
Never Say Never
Probabilistic & Temporal Failure Detectors

Dacfey Dzung
ABB Corporate Research

Baden, Switzerland
dacfey.dzung@ch.abb.com

Rachid Guerraoui
IC, EPFL

Lausanne, Switzerland
rachid.guerraoui@epfl.ch

David Kozhaya
IC, EPFL

Lausanne, Switzerland
david.kozhaya@epfl.ch

Yvonne-Anne Pignolet
ABB Corporate Research

Baden, Switzerland
yvonne-anne.pignolet@ch.abb.com

Abstract—The failure detector approach for solving dis-
tributed computing problems has been celebrated for its mod-
ularity. This approach allows the construction of algorithms
using abstract failure detection mechanisms, defined by ax-
iomatic properties, as building blocks. The minimal synchrony
assumptions on communication, which enable to implement
the failure detection mechanism, are studied separately. Such
synchrony assumptions are typically expressed as eventual
guarantees that need to hold, after some point in time, forever
and deterministically. But in practice, they never do. Synchrony
assumptions may hold only probabilistically and temporarily.

In this paper, we study failure detectors in a realistic dis-
tributed system N , with asynchrony inflicted by probabilistic
synchronous communication. We address the following paradox
about the weakest failure detector to solve the consensus
problem (and many equivalent problems), i.e., �S: an imple-
mentation of “consensus with probability 1” is possible in N
without using randomness in the algorithm itself, while an
implementation of “�S with probability 1” is impossible to
achieve in N . We circumvent this paradox by introducing a
new failure detector �S∗, a variant of �S with probabilistic and
temporal accuracy. We prove that �S∗ is implementable in N
and we provide an optimal �S∗ implementation. Interestingly,
we show that �S∗ can replace �S, in several existing determin-
istic consensus algorithms using �S, to yield an algorithm that
solves “consensus with probability 1”. In fact, we show that
such result holds for all decisive problems (not only consensus)
and also for failure detector �P (not only �S). The resulting
algorithms combine the modularity of distributed computing
practices with the practicality of networking ones.

Keywords-failure detection; probabilistic links; consensus;

I. INTRODUCTION

The failure detector abstraction is an elegant means to
solve difficult distributed computing problems, such as the
fundamental consensus problem1, in a modular manner [2].
Roughly speaking, a failure detector is a distributed “oracle”
augmented to an asynchronous system. The purpose of this
oracle is to provide hints (possibly incorrect) about which
processes of the system have crashed [3]. A failure detector
is formally defined by high-level axiomatic properties which,
in turn, encapsulate synchrony assumptions that allow prob-
lems like consensus to be solved. The task of implementing a

1Consensus [1] is an essential building block of most distributed com-
puting problems and applications such as leader election, state machine
replication, atomic commit, etc.

given failure detector using synchrony assumptions becomes
a separate, lower-level task.

A large body of work [4]–[9] has been devoted to
determine which synchrony assumptions are sufficient to
implement for instance the �S failure detector, established to
be the weakest, in a precise sense [10], to solve consensus-
like problems. The underlying synchrony assumptions, typi-
cally adopted in the distributed community to implement �S
take for example the form of some links being eventually
timely; i.e., after some point in time, these links never
“delay” messages. Such assumptions, besides placing the
failure detector approach under scrutiny in the distributed
computing community itself [11], are questionable from the
networking perspective. We elaborate further on this.
Questioning Failure Detectors. As discussed by Dwork et
al. in [12] as well as Lamport in [1], in practice, consensus
requires the system to be “good” only sufficiently long,
while the weakest failure detector to implement consensus
requires parts of the system after some point to be “good”
forever [4]–[9]. This controversy was raised and discussed
by Charron-Bost et al. [11], who even suggested to abandon
failure detectors and seek a better computing model.

From a networking perspective, the dependence of failure
detectors on a “deterministic forever” synchrony condition,
suggests that failure detectors may be practically unfit.
This results from the fact that typical synchrony guarantees
provided by networks are, at best, probabilistic. In fact, a
considerable amount of research on packet transmissions
confirms that synchrony guarantees in various kinds of
networks, e.g., wired power line networks [13], hybrid
wired/wireless networks [14] and wireless networks [15]–
[17], are indeed probabilistic2. Consequently, failure detec-
tors, like �S, might not be possible to implement in such
networks and thus algorithms designed on top of such failure
detectors cannot be practically used. We argue that this in
fact is not the case!
Motivation and Approach. The motivation of this work is
to bridge the gap between the modular distributed comput-
ing approach, based on failure detectors to circumvent the

2In practice, messages can be delayed at any point in time, for example
as a result of bad transmission quality of the underlying channel [15], [16]
or unpredictable loads on the system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148019503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

impossibility of fundamental distributed problems, and the
networking view of communication link characteristics. In
this view, link characteristics are probabilistic and tempo-
rary, rather than deterministic and perpetual.

We consider N , a fully connected distributed system
with probabilistic synchronous communication, i.e., links
can probabilistically lose messages, but otherwise respect
a known bound on the maximum transmission time. Such
losses inherently inflict asynchrony, as it can take arbitrarily
long until a reliable/successful message transmission be-
tween any two processes happens. As opposed to the partial
synchrony typically considered in distributed computing, N
does not require the delay of a reliable/successful message,
after some point in time, to satisfy a specific bound forever.
Solutions on the basis of our system N are thus applicable
to a wide range of real networked systems.

Paradoxically, it is possible to have an implementation
of “consensus with probability 1” in N without the use
of randomisation in the algorithm itself3, i.e., by merely
relying on the non-determinism in communication, e.g., [18].
However, we prove that an implementation of “�S with
probability 1” is impossible to achieve in system N (see
Theorem 1 for the meaning of “�S with probability 1”).
This suggests two things: (i) �S is somehow too strong
for consensus4, at least in a probabilistic environment as
N and (ii) deterministic algorithms solving consensus using
�S, cannot be practically put in use to solve consensus in
systems like N , as �S itself cannot be guaranteed in N .
This “consensus/failure detector” paradox can be viewed as
a re-affirmation of the paradox highlighted in [11], this time
in a non-deterministic environment. However, in contrast
with [11], we follow a different route.

Whereas [11] suggested to abandon the failure detector
approach, we propose instead a way to circumvent the
paradox by refining the failure detector notion itself, while
preserving its usefulness as an algorithmic building block.
We define a probabilistic failure detector �S∗. Roughly
speaking, �S∗ requires, with probability 1, that the proper-
ties of �S are satisfied for periods that can be arbitrary long.
Interestingly, we prove that �S∗ can be implemented in N ,
which implies, at least from a failure detector perspective,
that our system N is weaker than the systems considered
so far to build �S-like failure detectors [4]–[9]. More im-
portantly, we show that the celebrated rotating coordinator
algorithm of [3] to solve consensus using �S, actually solves
“consensus with probability 1” in N , when �S∗ is used

3Solving “consensus with probability 1” means that it is possible to
devise a protocol that guarantees all safety properties of consensus deter-
ministically but guarantees termination with probability 1 (see Section VI-A
for all properties of consensus). In turn, this implies that the probability
that the algorithm does not terminate decreases with time.

4It is important to recall that �S is the weakest, amongst all failure
detectors, to solve consensus [10]. This does not mean however that �S
is equivalent to consensus in a computability sense: one cannot implement
�S from consensus.

instead of �S. We then generalize this result, in three direc-
tions: (i) to hold for all deterministic consensus algorithms
satisfying some �SN -bounded condition (Section 3) (not
only the rotating coordinator algorithm), (ii) to hold for all
decisive problems (Section VI), not only consensus and (iii)
to hold for other failure detectors, e.g., �P .

In particular, we show that any deterministic algorithm,
which solves a decisive problem using �S (�P) and is
�SN (�PN)-bounded, can be re-used in system N to solve
the same problem, ensuring termination with probability 1:
the result is reached by using �S∗ (�P∗) instead.

Contributions. To summarize, our main contributions are:
1. We propose a way to circumvent the “consensus/failure
detector” paradox in systems with probabilistic synchronous
communication (N): we define �S∗ a probabilistic failure
detector with accuracy ensured for periods that can be
arbitrary long. �S∗ can be implemented in systems like N .
2. We show that �S∗ can be implemented efficiently and we
present an optimal implementation of it, which we believe is
interesting on its own. The optimal implementation hinges
on a logical linear arrangement of the processes. When links
behave in a timely manner (i.e., the delay of a reliable
message transmission respects some bound), the number of
links carrying messages infinitely often converges to using C
(the number of correct processes), possibly C−1. In the best
case, i.e., C − 1, our implementation of �S∗ achieves, to the
best of our knowledge, the lowest communication overhead
compared to all known �S implementations.

3. For all decisive problems P , beyond consensus (see
Section VI-B for decisive problems), we enable existing
deterministic protocols which use �S and �P and which are
�SN (�PN)-bounded, to be reused in N to solve “P with
probability 1”: simply using �S∗ and �P∗ instead of �S and
�P respectively leads to the desired result. In this sense,
our approach succeeds in encapsulating the randomization
of the probabilistic link behaviour in the very abstraction
of failure detection (without affecting the deterministic al-
gorithms built on top), bridging the gap between distributed
computing and networking practices.

