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Abstract. Procedures for first-order logic with equality are used in many
modern theorem provers and solvers, yet procedure termination in case
of interesting sub-classes of satisfiable formulas remains a challenging
problem. We present an instantiation-based semi-decision procedure de-
fined on a fragment of many-sorted first-order logic that succeeds on
certain satisfiable formulas even if they contain, for example, associativity
axioms. The models for which our procedure terminates have finite ranges
of function symbols. We expect that our procedure can be integrated into
other instantiating procedures such as E-matching with little performance
impact. Our procedure is also compatible with specialized verification
techniques that enable efficient reasoning about pure higher-order recur-
sive functions. We integrated our procedure into the Leon verification
framework. The implementation is publicly available and has been eval-
uated on non-trivial benchmarks featuring higher-order programs with
quantified contracts.

1 Introduction

Many software verification techniques rely on sound support of quantified propo-
sitions. However, handling quantifiers in first-order logic remains a significant
challenge even for state-of-the-art theorem provers and solvers. Instantiation-based
approaches have been successfully integrated into many Satisfiability Modulo
Theories (SMT) solvers through techniques such as E-matching [10, 11], yet com-
pleteness results are difficult to achieve. Harder still is the question of satisfiability
which arises in tools that support counter-example finding in addition to proof
construction. Although completeness for models is indeed impossible, recent
work has shown that certain interesting fragments of FOL with theories can be
efficiently decidable without compromising on performance or effectiveness [3,12].

Contributions. Our contributions are the following.
(1) We propose an instantiation-based technique for a syntactic fragment of

pure first-order logic that enables model finding during proof search. Our approach
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explores the space of instantiations and associates to each unexplored path in the
instantiation graph a condition under which it is irrelevant. At any given time, if
a satisfying model exists such that no remaining path is relevant, the procedure
can terminate and report a total model for the input formula. Furthermore,
relevance checks for paths can be used to direct proof construction and prune
large sections of the search space. We discuss the required bookkeeping for our
procedure and how existing procedures could integrate it for model finding or
instantiation guiding. Our fragment accepts quantification over infinite domains
and specification of interesting properties such as associativity or idempotence.
We show refutation-completeness of our procedure as well as completeness for
range-finite models (i.e., models where all functions have finite ranges).

(2) We describe the integration of our technique for quantifier handling into
the Leon verification framework for pure higher-order functional programs over
unbounded data types. The instantiation procedure we implemented supports
quantifiers ranging over arbitrary theories and proofs remain sound, however we
do not claim any completeness results over this extended fragment. Although
first-order logic is sufficiently expressive to encode many interesting verification
problems, Leon restricts the formula encoding of considered problems to decidable
logical fragments in order to guarantee different theoretical properties such as
counter-example completeness [7, 24]. Recent work has shown that higher-order
functions can also be encoded into decidable formulas, thus preserving Leon’s
counter-example completeness [25]. However, quantifier support significantly
improves the expressiveness of contracts on first-class functions and we show that
certain fragments can still guarantee counter-example completeness for models
where functions have finite range.

1.1 Motivating examples

We are interested in proving verification conditions for useful programs with first-
class functions. Such contracts concern function-typed arguments, and therefore
naturally require some notion of quantification in many cases. Given that verifying
quantifier-free functions over simple data types in Leon is complete for counter-
examples [25], we are interested in techniques that can report sound models while
searching for a refutation (proof). The domains of non-parametric data types
supported in Leon are often infinite, making use of finite model finding [20] less
immediate. Leon itself provides inductive proof construction, an area in which
SMT automation is active and still ongoing work [19].

Example 1 (Associativity). Satisfiable quantified clause sets with infinite Her-
brand universes can be difficult for many techniques. Consider the clauses

f(f(x, y), z) ' f(x, f(y, z)), f(f(1, 2), 3) 6' f(1, f(2, 2))

where x, y, z are universally quantified over Z. This example combines quantified
uninterpreted functions with integers, which, without further restrictions, is
not even semi-decidable. However, in the absence of integer theory symbols (a



property checkable syntactically), our technique extends to this fragment as well.
E-matching will generate the two ground clauses

f(f(1, 2), 3) ' f(1, f(2, 3)) and f(f(1, 2), 2) ' f(1, f(2, 2))

and give up as the set of ground clauses remains satisfiable. Certain superposition-
based techniques with redundancy elimination will saturate the clause set but
have no easy means of extracting a model. Techniques that explore relevant
subsets of the Herbrand universe such as [12] will enumerate a (satisfiable)
superset of the infinite sequence starting with

f(f(1, 2), f(2, 3)) ' f(1, f(2, f(2, 3)))
f(f(1, 2), f(2, f(2, 3))) ' f(1, f(2, f(2, f(2, 3))))

and never terminate. Automatically constructing a model for the initial clause
set short of enumeration is therefore not trivial. However, rather simple models
do exist for this clause set, such as, for example:

f → { (1, 1)⇒ 1, (1, 2)⇒ 2, (1, 3)⇒ 3, (2, 1)⇒ 2, (2, 2)⇒ 1, (2, 3)⇒ 3, else⇒ 0 }.

The intuition behind our technique is that if a model exists such that the set
of values of all ground terms in that model is finite, then there must exist a model
where all functions have finite ranges. This observation enables us to ensure model
existence when we can guarantee that the interpretation of the Herbrand universe
is finite. In the above example, let us consider the relevant domain D = {1, 2, 3}
for each argument of f . If we can find a model M for the clause set such that
M(f)(i, j) ∈ D for i, j ∈ D, then all Herbrand term interpretations in M must
fall into D as well and a model for the clause set therefore exists. Note that the
model given above satisfies this intuitive requirement. Our technique applies this
informal observation in a principled manner to obtain a sound procedure that is
complete for models where functions have finite ranges.

