength of semi-aldehyde 
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dehydrogenase (SUCSALD) is +9.1 (kcal/mol) and this would imply that this reaction 

is unfavorable in the direction catalyzing the conversion of Succinyl-CoA to Succinate 

semialdehyde (Supplementary material S6). However, the concentration profiles of 

the participating metabolites made this the favorable direction with a Gibbs free 

energy ranging between -0.01 and -2.12 (kcal/mol). 

We computed the displacements of the reactions from thermodynamic equilibrium 

(Materials and Methods, Section 2.4.3), and we observed that the displacement of a 

large majority of the reactions was either far from equilibrium, FE, (92 out of 152 

reactions, i.e. 60%), or 0 ≤ Γ < 0.9, i.e. FM (27 out of 152 reactions, i.e. 18%) (Fig. 1). 

Out of remaining 34 reactions (22%), 24 reactions (16%) were 0.1 ≤ Γ < 0.9, i.e. MD, 4 

reactions (3%) were 0.1 ≤ Γ≤ 1, i.e. MN, and only 5 reactions (3%) were near 

equilibrium, NE (Fig. 1). The detailed information about reaction displacements from 

thermodynamic equilibrium in the network is provided in the supplementary 

material S6. 

 When an enzyme of a reaction operates near thermodynamic equilibrium, a 

manipulation of its enzyme activity will not have a considerable impact on the state 

of the metabolic network (Heinrich and Schuster, 1996; Henry et al., 2007; Wang and 

Hatzimanikatis, 2006b). This implies that, only 9 reactions that were near equilibrium 

and MN might not have significant control over metabolic fluxes and metabolite 

concentrations in the network, while for the remaining 143 enzymes (94%) their 

contribution to the control over fluxes and metabolites will depend on their kinetics 

and saturation state. 
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3.3 Improving BDO production: insights from MCA 
 

The primary aim of this study was to identify metabolic engineering targets for 

increasing BDO production and yield with respect to the glucose. We also 

investigated how the internal state of the cell characterized by NADH/NAD+ and 

NADPH/NADP+ ratio affect the choice of the metabolic engineering strategies. These 

ratios are important as many reactions in the network, particularly in the BDO 

production pathway, produce and consume redox potential and they also depend on 

the process conditions and physiology, such as oxygen availability and growth rates. 

We used ORACLE (Chakrabarti et al., 2013; Miskovic and Hatzimanikatis, 2010; 

Miskovic et al., 2015; Soh et al., 2012; Wang et al., 2004; Wang and Hatzimanikatis, 

2006a; Wang and Hatzimanikatis, 2006b) to perform a metabolic control analysis 

(MCA) around the representative steady-state flux vector at the LG phase (see 

Section 2.4.1). We generated a population of more than 370000 models, we rejected 

the ones that did not pass the stability test (see Section 2.4.5) and we obtained a 

final population of 238000 stable models, i.e., approximately 64% of the generated 

models were stable.   

 
3.3.1 Strategies for improving BDO specific productivity and BDO/glucose yield 

Three Modules of Enzymes 

We identified three important modules, i.e. sets of enzymes, which had significant 

control over specific BDO productivity, BDO/glucose yield and other important cell 

outputs such as redox potential and process parameters such as oxygen availability. 

Module 1 (M1) contained enzymes from the central glycolysis pathway: PGI, PFK, 
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FBA, PGM and ENO. Module 2 (M2) was comprised of reactions from the TCA cycle: 

ACONTa, ICDHyr, CS and PPC, while Module 3 (M3) contained the reactions from the 

BDO product pathway: AKGD, SUCSALD, 4HBD, 4HBCOAT, 4HBCOAR1, and 4HBDH2 

(Figure 2).  