Roadmap. Section II discusses related work. Section III
presents our distributed system N . Section IV proves the
impossibility of implementing “�S with probability 1” and
introduces �S∗. Section V derives communication lower
bounds for implementing �S∗ and presents an optimal
implementation of �S∗. In Section VI, we show that an
existing consensus algorithm with �S can guarantee “con-
sensus with probability 1” in system N when �S∗ is used
instead. We then generalize our result to a larger set of
problems. Section VII summarizes our results and concludes
the paper. For presentation simplicity, we defer some proofs
and discussions to a dedicated Appendix.

II. RELATED WORK

Fault-tolerance has been addressed in many domains and
at many levels [19]–[21], for example, to predict failures
and figure out their sources and patterns [22]–[26], to detect
transient process failures [27], etc. We discuss, in more
details, closely related work addressing specifically failure
detectors and consensus.
Minimal Synchrony. A large body of work studied Ω, a
failure detector abstraction equivalent to �S [28], and its
implementation under different synchrony assumptions [4]–
[6], [8], [9]. These implementations either posed assump-
tions on the behaviour of correct and faulty processes or
required links (or a subset of links) to be reliable, fair
and/or eventually timely. See Table I for a summary of the
assumptions adopted by systems implementing Ω or �S .

In contrast, we focus on N , a system which, from the
failure detection point of view, is weaker than the systems
considered above. In fact, we prove that �S properties cannot
be guaranteed, with probability 1, in N . We investigate
properties of failure detectors that are implementable in N .
Minimal Communication. Another track of research ad-
dressed the communication overhead of failure detector
implementations [5], [29]–[32]. Aguilera et al. [5] showed
that an implementation of Ω in a system S (see Table I)
requires all processes to periodically send messages and the
minimum number of links carrying messages forever can be
at least (n2−1)/4. On the other hand, stronger systems S+

and S++ (Table I) allow efficient implementations, where
only one process broadcasts messages forever on n − 1
links. For systems with eventually timely correct processes
and links (also reliable), Larrea et al. [31], [33] provided
algorithms for �S and �P , where 2n links carry messages
forever in the worst case, and for Ω where n − 1 links
carry messages forever respectively. Follow-up work [29],
[30] defined communication optimality: in systems with at
least one faulty process, the number of correct processes C
equals the minimum number of links necessary to implement
�P , �S and Ω. If the correct process with the smallest id
has eventually timely output links, communication-optimal
implementations of �S and �P exist [32].

Our work is different in that it investigates the communi-
cation overhead of �S∗, a weaker variant of �S, in system
N , where links never become timely forever. We show that
when links in N start behaving in a timely fashion for
some interval, the number of links carrying messages in our
implementation of �S∗ will converge to C, possibly C − 1.
Thus in the best case (i.e., C − 1) our implementation of
�S∗ in N , where n − 1 processes can crash, circumvents
the bound for �S when at least one process crashes using
C links [30]. Our algorithm is inspired by the ring structure
algorithms [30] for communication-optimal implementations
of �P . However, our implementation is different as it
assumes a linear arrangement of processes and manages

Table I: Assumptions of systems discussed in Section II.
System Properties

All links lose messages probabilistically and fairly
N (this paper) Propagation delay, in case of no loss, is bounded

Processes can crash and processing delays are neg-
ligible w.r.t. communication delay
Processes can be arbitrarily slow and can crash, but
have a max. execution speed

S [5] Links can be arbitrarily slow and lossy with at least
one eventually timely source (i.e., a timely correct
process whose output links are eventually timely)

S+ [5] S with at least one correct process whose input and
output links are fair

S++ [5] S and such that all links are fair
[29]–[31] All links are reliable and eventually timely

[8] All links are reliable. Some correct process hears
within interval δ from f other processes (f is the
maximum number of processes that can crash)

[4] All links are fair and there is one correct process with
f output links eventually timely
Links can lose or delay messages

[9] At least one correct process that can reach all other
correct processes through eventually timely links

suspicions differently to accommodate for properties of �S∗.
Omission Faults. Some researchers explored consensus in
systems with message losses without relying on eventual
guarantees. Santoro and Widmayer [34] showed that con-
sensus is impossible if n − 1 of the n2 possible messages
sent in a round can be lost. In contrast, Schmid et al. [35]
showed that consensus can be solved even in the presence
of O(n2) moving omission and/or arbitrary link failures per
round, provided that both the number of affected outgoing
and incoming links of every process is bounded and that
all processes are correct. Soraluze et al. [36] considered the
general omission model, where processes can fail either by
permanently crashing or by omitting messages.They defined
a failure detector requiring the existence of a majority of
well-connected processes, which do not crash, and are able
to communicate in both directions and without omissions,
either directly or indirectly, with a majority of processes.

In contrast, our work does not bound the number of
messages lost at any point in time and does not require any
process to be connected at all times with any other process,
yet we can implement failure detectors and consensus.
Randomized Consensus Algorithms. Randomized algo-
rithms ensuring “consensus with probability 1” have also
been explored. Approaches based on coin-flips [37]–[39] or
probabilistic schedulers [18] lead to consensus algorithms
with probabilistic factors. In systems with dynamic commu-
nication failures, multiple randomized algorithms [40], [41]
addressed the k-consensus problem, which requires only k
processes to eventually decide. Moniz et al. [40] considered
a system with correct processes and a bound on the number
of faulty transmission. In a wireless setting, where multiple
processes share a communication channel, Moniz et al. [41]
devise an algorithm tolerating up to f Byzantine processes

and requires a bound on the number of omission faults
affecting correct processes.

Our work does not employ randomization in the algo-
rithm, we focus on deterministic algorithms in probabilistic
networks. Moreover, instead of designing new consensus al-
gorithms, we re-use existing deterministic algorithms relying
on failure detectors to solve “consensus with probability 1”
in N .
Failure Detectors with Probablistic Guarantees. A dif-
ferent line of research explored failure detector implemen-
tations with probabilistic guarantees. Chen et al. in [42]
studied the quality of service (QoS) of failure detectors in
systems where message delays and message losses follow
probability distributions. They proposed a set of metrics,
among them (i) how fast actual failures are detected and
(ii) how well false detections are avoided. In [43], Bertier
et al. proposed an implementation supporting a short detec-
tion time based on estimations of the expected arrival of
monitoring messages, and on adapting QoS to the specific
application needs. In [44], Gupta et al. quantified the optimal
network load of failure detector algorithms as a function
of the failure detection time and the probability of falsely
suspecting a correct process. Hayashibara et al. [45] pro-
posed ϕ-failure detectors capable of adapting to the appli-
cation requirements and network conditions dynamically, by
assigning a value to every known process representing the
confidence that it is alive.

In contrast, we evaluate the eventual guarantees of (bi-
nary) failure detectors implemented in systems with prob-
abilistic message losses. In particular we investigate impli-
cations of such guarantees to solving distributed computing
problems, namely consensus. We also study the efficiency of
implementing these failure detectors from a communication
overhead perspective, defining optimality in terms of the
number of links that need to carry messages forever rather
than evaluating the real-time performance.
Rethinking Failure Detection. Several researchers chal-
lenged (directly or indirectly) the failure detection approach.
Biely et al. [46] showed that the asynchronous model
augmented with Ω is equivalent to several models where
the links from at least one process (the source) are timely.
In comparison with Biely et al. [46], our work avoids the
necessity of eventually timely link(s), for the solvability of
problems such as consensus in the presence of asynchrony.

Charron-Bost et al. [11] highlighted a paradox about the
failure detection approach which we re-affirm, in a non-
deterministic environment, in this paper: Dwork et al. [12]
and Lamport [1] showed that sufficiently long finite “good”
periods make consensus solvable while Chandra et al. [10]
show that consensus cannot be solved without permanent
agreement on a leader from some time on. Given this
inconsistency in results, Charron-Bost et al. [11] showed that
the “discrepancy” is due to the two-layered structure of the
failure detector approach itself. Precisely, authors attribute

this “artificial difficulty” to the interface between the failure
detector layer and the asynchronous system layer to which
the failure detector is augmented and the lack of timing
control by failure detectors on the asynchronous system.
Charron-Bost et al. [11] concluded that it may be better to
look at consensus without using failure detectors. Avoiding
any dependence on real time, Cornejo et al. [47] proposed
asynchronous failure detectors (AFDs) and used them to
address challenges related to the hierarchy robustness of
failure detectors. They also investigated the relationship
between the weakest failure detector and partial synchrony.
They showed that a large class of problems, termed as
finite problems, such as consensus, do not encode the same
information about process crashes as their weakest failure
detectors do (another validation of the observation in [11]).

In this paper, we take an opposite route compared to [11]
and [47]. We refine the notion of a failure detector with
explicit dependence on real time to address a similar paradox
as that of [11]: “consensus with probability 1” can be
implemented in system N (without the need for random-
ization within the algorithm) while “�S with probability 1”
is impossible to implement inN . We define �S∗, a variant of
�S implementable in N and show that such a transformation
in the failure detector notion allows deterministic consensus
algorithms based on failure detectors to solve “consensus
with probability 1” in poorly behaved systems. In this sense,
we succeed to repress the “artificial difficulty” highlighted
in [11] about the failure detector model, showing that “con-
sensus with probability 1” can be solved in poorly behaving
systems (as viewed from a networking perspective) using
failure detectors, without requiring an eventually forever
agreement on a process that will never crash.

