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ABSTRACT

We present a new technique for estimating the specular peak of
the bidirectional reflectance distribution function (BRDF) based on
finite rate of innovation (FRI) sampling. The specular component of
the BRDF varies rapidly, so it is challenging to acquire it by point-
wise sampling. Yet, the knowledge of its precise location is key to
render realistically complex materials. We show how to adapt the
FRI framework to accurately determine the location of a single pulse
when the sampling kernel is unknown. We use this result to deter-
mine the position of the specularity, and then estimate its shape by
non-linear optimization. We demonstrate the feasibility of our ap-
proach in simulations and via a practical experiment using a custom-
built BRDF acquisition device.

Index Terms— Bidirectional Reflectance Distribution Function,
Finite Rate of Innovation, Specularity, Sampling

1. INTRODUCTION

Traditional images, which are 2D projections of real scenes, do not
capture all physical characteristics of the light. For example a 2D im-
age does not allow relighting of a scene or a change of perspective.
The bidirectional reflectance distribution function (BRDF) describes
how materials interact with light and is one step towards richer repre-
sentations of the real world. In its elementary form, a BRDF can be
decomposed into two parts: the diffuse (or Lambertian) part — a low-
frequency component — and the specular part — a high-frequency
peak whose direction has the same angle as the incoming light with
respect to the surface normal. The diffuse part is relatively easy to ac-
quire and measure, but the acuity of the specular component requires
a high sampling rate to ensure a faithful reconstruction.

We take inspiration from finite rate of innovation (FRI) sampling
to develop a low sample density scheme to identify the specularity.
FRI is a sampling framework allowing, from only a few samples,
exact reconstruction of parametric functions that are not necessarily
bandlimitted [1, 2]. In BRDF acquisition, we do not know the shape
of the specularity beforehand, which would be required for tradi-
tional FRI techniques. We show in this paper how to generalize FRI
to unknown sampling kernels, allowing us to estimate the specular-
ity location. Even though we concentrate on the single pulse model,
our goal is also to set up a sampling framework to enable acquisition
of materials with multiple specularities, which typically appear on
rough surfaces.
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2. BACKGROUND ON LIGHT REFLECTION

The BRDF ρ(wi,wo) is a four-dimensional function that mea-
sures the power of light that is reflected in the viewing direction
wo = [θo, ϕo]T given a light source with incoming direction
wi = [θi, ϕi]T (see Fig. 1). The BRDF is specific to the wave-
length and in practice we often use a separate reflectance function
for each spectral band acquired; for the sake of clarity however, we
focus here on a single channel.

Fig. 1: Vectors involved in the BRDF function: ωi is the incoming
light direction, ωo is the outgoing light direction, and n is the surface
normal. The vectors `x and `y represent the projection of ωi onto the
xy plane.

A wide range of parametric models have been proposed to repre-
sent BRDFs [3]: in general, the diffuse part is described by a constant
term and the specularity is approximated by a function with a few ar-
guments. A relatively simple yet widely used BRDF model is due to
Ward [4]. It exists in two flavors, one for isotropic and another for
anisotropic specularities. The isotropic version is given by
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where kd is the diffuse reflection coefficient, ks is the specular re-
flection coefficient, α is the specular roughness and h = ωi+ωo

∥ωi+ωo∥
is

the halfway vector between ωi and ωo.
To understand how the BRDF transforms the incoming light, we

need one more ingredient: the rendering equation. It quantifies the
amount of light Lo emitted from a point along the direction ωo by
integrating the product of the BRDF ρ and the incoming light Li for



all possible directions ω on the hemisphere Ω:

Lo(ωo) = ∫
Ω
Li(ω)ρ(ω,ωo)⟨n,ω⟩dω. (1)

The surface normal of the material is denoted by n and the inner
product ⟨n,ω⟩, which is often absorbed in ρ, is called the normal
attenuation. It accounts for the fact that objects appear darker when
the angle between the light beam and the surface gets closer to π

2
.

Despite its generality, the rendering equation does not take into
consideration every aspect of the light’s behavior. For instance, it
does not capture inter-reflections, transmission, subsurface scattering
or polarization. Nevertheless, (1) is a good approximation of the
physics of light without being too complex.

2.1. BRDF acquisition

BRDF acquisition has been widely studied in the computer graph-
ics community and is often performed using a gonioreflectometer —
a device that takes several photographs of the material or object of
interest under different illuminations.