 

BDO Specific Productivity 

Analysis of the control coefficients for BDO specific productivity (Materials and 

Methods) suggested several strategies for improving this output (Fig. 4, Panel B). For 

the enzymes in M1, we observed that two-fold (100%) increase in the enzyme 

activities of PFK or PGI would lead to 16-21% increase in BDO production. For the 

enzymes in M2, the computed flux control coefficients suggested that 100% increase 

of the activity of ACONTa, CS, ICDHyr and PPC would lead to approximately 2-6% of 

increase of specific BDO productivity (Fig. 4, panel B). Thus, ORACLE predicts that 

increase in BDO production could be achieved by increasing carbon flow from 

glycolysis towards the TCA and channeling it through the lower part of the TCA cycle. 

Increase in specific BDO productivity could also be achieved by increasing activity of 

the enzymes in the BDO producing pathway (M3): 4HBD, 4HBCOAT, 4HBDH2, AKGD 

and SUCSALD. The computed flux control coefficients suggested that 100% increase 

of the enzyme activity of 4HBDH2 would lead to 4% increase in specific BDO 

productivity (Fig. 4, panel B). Overall, it appears that for this engineered strain 

significant flux control has been shifted towards the upper part of the glycolysis and 

the lower branch of TCA cycle. 
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The large positive control coefficients of BDO specific productivity with respect to 

ATP synthase (ATPS4rpp),          
      , and the large negative values of      

       (Fig. 4, 

panel B) indicate that ATP availability has a large positive effect on BDO production. 

Specifically, 100% increase in ATPS4rpp and ATM would lead to 48.5% increase and 

20% decrease, respectively, of the BDO specific productivity. 

Yield 

Even though all above-mentioned strategies suggested a change in BDO specific 

productivity, application of some of these strategies would result in mostly 

unchanged or even slightly reduced BDO/glucose yield (Fig. 4, panel A). Therefore, 

when engineering E. coli for improved BDO specific productivity one has to consider 

at the same time how alterations of enzymes affect the glucose uptake rate and the 

carbon loss through byproducts and CO2.  

For the enzymes in M1, a two-fold increase of activities of FBA, PFK and PGI would 

entail 0.4 to 6% reduction in the BDO/glucose yield. Indeed, a two-fold increase of 

activities of these enzymes would produce a higher positive effect on glucose uptake 

(7-21% increase) than on BDO specific productivity (6-19% increase) (Fig. 4, panels B 

and C). One possible cause for this could be that an increase in the overall flux 

through glucose uptake caused by increased activities of these enzymes results in 

overflow phenomena towards byproducts as it was also captured by the selectivity 

control coefficients (Fig. 5). This further demonstrates how kinetic modeling can be 

used to identify system responses and help us derive such testable hypotheses. In 

contrast, increase of ENO and PGM activities by 100% would increase BDO/glucose 

yield by less than 1%. As a matter of fact, the positive effects of 100% increase of 
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ENO and PGM on specific BDO productivity and glucose uptake would be 

comparable, i.e. this manipulation would entail 6.5-8.7% of increase of BDO specific 

productivity and 5.9-7.9% of increase in glucose uptake (Fig. 4, panels B and C). 

A 100% increase in activities of the enzymes from M2 had a consistently positive 

effect on BDO/glucose yield ranging from 2 to 12.5% of increase (Fig. 4 panel A). This 

effect is primarily due to a positive effect of these enzymes on the specific BDO 

productivity and almost no effect on the glucose uptake (Fig. 4, panels B and C). An 

exception is PPC whose 100% increase of activity would reduce the glucose uptake 

by 9.5% (Fig 4, panel C). This coupled with 3% increase in BDO specific productivity 

would eventually result in 12.5% increase in the BDO/glucose yield (Fig 4, panels A 

and B). These findings are in very good agreement with the experiments performed 

by Pharkya and coworkers where it was similarly found that increasing PPC and CS 

activity led to improved BDO specific productivity (Pharkya et al., 2014). 

Furthermore, as predicted by ORACLE, these interventions also reduced ethanol 

production by channeling more acetyl-CoA into the TCA cycle and lowering acetyl-

CoA concentration (Pharkya et al., 2014). However, it must be noted that expression 

of these enzymes must be precisely tuned because acetyl-CoA is also a co-substrate 

in the BDO production pathway. 