III. SYSTEM MODEL

We consider a distributed system N consisting of a finite
set Π of n > 1 processes, Π = {p1, p2, ..., pn}, which
communicate by message passing. We assume, without loss
of generality, that processes have access to a global clock
with discrete time events denoted by t : {1, 2, 3, ...} (in
Appendix B we show that a global clock can be substituted
by local clocks that do not have to be synchronized).

Processes can send and/or receive a message, at these
discrete time events. The time interval between consecutive
events in t is assumed to be an upper bound on the
propagation delay (tpg) over any link connecting any two
processes. Processing delays are assumed to be negligible
compared to communication delays.
Communication Links. The links interconnecting processes
are assumed to be uni-directional uni-cast links. In par-
ticular, every pair of processes (pi, pj) is connected by
two uni-directional links: lij and lji. These links exhibit
changes in their transmission quality, as the quality of the
underlying channels might depend on various propagation
conditions. We thus assume that a link lij has a probability

0 < Pij(t) < 1 of losing the message sent at time t (if any
is sent). This captures the very idea that a link is not always
reliable and can lose messages for an unbounded but finite
period5. The value of Pij(t) can change with time; at each
time t : {1, 2, 3, ...}, Pij(t) may have any value in (0, 1).
We refer to such links as probabilistic. A probabilistic link
thus constitutes an instance of the fair-loss link [48], where
a message sent infinitely often is received infinitely often.
Faulty Processes. Processes can fail by crashing, i.e., by
halting prematurely. We consider that process crashes are
permanent, i.e., no crashed process can recover. We use C
to denote the number of correct processes, i.e., processes
that do not fail. We assume that C ≥ 1. When a process
pi sends a message m to process pj (for i 6= j) and m is
successfully propagated by link lij , pj receives/delivers m.
However if m is lost by link lij , pj receives nothing.
Reliable Message Transmission. Despite probabilistic
losses, a reliable message transmission, be it a unicast or a
broadcast can still be achieved inN [18], [49], [50]. Reliable
transmissions can be provided via abstractions running on
top of the probabilistic links of system N . For example,
a reliable link abstraction would guarantee the following
with probability 1: a message sent by a correct process pi
to another correct process pj , will be delivered by pj at
some future point in time6. We provide next the complete
specifications of a reliable link and a reliable broadcast
primitive in N . A reliable link abstraction guarantees:

1) Reliable delivery: If a correct process p sends a
message m to a correct process q at time t, then with
probability 1 the following is guaranteed: there exists
some time t′ > t where q delivers m. In particular,
q can deliver m at t + T with positive probability
∀ T ∈ {1, 2, 3, ...}.

2) No duplication: No message is delivered by a process
more than once.

3) No creation: If some process q delivers a message m
with sender p, then m was previously sent to q by p.

A reliable broadcast primitive can also be defined in N :
1) Validity: If a correct process p broadcasts a message

m at time t, then with probability 1 the following is
guaranteed: at some time t′ > t all correct processes
will have delivered m. Precisely, a correct processes
can deliver m at t + T with positive probability
∀ T ∈ {2, 3, ...}.

5Note that Pij(t) is assumed to be strictly less than 1 and greater than
0 for presentation simplicity. Our theoretical results can be extended to the
case where 0 ≤ Pij(t) ≤ 1, such that 0 < Pij(t) < 1 occurs infinitely
often and that Pij(t) = 0 or Pij(t) = 1 occur for some bounded duration.

6CRUCIAL: The phrase “the following is guaranteed with probability 1:
there is a time when event X occurs” does not mean that there is a point
in time where event X occurs with probability 1 but rather that over the
infinite course of time event X will certainly occur. For example, if a fair
coin is flipped an infinite number of times, then with probability 1, there
is a time when the coin lands on head, however there is no point in time
where flipping the coin lands on head with probability 1.

2) No duplication: As for a reliable link.
3) No creation: If some process q delivers a message m

with sender p, then m was previously broadcast by p.
4) Agreement: If a message m is delivered by some

process at time t, then with probability 1 the following
is guaranteed: at some time t′ ≥ t, m will be delivered
by every correct process.

The reliable link abstraction can be achieved over a
probabilistic link lij , for example by deploying buffers and
message retransmissions [18], [49], [50]. Typically, process
pi keeps retransmitting a message m forever or in practice
until some acknowledgement is obtained for m. In this
sense, the message transmission delay of a message m is
measured by the number of time slots elapsed from pi’s
first attempted transmission of m until the time when m
is successfully received by pj . We do not elaborate on
implementation details of such an abstraction, as existing
work already addresses this problem in systems where
links lose messages [49], [50]. Clearly, such a reliable link
abstraction does not provide any deterministic bounds on
message transmission delays, as message losses may span
unbounded duration. However the reliable link abstraction
in N offers instead a probability distribution on the delay
of a message.

The reliable broadcast primitive can be built for example
using the reliable link abstraction in system N . Algorithms
such as those detailed in [51] can be directly applied and will
result also in a reliable broadcast where the delay to deliver
a broadcast message, despite possibly being arbitrarily long,
admits a probability distribution.

IV. PROBABILISTIC TEMPORAL FAILURE DETECTION

In a system augmented with a failure detector, each
process has access to a local failure detector module [3].
This module monitors other processes in the system and
typically maintains a set of those that it currently suspects to
have crashed. Chandra and Toueg [3] defined various kinds
of failure detectors based on their achievable properties,
namely completeness and accuracy. Roughly speaking, the
completeness property describes the failure detector’s ability
to suspect crashed processes, while the accuracy property
defines the failure detector’s ability of not suspecting correct
processes. For instance, the �S failure detector guarantees
the following two properties: (i) strong completeness: even-
tually every process that crashes is permanently suspected
by every correct process and (ii) eventual weak accuracy:
there is some time instant tG ∈ {1, 2, 3, ...} after which some
correct process is never suspected by any correct process.

A. The Impossibility of Eventual Weak Accuracy

We establish several lemmata ensuring certain guarantees
on message delivery and process failures.

Lemma 1. In system N , for any finite period ∆t and at any
time instant ts ∈ {1, 2, 3, ...}, all messages that are sent on

link lij during the interval ts +∆t, can be lost with positive
probability.

Proof: Recall that Pij(t) is the probability with which
the link lij loses a message at time t. Let Pij(t∩ t′) be the
probability that lij loses the messages (if any is sent) at time
t and time t′. Since 0 < Pij(t) < 1 ∀t, then

0 < Pij(t) =
Pij(t ∩ t′)

Pij(t′|t)
< 1 ∀ t′, t. (1)

By (1), Pij(t
′|t) > 0 (and 0 < Pij(t∩t′) < 1). By induction,

we have Pij(t
′|t, t + 1, ..., t′ − 1) > 0 ∀ t′ > t. Denote by

B(t) the event that lij losses all messages (if any is sent)
for the interval t + ∆t, for any finite period ∆t. Then the
probability of B(t) happening is:

Pr(B(t)) > Pij(t ∩ t + 1 ∩ t + 2 ∩ ... ∩ t + ∆t)

= Pij(t)× Pij(t + 1|t)× ...× Pij(t + ∆t|t, t + 1, ..., t + ∆t− 1) > 0.

Given Pij(t) < 1, then we have 0 < Pr(B(t)) < 1.

Lemma 2. Consider any finite period ∆t, any time instant
ts ∈ {1, 2, 3, ...} and any subset of processes ∆P . In system
N , all processes /∈ ∆P can lose, with positive probability,
all messages sent in the interval ts + ∆t from and to
processes in ∆P .

Proof: The probability to have any subset of processes
losing all messages exchanged with all remaining processes
for any finite period ∆t, depends on the individual probabil-
ities of the relative individual links losing all sent messages
during the interval ∆t. Following from Lemma 1, any link
in the system can drop all messages (if any were sent) for
a finite but unbounded time, with a positive probability.
Denote by Bij(t) the event that lij losses all messages (if
any were sent) in the interval t + ∆t, for any finite period
∆t. Then by Lemma 1, 0 < Pr(Bij(t)) < 1. Following the
arguments as in proof of Lemma 1, we have:

0 < Pr(
⋂

i,j∈[1,n]

Bij(t)) < 1 ∀ i, j ∈ [1, n],

where n is the total number of processes in the system. This
concludes the proof.

Lemma 3. In system N , no correct process can determine
with probability 1, at any point in time, that some other
process in the system has crashed, i.e., for any finite period
a correct process can be (with probability> 0) indistinguish-
able from a crashed one.

Proof: Following from Lemma 2, a single process p
can lose all messages exchanged with the whole network
(i.e., from and to p) with positive probability for any finite
time. Consider an execution e1 where p crashes at time t
and another execution e2 where p loses all communication
at time t for any finite period. Then executions e1 and e2 are
indistinguishable to all processes (except p) for the whole

time in which communication is lost, i.e., any finite time by
Lemma 2.

With these lemmata, we can prove that �S cannot be
implemented in system N .

Theorem 1. It is impossible to implement “�S with proba-
bility 1” in N even if at most one process can crash. That
is, in the presence of processes crashes, it is impossible to
have an algorithm in N that guarantees strong completeness
deterministically and which ensures, with probability 1, the
following: there is a time after which some correct process
is never suspected by all correct processes.