Example 2 (Binary idempotence). Another example of difficult satisfiable clauses
that fit into our fragment is

f(x, y) ' f(y, x), f(x, y) ' f(x, f(x, y)),
f(f(1, 2), 2) 6' f(1, f(2, f(1, 3)))

where x, y, z are again universally quantified. The quantified clauses specify
commutativity and idempotence of the uninterpreted function symbol f , and
again, satisfying models with small range for f exist.

Example 3 (Fold identity). Counter-examples with finite range functions arise
during useful verification efforts, for instance when dealing with properties of
higher-order fold operation over associative functions. The example in Figure 1
defines a generic list ADT with an associated content function that maps a given
list into its element set and a higher-order fold function. We are interested to show
that, given an associative and commutative operation f, the fold implementation



ensures the order of the folded list is irrelevant. A natural question is whether
the result of fold is the same even if we have merely the same set of elements
(the same value of content). This conjecture does not hold, and our technique
correctly produces the following counter-example:

f 7→{ (A, A) ⇒ B, (B, A) ⇒ A, (A, B) ⇒ A, (B, B) ⇒ B, else ⇒ C }
list1 7→ Cons(A, Cons(A, Nil()))
list2 7→ Cons(A, Nil())

a 7→ B

sealed abstract class List[A]
case class Cons[A](head: A, tail: List[A]) extends List[A]
case class Nil[A]() extends List[A]

def content[A](list: List[A]): Set[A] = list match {
case Cons(head, tail) ⇒ Set(head) ++ content(tail)
case Nil() ⇒ Set.empty[A] }

def fold[A](a: A, list: List[A], f: (A,A) ⇒ A): A = list match {
case Cons(head, tail) ⇒ fold(f(a, head), tail, f)
case Nil() ⇒ a }

def foldConjecture[A](list1: List[A], list2: List[A], a: A, f: (A,A) ⇒ A): Boolean = {
require(content(list1) == content(list2) && forall { (x: A, y: A, z: A) ⇒
f(f(x,y),z) == f(x,f(y,z)) && // associative
f(x,y) == f(y,x) }) // commutative

fold(a, list1, f) == fold(a, list2, f) }.holds

Fig. 1. Verification of fold identity properties. The require construct specifies a precon-
dition on foldConjecture, and holds demands verification of the foldConjecture lemma.
Leon handles Set through the theory of sets in CVC4 and through arrays in Z3.

2 Fragment and Procedure

We consider many-sorted first-order logic with equality. We consider a subset U
of universally quantified formulas described as follows. Consider without loss of
generality the formula F in conjunctive normal form, consisting of a conjunction
of clauses C1 ∧ · · · ∧ Cn where each Ck is a disjunction of literals l1 ∨ · · · ∨ lm.
All variables in F , usually denoted by x, y, z are taken as universally quantified.
We use the letters a, b, c for constants and t, s, r for arbitrary terms. Terms
consist of either constants, variables, or uninterpreted function applications
whose arguments are terms. We will be interested in satisfiability of such formulas
when sorts are interpreted over disjoint infinite sets.

Let F = {f(s)1, . . . , f(s)n} the set of applications of uninterpreted function
symbols in F (by convention, we associate to each f(s)i the function symbol
fi and arguments si), and V = {x1, . . . , xm} the set of universally quantified
variables in F . Moreover, for each clause Ck, let Fk be the set of function



applications in Ck and Vk = FV (Ck) ∩ V be the set of universally quantified
variables appearing in Ck. We say F ∈ U iff the following hold:

1. no atom x ' t[x] exists in F (modulo symmetry of ') where t[x] is a term
depending on x and no atom x ' y exists in F where x, y ∈ V,

2. for each Ck, for each x ∈ Vk there must exist f(s) ∈ Fk such that x ∈ s.

Namely, constraint No. 1 ensures equality with quantified variables is limited
to ground or independent terms, and constraint No. 2 states that all quantified
variables in a clause must appear in some argument position.

2.1 Instantiation procedure

Our procedure performs quantifier instantiations guided by relevant uninterpreted
function domains. Function applications taking quantified arguments (called
matchers heareafter) are grouped into sets for each clause (matcher quorums)
such that instantiations can be efficiently performed given a clause and set of
ground applications. In order to ensure refutation-completeness, instantiation
with a set of applications taking arguments in V is sometimes necessary. These
variables are taken existentially in the resulting clauses and are considered ground
when discussing instantiation. The procedure tracks an increasing set of ground
applications that are used to generate ground clauses from quantified ones, and
a set of future applications that will appear in the set of ground applications at
some point. This set enables us to find certain satisfying models even when the
set of instantiations is not finite.

We start by formalizing the above notion of matcher quorums. Consider
Mk = {f(x) ∈ Fk | x ∩ Vk 6= ∅} the set of all uninterpreted function symbol
applications in Ck that have at least one universally quantified argument, and
Vk,f = {x ∈ Vk | f(x) ∈Mk, x ∈ x} be the set of quantified variables appearing
in Ck as arguments to function symbol f . We inductively define the predicate
qk,f as

qk,f (M ⊆Mk) ⇐⇒ Vk 6= ∅ ∧
⋃

g(x)∈M

x ∩ V = Vk,f ∧
∧
S⊂M

¬qk,f (S).

Note that qk,f only holds for application sets that share a unique function symbol
as it would otherwise hold for some subset. Furthermore, qk,f (∅) never holds as
Vk = ∅ is disallowed and Vk 6= ∅ implies {xi | f(x) ∈M,xi ∈ x} cannot be empty.
Given Sk = {f | f(s) ∈ Mk}, the set of function symbols that take quantified
arguments in Ck, and Qk,f = {M ⊆ Mk | qk,f (M)} the set of per-function
symbol quorums, we define the set of quorums for Ck as

Qk =
{⋃

f∈Sk
Mf ∈ Qk,f | ∀f(x) ∈Mf , g(y) ∈Mg.f 6= g =⇒ x ∩ Vk ∩ y = ∅

}
.

