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Abstract. Relative positioning systems play a vital role in current multi-
robot systems. We present a self-contained detection and tracking ap-
proach, where a robot estimates a distance (range) and an angle (bearing)
to another robot using measurements extracted from the raw data pro-
vided by two laser range finders. We propose a method based on the
detection of circular features with least-squares fitting and filtering out
outliers using a map-based selection. We improve the estimate of the rel-
ative robot position and reduce its uncertainty by feeding measurements
into a Kalman filter, resulting in an accurate tracking system. We evaluate
the performance of the algorithm in a realistic indoor environment to
demonstrate its robustness and reliability.
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1 Introduction

Several applications of cooperative distributed robotic systems (e.g., formation
control, coverage) require that each team member is aware not only of its absolute
location in a global world frame, but also of the relative locations of its teammates.
When wireless communications are reliable each robot can simply regularly share
its most recent location estimate with its teammates. Unfortunately, wireless
communications are often unreliable, and the amount of communicated data
grows quadratically with the number of robots in the team. Thus, a solution not
based on communications but relying uniquely on data locally acquired by each
robot using its own sensors is desirable.

Position estimation and tracking of the robots recently began to attract much
attention in the robotics community. Teixid et al. estimated position of circles
from a laser scan, stating that attaching a circular marker to a mobile platform
facilitates its detection [1]. Yet, their sensor was static and external to the robot,
and the experiments limited to a case when the robot has been moved manually,
not reflecting its real, dynamic motion. Within the framework of distributed
robotic systems, Huang et al. studied multi-robot cooperative localization with a
extended Kalman filter (EKF) and two new observability constrained OC-EKF
estimators [2]. In their experiments they synthetically produced the relative range
and bearing measurements using the differences in the positions of the robots,
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Fig. 1: Left: The Mbot robots. Right: Map of the environment with area allowed for
navigation marked in red.

which were recorded by the overhead camera. He and Du tracked dynamic objects
to anticipate possible collisions and choose obstacle avoidance policy, but did not
distinguish between a robot or other moving obstacle, such as human [4].

Examples of relative positioning systems operating without wireless commu-
nication are also present in the literature. For instance, Fredslund and Mataric
performed detection of a neighboring robot using combination of a laser and a
camera. The range was acquired using a laser, while the bearing was obtained
by reading the tilting of a panning camera and keeping in its center the image
of a color-coded marker attached to the other robot. In the work by Soares et
al. robots operated in an underwater medium, which makes it problematic to
both communicate and localize, yet the local acoustic ranges provided enough
information to serve as a basis to perform a formation maneuver [5]. Pugh et al.
presented an onboard relative positioning module for miniature robots, which
operated using modulated infrared signals [6]. The module enabled accurate
multi-robot formations, but was tailored to a specific robotic platform.

In this paper we present a method that enables one robot navigating in an
environment shared by other robots to obtain relative positions of the other
formation members. Our work relies exclusively on information obtained by a
robot from two on-board laser range finders without any assumptions neither
about the motion of the robot itself or the other robots or the environment.
Since it does not rely on wireless communication, it relaxes the dependence
on network reliability to deliver positioning data. For example, if the robots
can communicate their self-positioning data, but the communication network is
unreliable or has restricted bandwidth, the robots may exchange the data only
sporadically and complement the information with the relative positioning system.
Combination of both systems would be highly advantageous in a structured
indoor environment, resulting in more robust solution than any of the two used
separately. Our method is applicable to a general case, such as navigating in an
environment with dynamic obstacles that are not part of the multi-robot system
but nonetheless may impair the performance. While our detection technique
provides an accurate instantaneous estimation, stochastic dynamic filtering helps
to deal with random noise, occlusions, and false positives. Problems associated
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Fig. 2: Illustration of the sensor measurements. The x axis is aligned with the front of
the robot (a yellow circle). The two LRF are located (27.5, 0) cm and (-27.5, 0) cm

from the origin.

with relative-positioning systems, such as occlusions and limited field-of-view
restrain their scalability, however the methods presented in this work could serve
as additional back-up positioning system in case of communication issues or even
as a fundamental information source, complemented by the data from a more
reliable but computationally expensive or network-heavy nodes.