Proof: We proceed by contradiction. Without loss of
generality, assume a system N of n = 2 processes, p1

and p2. Suppose that there exists an algorithm A, that
guarantees both strong completeness and eventual weak
accuracy. Consider three executions: (i) e1: an execution
where p1 fails at some time instant ts in {1, 2, 3, ...}, (ii) e2:
an execution where p2 fails at ts and (iii) e3: an execution
where p1 and p2 are both correct but all messages exchanged
between p1 and p2 are lost during the interval ts + ∆t. By
the strong completeness property of A, in executions e1 and
e2 there is a finite period, say ∆t′, after which p2 suspects
p1 and p1 suspects p2 respectively. By Lemma 2, execution
e3 is a valid execution in A and ∆t can be arbitrarily long,
specifically ∆t ≥ ∆t′. Thus, by the strong completeness of
A, p1 suspects p2 and p2 suspects p1 in e3. By Lemma 2,
execution e3, such that ∆t ≥ ∆t′, can occur with positive
probability at any time instant in {1, 2, 3, ...}. This implies
that A cannot guarantee with probability 1 the following:
there exists some time after which some correct process is
never suspected (i.e., remains trusted forever) by any correct
process. This violates the eventual weak accuracy of A.

As a consequence of Theorem 1, we study how to vary
the properties of �S , defining a variant �S∗, which is
implementable in our system N .

B. Probabilistic & Temporal Failure Detectors

We define a new probabilistic weak accuracy property that
holds temporarily for periods that can be arbitrary long.
Combined with strong bounded completeness, these two
properties define a new failure detector �S∗.

Definition 1. Failure detector �S∗ guarantees (i) strong
bounded completeness: every process that crashes is perma-
nently suspected by every correct process after a maximum
of TD time slots of the actual crash and (ii) probabilistic &
temporal weak accuracy: Consider any finite duration ∆t.
With probability 1 the following occurs: there exists infinitely
many time instants tG, such that a unique correct process is
not suspected by any correct process for the interval tG+∆t.

Theorem 2. It is possible to implement �S∗, in system N ,
assuming n− 1 processes can crash.

Proof: Let ts be any time instant in {1, 2, 3, ...} and ∆t
be any finite duration.

Lemma 4. There is a positive probability that all messages
sent by a correct process to all other correct processes, in
the interval ts +∆t, are not lost (i.e., successfully received).

Proof: Let Eij(ts) be the following predicate: All mes-
sages sent by a correct process pi to a correct process
pj , in the interval ts + ∆t, are not lost, i.e., successfully
received by pj . The probability that predicate Eij(ts) occurs
is: 0 < Pr(Eij(ts)) < 1. This can be easily deduced from the
proof of Lemma 1, given that the probability of a message
(sent from pi to pj) being not lost at any time instant
ts ∈ {1, 2, 3, ...} is 0 < 1 − Pij(ts) < 1. Let E(ts) be the
following predicate: All messages sent by a correct process
pi to every correct process pj ∈ C, in the interval ts + ∆t
are not lost. Since 0 < Pr(Eij(ts)) < 1, the probability of
predicate E(ts) happening, as in the proof of Lemma 2, is
Pr(E(ts)) = Pr(

⋂
j:{pj∈C}Eij(ts)) > 0.

Assume algorithm A executing the following: (i) all
processes periodically, at every time event t = {1, 2, ...,∞},
broadcast messages (i.e., they send messages to all other
processes in the system) and (ii) initially all processes
trust (do not suspect) each other. At every time instant in
{2, 3, 4, ...}, process pi suspects another process pj only if
pi receives no new message from pj , otherwise pi trusts pj .

The strong bounded completeness of �S∗ is ensured by A.
A process that crashes at time instant tcrash ∈ {1, 2, 3, ...}
stops sending messages and thus by (ii) will be suspected
at all times > tcrash + 1 by all correct processes forever
(that is with TD = 1). Let’s denote by Ep(ts) the following
predicate: during the interval ts + ∆t, all messages sent
by a correct process p are successfully received by all
correct processes. By (ii) of algorithm A, Ep(ts) implies that
process p is not suspected by any correct process during the
interval ts + ∆t. Following from Lemma 4, the probability
of observing Ep(ts) is greater than zero. Note that in A any
correct process can be selected as the unique correct process.

Since in A processes keep sending messages to all other
processes forever (infinitely) and since for any time instant
ts ∈ {1, 2, 3, ...} P (Ep(ts)) > 0, then with probability 1 the
following is satisfied: there exists infinitely many time in-
stants tG when predicate Ep(tG) happens. A thus guarantees
the accuracy of �S∗, concluding the proof.

In Appendix A, we discuss the implementability of other
types of probabilistic failure detectors; namely P∗, a prob-
abilistic variant of the perfect failure detector P , and �P∗,
a probabilistic variant of �P . In this main part of the paper
and for space limitations, we solely focus on �S and �S∗.

V. �S∗ BOUNDS AND IMPLEMENTATIONS

We study in this section the communication overhead of
�S∗ and present an optimal implementation of it.

A. Lower Bounds

First, we identify the bounds on the number of processes
and links required to respectively send and carry messages
forever for any algorithm implementing �S∗.

Theorem 3. Consider any algorithm A that implements �S∗
in system N of n ≥ 2 processes, where n− 1 processes can
crash. Then, C−1 distinct processes send messages infinitely
often in A with probability > 0.

Proof: Assume that ts is any time instant in {1, 2, 3, ...}
and ∆t is any finite duration. If no correct process sends
messages infinitely often, i.e., all correct processes stop
sending messages at some point in time, say t, then �S∗
cannot be implemented. This holds, since after time t every
correct process becomes indistinguishable from a crashed
process (w.r.t. to all other processes in N). By the strong
bounded completeness of �S∗, every correct process sus-
pects all processes in N after some bounded duration. This
violates the probabilistic eventual weak accuracy property
of �S∗.

Thus to implement �S∗ in N some correct process(es)
should send messages infinitely often. We now prove Theo-
rem 3 by showing that in system N with n ≥ 2 processes,
where n−1 processes can crash, it is impossible to have with
probability 1 an implementation of �S∗ where eventually,
only c : {0 < c < C − 1} correct processes send messages
infinitely often.

Consider c̄ to be the subset of correct process that stop
sending messages after time instant ts and consider the
following two executions: (i) e1: all processes in c crash at
time instant tcrash > ts and (ii) e2: all messages exchanged
between processes in c and processes in c̄ in the interval
tcrash + ∆t are lost. By Lemma 3, execution e2 is valid, as
it has a positive probability of happening. For processes in c̄
executions e1 and e2 cannot be distinguishable in any finite
amount of time (since ∆t is any finite duration). Therefore,
after some time (TD) processes in c̄ suspect all processes
in c. If no process in c̄ starts to send a message afterwards
then if all processes in c did crash no correct process in
the system will send messages (a violation). Thus some
process(es) in c̄ should send messages, which in the case
of e2, i.e., if processes in c are still alive, results in more
than c process sending messages. Since execution e2 occurs
with a positive probability, then it is impossible to guarantee
with probability 1 that only c : {0 < c < C − 1} correct
processes send messages infinitely often. This concludes the
proof.

N.B. Theorem 3 does not mean that each process sending
messages infinitely often, needs to do so by broadcasting
(i.e., by sending the message to all other processes in the
system). A process may send messages to any subset of the
processes in the system. We show now that Theorem 3 can
be circumvented, in the sense that �S∗ algorithms can be

implemented such that, with probability 1, less than C − 1
processes send messages infinitely often. It can be done by
limiting the maximum number of processes that can crash.

Theorem 4. Given an algorithm A that implements �S∗
in N with n ≥ 2 processes of which at most f < n

2 − 1
processes may crash, then the number of processes sending
messages infinitely often in A can be less than C − 1.

Proof: Consider an algorithmA which deterministically
selects any f + 1 processes to keep sending messages
infinitely often after some point in time to all processes inN ,
while all other processes stop sending messages completely.
Since the maximum number of processes that may fail is
f , then A guarantees that at least one correct process will
send messages infinitely often and at maximum f + 1 will
send messages infinitely often. By the proof of Theorem 2,
it is clear that �S∗ can be implemented in N even if only
one correct process sends messages, to all other processes
in N , infinitely often. This proves that A implements �S∗
such that at most f + 1 processes send messages infinitely
often. f + 1 < n

2 < C − 1 (since C ≥ n− f).
We now determine the number of links that need to carry

messages infinitely often in algorithms implementing �S∗.
Despite the asynchrony caused by probabilistic message
loss, system N can, with positive probability, reach a point
in time where links can be timely (i.e., ensure that the delay
of a reliable message transmission respects some bound)
for any finite duration. We define next what it means for
algorithms to be optimal in N . Let Lmin be the minimum
number of links required to carry messages forever to
implement failure detector X in a synchronous system7. Let
A be an algorithm that implements failure detector X , then:

Definition 2. A is optimal, if L, the number of links carrying
messages infinitely often in A, satisfies: lim∆t→∞ L =
Lmin, where ∆t is an interval in which links are timely.

Theorem 5. The minimum number of links which need to
send messages forever to implement �S∗ in a synchronous
system where n−1 processes may crash is C (possibly C−1
depending on what processes crash).

Proof: First we prove that it is impossible to implement
�S∗ if C −2 links send messages infinitely often. The proof
is by contradiction. Assume an implementation A of �S∗ in
which only C − 2 links carry messages forever. Then there
is in A at least one correct process p which eventually (i.e.,
at some point t in time) does not exchange messages with
any other correct process.