Note that each quorum uniquely defines the associated clause and can therefore
provide efficient unification by building a mapping between the matchers in both
clauses.



For a quorum {f(x)1, . . . , f(x)n}, one generates instantiations given ground
applications f(s)i for 1 ≤ i ≤ n by building a substitution θ that binds all
variables x ∈

⋃n
i=1 xi ∩ V. Since we handle clause verification through an

underlying solver, we also construct a condition c under which θ is a valid
unifier. This condition encodes equality of the multiple images for quantified
variables appearing in multiple argument positions in the quorum and ensures
ground portions of xi are equal to the corresponding ground terms in si. The
ground clauses we generate will therefore have the shape c =⇒ θJCkK. We let
subst({(f1, x1, s1), . . . , (fn, xn, sn)}) = (c, θ)

A non-trivial question is how to boostrap the instantiation process: what is
the initial set of ground applications on which the quantified formulas should
be instantiated? It is clear that all ground function applications in F must be
considered here. However, we cannot ignore the ground portions of non-ground
applications, as well as the intrinsic structure given by quantifier repetitions.
We therefore consider all non-ground applications in F as well (x ∈ V will be
existentially quantified in generated quantifier-free clauses). Finally, we must
also consider literals of the shape x ' t and ¬(x ' t) where x ∈ V as t is clearly
relevant to the domain of functions taking x as argument. Note that if x ' t
appears in Ck, it is actually terms s 6' t that are relevant to application f(x)
with x ∈ x. We therefore ensure relevance of ground arguments by introducing
fresh constants ak,x uniquely defined for each x ∈ Vk and ensuring ax,k 6' ti for
each literal x ' ti in Ck. We can thus define the (finite) sets of initial applications
G through the fixpoint relation

F ⊆ G
{f(x1, . . . , t, . . . , xn) | f(x) ∈ G ∧ xi ∈ Vk ∧ xi 6' t ∈ Ck} ⊆ G
{f(x1, . . . , ak,xi

, . . . , xn) | f(x) ∈ G ∧ xi ∈ Vk ∧ xi ' t ∈ Ck} ⊆ G.

Instantiating non-ground applications will ensure that argument structure is
preserved and matcher domains are never empty, however it does not explore
relevant domains in a complete way. Indeed, consider the unsatisfiable clause set

f(x, a) ' a, f(b, y) ' b, ¬(a ' b)

where x, y are quantified and a, b are constants. The ground clauses generated
through the substitution-based approach described above would consist in

a ' y =⇒ f(b, a) ' a and b ' x =⇒ f(b, a) ' b.

Clearly, extending the initial set of clauses with these two and taking a, b, x, y
as existentially quantified is not equisatisfiable with the universally quantified
case. We therefore provide a unification procedure for two function applications
f(x) and f(y) where both applications are non-ground with ground portions and
there exists xi ∈ x such that xi ∈ V and the corresponding yi is ground. We
build a substitution σ that binds every xj ∈ V to corresponding yj when it is
ground. As in the case of θ above, we must also construct a condition c under
which σ is valid to enable discharging to the solver. We let unify(x, y) = (c, σ)



and extend unify to a total function by returning (true, {}) when the conditions
on xi and yi existence are not met.

We define a sequence of triplets (I0, G0, E0), (I1, G1, E1), . . . where It is the
set of ground matchers that have been instantiated at time t, Gt consists in the
set of known future ground matchers that have not yet been considered and Et
is the set of clauses generated by the procedure. The full sequence is obtained
through the inference rules defined in Figure 2, where

I0 = ∅, G0 = {(true, f(s)) | f(s) ∈ G} , and
E0 = {Ck | Vk = ∅} ∪ {ak,x 6' t | x ' t ∈ Ck} .

Inst

q = {f(x)1, . . . , f(x)n} ∈ Qk f(x) ∈Mk − q
(bi, fi(si)) ∈ It, 1 ≤ i ≤ n (c, θ) = subst({(fi, xi, si) | 1 ≤ i ≤ n})

(
∧n

i=1 bi ∧ c, θJf(x)K) ∈ Gt (
∧n

i=1 bi ∧ c =⇒ θJCkK) ∈ Et

Unify
(bs, f(s)), (br, f(r)) ∈ It (c, σ) = unify(s, r)

(σJbsK ∧ c, σJf(s)K) ∈ Gt

Progress
(b, f(s)) = selection(Gt − It)

It+1 = It ∪ {(b, f(s))} Gt ⊆ Gt+1

Fig. 2. Inferrence rules for the (It, Gt, Et) sequence computation. The Inst rule ensures
that all required instantiation clauses are generated and added to Et and bookkeeping
information appears in Gt. Unify makes sure that all relevant ground argument tuples
are indeed considered, and the Progress rule guarantees that new instantiations take
place as long as they exist. We call the choice of the new instantiation (b, f(s)) ∈ Gt−It
a selection such that selection(Gt − It) = (b, f(s)).

Note that we leave the definition of the selection(Gt − It) function open in the
Progress rule, as long as it is fair. This allows heuristics such as E-matching
where instantiations implied by the E-graph are given priority.

Lemma 1. If F is satisfiable, then Et is satisfiable for all t.

Proof. The θJCkK part of clauses generated by Inst consists in a substitution of
quantified variables in Ck by ground terms, thereforeM |= Ck impliesM |= θJCkK,
and we have M |= (c =⇒ θJCkK) for arbitrary (ground) c.