In most approaches [3, 5], the light source is pointwise, i.e.,
Li(ω) is represented as a Dirac delta; this allows us to get rid of
the integral in (1) and provides a direct reading of ρ for a specific
incoming light direction ωi. The main drawback of pointwise light
sources is that the characterization of the narrow specular component
requires a large number of samples. For example, in [3], more than a
million values are used to accurately describe a single material.

One of the approaches to reduce the number of samples in BRDF
acquisition and still faithfully capture the specularity is to extend
the area illuminated by the light source. The earliest example of
extended light sources shaped the radiance of the light as a Gaus-
sian distribution and modeled the BRDF with a cosine and a Dirac
pulse [6]. More recently, [7] suggested to acquire spatially-varying
BRDFs of an almost flat surface using a linear light source and by
only varying the inclination of the incoming light θi. Light sources
can also take more elaborate patterns, and enable BRDF acquisition
in a different domain, such as the spherical harmonic domain [8] or
the Fourier domain [9].

3. FINITE RATE OF INNOVATION SAMPLING

The archetypal signal with a finite rate of innovation is a τ -periodic
stream of several Diracs delta functions. Because of space limita-
tions, we focus here on the single pulse case, i.e., signals of the form

x(t) = ∑
k∈Z

a0δ(t − t0 − kτ),

where t0 represents the location of the pulse and a0 its amplitude.
We now review how to recover t0 and a0 using at least 2 Fourier
series coefficients:

X[m] = 1

τ
a0e

−i2πt0m/τ , m ∈ Z. (2)

One of the key elements in the FRI theory is the search for an annihi-
lating filter A such that (A ∗X)[m] = 0,∀m ∈ Z. The annihilating
filter coefficients are found by solving the linear system of equations

A[0]X[m] +A[1]X[m − 1] = 0,

for m = 1, . . . ,M −1 and M ≥ 2. It can be shown [1] that any signal
X[m] of the form a0u

m
0 , with a0 ∈ R and u0 ∈ C can be annihilated

by the filter with z-transform

A(z) = A[0] +A[1]z−1 = 1 − u0z
−1. (3)

From (2), we see that the knowledge of the root u0 = e−i2πt0/τ of
the z-transform of the filter annihilating X[m] enables the recovery
of the time location of the Dirac pulse:

t0 = −
τ∠u0

2π
, (4)

where ∠u0 denotes the phase of u0. Once we know t0, we can
retrieve a0 using (2). When dealing with noisy data or model mis-
match, two methods borrowed from the spectral estimation literature
are generally used: Cadzow’s method [10] and the matrix-pencil al-
gorithm, which is based on ESPRIT [11].

FRI is not limited to Dirac pulses; an example is [12], where the
Dirac pulse model is extended to include width and asymmetry. Fur-
thermore, FRI signals can be sampled with various kernel shapes;
as demonstrated in [2], signals sampled with polynomials or expo-
nential reproducing kernels can be recovered with FRI. Note that the
parameter estimation in these methods requires to know the signal
model and the sampling kernel. In the next section, we show that t0
can be recovered without necessarily knowing the kernel shape.

4. FRI WITH UNKNOWN SAMPLING KERNEL

Now let us assume that x(t) is convolved with an unknown τ -
periodic filter φ(t); the only constraint we impose on φ(t) is that it
must be symmetric (the reason of this is made clear later).

Let y(t) = (x⊛ φ)(t). By the convolution theorem, the Fourier
series coefficients of y(t) are given by

Y [m] = 1

τ
a0u

m
0 Φ[m], m ∈ Z,

where Φ[m] are the Fourier series coefficients of φ(t).
As in Equation (3), we can find an annihilating filter for Y [m]

of length two: A[0] = 1 and A[1] = −v0, where v0 is the root of the
filter. Using M ≥ 2 Fourier series coefficients, we can estimate v0

by solving

y1 = v0y0, (5)

with
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The closest approximation of v0 in (5) is simply given by the orthog-
onal projection of y1 onto y0:

v0 =
y0

∗y1

y0
∗y0

= ∑
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m=1 (α0Φ[m − 1]um−1
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purely real

u0.

The key observation is that, since the sampling kernel is assumed to
be symmetric, its Fourier series coefficients are real. Hence the ex-
pression multiplying u0 is a real quantity, which implies that ∠v0 =
∠u0. In other words, the filter annihilating Y [m] allows us to re-
trieve the location t0 from its root using Equation (4), as long as the
unknown filter φ(t) is symmetric.



As a final remark, note that even though the kernel shape is not
necessary in the estimation of the location, it is needed for the recov-
ery of the amplitude a0: it is simply impossible to differentiate the
contribution of the kernel φ(t) from the contribution of the signal
x(t) by observing y(t) only.