Increasing the activity of enzymes from M3 would consistently increase the 

BDO/glucose yield. These enzymes had almost no control over the glucose uptake 

and the positive impact of these enzymes on the BDO/glucose yield is due to their 

positive effect on the specific BDO productivity, i.e. we observed 0.8-5% of increase 

of this yield for a two-fold increase of activity of M3 enzymes (Fig. 4, panels A-C).  

Selectivity 
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Analysis of the fermentation data pointed out that at 24.5 hrs approximately 49% of 

carbon uptake was channeled into byproducts (Supplementary Figure 7). The vast 

majority of the carbon, i.e. 40%, was lost as CO2. The remaining 9% of the lost carbon 

went to the other byproducts such as L-glutamate (4%), ethanol (3%) and biomass 

(1%). We further observed that 4-hydroxybutyrate (4HB) and gamma-butyrolactone 

(GBL) were secreted from the cell at this time point. At the maximum theoretical 

yield, 2 moles of CO2 are lost per 1 mole of glucose (33%). The amount of carbon lost 

as CO2 would actually be higher when there is cell growth, because CO2 is produced 

in biomass synthesis as well. However, the strain operated away from the maximum 

theoretical yield and therefore we observed excess CO2 production, relatively to the 

theoretical minimum. 13C-flux analysis revealed that nearly all of excess CO2 is either 

produced from the PPP or by diversion of the carbon flow at SuccCoA through 

SUCOAS which increased the flow around the TCA cycle (Yim et al., 2011). While the 

PPP provides NADPH (see Section 3.3.2), SUCOAS produces ATP via substrate-level 

phosphorylation in addition to ATP produced through ETC from the electrons 

produced via succinate dehydrogenase. Due to this extra ATP generated, less ATP 

must be produced via other means (e.g., from NADH via oxidative phosphorylation) 

when there is more flux through the complete TCA cycle. Thus the excess CO2 may 

be directly related to the redox or energy needs of the cell.  

We considered the impact of enzyme alterations in modules M1, M2 and M3 on the 

distribution of carbon towards BDO, CO2 and other byproducts: glutamate, ethanol, 

pyruvate, lactate and biomass. To quantify this impact we computed control 

coefficients of selectivity of: (i) BDO production,   
       (see Eq. 3, Materials and 

Methods); these coefficients quantify the impact of enzyme alterations on the 
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proportion of the carbon flow toward BDO with respect to the carbon flow toward 

all byproducts (Materials and methods); (ii) CO2 production,   
      ; these 

coefficients quantify the impact of enzyme alterations on the proportion of the 

carbon flow toward CO2 with respect to the carbon flow toward all byproducts; and 

(iii) other byproducts   
  

 (see Eq. 5, Materials and Methods); these coefficients 

quantify the impact of enzyme alterations on the proportion of the carbon flow 

toward glutamate, ethanol, pyruvate, lactate and biomass with respect to the carbon 

flow toward all byproducts.  

The performed sensitivity analysis indicated that an increase of activity of enzymes 

from M1 would result in more carbon flow diverted from CO2 toward glutamate, 

ethanol, pyruvate, lactate and biomass. Indeed, 100% increase of activity of enzymes 

from M1 would entail 0.7-30.6% increase of the selectivity of the other byproducts, 

whereas the same alteration of these activities would result in 1.2-4.1% decrease of 

the selectivity of CO2 (Figure 5; Supplementary Material S11 and Figure 12). 

Moreover, 100% increase of activity of FBA, PFK and PGI would decrease the 

selectivity of BDO by 0.1-2.2%, whereas 100% increase of activity of ENO and PGM 

would increase the selectivity of BDO by 0.8-1%. 

An increase of activity of enzymes from M2 would improve the selectivity of BDO 

and decrease the selectivity of other byproducts. As a matter of fact, 100% increase 

in activities of ACONTa, CS, ICDHyr or PPC would increase the selectivity of BDO by 

2.2-11.3% and would decrease the selectivity of other byproducts by 2.4-78.5% (Fig. 