Semi-decidability. We show that our procedure is refutation-complete by showing
it implements the superposition calculus given by the following rules [1, 17].

Resolution
lL ∨ l1 l2 ∨ lD

σJlL ∨ lDK
σ is MGU(l1,¬l2)

Equality Resolution
lL ∨ s 6' s′

σJlLK
σ is MGU(s,s′)



Equality Factoring
lL ∨ s′ ' t′ ∨ s ' t

σJlL ∨ t 6' t′ ∨ s ' t′K
σ is MGU(s,s′)

Superposition Right
lL ∨ t ' t′ lD ∨ s[u] ' s′

σJlL ∨ lD ∨ s[t′] ' s′K
σ is MGU(t,u), u non-variable

Superposition Left
lL ∨ t ' t′ lD ∨ s[u] 6' s′

σJlL ∨ lD ∨ s[t′] 6' s′K
σ is MGU(t,u), u non-variable

Lemma 2. If applying superposition to F obtains the empty clause, then there
exists a sequence of selections by the Progress rule

(b1, f(s)1) ∈ G0 − I0, . . . , (bn, f(s)n) ∈ Gn−1 − In−1

such that In =
⋃n
i=1{(bi, f(s)i)} and

⋃n
i=0Ei is unsatisfiable.1

Theorem 1. For any fair selection strategy by Progress, F and
⋃
iEi are

equisatisfiable.

Proof. Lemma 1 gives us one direction. For the other, Lemma 2 tells us that if
F is unsatisfiable, there is a finite set of selections by Progress such that the
corresponding set of clauses is unsatisfiable. A fair selection strategy ensures this
set of selections will eventually appear in It for some t, and application of the
Compactness Theorem concludes our proof.

2.2 Extracting range-finite models

Interestingly, one can extend the above procedure to model generation. By
convention, given an interpretation M , we write M(v) for the value of symbol v
in M , and MJtK for the interpretation of term t. Let us consider the clause set
Σt =

⋃t
i=0Ei, model M |= Σt and for each uninterpreted function symbol f in

F , let Df = {MJrK | (br, fr(r)) ∈ It ∧M |= br ∧ f = fr} be the relevant domain
of f given by model M . If the set of relevant term interpretations is finite for the
formula F , then a model with finite function ranges must exist.

Lemma 3. If for (b, f(s)) in Gt, either M 6|= b or MJsK ∈ Df , then M |= Et+1.1

Lemma 3 implies that chosing any (b, f(s)) ∈ Gt − It to add to It+1 will have no
impact on satisfiability of Et+1. Moreover, the same model that satisfied Et will
still hold for Et+1, regardless of the chosen (b, f(s)). Note that both conditions
can be encoded into clauses that are given to the solver in conjunction with Σt.

Theorem 2. If Lemma 3 holds for M and Gt, then there exists MF |= F .

Proof. Observe that if M 6|= b or MJsK ∈ Df for all (b, f(s)) in Gt, the property
also holds for Gt+1 (the arguments are similar to those exposed in Lemma 3 for
Et+1). We know Σi ⊆ Σt for all i ≤ t, so by induction on t, we have M |= Σj for
j ∈ N. The proof then follows by equisatisfiability of

⋃
iEi and F .

1 The complete proofs of Lemmas 2 and 3 can be found in Appendix A.



Theorem 2 implies soundness of our model finding technique, however we can
further show completeness for models where all functions have finite ranges.

Theorem 3. If M exists such that |{M(f)(s)}| is finite for each uninterpreted
function symbol f in formula F , then there exists t such that Mt |= Σt and
conditions of Lemma 3 hold for Mt.

Proof. Let us consider Γ =
⋃
iGi and assume that Γ has infinite cardinality

(Lemma 3 trivially holds for finite Γ ). Let M |=
⋃
iEi with finite range for all

function symbols. Given the Inst and Unify rules, there can only be a finite
number of constants in Γ arguments. Furthermore, as all function symbols have
finite domain in M , the set {MJsK | (b, f(s)) ∈ Γ} must be finite as well. Since It
is strictly increasing in t, the above set will eventually be coverable by Mt |= Σt,
therefore Mt satisfying the conditions of Lemma 3 must eventually exist.

Relevance to other procedures. The procedure described in the previous section
ensures that only a relevant subset of the Herbrand universe is included in Gt.
However, tracking this subset can be expensive for certain instantiation procedures,
so efficient representations or good approximations of Gt are essential. One
possible approximation that can be easily computed based on trivial bookkeeping
consists in a single expansion step of the Herband universe given the terms in
scope. More formally, given the set of uninterpreted function symbols Sf and
considered terms St, we define the single expansion step of the Herbrand universe
in time i as

Hi = {f(t1, . . . , tn) | f ∈ Sf , t1, . . . , tn ∈ St}.

Clearly {f(s) | (b, f(s)) ∈ Gt} ⊆ Ht. Therefore, if MJsK ∈ Df for all f(s) ∈ Ht,
then Theorem 2 holds for M as the second condition of Lemma 3 is satisfied for
all (b, f(s)) ∈ Gt.

We generalize the above observation to a broader set of cases. Let us consider
the sets S, T of condition × application tuples. We say S v T iff for all models
M , the conditions of Lemma 3 on M holding for T implies they hold for S.
Let us assume we have functions Ê(I) and Ĝ(I) such that for any t ∈ N, we
have Ê(It) ⇐⇒ Σt, Gt v Ĝ(It), and the set of constants contained in terms
of

⋃
t Ĝ(It) is finite. Note that selection of the (bt, f(s)t) ∈ Gt − It by the

Progress rule is only constrained by fairness, so any such selection criteria is
valid. Furthermore, introducing (b, f(s)) 6∈ Gt − It into It will have no impact on
procedure soundness. Finally, consider the pair Mt, Bt such that Mt |= Ê(It),

Bt =
{
(b, f(s)) ∈ Ĝ(It) | (b, f(s)) does not satisfy conditions of Lemma 3

}
,

and Mt minimizes |Bt|. Note that minimizing the cardinality of Bt is not alto-
gether trivial, but techniques such as considering incrementally growing cardi-
nalities or relying on unsat cores can provide precise computation techniques or
efficient approximations for the Mt, Bt pair.