This paper is organized as follows. In Section 2 we present an overview of
our robotic platform and its sensing capabilities. In Section 3, we describe the
robot detection method using two-dimensional laser measurements and cover in
detail the robot tracking algorithm. Experiments with real robots are presented
in Section 4. We draw conclusions in Section 5.

2 System Architecture

Our method has been devised and tested on the MBot robots (Fig. 1) designed
within the frame of the ongoing FP7 European project MOnarCH (Multi-Robot
Cognitive Systems Operating in Hospitals) with the goal of introducing social
robots in real human environments and studying the establishment of relationships
between them3.

The robot is equipped with navigation, perception, interaction and low-
level safety sensors. For navigation and particularly for mapping, localization
and obstacle avoidance, the robot fuses measurements provided by laser range
finders, odometry encoders and IMU sensors. The methods presented in this
paper are based on the readings of two laser range finders (LRF) URG-04LX-
UG01 manufactured by Hokuyo. Each of the two-dimensional LRFs measures
683 distance points in a range from -120° to 120°, where 0° corresponds to the
front of the sensor [7]. The sensors are mounted inside the robot at a height
of approximately 13 cm above the ground, one in front of the robot heading
towards the front and one on the back heading backwards (see Fig. 2). Altogether,
both LRFs provide 4 m sensing distance and 360° field-of-view. After translation

3 MOnarCH, FP7, FP7-ICT-2011-9-601033 (http://monarch-fp7.eu)
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Fig. 3: Left: Raw laser readings in the robots coordinate system. The blue and the
green dots indicate positions of the two laser range finders. Right: Result of the circle

fitting algorithm. The orange circle is the detecting robot.

to the robot’s central coordinate system, each individual distance point of the
LRF reading is represented in the polar coordinates S =(di, αi), where di is the
distance of the data point from the origin of the robots coordinate system and
αi is the relative angle. Example of a raw laser scan can be seen in Fig. 3 (left).

The navigation of the MBot robots is based on a standard occupancy grid
map, serving for both motion planing [8] and self-localization [9], the latter
obtained by combining odometry with AMCL4. The robot moves using mecanum
wheels, an omnidirectional locomotion system with a maximum speed of 2.5 m/s
and maximum acceleration of 1 m/s2. A complete description of the MBot robot
can be found in [9].

3 Estimation and Tracking Method
We propose a methodology to detect a circular marker on a two-dimensional
plane using two laser range finders mounted on a mobile platform. We use one
MBot robot to locate all the others in the range of the LRF, as shown in Fig. 3.
Although in our case we validated our approach using up to three robots, there
are no intrinsic limitations of the method in terms of number of robots, as long as
the other platforms are clearly distinguishable and not occluded. The shape of the
robot base (approximated by a circle), known a priori, serves as a model for the
detection algorithm. Note however that this is not a limitation of the algorithm in
terms of generalization as such geometric assumptions can be easily customized
for any other robotic platform. In this section, we describe the steps required to
process the raw laser scan data to estimate the position of the observed robot. We
focus on a scenario involving only two robots and indicate where the algorithm
branches for generalization to a multi-robot case. An outline of the estimation
technique is presented in Algorithm 1. We denote S the set of Lidar points, CL
the set of point-cloud clusters of a size nCL and nc number of circles fitted to
the data.