5). Moreover, 100% increase in activities of ACONTa, and ICDHyr would entail 0.1-

1.9% of decrease of the selectivity of CO2, whereas 100% increase in activities of CS 

and PPC would increase of the selectivity of CO2 by 0.2-2.5%. In this group of 



 27 

enzymes PPC had the largest impact on the selectivities, i.e. a two-fold increase of 

PPC’s activity would cause 11.3% and 2.5% increase in the selectivities of BDO and 

CO2, respectively, and 78.5% decrease in the selectivity of other byproducts.  

A metabolic engineering strategy for the improved BDO production involving 

enzymes from module M3 would also consistently result in reduction of the carbon 

loss to other byproducts and in improvement of the BDO selectivity, whereas the 

selectivity of CO2 would be mostly unchanged (Fig. 5). Specifically, 100% increase in 

the activities of AKGD, 4HBD, 4HBCOAT, 4HBCOAR1, 4HBCOAR2, SUCSALD or 

4HBDH2 would result in reduction of the carbon loss to other byproducts by 4.8-

20.7%, whereas the selectivity of BDO would be improved by 0.9-3.7% (Fig. 5).  

Comparison of the metabolic engineering strategies involving alteration of the 

enzyme activities within M1, M2 and M3 suggested that strategies involving 

enzymes from M2 and M3 could be used for improvement of both the specific BDO 

productivity and BDO/glucose yield. In contrast, any strategy involving enzymes from 

M1 would increase the specific BDO productivity but BDO\glucose yield would be 

reduced or unaltered due to increased carbon loss to other byproducts. 

Interestingly, the strategies involving M3 enzymes are consistent with the 

experimental results. Of the improvements made between the strain studied in (Yim 

et al., 2011) and the strain used in current analysis, the most significant increases in 

BDO productivity and yield were made by improving the activity of the pathway 

enzymes, and optimizing the relative expression levels. These results and the 

analysis here suggest that the enzymes in M1 could be the next targets for improved 

BDO productivity and yield.  
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Reaction displacements from thermodynamic equilibrium and control coefficients  

As discussed in Section 3.2 the enzymes of reactions that operate near 

thermodynamic equilibrium have no control over the fluxes and metabolite 

concentrations in metabolic networks. However, we do not know in advance how far 

from equilibrium the operational state of an enzyme should be so that this enzyme 

has a control over the network. To answer this question we analyzed the correlation 

of the computed control coefficients for specific BDO productivity with the 

displacement from thermodynamic equilibrium of the corresponding enzymes. We 

observed that only the enzymes with the displacement greater than a limit value of 

0.5 had control over specific BDO productivity (Fig. 6). In this group of enzymes, the 

ones closer to the limit of 0.5 (less than 0.47) belonged primarily to modules M3 

(4HBD, 4HBCOAR1 and 4HBCOAT) and M1 (ENO and PGM)(Fig. 6), and indeed they 

had reduced control over the network fluxes. 

 

3.3.2 Redox potential considerations 

Cellular redox potential, i.e. NADH/NAD+ and NADPH/NADP ratios, are important 

markers when considering strategies for metabolic engineering of an organism 

(Moreira dos Santos et al., 2003; Pitkanen et al., 2003; Thomas et al., 2007). In 

particular, increased redox potential is considered as an important factor in 

improving BDO production in (Zhuang et al., 2013). 

We observed that most of perturbations in the metabolic network leading to 

increase in the NADH/NAD+ ratio lead to increase in the NADPH/NAPD+ ratio as well  

(Fig. 7). We hypothesized that this positive correlation could be due to strong 

activities of NAD transhydrogenase (NADTRHD) and NAD(P) transhydrogenase in 
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periplasm (THD2pp) as they balance conversion between NADH/NAD+ and 

NADPH/NAPD+  pairs.  Increase of activities of M1 enzymes would lead to increase in 

both the NADH/NAD+ ratio, and in the increase of the NADPH/NAPD+ ratio (Fig. 7). 