Corollary 1. If for all t where Mt exists, there is a j ≥ t such that Bt ⊆ Ij,
then the formulas

⋃
i Ê(Ii) and F are equisatisfiable. Furthermore, results of

Theorems 2 and 3 also extend to Ê(It) and Ĝ(It).

This result show that existing instantiation procedures can be extended with
our technique when dealing with formulas in U , even when they don’t ensure
refutation-completeness. For example, one can show that clauses generated
by E-matching are equisatisfiable with Σt, and it is easy to see that the set
Ĝ(It) = {(true, f(s)) | f(s) ∈ Ht} satisfies Gt v Ĝ(It). Another example
is the Complete Instantiation procedure described in [12], which satisfies the
constraints on both Ê(It) and Ĝ(It). Moreover, we show that one can guide
quantifier instantiation based on failed model existence checks in order to ensure
refutation-completeness of a procedure without explicitly instantiating the full
Herbrand universe. Unlike MBQI presented in [12], the quantifier instantiation
heuristic we propose considers all further instantiations jointly. This can improve
the relevance of instantiations at the cost of performance.

Model construction. Given a model M that satisfies the two conditions proposed
in Lemma 3, it is not entirely trivial to create a model satisfying F . We extend
Σt with clauses that enforce desirable properties on the model, such as providing
argument tuple instances outside of the relevant function domains and enforcing
uniqueness of images for related tuples. We then given an ite construction based
on conditions φ that ensures model soundness. For each function symbol f , we
compute the set of relevant arguments Rf = {s | (b, f(s)) ∈ Gt ∧M |= b} and
projections Rf,i = {si | s ∈ Rf} for each argument position i. For each Rf,i, we
consider the sets Xf,i = Rf,i ∩ V and Sf,i = Rf,i −X. If M and Rf,i for all f, i
satisfy the rules in Figure 3, then sound models can be extracted.

Equiv-1 Xf,i ⊆ Xf,i Ext M(Xf,i) ∩M(Sf,i) = ∅ Eq |M(Xf,i)| = 1

Equiv-2
Xf,i ∩Xg,j 6= ∅
Xf,i = Xg,j

Diff
Xf,i 6= Xg,j

M(Xf,i) 6=M(Xg,j)

Fig. 3. Rules Equiv-1 and Equiv-2 ensure Xf,i is an equivalence class over all variables
in V that appear in applications of f at position i. The Eq rule then ensures each
equivalence class has a unique image, while Diff makes sure different classes have
different images. Finally, the Ext rule ensures each class is indeed outside of the relevant
function domain.

For each s ∈ Rf , we define

EqGroundf,s(x) = {xi ' si | si 6∈ V },
EqStructf,s(x) = {xi ' xj | si, sj ∈ V, i 6= j ∧M |= si ' sj },

φf,s(x) =
∧

EqGround ∪ EqStruct.

The rules in Figure 3 ensure that for any two s1, s2 ∈ Rf and terms r such
that M |= φf,s1(r) iff M |= φf,s2(r), then MJf(s1)K ' MJf(s2)K. Consider the



ordered sequence s1, . . . , sn of all s from Rf sorted by the inverse lexical ordering
on the (|EqGroundf,si(x)|, |EqStructf,si(x)|) pairs. We build model MF for F by
letting

MF (f)(r) =


MJ s1 K if M |= φf,s1(r)

...
...

MJ sn−1 K if M |= φf,sn−1(r)
MJ sn K otherwise

Note that the condition φf,s(x) naturally entails an ite construction for function
arguments x. It is also plain to see that all constraints on M listed in Figure 3
can be encoded into satisfiability clauses and added to Et to verify satisfiability of
a quantified formula. Note that satisfying the constraints of Lemma 3 suffices to
determine model existence. If they hold, then constraints on Rf,i will eventually
be satisfied for some j ≥ t.

2.3 Supporting fragments with theories

We have already shown our model finding technique can be applied as it is to
formulas that depart from many-sorted first-order logic with equality only (see
examples in 1.1). Moreover, as the ground reasoning is handled by the SMT
solver, ground portions of the input formula can involve arbitrary theory symbols
soundly. One could, for instance, replace the (ground) second clause of Example 1
by f(f(1, 2), 3) > f(1, f(2, 2)) and our technique would produce the same valid
model. Thanks to the similarities in the instantiation procedures, our technique
should extend to the fragment of essentially uninterpreted formulas defined in [12],
along with arithmetical literals and offsets. This requires broadening our handling
of x 6' t literals in G to include ¬(x ≤ t) and ¬(t ≤ x) where t is a ground
term. Furthermore, we introduce a preprocessing step such that for each literal
¬(xi ≤ xj) in Ck, we add the clause {xj → xi}Ck to F . Note that this is only
required if xi and xj appear in different argument positions in Ck. Offsets are
handled through a trivial extension to the Inst rule. Although our instantiations
are slightly more precise, one can show that

⋃
iEi and F ∗ are equisatisfiable.