3.1 Data Clustering and Selection

As described in Section 2, the laser scan after initial pre-processing is stored as a
tuple (di, αi) for each data point i. Each scan sequence produces a map of the

4 AMCL, (http://wiki.ros.org/amcl, retrieved 16 June 2015).
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immediate neighborhood with distinguishable shapes, such as walls or objects
cluttered within the sensing range (see Fig. 3). After deletion of isolated points
caused by a mixed pixel phenomenon [10], which generates a measured range
resulting from a combination of the foreground and the background objects, we
cluster the scan points using simple nearest neighbor classification by moving
a sliding window of a 3-point size and discerning the separated objects using a
minimal Euclidean distance threshold. The thresholds are highly implementation
dependent, in our case are Tsec = 20, Tmaxsel = 200 and Tminsel = 20. The acquired
segments allow the algorithm to clearly distinguish among different objects,
which might be directly adjacent to the walls. Being only attentive to the circular
candidates of a certain size, the large objects characterized by excessive segment
dimensions as well as object without curvature (the walls) are discarded.

Algorithm 1. estimation and tracking(d,α)

S = (d,α)
S ← delete outliers(S)
nCL = 0
CL[nCL]← (d0, α0)
for k = 2 to len(d): # Point cloud clustering

if dist(sk−2, sk−1) > Tsec and dist(sk−1, sk) > Tsec
CL[n++]← Sk

else
CL[n]← Sk

for k = 0 to nCL: # Cluster selection
if dist(CL[k], CL[len(CL)]) > Tmaxsel

or dist(CL[k], CL[len(CL)]) < Tminsel

CL← delete(CL[k]), nCL −−
nc = 0, [xc,yc] = ∅
for k = 0 to nCL: # Circle fitting

[xc,yc]← fit circle(CL[k]), nc++
[xc,yc]← merge overlapping circles([xc,yc], nc)
[xc,yc]← is in area allowed([xc,yc], nc)
[xgc ,y

g
c ], nc ← global to local coord([xc,yc])

[r,φ]← euclidean to polar[xgc ,y
g
c ]

3.2 Circle Fitting

The pre-selected clustered point clouds, having approximately the size of the
object to be detected, are each in turn supplied into a least squares optimization
algorithm extended with a modification of the Levenberg-Marquardt algorithm
[11]. We minimize an objective function F over a space of only two parameters,
namely the coordinates (xc, yc) of the center of the circle, expressed as a relative
polar coordinate in respect to the center of the detecting robot:

F (d,α) =

NK∑
i=1

(√
(εxdicos(αi)− xc)2 + (εydisin(αi)− yc)2 −R

)2

(1)
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where NK is the number of data points present in the current cluster K, R is the
radius of the circular object (in this case the robot radius) and εx and εy are the
signs reflecting the scan angle convention of the frontal or the rear laser. We use
the size of the robot base R = 60 cm. The result of the circle fitting algorithm
shown in Fig. 3 illustrates the situation from the Fig. 1 (right), where the robot
on the back detects the three robots present in the experimental area.

3.3 Candidate Target Validation

A structured indoor environment, such as the area where we conduct our experi-
ments (see Fig. 1), may generate false detections. Building features as support
columns or trash bins unnecessarily increase the number of false positives, there-
fore we take advantage of the fact that the environment is known a priori. The
robots of the MBot size can physically access only limited section of available
space; for instance, they cannot move under the structural elements or inside the
narrow spaces. These features generate most of the false detections, so we reduce
the search space to areas accessible by the MBot robots (Fig. 1 (right)).

Fig. 1 (right) shows a fragment of a standard occupancy grid map available
for the robot for the purpose of self-localization, based on which at any point in
time, it can estimate its own pose. Having the circle fitting algorithm return a
set of coordinates (xc, yc) of the detected robots in the local coordinate frame of
the detecting robot, we can find a precise location of the robots on the map:[

xgc
ygc

]
=

[
cos(α0) − sin(α0))
sin(α0) cos(α0)

] [
xc
yc

]
+

[
xg0
yg0

]
(2)

where the superscript g refers to the global coordinate frame and the [x0, y0, α0]
is the pose of the observing robot in the global frame. Along the presented method-
ology we developed a simple tool which allows to analyze a previously marked
occupancy grid map to determine whether a given [x, y] point on the map is
marked as accessible. The map can be edited using any of the image manipulation
programs (Fig. 1 shows an example of such a map). We assume that if the (xc, yc)
is located within the marked area, it becomes a valid measurement of the position
of the robot Rk, i.e. (xk, yk).