For example, 100% increase of enzyme activities of PFK, PGI, and PGM would result 

in increase by 25-50% of the NADH/NAD+ ratio, and in increase by 25-45% of the 

NADPH/NAPD+ ratio.  

In contrast, 100% increase of activity of the enzymes from M3 would lead to 

decrease of the redox potentials within the cell by 1-20%. The exceptions are 

4HBCOAR2 and 4HBt, as 100% increase of activity of these enzymes would result in 

respectively 1% and 4% of increase of the NADH/NAD+ ratio (Supplementary Figure 

9).  

The enzymes from M2 have a strong control over the redox potentials. The redox 

potentials would increase by: (i)  ~15-17% for 100% increase of CS activity; (ii) ~20-

45% for 100% decrease of PPC activity; and (iii) ~14-20% for 100% decrease of 

ICDHyr activity. Overall, these results correlate well with the role of these reactions 

in redox balancing. The reactions in M1 and M2 have a net production of NAD(P)H, 

whereas M3 consumes this NAD(P)H to balance reducing equivalents. Increasing PPC 

activity could also lead to increased flux through the reductive TCA cycle, which 

would consume reducing equivalents; therefore it is negatively correlated with redox 

potential. Zhuang et al. predicted that increased activity of enzymes in the BDO 

production pathway would give higher BDO production, but it would be at the 

expense of the lower growth rate due to NADPH depletion (Zhuang et al., 2013). 

Increased consumption of NAD(P)H must be balanced with increased production 

elsewhere in metabolism. In the production strains it appears that the amount of 
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NADPH used in the product pathway by 4HBDH2 is equal to the amount produced by 

the ICDHyr upstream. However, additional NADPH is needed for growth, and in vitro 

analysis indicated some use of NADPH by the 4HBCOAR2 (Pharkya et al., 2014) . Any 

additional NAPDH required for growth and 4HB-CoA reductase should be produced 

by the PPP or by the excess flux in ICDHyr. The latter case could result in excess 

byproducts around the product pathway such as GBL, 4HB, and CO2, whereas in the 

former case CO2 is the main byproduct. An alternative source of NADPH is from 

NADH through NADTRHD (transhysdrogenase). However, native expression of the 

membrane-bound transhydrogenase was not sufficient to fill this gap. Indeed, 

deletion of zwf  to channel all carbon through glycolysis resulted in reduction of BDO 

productivity, which could be restored by overexpression of pntAB, encoding the 

membrane-bound transhydrogenase (unpublished results). These observations 

suggest that PPP is an essential source for NADPH production for growth. 

 

3.3.3 Oxygenation level considerations  

The analyzed strains were cultivated in microaerobic conditions with measured 

oxygen uptake rate of 3.13 mmol/gDW-hr at the analyzed time point. Analysis of 

control coefficients for BDO production suggested that 50% decrease in oxygen 

uptake could lead to 2% increase in BDO/glucose yield (Fig. 4), and 160% decrease 

reduction in biomass (Supplementary Figure 8). This prediction is in a qualitative 

agreement with experiments performed with the current BDO production strains, 

where reduction of specific oxygen uptake rates by 50% led to approximately 5% 

improvement in BDO/glucose yield at comparable specific productivity. 

Stoichiometric BDO production is not possible under strict anaerobic conditions 
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because one mole NAD(P)H excess is created per BDO produced. This must be 

oxidized to generate ATP, which is needed for cell growth and maintenance. In 

addition, it has been demonstrated that simultaneous deletion of adhE, ldhA, and 

pflB renders the cell unable to grow anaerobically even though the proper 

distribution of fermentation products should enable redox balance and excess ATP 

generation (Mat-Jan et al., 1989; Stols and Donnelly, 1997). Further kinetic studies 

could explain how to fine-tune the redox potential and ATP generation. 