Indeed, given M |=
⋃
iEi and projection functions πf,j and πk,i as defined in [12]

with the additional constraint that πf,1(v1), . . . , πf,n(vn) ∈ Df for all v, one can
see that Mπ |= F ∗. The model extraction procedure discussed in 2.2 can be
adapted to the extended fragment by introducing fresh constants for relevant
domain ranges (determined by ¬(x ≤ t), ¬(t ≤ x), and ¬(xi ≤ xj) literals). One
must however note that the same limitations with respect to nonstandard models
of arithmetic apply here, and satisfiability is not established modulo the class of
intended structures.

Example 4 (Bounded quantification through guards). A notable difference between
our procedure and that presented in [12] is the association of the boolean guards
to each instantiation. Given the clause ¬(a ≤ x) ∨ ¬(x ≤ b) ∨ f(x) < f(f(x)), it
is clear that the relevant term domain of f is infinite, and furthermore the second
condition of Lemma 3 can never be satisfied for all members of Gt. However,



by associating the guard ¬(a ≤ x) ∨ ¬(x ≤ b) to the f(x) matcher, one can
clearly satisfy the first condition of Lemma 3 for some interpretation of a and b.
This illustrates how the instantiation guards not only ensure soundness of the
procedure but can also increase the scope of the model finding technique.

3 Implementation

We implemented our technique inside the Leon verification system. The unfolding
procedure underlying recursive function verification in Leon progressively con-
siders a sequence of over- and under-approximations of the current verification
condition. These approximations are encoded into quantifier-free formulas that
are handled by an SMT solver. The formulas are instrumented in a way that
offers control over the decision tree stemming from branching expressions in the
program. Branches of the tree can be selectively dissallowed inside the formula.
Finite counter-examples are generated by blocking all paths in the tree that
depend on function calls that have not yet been unfolded. If, on the other hand,
the verification condition is unsatisfiable regardless of the results of functions calls
that still require unfolding, then no counter-example exists and we have a proof.
For further discussions about unfolding in Leon, see [7, 24]. In order to handle
first-class function applications, Leon dynamically dispatches the application
to all relevant functions by creating a tree branch for each target function. By
preserving decision tree soundness, this can be done independently from named
function unfolding. See [25] for a complete formalization in the presence of first-
class functions. Finally, quantifier instantiation takes place inside the unfolding
loop as well, as shown in Figure 4. After each unfolding step, new ground function
applications appear and clauses are generated for these. Note that a potentially
infinite number of clauses can follow from finite ground applications, therefore
only a heuristically determined subset of instantiations take place at each step.
Completeness for range-finite counter-examples is ensured by the fairness of each
independent instantiation procedure (named functions, first-class functions, and
quantifiers).

We introduced a new forall construct that enables the specification of univerally
quantified formulas in arbitrary non-nested positions inside Leon programs.
Arbitrary positions are trivially handled through place-holder constants and lifting.
Formula polarity is also of little consequence as the negation of a universally
quantified formula consists in the negated formula taken existentially, which
is exactly what our procedure produces when instantiating the non-ground
applications from the formula. As Leon is not complete for proofs, we allow a
broader fragment of quantified formulas than the one described in 2 since it
suffices to produce valid instantiations for proofs to be sound. Fragment inclusion
is therefore only determining when producing counter-examples. The implemented
instantiation procedure is sligthly simpler than what we presented in 2.1 and the
fragment on which we are complete for range-finite models is therefore somewhat
restricted. We namely completely disallow equality with quantified variables
(extending condition No. 1) and require arguments to function applications to
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Fig. 4. Flow of the Leon verification procedure. The verification condition φ is verified
by checking no counter-example exists. The procedure first checks ¬φ ∧ ut ∧ bt where
ut consists in the generated clauses and bt disallows relevant tree branches. Note that
bt also contains the formula encoding of the conditions presented in Lemma 3. If no
counter-example was found, then ¬φ ∧ ut is considered in order to construct a proof. If
this fails as well, we conclude that further instantiations are necessary.

either be fully ground or contain no ground portion. These restrictions remove
the need for the Unify rule and simplify the computation of G.

Formula instrumentation in Leon leads to clauses having the shape b =⇒ c
such that b encodes the current decision tree branch. Quantifier support can be
naturally integrated by using the branch blocker b as condition for the ground
blockers in c. This enables Leon to only consider relevant instantiations when
constructing counter-examples. As Leon sits on top of the SMT solvers, the
E-graph is not available to our procedure. The heuristics behind quantifier
instantiation are therefore mostly syntax-based and rather conservative. Our
initial evaluations show reasonable performance for proofs, but model finding
becomes slow in the presence of over-instantiating as Gt blows up.

Experience. We have evaluated our implementation on various benchmarks
involving higher-order functions as well as sets and arrays. Many of these bench-
marks feature complex interactions between named functions, first-class functions
and quantifiers.

Example 5 (Functional predicate map). As mentionned above, polarity of univer-
sally quantified formulas is soundly handled by our procedure, enabling a natural
definition of existentials through the following named function:

def exists[A](p: A ⇒ Boolean): Boolean = !forall((a: A) ⇒ !p(a))

Based on this, one can define maps over predicates as shown in Figure 5 and
verify their associativity. One should note here that our implementation can
produce sound proofs even in those cases where quantifier nesting takes place.
In order to ensure complete clause generation when first-class function bodies
contain matchers, these must be axiomatized when applications taking quantified
arguments exist in the formula..



def map[A,B](p: A ⇒ Boolean, f: A ⇒ B): B ⇒ Boolean =
(b: B) ⇒ exists[A](a ⇒ p(a) && f(a) == b)

def equals[A](p: A ⇒ Boolean, that: A ⇒ Boolean): Boolean =
forall[A](a ⇒ p(a) == that(a))

def functorConjecture[A,B,C](p: A ⇒ Boolean, f: A ⇒ B, g: B ⇒ C): Boolean = {
equals(map(map(p, f), g), map(p, (a: A) ⇒ g(f(a)))) }.holds

Fig. 5. Verifying associativity of higher-order map definition through higher-order
equality for functional predicates.

