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In an earlier contribution it was shown that the Continuous-Properties Model (CPM) is an 

ideal theoretical model to calculate melting of ice slurries. Now with a shock-theoretical ap-

proach, it is proven that the CPM - in the limit toward a discontinuous melting - just yields the 

Stefan problem. This limit corresponds to the case when the additive content in an ice slurry 

tends toward zero.  

In heat exchangers the ice fraction of an ice slurry is a decreasing function of the downstream 

space coordinate. The specific pressure drop R=-dp/dx can differ from the inlet to the outlet 

by more than a factor ten, because the viscosity and the critical shear stress decrease with 

increasing temperature. A simple analytical model to calculate the overall pressure drop of a 

cylindrical heat exchanger (with different boundary conditions) is presented. 
 

 

 

1. INTRODUCTION 

 

It now has become clear that Phase Change Slurries (PCS) - which change phase at a well 

defined temperature, respectively in some temperature domain - have an enormous potential 

as future thermal energy transport fluids. Their attractiveness is the  high energy density given 

by the latent heat and the stabilization of temperature at the temperature of phase change, 

respectively in the phase change temperature interval, where the transition occurs. The PCS 

must be pumpable also at the lowest temperature of operation of the system. Therefore, at low 

temperatures it is allowed to freeze only partially. Suspensions with a large domain of melting 

yield a first solution. A Japanese steel company has developed a PCS on clathrate basis, 

which melts between 7 °C and 12 °C depending on the fraction of additive [1]. This temper-

ature domain is ideal for air-conditioning applications. The slurry can be simply produced by 

cooling the fluid in a plate heat exchanger without any additional mechanical scraping. More-

over, it shows negligible buoyancy effects and so in storage tanks no mixing elements are 

required. A second method, which  can guarantee fluidity to very low temperatures, is the 

technique of microencapsulation with characteristic capsule sizes of 10 to 300 m. Such PCS 

were tested by the NASA [2]. A problem is the durability of the capsules in a technical flow 

system. By choosing carrier fluids, which show very low freezing points, energy transport 

fluids for outdoor applications can be designed, e.g. for solar engineering applications. Ice 

slurries yield a subclass of the overall domain of PCS. 

 

 

2. MELTING OF ICE SLURRIES AND SHOCK THEORY 

 

In 1994 the Continous-Properties Model (CPM) was published (see Ref. [3]). This article 

takes account of numerous theoretical subtleties. In a succeeding article, presented to the IIR 
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ice slurry working party [4], it was shown that a melting ice slurry - from a  macroscopic 

point of view - can be described as a substance showing continous physical properties (see Fi-

gure 1). Most approaches to determine the physical properties of ice slurries are based on this 

macroscopic view. A probe is assumed to have a very high number of ice particles (respecti-

vely a high ice particle density) and the ice particles are assumed to be very small in compar-

ison to a characteristic overall flow length scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The thermal diffusivity of an ice slurry shows continuous behaviour. In Ref. [3] an 

example is shown how a measure of the width of the melting domain can be introduced. 

 

 

The objective is to prove that the CPM contains the Stefan problem as a special case. For this 

purpose, just as in the derivation of the CPM, the energy conservation law is introduced 
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The quantity  denotes the density, h the enthalpy density, T the temperature, t the time, and x 

the space co-ordinate. The heat flux density is given by Fick’s law, which introduces the 

thermal conductivity k  
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It is clear that (1) and (2) are identical to 
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Assuming constant pressure, with the definition 
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dT

dh
c p  ,              (4) 

 

 

and a product differentiation of (3), the nonlinear differential equation of the CPM is obtained  
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with  
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Figure 2: A moving discontinuity is described by its position s(t), where t denotes the time. 

An arbitrary position with finite distance from s in front of the discontinuity is denoted by x2 

and analogous an arbitrary position behind s by x1. 

 

 

Figure 1 shows continuous behaviour, e.g. of an ice slurry, in parameter space. In Figure 2 a 

discontinuous disturbance is presented in real space. Notify that a continuous signal in real 

space has a width, which is dependant on the dynamics. 

  

In this first approach the density is assumed to be constant. Then it follows that 
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The limit on the left-hand side of s is denoted with s- and the limit on the right-hand side of s 

with s+. Now the limiting cases )(1 tsx  and 2)( xts  are considered 
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In the two limits it is clear that the two integrals in equation (8) vanish. Therefore, the follow-

ing equation remains 
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The velocity of the discontinuity is defined by 
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Now it follows that 
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The differences in physical quantities are now described by parentheses. From (12b) it fol-

lows that 

 

       ,...,,:,0 12 hqqhU                (13a,b) 

 

Studying the limiting procedure two laws have occurred. This becomes clear if equation (1) 

and (13) are compared 
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With these rules “arbitrary” partial differential equations can be transformed to algebraic 

equations, which describe discontinuities (see also Ref. [5]). 

 

In a discontinuous case the physical properties of the two phases “solid” and “liquid” may be 

different. But in the single phases they are assumed to be constant. Therefore, in equation 

(6a,b) it follows that 
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From equation (5) in the limit 0 two equations are derived 
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which describe the usual linear heat diffusion equations for the liquid and solid phase. The 

phases are now separated by a boundary with zero width. This discontinuity must be treated 

with the derived recipies. Applying the rules (14a,b) to equation (3) leads to 
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respectively 
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Equations (16a,b) and (18), together with the initial condition and the boundary conditions on 

the solid surfaces, define the Stefan problem for discontinuous melting and freezing. 