 

4 Conclusions 

We developed here a population of large-scale kinetic models of recombinant BDO 

producing E. coli that is consistent with the studied physiology. We used these 

models to identify potential targets for improved BDO specific productivity and 

BDO/glucose yield, and we found out that 20 key enzymes control these two outputs 

and they can be grouped in three modules. Interestingly, the performed flux 

variability analysis revealed that the fluxes of 13 out of these 20 key enzymes were 

tightly constrained. This is in consistency with the previous results and discussions 

that the genes with a tight flux range are subject to regulation (Bilu et al., 2006).   

Consistent with earlier experimental studies, our models indicated that increasing 

activity of phosphoenolpyruvate carboxylase (PPC), citrate synthase (CS), and the 

enzymes in BDO production pathway would lead to most significant improvements 

in BDO production and yield and would also lead to reduction in carbon loss to other 

byproducts and reduction of the redox potential.  

Though the analysis of computed control coefficients suggested that increasing flow 

of carbon into central glycolysis and away from PPP could increase the specific 
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productivity of BDO, it would also lead to increase in byproduct formation (more 

carbon loss) and increase in the intracellular redox potential. To avoid this, metabolic 

engineering strategies will require a fine-tuning of the carbon flows in the network, 

and we demonstrate here that kinetic models are excellent tools for performing such 

a task.  

The present study points how we can combine multiple targets to fine-tune several 

objectives simultaneously. Future studies will benefit from using the models 

presented here and the multi-parametric, multi-objective optimization framework 

introduced by Hatzimanikatis et al. to improve the cellular performance 

(Hatzimanikatis et al., 1996).  
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Figures with captions 

 

 
Figure 1: BDO producing E. coli metabolic network. Color-coding of the reactions denotes the distance 
from the thermodynamic equilibrium of their enzymes. The control over BDO production is centered 
around: Module 1 (M1) - focusing around PFK, FBA, GAPD, PGK and PGI; Module 2 (M2) - focusing 
around PPC, CS, ACONTa; Module 3 (M3) - focusing around AKGD, 4HBCOAT and 4HBDH2.  
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Figure 2: Workflow of the computational procedure for uncertainty analysis of metabolic networks 
within the ORACLE framework. The successive application of computational procedures integrates 
biological information from different levels and sources, thus refining kinetic models and providing 
guidance for metabolic engineering.  
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Figure 3: Coefficient of Variation (CV) of the flux estimates for the participating reactions. INSET – 
Percentage of the specific metabolic pathways that are tightly constrained (CV < 0.05) in the system. 
The reactions marked by stars correspond to the identified key enzymes. 
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Figure 4: Control Coefficients for BDO/glucose yield (Panel A), BDO production, 14BDOt, (Panel B), 
and glucose uptake, GLCptspp (Panel C). Reactions from the three modules (M1, M2 and M3) are 
highlighted with blue (M1), red (M2) and dark green (M3) fill. 
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Figure 5: Mean selectivity control coefficients for: (i) BDO production, 14BDOt  (blue dots); (ii) CO2 
production, CO2tpp (red dots); and (ii) production of other byproducts: L-glutamate, GLUabcpp  and 
GLUt2rpp; ethanol, ETOHtrpp; lactate, D-LACTt2rpp; pyruvate, PYRt2rpp; and biomass, Biomass_core 
(green dots). 
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Figure 6: Correlation of the absolute mean control coefficients of specific BDO productivity with the 
mean displacement from thermodynamic equilibrium of the corresponding enzymes. 
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Figure 7: Control Coefficients for NADH/NAD+ ratio (redoxCyto) and NADPH/NAPD+ ratio 
(redoxPCyto). Reactions from the three modules (M1, M2 and M3) are highlighted with blue (M1), red 
(M2) and dark green (M3) fill.  
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Highlights 

 Population of large-scale kinetic models of recombinant E. coli constructed 

 Metabolic engineering targets for the improvement of 1,4-butanediol production 

identified 

 Computationally obtained targets consistent with the experimentally tested designs 

 