Assume an execution e1 of A with C > 1 correct
processes (including p) and another execution e2 of A
similar to e1 however where p crashes after time t (the time

7In a synchronous system processing and message delays are bounded.
This means that messages can be lost as long as they can be retransmitted
successfully ensuring that total transmission time satisfies the delay bound.

when p eventually stops exchanging messages). e1 and e2
are indistinguishable to all processes (other than p) and thus
processes in e2 will keep using the same number of links.
However in e2 since the number of correct processes is less,
then C − 3 links should be used which contradicts that e1
and e2 are indistinguishable.

Now assume an implementation A′ of �S∗ in which only
C − 1 links carry messages forever. Since there is C correct
processes, such an implementation is only possible if correct
processes are arranged in a tree topology (of which a star and
a linear list are a special case). In such an arrangement the
root of the tree sends heartbeat messages, indirectly, to the
rest of the correct processes. Consider an execution e1 of A′
in which C processes are correct and let t be the point in time
after which only C−1 links carry messages forever. Consider
now e2, an execution identical to e1 up to t, but where a
leaf process p (assumed correct in e1) crashes at time t
(a leaf process has no successor processes). e1 and e2 are
indistinguishable, to all processes above p in the tree (in this
case all processes since p is a leaf node). Hence the process
sending messages to p will not stop sending messages to
p in e2, although the number of correct processes in e2 is
one less than in e1, resulting in C links being used forever.
However, if the process p (which crashes in e2) is not a leaf
node, then p can be suspected by processes lower in the
tree (or following it in a linear list) and initiate a procedure
to eliminate communication with p and restore the fact that
C − 1 links are used, concluding our proof.

We present next an optimal �S∗ implementation in N .

B. An Optimal �S∗ Implementation

We now present an optimal algorithm (Algorithm 1)
implementing �S∗.

We assume that processes are arranged in a logical linear
list, where p1 is at the head and pn is at the tail. An
intermediate process pi is preceded by process pi−1 and
followed by process pi+1. When links in the system are
timely for some finite interval, the number of links carrying
messages infinitely often converges to C if at least one
process crashes (possibly to C − 1 if process pn, at the tail
of the logical linear list, does not crash) and to C − 1 when
no crashes occur. Recall that a timely link ensures that the
delay of a reliable/successful message respects some bound;
in this case we assume it to be the specified time-out.

The basic idea underlying Algorithm 1 is that a process
at location x in the list always suspects all processes
succeeding it, i.e., processes at locations [x + 1, ..., n]. The
goal of Algorithm 1 is to achieve two things:

1) Every correct process permanently suspects all crashed
processes preceding it after TD time slots of the crash.

2) When links are timely, no correct process suspects the
first correct process in the logical linear list.

Every process pi maintains a set of suspected processes
L(pi) and two variables pred(pi) and succ(pi) to respec-
tively refer to the current predecessor process which is
monitored by pi and the current successor process to which
pi periodically (e.g., every t) sends heartbeat messages
< heartbeat, L(pi), pi >. Note that process pi at the head of
the list has pred(pi) = null whereas process pj at the tail of
the list has succ(pi) = null. We assume that processes have
unique identifiers (names) and that they know their position
in the list. Process pi at all times suspects all processes down
the list including the tail, i.e., pj ∈ L(pi) ∀ pj : {i < j ≤ n}.

A process pi suspects pred(pi) which it is monitoring,
when a time-out expires (possibly some multiple of the
sending period). In case of suspicion, pi sends through
a reliable link abstraction (as discussed in Section III), a
message < suspicion, pi > to pred(pi) and sets its pred(pi)
to the process before pred(pi) in the list (regardless if
that process is in L(pi) or not) and updates its set of
suspected processes L(pi) accordingly. Upon its receipt of
a < suspicion, pj > message, a process pi which is alive
updates its successor to succ(pi) = pj and will start sending
< heartbeat, L(pi), pi > to pj . In addition, pi also sends a
message < Alive?, pi > to all the processes pk : {i < k <
j}, as pi knows that pj suspected all these process (pk).

When a process pi receives a message < Alive?, pj >, pi
replies by sending to pj , through a reliable link abstraction,
< heartbeat, L(pi), pi >.

When a process pi receives < heartbeat, L(pj), pj >, pi
checks if pj precedes or succeeds it in the list. If pj precedes
pi in the logical linear list (i.e., j < i) and succeeds (or is)
the current predecessor of pi, then pred(pi) and the set of
suspected processes L(pi) are updated accordingly. Simi-
larly, if pj succeeds pi in the logical linear list and precedes
the current successor of pi, then succ(pi) is updated.

Proof of Correctness of Algorithm 1

We first prove that Algorithm 1 implements �S∗, then we
prove it is optimal. From the description of the algorithm,
strong completeness is guaranteed if a crashed process pi is
suspected by all correct processes that follow it in the list
within TD timeslots, i.e., by all pj : {j > i}.

Lemma 5. The first correct process pj , succeeding a
crashed process pi, eventually suspects pi permanently.

Proof: Let us denote by t the time at which pi crashes.
By lines (11-14) of Algorithm 1 guarantees that pj will
eventually set pi as its predecessor and will monitor it. If
pj suspects pi before time t then if pj hears no messages
from pi it will suspect it forever. However if pj hears a
message from pi, then by lines (26-33) of Algorithm 1 pj
will monitor pi again and will eventually suspect pi by (11-
14) some time after t. Since after time t, pi will no longer
send any messages, then pi will be suspected forever by pj .

Algorithm 1 An Optimal �S∗ Algorithm.
1: Initialize:
2: set pred(pi) = pi−1 //set to null if i=1
3: set succ(pi) = pi+1 //set to null if i=n
4: set L(pi) = {pi+1, . . . , pn}
5:
6: Repeat periodically:
7: if succ(pi) 6= null then
8: send < heartbeat, L(pi), pi > to succ(pi)
9: end if

10:
11: upon event Timeout on pred(pi) do //pred(pi) not null
12: L(pi) = L(pi) ∪ {pred(pi)}
13: send < suspicion, pi > to pred(pi)
14: set pred(pi) = process directly above pred(pi) in the list.
15:
16: upon event receive < suspicion, pj > do
17: send < heartbeat, L(pi), pi > to pj
18: for i < k < j do
19: send < Alive?, pi > to pk
20: end for
21: set succ(pi) = pj
22:
23: upon event receive < Alive?, pj > do
24: send < heartbeat, L(pi), pi > to pj
25:
26: upon event receive < heartbeat, L(pj), pj > do
27: if j < i ∧ index(pred(pi)) ≤ j then // index(pi) = i
28: set pred(pi) = pj
29: update list(L(pj))
30: end if
31: if j > i ∧ index(succ(pi)) > j then
32: set succ(pi) = pj
33: end if
34:
35: Function update list(L(pj)):
36: L(pi) = L(pj)
37: remove pi from L(pi)

Lemma 6. The successor of a correct process pi will
eventually be (when links behave timely) the first correct
process following pi.

Proof: Let us denote by pj the first correct process that
follows pi. By lines (11-14) pj will stop monitoring pi and
will monitor other processes only if pj suspects pi. How-
ever, pj sends a suspicion messages through reliable link
abstraction. Since both pi and pj are correct the suspicion
will eventually reach pi which by lines (16-21) will send pj
a heartbeat message through a reliable link abstraction and
will set pj as its successor. Again by the fact that the two
processes are correct pj will receive this heartbeat message
and by lines (26-33) will monitor pi again. Thus if links are
timely pj will not “time-out” on pi.

By Lemma 6 and lines (26-33), the suspected list of a
correct process pi is propagated to all correct processes
following pi in the logical linear arrangement. By lines
(35-37) all process following a crashed process will even-
tually suspect that crashed process permanently ensuring
strong completeness. Now we prove the strong bounded
completeness property of Algorithm 1, i.e., a failed process
is permanently suspected by all correct processes after some

bounded duration of having failed. The longest delay of
suspecting a crashed process would be when the tail of the
logical list has to detect the crash of the head of the list. It is
important to note the following: if process pi is monitoring
process pj , then pi can detect the failure of pj after “timeout”
time slots of not hearing from pj . For presentation simplicity,
we consider a network of three process p1 being the head and
p3 being the tail. We accordingly show that p3 detects the
failure of p1 within a bounded duration which we compute.
By induction and transitivity this could be extended to a
general network of n processes.

Assume that p1 fails at time t. Recall also that every
process sends a heartbeat message at each time slot to its
successor. In that case, p2, the process monitoring p1, perma-
nently suspects p1 after “timeout” timeslots of not hearing
from p1. Given that a successful message transmission (not
lost) between a pair of processes takes one timeslot. This
means that p2 suspects p1 in the interval [t+timeout+1,∞]
and thus within a bounded delay of “timeout + 1”. p3 can
detect the crash of p1 in two cases: (i) via p2 (by seeing
that p1 is in the suspected list of p2) or (ii) directly from
p1. The time taken for p3 to detect p1 in case (i) would
be timeout + 1 + Th, where Th < timeout + 1. While in
case (ii) p3 has to suspect p2 first, after which it monitors
p1 and suspects it. In that case p3 would suspect p1 in
2(timeout+1) time slots of not hearing from p2. The worst-
case delay for p3 to permanently suspect p1 would thus that
p3 keeps hearing from p2 until time instant “t+timeout+1”
and then does not hear from p2 for a duration longer than
2(timeout + 1). This results in p3 permanently suspecting
p1 in the interval [t+3(timeout+1),∞]. As a consequence,
a failed process would be permanently suspected by all
correct processes within a maximum of 3(timeout + 1)
timeslots after having failed. This proves the strong bounded
completeness of Algorithm 1, given three processes.