 

 

 

3. THEORY OF PRESSURE DROP IN HEAT EXCHANGER TUBES 

 

In Ref. [6] the calculation of pressure drops of laminar flowing isothermal Bingham fluids in 

tubes is presented in detail. Here only the most important aspects are briefly resumed. At the 

beginning of a pressure drop calculation the Reynolds and the Hedström number are calcu-

lated by applying the following equations 
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where u denotes the mean velocity downstream, d the diameter of the tube,  the kinematic 

viscosity, 0 the critical shear stress,  the density and  the dynamic viscosity. If one does 

not want to solve a transcendental equation, the friction factor  can be taken from a graphical 

presentation, e.g. in Ref. [7]. Then the specific pressure drop follows directly by applying the 

two following equations 
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In these equations p denotes the pressure, L the length of the tube and pdyn the dynamic pres-

sure. 

 

The pressure drop of a cylindrical heat exchanger cannot be calculated by simply applying 

this theory for one condition. Because of the heat flux into the tube ice melts downstream and 

the viscosity and the critical shear stress decrease toward the end of the heat exchanger. 

 

Therefore, at the inlet a much higher specific pressure drop is expected than at the outlet. As a 

consequence the value R(x)=-dp/dx is a continuous function of the spatial location down-

stream. The refrigeration expert is interested in the mean specific pressure drop R . With 

knowledge of this value the pressure loss of the heat exchanger can be determined by simply 

multiplying R  with the length of the heat exchanger tube. 
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In Ref. [4], applying a perturbation analysis, it is shown that small heat fluxes into a tube with 

flowing ice slurry - in first order - do not disturb the velocity profile. With this technique it is 

possible to develop linear corrections to the specific pressure drop in the downstream direc-

tion. But such corrections will lead to erraneous results if the heat exchangers are very long. 

 

Because the velocity profile is very stable to thermodynamic perturbations, the isothermal cal-

culation method of the pressure drop can be also applied to non-isothermal flows in heat ex-

changers with small energy flux densities. - One could develop the method to calculate the 

specific pressure drop at the inlet and at the outlet of the heat exchanger and then to determine 

the arithmetic mean value. The calculation of different cases shows that the specific pressure 

drop always decreases approximately exponential. This investigation leads to a calculation 

method for practical purposes, which is not based on first physical principles. The following 

Ansatz is made 
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Considering the boundary conditions 
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the following simple equation is obtained 
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The mean value follows from an integration 
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which when performed yields the following final result 
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To demonstrate the usefulness of the model, a numerical example is calculated and presented 

in detail. The heat exchanger produces a constant heat flux density boundary condition. Other 

cases (boundary conditions) are not more difficult to solve. The main data are the following: 

 

 Ice slurry with 10 % water/talin solution 

 Length of the tube  L = 10 m 

 Inner diameter of the tube d = 10 mm 

 Total power    kWQ 10  
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 Mass flow   skgm /111.0  

 Temperature at the inlet: In = -6.0 °C 

 Temperature at the outlet: out = -4.0 °C. 

 

The example was chosen in a manner that an approximately correct heat transfer coefficient 

occurs. Further quantities are listed in the two following tables: 

 
Location  

(m) 

Temperature 

(°C) 

Enthalpy 

(kJ/kg) 

Ice fraction 

(Mass-%) 

Density 

(kg/m3) 

Velocity 

(m/s) 

Viscosity 

(mPas) 

0 - 6.0  -110 27 966 0.65 14 

2.5 - 5.3 -87.5 17 971 0.65 8 

5 - 4.7 -65 10 978 0.64 6 

7.5 - 4.3  -42.5 6 983 0.64 5 

10 - 4.0  -20 2 986 0.64 4 

 
Location  

(m) 

Crit. Sh. St. 

(Pa) 

Reynolds n.  

(-) 

Hedström n. 

(-) 

Friction fact. 

(-) 

Dyn. Press. 

(Pa) 

R 

(Pa/m) 

0 8 672 8870 0.297 205 4061 

2.5 2.3 1183 7851 0.113 205 1544 

5 1 1565 6113 0.067 200 893 

7.5 0.5 1887 4424 0.047 201 630 

10 0 2370 0 0.027 201 364 

 

Table 1: An example of the specific pressure drop in a cylindrical heat exchanger. All the 

physical properties were taken from Ref. [4], [8] and [9]. 

 

The results of the specific pressure drop are shown in Figure 3. They decrease slightly more 

than exponential. Nevertheless, the exponential function is a useful approximation. The mean  

value of the specific pressure drop is calculated by applying equation (26) 
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Figure 3: The specific pressure drop R in a heat exchanger is approximately exponentially 

decreasing. In this example R alters from the inlet to the outlet by more than a factor ten! 

“Example” denotes a step by step calculation downstream in the heat exchanger (e.g. Table 

1). “Model” denotes results obtained by applying equations (24) and (27). 
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If one would calculate R  by applying the formula for the arithmetic mean between the speci-

fic pressure drop at the inlet and the outlet, the result would be 680 Pa/m too high! 

 

 

4. OUTLOOK 

 

The investigations shall be extended to high heat flux densities, which produce high non-

linearities. At present at the University of Applied Sciences of Western Switzerland - for one 

of our industrial partners (BMS) - plate heat exchangers with ice slurry flows are investigated.  
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