Example 6 (Binary Search Tree). Verifying that insertion into a binary search
tree preserves the tree invariant proves a significant challenge in quantifier-
free inductive verification. Quantifier support in Leon enables both an elegant
specification of the property as well as solves the associated verification problem.
Appendix B.1 shows the source code of this example. Leon verifies the property
given the following inductive predicate isBST (trivial base case is omitted)

isBST(Node(L, v,R)) ⇐⇒ isBST(L) ∧ ∀x ∈ L. x < v
∧ isBST(R) ∧ ∀x ∈ R. v < x

Example 7 (Binary search in an array). Leon handles imperative programs
through a source-to-source transformation into equivalent pure functional pro-
grams. We have show previously that this transformation preserves soundness of
quantifier handling in this classic example of imperative program verification [16]
(see Appendix B.2 for Leon source code). When presented with an underspecified
version of this benchmark featuring the following incomplete loop invariant

0 ≤ low && low ≤ high + 1 && high < a.length &&
(if (res == −1) forall((i: Int) ⇒ (high + 1 ≤ i && i < a.length) =⇒ (a(i) != key))
else res ≥ 0 && res < a.length && a(res) == key))

the Leon framework can successfully report a counter-example to both the
inductiveness of the invariant and the search soundness property.

Finally, quantifier support in Leon has been used in the context of other
research to prove useful properties of programs with several hundred lines of
source code. This contribution is outside the scope of this paper.

4 Related Work

Saturation-based theorem proving [1, 17] has been well-studied and underlies
many semi-decision procedures for first-order logic with equality [6,14]. Finite
saturated clause sets can even lead to sound models in certain cases [13]. The
restrictions imposed on our fragment clearly make our semi-decision procedure



less general than these, however it provides meaningful insight into integration
of saturation with E-matching based heuristics. Furthermore, as our procedure
integrates with an SMT solver, ground clauses with theories can be soundly
mixed with our first-order reasoning, as well as certain fragments of theories with
quantifiers. Research in superposition with theories is indeed ongoing [2, 18].

E-matching has proved effective at handling quantification in SMT solvers
[10,11]. The technique provides strong theoretical results on certain restricted
fragments [3] but lacks completeness guarantees in general. This limitation has
been alleviated by using orthogonal approaches that use triggers to direct proof
search but rely on theoretically stronger techniques for refutation-completeness
[22]. We have shown that our model finding technique can also provide refutation-
completeness for certain fragments without compromising on satisfiable cases.

In [12], an instantiation procedure is presented along with strong theoretical
results, such as decidability in non-trivial fragments and semi-decidability for a
large class of theories. The idea of exploring relevant domains until a fixpoint is
obtained is quite similar to our own and can be extended with our model finding
technique by slighly adapting the ∆F system of equations. A more complete
discussion of the relation between both techniques can be found in 2.3.

Given the nature of the models for which we have completeness, our technique
obviously relates to finite model finding. As our approach avoids model repre-
sentation, connections with methods for model enumeration [8,23,26] are fairly
limited. Other techniques use range finiteness as basis for their procedure [4, 5, 9]
and can elegantly handle finiteness of sort cardinalities [20, 21]. These techniques
incrementally explore the relevant domain through increasing domain cardinality,
whereas the semi-decision procedure directly underlies our search. Finally, in
some cases, finite model finding techniques can be extended to domains with
infinite cardinality [15].

5 Conclusion

We proposed a new instantiation-based semi-decision procedure for a fragment of
first-order logic with equality that can use E-matching triggers as an instantiation
heuristic. We presented a technique for model finding based on our semi-decision
procedure and showed completeness for models where all functions have finite
range. We further showed that our technique can be integrated into other pro-
cedures and can provide refutation-completeness for the considered fragment.
We also discussed how our model finding technique can guide quantifier instan-
tiations to increase their relevance. Furthermore, the instantiation procedure
can be successfully applied to certain fragments of first-order logic with theories.
Both the quantifier instantiation procedure and the model finding technique were
integrated into a boader verification framework for pure higher-order functional
programs. Interesting future research directions include extending model finding
to support full first-order logic with equality, as well as considering more complex
model validity criteria that can be encoded into the formula to broaden the scope
of satisfying models our procedure can find.
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A Proofs

Lemma 2. If applying superposition to F obtains the empty clause, then there
exists a sequence of selections by the Progress rule

(b1, f(s)1) ∈ G0 − I0, . . . , (bn, f(s)n) ∈ Gn−1 − In−1

such that In =
⋃n
i=1{(bi, f(s)i)} and

⋃n
i=0Ei is unsatisfiable.

First, note that when unified terms are ground, the solver ensures validity
of unification. Indeed, for t1, t2 ground, if MGU(t1, t2) exists, then |= t1 ' t2.
This observation extends to ground literals l1, l2, such that MGU(l1, l2) existence
implies |= l1 ⇐⇒ l2. We therefore need only consider cases where one or
both targets of unification contain quantified variables. As we are showing
existence of a sequence of Progress rule selections, we can also assume that
all quorums can be instantiated for any clause (instantiation feasibility simply
requires extending the sequence). Moreover, one should note that as clauses, and
therefore literals, are uniquely given by the function applications they contain,
considering a literal l for superposition translates to its defining applications
being in the set of future instantiations (as we can then assume the selection
sequence contains them). Finally, variables in V are considered as constants in Ei,
therefore identical variables across different clauses are not independent when
considering satisfiability of

⋃n
i=1Ei.