3.4 Range and Bearing

The detection, at this point assumed being a valid relative position of another
robot, necessitates an estimation of the associated positioning error. In this section,
we present such procedure resulting in the evaluation of the error associated with
the detection of the circle position, to be further used in a Bayesian estimator
for tracking purposes.

The range and bearing measurement error from the robot Ri to Rj is defined
as a difference between the actual relative positions and the estimated values:

r̃(r̂ij , pi, pj) = r̂ij − rij(pi, pj) (3)

φ̃(φ̂ij , pi, pj) = φ̂ij − φij(pi, pj) (4)

where p = [x, y] is the Euclidean representation of the position and the range and
bearing are a transformation of the Euclidean representation in polar coordinates:
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Fig. 4: Error map showing the accuracy (top) and the precision (bottom) of the relative
positioning method. The scale for the range error is in meter; the scale for the bearing

error is in degree. The heading of the robot is indicated with a zero degree angle.[
rij
φij

]
= T pe (pi, pj) =

[
r(pi, pj)
φ(pi, pj)

]
=

[ √
(xi − xj)2 + (yi − yj)2

atan2((yi − yj), (xi − xj))

]
(5)

The relative positioning error has been evaluated with a set of systematic
experiments, where one robot to be detected has been placed manually at distances
from 1.5 m to 5 m in steps of 0.5 m and at angles from 0° to 360° in steps of
30°. A total of 100 scans has been acquired for each location. A summary of the
results is presented in Fig. 4 as two-dimensional linearly interpolated color maps.
In general, we note that the range measurement error is smaller on the sides of
the observing robot (i.e. for 60°-120°and 240°-300°), where the observed robot
is within the sensing range of both laser range finders. The bearing error has a
tendency to increase with the distance. It can be noticed that the frontal sensor
has a reduced sensing range of 4 m. Composition of its measurements with those
of the rear laser extends the sensing range to 4.5 m on the sides, the same as it
is for the rear laser only. The color map distribution serves in the Kalman filter
tracking for the estimation of the variance associated with the positioning error
measurements. Thus, for the range and bearing measurements we assume the
observation noise to be represented by a Gaussian probability density function.
We sample the mean µ and the variance σ from the polar error (Fig. 4).

3.5 Multi-Target Tracking

The tracking, depending on an application, can be performed in the global
coordinate frame or locally, relatively to the tracking robot. The latter approach
is typically implemented for tasks requiring the robots to know only the relative
positions of the teammates, such as formation control [12]. We perform the
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tracking in the global coordinate frame because of its generality, that allows the
robots to fuse the information coming from various sources.

For our Kalman estimator, we assume a constant velocity and randomized
Gaussian acceleration motion model. The state equations of the moving robot are:

x
y
ẋ
ẏ

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1



x
y
ẋ
ẏ

+%(k),

[
x
y

]
=

[
1 0
0 1

] [
x
y

]
+ ε(k) (6)

The state vector of the observed robot is x = [x, y, ẋ, ẏ]T , the observation
model is z = [x, y]T , %(k) ∼ N (0, Q(k)) is a process noise assumed constant with
Q = [0.1 0.1 0.1 0.1]T and ε(k) ∼ N (0, T ep (ξ)) is a measurement noise with zero
mean and the variance sampled from the error map in Fiq. 4 transformed into
the Euclidean space.