Lemma 7. When links are timely, all correct processes will
trust the correct process at the head of the logical linear
arrangement list.

Proof: By Lemma 5, when links are timely every
correct process is monitored by the first correct process
following it in the list. Since the first correct process (at
the head of list) does not get suspected by the processes
monitoring it (as a consequence of links being timely), by
Lemma 6 all correct process will eventually adapt its list
of suspected processes which it is not included in by lines
(35-37).

The probabilistic accuracy can be insured by Lemma 7.
At any point in time Lemma 7 has a positive probability
of happening. Since we consider infinite time instants, then
with probability 1 the following happens: there are infinitely
many time instants tG such that after each instant links in
the network behave timely for the interval [tG, tG + ∆t],
where ∆t is any finite duration.

Now we show that Algorithm 1 is optimal. Let T be the
time after which all faulty processes have crashed. Then after
T and by Lemma 6, whenever the links become timely for
any finite time the set of links sending heartbeat messages
will be either C − 1 if process pn (at the tail of the list) is
correct or C if pn is faulty.

VI. DECISIVE PROBLEMS

In this section, we discuss what happens to determinis-
tic algorithms using �S to solve decisive problems, e.g.,
consensus (we give examples of decisive problems beyond
consensus in Section VI-B), when put in N which provides
�S∗ guarantees instead.

Definition 3. A decisive problem is a problem which can be
solved when a single irrevocable global decision is reached.
Any decisive problem P requires that both of the following
two properties are satisfied: (i) Termination: there is a point
in time after which every correct process will have decided
and (ii) Integrity: No process can decide more than once.

Clearly consensus is one such problem, as the consensus
abstraction guarantees: (i) Validity: A value decided is a
value proposed, (ii) Integrity: No process decides more than
once, (iii) Agreement: No two processes decide differently
and (iv) Termination: there is a point in time after which all
correct processes would have decided. For illustration, we
first focus on consensus, then we discuss decisive problems.

A. Consensus with �S∗

We first show, for an exemplary existing consensus algo-
rithm, that �S∗ can replace �S: the result would be solving
“consensus with probability 1”, in system N . Then we
present a general form of this result.
A Rotating Coordinator Algorithm. The basic idea behind
the seminal rotating coordinator algorithm of [3] is that
processes alternate in a role of “leader” until one of them
succeeds in imposing a decision. The algorithm assumes a
correct majority and uses two abstractions: (i) reliable links
and (ii) reliable broadcast. Both reliable links and reliable
broadcast can be implemented in our system N (in the sense
specified in Section III).

The algorithm is round-based, i.e., the processes move
incrementally from one round to the other. Process pi is the
“leader” of every round k : k mod n = i. In such a round,
process pi does the following: (i) pi selects among a majority
the latest adopted value (latest w.r.t. round), (ii) pi sends that
value to all processes and waits for the acknowledgement of
the majority and (iii) once pi succeeds in imposing that value
on a majority, pi uses reliable broadcast to send its decision
to all and decides. It is important to note that pi succeeds
if it is not suspected by the majority (processes that suspect
pi inform pi and move to the next round, including pi).

Theorem 6. The algorithm of [3] implements “consensus
with probability 1” in N using �S∗ (instead of �S).

Proof: It is easy to see that �S∗ guarantees the strong
completeness of �S and that the reliable links and reli-
able broadcast in system N (see Section III) guarantee
respectively the properties of the reliable links and reliable
broadcast depicted in [3]. Thus the proof of correctness
provided in [3] remains true, except for the parts relying
on the accuracy of �S, namely termination. Thus it is
sufficient to prove that the accuracy of �S∗ guarantees that
all processes decide.

Consider trand to be any point in time after all faulty
processes have crashed. Since the algorithm of [3] operates
in asynchronous rounds, then at time trand processes might
be at different rounds. We denote by r the largest round
among all processes at time trand and by ∆rtrand

the
maximum difference between the rounds of the processes
at time trand. Note that from [3], ∆rtrand

≤ n, n being the
total number of processes in the system.

In the algorithm of [3], after time trand, a process, be it
a leader or not, completes a round when a bounded number
of messages (unicast ot broadcast messages) is sent/received
or when it suspects the leader of that round. Let M be the
maximum number of messages for a process to complete a
round. Let TM ≥ TD be the amount time for exchanging
the M messages, such that the probability of exchanging
M messages in TM time slots is positive (the properties
of reliable links and reliable broadcast primitive defined in
Section III guarantee the existence of such a TM). Recall
that the accuracy of �S∗ guarantees that with probability 1
the following holds: for any finite duration ∆t, there exists
infinitely many time instants tG ∈ {1, ...,∞} such that
some correct process, say q, is not suspected by all correct
processes for the interval [tG, tG + ∆t].

Consider now r′ ≥ r to be the round in which q becomes
leader. Thus with positive probability, all processes can reach
round r′ after TM · (∆rtrand

+ (r′ − r)) timeslots from
trand. If q is not suspected by any of the processes, then
with positive probability every process decides after TM

time slots from reaching round r′. In other words, if process
q is not suspected by any correct process in the interval
[trand, trand + TM · (∆rtrand

+ (r′ − r) + 1)], then there is
a positive probability that all processes decide.

Since trand is any point in time, after all processes
have crashed, then we can assume trand = tG, such that
∆t = TM · (∆rtrand

+ (r′ − r) + 1). By the accuracy of
�S∗, with probability 1: there exists infinitely many tG
time instants (after all faulty processes have crashed) such
that process q is not suspected by all correct processes
for the interval [tG, TG + TM · (∆rtrand

+ (r′ − r) + 1)].
Since there is a positive probability of all processes deciding
TM · (∆rtrand

+ (r′ − r) + 1) time slots after tG and there
are infinitely many tG time instants, then with probability 1
we have the following: there is a point in time after which
all correct processes would have decided.

Definition 4. An asynchronous algorithm A that solves a
decisive problem P is said to be �SN -bounded if A satisfies
the following properties:

1) A uses as external blocks only the failure detector
�S and communication primitives implementable in
N , such as reliable links and reliable broadcast (see
specification in Section III).

2) Consider that there exists a point in time, tG, after
which some correct process is never suspected by all
correct processes. Then A needs a bounded number
of messages to be sent after tG and until P is solved
(i.e., all correct processes decide).

In fact many of the consensus algorithms using �S in
the literature are �SN -bounded. This makes our results
applicable to wide range of existing algorithms.

Theorem 7. Any asynchronous algorithm that uses �S to
solve consensus and is �SN -bounded, solves “consensus
with probability 1” in N when using �S∗ instead.

Proof can be seen for the more general result of Theorem 8.

B. Decisive Problems with �S∗

Now we generalize the result of Theorem 7 for decisive
problems in general.

Theorem 8. Any asynchronous algorithm A that uses �S to
solve a decisive problem P and is �S-bounded, solves “P
with probability 1” in N , when �S∗ is used instead 8.

Proof: �S∗ guarantees the strong completeness of �S.
Thus w.r.t. A, the difference between �S∗ and �S is in the
provided accuracy property. The accuracy of �S is a property
which holds at some unknown point in time. As a result, any
algorithm A that solves a decisive problem P using �S,
guarantees all safety properties required by P regardless of
the accuracy of �S∗. A hence uses the accuracy of �S to
guarantee liveness, in particular termination, i.e., there is a
time after which all correct processes decide. It thus suffices
to prove that with respect to A and with probability 1 the
following is satisfied: The accuracy of �S∗ guarantees that
there is a point in time after which all processes decide.

Assume the existence of an external clock (not accessible
but merely used as a reference to clarify the proof construc-
tion). Let tstart denote the time instant at which A starts
executing. Using �S in A to solve P implies that after tstart
there is a time when all processes decide and P is solved
(see Definition 3). Precisely, after some correct process is
never suspected by all correct processes, all correct processes
executing A should exchange a finite bounded number of
messages after which P would be solved. Let M denote
the upper bound on the number of messages (be them uni-
casts or broadcasts) needed by A from the time some correct

8Solving “P with probability 1” means guaranteeing all safety properties
of P deterministically and ensuring termination with probability 1.

process is never suspected by all correct processes until P
is solved. All events that could occur have a bounded delay
(process speeds, crash detection, etc.), except for reliable
message transmissions (be them uni-casts or broadcasts).
Using communication primitives as the reliable links and
reliable broadcast in N , the delay for delivering a single
message may be arbitrarily long. However it is possible,
with positive probability, that a message gets delivered after
a known fixed delay, e.g., in x time slots after being sent
(see reliable transmission Section III). Thus and without
loss of generality, at any point in time where some correct
process in never suspected by all correct processes, it is
possible (with positive probability) for the M messages to
be exchanged within a known fixed duration, say TM , after
which all processes would have decided.

From Definition 1, the accuracy of �S∗ guarantees with
probability 1 that: there exists infinitely many time instants
tG after which a unique correct process is not suspected by
any correct process for the interval tG+TM . Since there are
infinitely many such tG time instants and at each tG there is
a positive probability for the M messages to be exchanged
within TM , then with probability 1 the following happens:
there is a time after which all processes would have decided
within TM timeslots and thus P would be solved.
Other Decisive Problems. Besides consensus, there can be
many other decisive problems, e.g., non-blocking atomic
commit (NBAC), k−set agreement, fast consensus. Some
of these decisive problems, such as NBAC, are solved using
�P . In Appendix C we show that it is possible to formulate
�P∗, a variant of �P (in the main part of the paper we
concentrate on �S). We also show in Appendix C that
Theorem 8 can be extended to the set of decisive problems
solvable with �P when replaced by �P ∗, thus covering a
wider set of problems, besides consensus.