Proof. We show that our procedure implies superposition by showing that the
generated clauses imply valid unifications, and if the clause resulting from a
superposition rule application is ground, then it is equisatisfiable with the clauses
generated by our procedure (the empty clause is obviously ground). Let us
consider the applications of each superposition rule.



Resolution and Equality. We start with Resolution and consider three cases:
1. if only literal l1 (respectively l2) contains quantified variables, the Inst

rule will generate the clause ¬c ∨ θJlL ∨ l1K, and σ = MGU(l1,¬l2)
existence implies that θJlLK ∨ lD is ground, holds, and is equisatisfiable
with σJlL ∨ lDK,

2. if only corresponding portions of matched function application arguments
in l1 and l2 are non-ground, Inst will also enforce a valid unification as
the non-ground portions are not (and need not be) unified,

3. otherwise, the Unify rule will introduce the literal l′2 such that unification
of l1 and l′2 falls into case 1 or 2.

The arguments for Equality Resolution are much the same where s and s′
replace l1 and ¬l2. For Equality Factoring, the above reasoning tells us
the clause ¬c ∨ θJlL ∨ s ' t ∨ s ' t′K will be generated where c, θ correspond
to σ = MGU(s, s′) existence, and the underlying solver ensures that

M |= ¬c ∨ θJlL ∨ s ' t ∨ s ' t′K ⇐⇒ M |= ¬c ∨ θJlL ∨ t 6' t′ ∨ s ' tK.

Superposition. If s′ 6∈ V, then Inst and Unify will ensure unification holds
in much the same way as for Resolution and Equality. We can therefore
assume without loss of generality that s′ is x ∈ V and s[u] is either ground, or
independent from x and can be grounded by Inst or Unify rule applications.
Our definition of G ensures that the following clauses are generated

Superposition Right Superposition Left
{s′ → s[u]}lD ∨ s[u] ' a and a 6' s[u] {s′ → s[u]}lD ∨ s[u] 6' s[u]

In either case, the Inst rule will then generate ¬c ∨ θJlL ∨ t ' t′K. The
existence of σ = MGU(t, u) ensures that θJlL ∨ {s′ → s[u]}lD ∨ t ' t′K holds
and is equisatisfiable with the clause resulting from the superposition rule
when it is ground through similar arguments as when s′ 6∈ V.

If the empty clause results from superposition, then there must therefore exist
a sequence of Progress rule selections (b1, f(s)1), . . . , (bn, f(s)n) such that a
subset E ⊆

⋃n
i=0Ei is unsatisfiable.

Lemma 3. If for (b, f(s)) in Gt, either M 6|= b or MJsK ∈ Df , then M |= Et+1.

Proof. We consider two independent cases:

M 6|= bi for at least one ground selection (bi, f(s)i) ∈ It+1 during instantiation
implies that all generated clauses will be satisfied through false =⇒ ∗, and

MJsiK ∈ Dfi for all ground selections (bi, f(s)i) ∈ It+1 ensures that there exist
corresponding ground selections (ci, g(r)i) ∈ It such that fi = gi, M |= ci,
and MJriK = MJsiK. The Inst inferrence rule further guarantees that the
clauses resulting from the set (ci, g(r)i) are in Σt and therefore all new clauses
implied by (bi, f(s)i) are satisfied by M .



B Source Code for Examples

B.1 Binary Search Tree

Example 6 (Binary Search Tree).

sealed abstract class Tree
case class Node(left: Tree, value: BigInt, right: Tree) extends Tree
case class Leaf() extends Tree

def content(tree: Tree): Set[BigInt] = tree match {
case Leaf() ⇒ Set.empty[BigInt]
case Node(l, v, r) ⇒ content(l) ++ Set(v) ++ content(r)

}

def isBST(tree: Tree) : Boolean = tree match {
case Leaf() ⇒ true
case Node(left, v, right) ⇒ {
isBST(left) && isBST(right) &&
forall((x:BigInt) ⇒ (content(left).contains(x) =⇒ x < v)) &&
forall((x:BigInt) ⇒ (content(right).contains(x) =⇒ v < x))

}
}

def insert(tree: Tree, value: BigInt): Node = {
require(isBST(tree))
tree match {

case Leaf() ⇒ Node(Leaf(), value, Leaf())
case Node(l, v, r) ⇒ if (v < value) Node(l, v, insert(r, value))

else if (v > value) Node(insert(l, value), v, r)
else Node(l, v, r)

}
} ensuring (res ⇒ isBST(res) && content(res) == content(tree) ++ Set(value))



B.2 Binary Search in an Array

Example 7 (Binary search in an array).

def binarySearch(a: Array[BigInt], key: BigInt): Int = ({
require(a.length > 0 && forall((i: Int, j: Int) ⇒
(i ≥ 0 && j ≥ 0 && i < a.length && j < a.length && i < j) =⇒ (a(i) ≤ a(j))))

var low = 0
var high = a.length − 1
var res = −1

(while(low ≤ high && res == −1) {
val o = if ((high & 1) == 1 && (low & 1) == 1) 1 else 0
val i = high / 2 + low / 2 + o
val v = a(i)

if (v == key) res = i
else if (v > key) high = i − 1
else low = i + 1

}) invariant (
0 ≤ low && low ≤ high + 1 && high < a.length &&
(if (res == −1)
forall((i: Int) ⇒ (0 ≤ i && i < low) =⇒ (a(i) != key)) &&
forall((i: Int) ⇒ (high + 1 ≤ i && i < a.length) =⇒ (a(i) != key))

else
res ≥ 0 && res < a.length && a(res) == key))

res
}) ensuring(res ⇒ {

if(res == −1) forall((i: Int) ⇒ (0 ≤ i && i < a.length) =⇒ (a(i) != key))
else a(res) == key

})
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