4 Experiments
We considered four distinct scenarios to determine the performance of the de-
tection and tracking method presented above. They demonstrate the cases of
detection with one moving robot and one static detecting robot (I), one moving
robot and one detecting robot following it (II), fusion of measurements of one
observed robot from two detecting robots (III) and detection of two robots
by one static robot (IV). Experiments have been carried out in a lab setting
cluttered with appliances. For each scenario, we performed 12 runs (unless stated
otherwise) and present the time-wise average as well as an aggregate of the
results. The experiments took place in an area frequently visited by humans,
who either traversed the space or walked around the room performing their
duties and not being attentive to the motion of the robots. While the presence
of the people caused instantaneous false detections, the Kalman filter was able
to reduce their impact to a minimum. We obtain our ground-truth from the
self-localization system provided by the navigation software (see Section 2 and
[9]). The self-positioning capabilities of the robots, characterized by an accuracy
of about 10 cm, serves as a ground truth measurement used in the performance
evaluation.

The accuracy of the relative positioning system has been evaluated using
standard root-mean-square error between the estimates and the actual values:

EAV (t) =

√
1

nd

∑nd
i=1 ‖pi(t)− p̂i(t)‖2 , ET =

1

Tmax

∑Tmax
j=1 (EAV (j)) (7)

The EAV (t) is the time-wise average error over the number of experiments
nd and the ET is the total average error over the duration of a single run.

4.1 Results

I. Single robot detection from a static platform. In the first scenario we
fix the position of the detecting robot and move the observed robot on a simple
trajectory as shown in Fig. 5 (left). The sampling frequency is fixed to 1 Hz to
reflect the effect of the Kalman filter. The tracking estimates of the observed
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Fig. 5: Single robot detection from a static platform. (Left) Sample trajectory of the
observed robot and the position estimate. The observing robot position is [5.9, 7.1]. GT

is the ground truth, M are the measurements and E the estimate. This convention
remains valid throughout the paper. (Top right) Time-wise average and SD of the error.

(Bottom right) The average error aggregated for all the runs.

robot follows very closely the position reported by its self-positioning system,
with the error not exceeding 20 cm (see Fig. 5, top right). The Fig. 5 (bottom
right) shows the aggregate error of each experiment. The total average error
during the period when the robot was detected is around 10 cm, slightly higher
than expected given the error map. We hypothesize that the increased error
might have been caused by approximation of the robot base with a circle - the
actual body of the robot is flattened on the sides.

II. Single robot detection from a mobile platform. The second case studies
the impact of the detecting platform movement on the tracking system. The
observed robot follows the trajectory shown in 6 (left) and the detecting robot
keeps a constant distance to the estimated position using a simple proportional
feedback controller. The sampling frequency is 1 Hz. The detection error is
bounded and level off (Fig. 6, bottom right); the average error EAV alternates
around the value of 20 cm (Fig. 6, top right). The increase of the detection error
in comparison with the static case can be caused by inaccuracies associated with
the self-positioning system of the detecting robot. During two runs (outliers of
7 and 9 in Fig. 6 bottom right) we encountered false positive detections that
proved necessity of a Kalman filter to reduce their impact on a final performance.

III. Detection and fusion from two static platforms. The following set
of experiments is conducted as to approximate the effect of sensor fusion from
two sensing platforms. To be precise, one observed robot moves around the arena
and the two observing robots are static and positioned so that the observed robot
for a certain amount of time is outside of the sensing range of at least one of
them. The two detecting robots are communicating their Kalman filter estimates
and each of them fuses the data for a better approximation of the position of the
observed robot. For the two observing robots Ri and Rj , estimating the position
of the robot Rk as [xki , y

k
i ] and [xkj , y

k
j ] respectively, the result of the sensor fusion

can be calculated by combination of the Gaussians:
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Fig. 6: Single robot detection from a mobile platform. (Left) The trajectory of the
observed robot (True), the measurements (Meas.) and the estimate (Estim.), DR is the

trajectory of the following (detecting) robot.