VII. CONCLUDING REMARKS

We investigated failure detection in systems embodying
asynchrony via probabilistic synchronous communication.
In contrast to the conventional distributed computing as-
sumptions when building failure detectors, which hinged on
link synchrony guarantees that need to hold deterministically
forever, we adopted a more realistic link behaviour moti-
vated by networking views on actual packet loss. We show
that “�S with probability 1” cannot be implemented given
such link behaviour (�S being established as the weakest
failure detector to implement consensus), despite the fact
that “consensus with probability 1” can be implemented
without requiring any randomness in the algorithm itself.
We accordingly refine the notion of failure detectors defining
�S∗ which does not require any “forever” guarantee from the
underlying network. We show that �S∗ can be implemented
in system N and even efficiently. In addition, we show that

�S∗ can replace �S in several deterministic consensus algo-
rithm and yields an algorithm that solves “consensus with
probability 1”. We also generalise this result to encompass
a more general set of problems and failure detectors.

Potential future work may investigate the weakest prob-
abilistic system to implement �S∗ or the solvability of
problems, besides the decisive set, using our new notion
of failure detectors.

REFERENCES

[1] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, 1998.

[2] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,” J. ACM,
vol. 32, no. 2, 1985.

[3] T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” J. ACM, vol. 43, 1996.

[4] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg, “Communication-efficient leader election and con-
sensus with limited link synchrony,” in PODC, 2004.

[5] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“On implementing omega in systems with weak reliability and
synchrony assumptions,” LNCS, vol. 21, 2008.

[6] A. Mostefaoui, M. Raynal, and C. Travers, “Time-free and
timer-based assumptions can be combined to obtain eventual
leadership,” IEEE Trans. Parallel Distrib. Syst., vol. 17, 2006.

[7] A. Mostefaoui, E. Mourgaya, and M. Raynal, “Asynchronous
implementation of failure detectors,” in DSN, 2003.

[8] D. Malkhi, F. Oprea, and L. Zhou, “Omega meets paxos:
Leader election and stability without eventual timely links,”
in DISC, 2005.

[9] E. Jiménez, S. Arévalo, and A. Fernández, “Implementing
unreliable failure detectors with unknown membership,” Inf.
Process. Lett., vol. 100, 2006.

[10] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest
failure detector for solving consensus,” in PODC, 1992.

[11] B. Charron-Bost, M. Hutle, and J. Widder, “In search of lost
time,” Inf. Process. Lett., vol. 110, no. 21, 2010.

[12] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” J. ACM, vol. 35, 1988.

[13] J.-P. Vasseur and A. Dunkels, Interconnecting smart objects
with ip. Morgan Kaufmann, 2010.

[14] G. Hasslinger and O. Hohlfeld, “The gilbert-elliott model for
packet loss in real time services on the internet,” in MMB,
2008.

[15] Q. Zhang and S. Kassam, “Finite-state markov model for
rayleigh fading channels,” IEEE Trans. Commun., 1999.

[16] L. Kanal and A. Sastry, “Models for channels with memory
and their applications to error control,” Proceedings of the
IEEE., vol. 66, 1978.

[17] D. Dzung, R. Guerraoui, D. Kozhaya, and Y.-A. Pignolet,
“Source routing in time-varying lossy networks,” in NETYS,
2015.

[18] G. Bracha and S. Toueg, “Asynchronous consensus and
broadcast protocols,” J. ACM, vol. 32, no. 4, 1985.

[19] M. Kurt, S. Krishnamoorthy, K. Agrawal, and G. Agrawal,
“Fault-tolerant dynamic task graph scheduling,” in SC, Nov
2014.

[20] V. Berten, J. Goossens, and E. Jeannot, “A probabilistic ap-
proach for fault tolerant multiprocessor real-time scheduling,”
in IPDPS, 2006.

[21] Y. Jia, G. Bosilca, P. Luszczek, and J. J. Dongarra, “Paral-
lel reduction to hessenberg form with algorithm-based fault
tolerance,” in SC, 2013.

[22] S. Di, C.-L. Wang, and F. Cappello, “Adaptive algorithm for
minimizing cloud task length with prediction errors,” IEEE
Trans. Cloud Comput, vol. 2, 2014.

[23] G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni, “Check-
pointing algorithms and fault prediction,” J. Parallel Distrib.
Comput., vol. 74, 2014.

[24] A. Benoit, A. Cavelan, Y. Robert, and H. Sun, “Assessing
general-purpose algorithms to cope with fail-stop and silent
errors,” in LNCS, 2015.

[25] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve,
S. Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson,
A. A. Chien, P. Coteus, N. A. Debardeleben, P. C. Diniz,
C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta,
F. Johnson, S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mi-
tra, T. Munson, R. Schreiber, J. Stearley, and E. V. Hensber-
gen, “Addressing failures in exascale computing,” Int. J. High
Perform. Comput. Appl., vol. 28, no. 2, 2014.

[26] W. Dweik, M. Abdel-Majeed, and M. Annavaram, “Warped-
shield: Tolerating hard faults in gpgpus,” in DSN, 2014.

[27] J. Beauquier, S. Delat, S. Dolev, and S. Tixeuil, “Transient
fault detectors,” in Distributed Computing, ser. LNCS, 1998,
vol. 1499.

[28] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest
failure detector for solving consensus,” J. ACM, vol. 43, 1996.

[29] M. Larrea, A. Lafuente, I. Soraluze, R. Cortias, and
J. Wieland, “On the implementation of communication-
optimal failure detectors,” in LNCS, 2007, vol. 4746.

[30] A. Lafuente, M. Larrea, I. Soraluze, and R. Cortias,
“Communication-optimal eventually perfect failure detection
in partially synchronous systems,” J. Comput. System Sci.,
vol. 81, 2015.

[31] M. Larrea, S. Arevalo, and A. Fernndez, “Efficient algo-
rithms to implement unreliable failure detectors in partially
synchronous systems,” LNCS, vol. vol.1693, 1999.

[32] M. Larrea, A. F. Anta, and S. Arévalo, “Implementing the
weakest failure detector for solving the consensus problem,”
IJPEDS, vol. 28, 2013.

[33] M. Larrea, A. Fernandez, and S. Arevalo, “Optimal imple-
mentation of the weakest failure detector for solving consen-
sus,” in SRDS, 2000.

[34] N. Santoro and P. Widmayer, “Time is not a healer,” in STACS,
1989.

[35] U. Schmid, B. Weiss, and I. Keidar, “Impossibility results
and lower bounds for consensus under link failures,” SIAM J.
Comput., vol. 38, no. 5, 2009.

[36] I. Soraluze, R. Cortiñas, A. Lafuente, M. Larrea, and F. Freil-
ing, “Communication-efficient failure detection and consen-
sus in omission environments,” Inf. Process. Lett., no. 6, 2011.

[37] J. Aspnes, H. Attiya, and K. Censor, “Combining shared-coin
algorithms,” J. Parallel Distrib. Comput., vol. 70, no. 3, 2010.

[38] D. Alistarh, J. Aspnes, V. King, and J. Saia, “Communication-
efficient randomized consensus,” in LNCS, 2014, vol. 8784.

[39] P. Fraigniaud, M. Gs, A. Korman, M. Parter, and D. Peleg,
“Randomized distributed decision,” LNCS, vol. 27, 2014.

[40] H. Moniz, N. Neves, M. Correia, and P. Verssimo, “Random-
ization can be a healer: Consensus with dynamic omission
failures,” in LNCS, 2009, vol. 5805.

[41] H. Moniz, N. Neves, and M. Correia, “Turquois: Byzantine
consensus in wireless ad hoc networks,” in DSN, 2010.

[42] W. Chen, S. Toueg, and M. K. Aguilera, “On the quality of
service of failure detectors,” IEEE Trans. Comput., vol. 51,
no. 5, 2002.

[43] M. Bertier, O. Marin, and P. Sens, “Implementation and
performance evaluation of an adaptable failure detector,” in
DSN, 2002.

[44] I. Gupta, T. D. Chandra, and G. S. Goldszmidt, “On scalable
and efficient distributed failure detectors,” in PODC, 2001.

[45] N. Hayashibara, X. Defago, and T. Katayama, “Two-ways
adaptive failure detection with the phi-failure detector,” in
ICAC, 2003.

[46] M. Biely, M. Hutle, L. Penso, and J. Widder, “Relating
stabilizing timing assumptions to stabilizing failure detectors
regarding solvability and efficiency,” in SSS, 2007, vol. 4838.

[47] A. Conrejo, N. Lynch, and S. Sastry, “Asynchronous failure
detectors,” in PODC, 2012.

[48] R. Guerraoui, R. Olivera, and A. Schiper, “Stubborn commu-
nication channels,” Tech. Rep., 1996.

[49] M. Kawazoe Aguilera, W. Chen, and S. Toueg, “Heartbeat:
A timeout-free failure detector for quiescent reliable commu-
nication,” LNCS, vol. 1320, 1997.