1

σ2
T

=
1

σ2
ik

+
1

σ2
jk

, xkT = σ2
T (
xki
σ2
ik

+
xkj
σ2
jk

) (8)

where σ2
mn(rmn, φmn) is the standard deviation associated with the measurement

of the robot Rm to the robot Rn obtained from the error map (Fig. 4). The
method is fully scalable, up to the capacity of the communication network and can
easily accommodate additional nodes. An additional advantage of this method
emerges when the observed robot ventures outside of the range of one of the
detecting robot. For example, if robot Ri does not obtain an observation, its
variance is set to infinity limσ2

ik→∞ σ2
T = σ2

jk, the corresponding estimate levels
out and the fused estimate in the two-node case attains value of the other
measurement as in limσ2

ik→∞ xkT = xkj .

Fig. 7 (left) shows the estimates recorded by the two detecting robots and
the fused estimate. The detection range of robot R1 covers only the upper part
of the area (above 10.6 m), below which the fused estimate follows directly that
provided exclusively by robot R2. Otherwise, the fusion significantly improves
the overall estimate, lowering the error and reducing its variance (Fig. 7, top
right). The difference in comparison to single-platform case is clearly visible in
Fig. 7 (bottom right), where the largest error during the runs did not exceed half
of that achieved using a single observing robot.

IV. Multi-robot detection from a static platform The final experiment
focuses on a multi-robot detection scenario. We perform 10 runs of an experiment
with 2 robots moving on a rectangular trajectory (see Fig. 8, left), with the detect-
ing robot placed in the middle of the arena. Although the tracking performs very
well on average (Fig. 8, right), there is a number of false positives (red outliers),
caused principally by random objects appearing as having a circular surface from
a specific observation point. While these outliers are usually eliminated by the
Kalman filter, in this case they might have been caused by temporary occlusions
or faulty data association. Occasional false positives do not impair the tracking,
but their cause needs to be further investigated.
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Fig. 7: Detection and fusion from two static platforms. The detecting robots R1 and R2

are positioned at (6.0, 6.7) and (6.4, 13.5) respectively. F is the fused estimate. (Top
right) shows the average errors of both robots over the runs.

5 Conclusions

In this work we presented a lidar-based relative position estimation and tracking.
A distinguishing feature of our work is the fact that each robot only relies on
two-dimensional scan provided by a laser range finder for sensory information. By
exploiting simple geometric features of the individual robotic platform, we were
able to reliably estimate and track the position of the other robots present in the
environment. Our method can be easily extended for tracking objects of various
sizes and shapes by changing model of the object, allowing for detection and
tracking of heterogeneous robots. We evaluated our approach during systematic
real-world experiments, where we studied the performance in scenarios involving
various combinations of static and mobile robots.

Experimental results show that while the results in terms of accuracy are
useful in the targeted range of 20-30 cm, further effort is needed to increase the
reliability of the lidar-based relative positioning method, possibly improving on
its individual components (classification, tracking etc.). We will further focus on
increasing robustness of our method by adding a data association module for
tracking multiple robots in cluttered arenas and be able to deal with moving
obstacles that can be misclassified as robots. We intend to apply our work as
a complementary tool in multi-robot behaviors. In particular, we plan to use
the methods presented in this paper as an additional source of information in
multi-robot formations behavior [12], significantly reducing its dependence on
communication. In contrast to the systems that depend on the local communi-
cation, the relative positioning method suffers from the line-of-sight limitation,
therefore merging the complementary strengths of both techniques is highly
beneficial.

Acknowledgements. Supported by ISR/LARSyS Strategic Funds from FCT
project FCT[UID/EEA/5009/2013] and FCT/11145/12/12/2014/S and FCT/PD
/BD/105784/2014 and by European MOnarCH project FP7-ICT-9-2011-601033.
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Fig. 8: Multi-robot detection from a static platform. The green mark shows the position
of the observing robot at [6.1, 10.7]. (Right) The red outliers are the false detections.
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