[50] D. Dzung, R. Guerraoui, D. Kozhaya, and Y.-A. Pignolet, “To
transmit now or not to transmit now,” in SRDS, 2015.

[51] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to
Reliable and Secure Distributed Programming. Springer,
2011.

APPENDIX

A. Other Probabilistic Failure Detectors

Since �S∗ can be implemented in our system, we study
the possibility of implementing meaningful probabilistic
variants of failure detectors which noticeably simplify the
design of distributed algorithms, namely perfect failure
detection. A perfect failure detector module, P , guarantees
in addition to strong completeness, the strong accuracy
property, which says that no process is suspected before
it crashes. Distributed algorithms, specifically those solving
consensus, using P are easy to design due to their implicit
reliance on the strong accuracy property of P to guarantee
some safety property [51]. The liveness of such algorithms
typically relies on the strong completeness. It is important
to note that on the contrary consensus algorithms based on
unreliable failure detectors [3] usually rely on the eventual
accuracy to guarantee liveness of the algorithm. We thus
define P∗, a probabilistic variant of P , as a failure detector
that guarantees strong accuracy and probabilistic strong
completeness, where the latter can be formally defined as:
Probabilistic Strong Completeness: Eventually every process
that crashes can be suspected, with positive probability, by
every correct process.

Theorem 9. It is impossible to implement the failure detec-
tor P∗ in N , even if at most one process can fail.

Proof: Consider a network of n = 2 processes, p1 and
p2, and the following executions:
e1. an execution where process p2 fails at time t.
e2. an execution where processes p1 and p2 are both

correct but get partitioned at time t.
By the probabilistic strong completeness there is a time
after which p1 in execution e1 has a positive probability
of suspecting p2. By Lemma 3, executions e1 and e2
can be indistinguishable to p1 for any finite duration after
t. Accordingly there is a time where p1 has a positive
probability of suspecting p2 in execution e2. By the strong
accuracy property of P∗ a correct process is never suspected.
Thus the probability of p1 suspecting p2 in e2 should be 0
at all times, a contradiction concluding the proof .

We show now that �P∗, a variant of �P can be imple-
mented. Failure detector �P∗ guarantees: (i) strong bounded
completeness and (ii) probabilistic eventual strong accuracy:
Consider any finite duration ∆t. With probability 1 the fol-
lowing occurs: there exists infinitely many time instants tG,
such that after each all correct processes are not suspected
by any correct process for the interval tG + ∆t.

Theorem 10. It is possible to implement �P∗, in N , even
if n− 1 processes can crash.

Proof: The proof is similar to that of Theorem 2.
Following from Lemma 4, if all correct processes broadcast
messages forever (send an infinite number of messages),
then with probability 1, the following will be observed: any
finite number of consecutive messages, e.g., ∆t messages,
is successfully transmitted, i.e., with no losses.

As such, an algorithm which satisfies both characteristics
below for example implements �P∗:

1) All processes periodically (say with period ∆t1 chosen
arbitrarily) broadcast messages forever.

2) Process pi suspects another process pj only if pi
receives no message form pj for a period strictly
greater than ∆t1.

B. Substituting Global Clock by Unsynchronized Local
Clocks

We briefly discuss in this section how the global clock
assumption can be substituted with local clocks which do not
need to be synchronized. For this purpose, we redefine the
system model accordingly to accommodate new notations.

We consider a distributed system N consisting of a finite
set Π of n > 1 processes, Π = {p1, p2, ..., pn}, which
communicate by message passing. We assume that all pro-
cesses have access to local clocks with discrete time events
denoted by tpi

: {1, 2, 3, ...}. A process pi is assumed to take
actions, i.e., either send or receive or both, at the discrete
time events of tpi . The time interval between consecutive
events in tpi

, ∀ i (i.e., for all processes) is assumed to be
the same such that it is an upper bound on the propagation
delay (tpg) over any link interconnecting any two processes.
Processing delays are assumed to be negligible compared to
communication delays.

Communication Links. The links interconnecting processes
are assumed to be uni-directional uni-cast links. In par-
ticular, every pair of processes (pi, pj) is connected by
two uni-directional links: lij and lji. These links exhibit
changes in their transmission quality, as the quality of the
underlying channels might depend on various propagation
conditions. We thus assume that a link lij has a probability
0 < Pij(tpi

) < 1 of losing messages at time tpi
. This

captures the very idea that a link is not always reliable
and can lose messages for an unbounded but finite period.
The value of Pij(tpi

) can change with time; specifically, at
each time tpi

: {1, 2, 3, ...}, Pij(tpi
) may have any value

in (0, 1). However, we assume that the value of Pij(tpi
)

remains constant between consecutive intervals of tpi . We
refer to such links as probabilistic links. A probabilistic link
thus constitutes an instance of the fair-loss link [48], where a
message sent by some process pi infinitely often is received
infinitely often.

Faulty Processes. Processes faults are defined as in Sec-
tion III.

Monitoring Schemes. Given local clocks that are not syn-
chronized (i.e., might be skew), we suggest now, through
an example, a small modification to the period at which
processes send messages and that at which processes suspect
each other, such that �S∗ can be implemented.

Precisely, the algorithm in Theorem 2 can be adapted as
follows. First, a process pi sends messages periodically, by
sending messages at every time instant of its local clock
tpi

. Initially all processes trust (do not suspect) all other
processes. At every odd time event of its local clock such
that tpi > 1, process pi suspects a process pj if it does
not receive a new message since the last odd time event. At
every time tpi

if pi receives a new message from pj , then
pi trusts pj . If all messages sent by pi are not lost for some
finite period tpi

+ ∆t, then all other processes pj will not
suspect pi for some period tpj + ∆t. The skew (w.r.t. some
global time) between the periods in which pi is trusted by
pj is ≤ 2tpg ∀ j (recall that tpg is the maximum bound on
the prorogation delay). In other words, this means that, if
∆t > 2tpg , then is a common duration between all processes
during which pi is not suspected. This duration is at least
∆t− 2tpg .

A similar modification can be applied to Algorithm 1 as
well, to have a valid implementation of �S∗.

C. �P∗ Algorithms for Decisive Problems

In this section we extend Theorem 8 for the set of
algorithms that solve decisive problems using �P . First we
recall the definitions of �P and �P ∗.

Failure detector �P guarantees: (i) strong completeness
and (ii) eventual strong accuracy: There exists a time after
which all correct processes are never suspected by any
correct process.

Failure detector �P∗ guarantees: (i) strong bounded com-
pleteness and (ii) probabilistic eventual strong accuracy:
Consider any finite duration ∆t. With positive probability, a
all correct processes are not suspected by any correct process
for the interval ts + ∆t, ∀ts ∈ {1, 2, 3, ...}.

Definition 5. An asynchronous algorithm A that solves a
decisive problem P is said to be �PN -bounded if it satisfies
the following properties:

1) A uses as external blocks only the failure detector
�P and communication primitives implementable in
N , such as reliable links and reliable broadcast (see
specification in Section III).

2) Assume that there exists a point in time tG when all
correct process are never suspected by any correct
process. Then A needs a bounded number of messages
to be sent after tG and until P is solved (i.e., all
correct processes decide).

Theorem 11. Any algorithm A that uses �P to solve a
decisive problem P and is �PN -bounded, solves P in N
guaranteeing termination (i.e., all processes decide) with
probability 1, when �P∗ is used instead.

Proof: We follow similar steps as those adopted in the
proof of Theorem 8.
�P∗ provides (in a stronger form) strong completeness

as �P . It thus suffices to prove that with respect to A and
with probability 1 the following is satisfied: �P∗ provides
the same accuracy as �P .

Assume the existence of an external clock. This clock
is not accessible but merely used as a reference to clarify
the proof construction. Let tstart denote the time instant at
which A starts executing. Using �P in A to solve P implies
that after tstart there is a time when all processes decide
and P is solved (see Definition 3). Precisely, after the time
when all correct processes are never suspected by any correct
process, all correct processes executing A should exchange
a finite bounded number of messages after which P would
be solved. Let M denote the upper bound on the number
of messages (be them uni-casts or broadcasts) needed by A
from the time all correct processes are never suspected by
any correct process until P is solved. All events that could
occur after tG have a bounded delay (process speeds, crash
detection, etc.), except for reliable message transmissions
(be them uni-casts or broadcasts). Using communication
primitives as the reliable links and reliable broadcast in N ,
the delay for delivering a single message may be arbitrarily
long. However it is possible, with positive probability, that a
message gets delivered after a known fixed delay, e.g., x time
slots of being sent, at any time instant at which it might be
sent (see specifications of reliable transmission Section III).
Thus and without loss of generality it is possible (with
positive probability) for the M messages to be exchanged
within a known fixed duration, say TM , after which all
processes would have decided and thus P would be solved.

Therefore, P can be solved with �P∗ if we prove that
�P∗ can with probability 1 provide the following: there
is some time instant tG ∈ {1, 2, 3, ...} after which all
correct processes are not suspected by any correct process
for the interval [tG, TM]. From Appendix A, the accuracy
of �P∗ guarantees that: with positive probability, all correct
processes are not suspected by any correct process for the
interval ts + TM , ∀ts ∈ {1, 2, 3, ...}. Since this holds for
every ts ∈ {1, 2, ...,∞}, then �P∗ can with probability 1
provide that: there is some time instant tG ∈ {1, 2, 3, ...}
after which all correct processes are not suspected by any
correct process for the interval [tG, TM].