4.1. Extension to 2D signals

The generalization of the above result to 2-dimensional signals is
straightforward if we assume that the sampling kernel is separable;
i.e., φ = φx ∗ φy , where φx is a horizontal and φy a vertical filter
(see [13] for more details). The separability of the sampling kernel
combined with the convolution theorem yields the following expres-
sion for the 2D Fourier series coefficients:

Y [m,n] = 1

τ2
a0e

−i2πx0m/τe−i2πy0n/τΦx[m]Φy[n], m,n ∈ Z,

where (x0, y0) is the location of the Dirac pulse and a0 its amplitude.
We can reduce the problem to the 1-dimensional case by selecting the
coefficients Y [m,0] for m ∈ Z:

Y [m,0] = 1

τ2
A0e

−i2πx0m/τΦx[m],

with A0 = a0Φy[0]. In the same manner, we can estimate y0 using
the coefficients Y [0, n] for n ∈ Z. We need M ≥ 2 Fourier coeffi-
cients in each dimension to find the coordinates (x0, y0).

4.2. Noisy case

We now assess the performance of the FRI estimation procedure in
the presence of noise with the following simulation. We generate a
single Dirac with a random location t0 ∈ [0, τ), convolved with a
Gaussian kernel of variance σ2 = 0.05. We sample y(t) as

ys[n] = ⟨y(t), h (t/T − n)⟩ n = 0,1, . . . ,2M − 1,

where T = τ
2M

and h(t) is an ideal lowpass filter whose role is to
avoid aliasing in the low-frequency Fourier coefficients. We then cor-
rupt the samples ys[n] with additive white Gaussian noise (AWGN)
of variance σ2

ε . We compare the efficiency of the FRI estimation
procedure with the Cramér-Rao bound; given 2M discrete uniform
samples, the variance var (t̂0) of any unbiased estimator t̂0 of t0 is
lower-bounded by CRB (t̂0). In the AWGN case and with a single
unknown parameter, the CRB is given by

CRB (t̂0) =
σ2
ε

∑2M−1
n=0 ( ∂ys[n]

∂t0
)

2
.

Results of the simulation can be seen in Fig. 2 for M = 2 and
8; we consider the FRI-based estimator to be fully efficient for an
SNR above 10dB. Note that our FRI implementation is coupled with
ESPRIT [11] to reduce the effect of the noise.

5. APPLICATION TO SPECULARITY ESTIMATION

We show here how to apply the FRI theory to reconstruct a BRDF
from its filtered version and discuss the technicalities of the applica-
tion of the algorithm.

First, we reduce the number of dimensions of the BRDF from
4 to 2 by fixing the viewing angle ωo. Furthermore, we project the
normalized incoming light vector ωi onto the xy plane, so that we
can make use of the Fourier theory — the foundation of FRI. We call
the 2 components of the projection `x and `y (cf. Fig. 1).
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Fig. 2: Sampling a single noisy τ -periodic Dirac convolved with a
Gaussian kernel (τ = 1, σ = 0.05). Using 2M = 2⋅2 and 2⋅8 samples,
we measure the disparity ∆t0/τ between the FRI-estimated t̂0 and
t0 for a given input SNR (dotted lines) and compare it with the CRB
(solid lines). Each data point is the average of 10,000 repetitions.

As stated in Section 2.1, the extended light source approach al-
lows us to smoothen the specularity. The resulting acquired signal
can be seen as the convolution of a Dirac pulse with two kernels: its
(narrow) pulse shape and the extended light kernel. While we have
some control on the shape of the extended light kernel (if it is not
known, we can at least measure it), the specular pulse shape is un-
known. Fortunately, both kernels are symmetric, which makes the
specular peak a suitable candidate for our algorithm.

It should be noted that the BRDF of most materials is a mixture
of a diffuse and a specular component. Since we are only interested
in the specular part, we need to subtract the diffuse component from
the acquired signal; luckily, the diffuse component is wide and can
be easily estimated, for instance with a few pointwise light sources.

5.1. Simulations

We run numerical experiments in 1 and 2 dimensions to demonstrate
the feasability of our method. First, we generate a BRDF function
ρ that follows a Ward distribution with kd = 1, ks = 1

1000
, a random

surface normal vector n, and α = 0.008, which corresponds to a rel-
atively narrow specular peak (see Fig. 3.A). Note that the specular
peak of the Ward model is not a separable kernel, but our experi-
ments have shown that it is close to it (it can be approximated with a
Gaussian function, which is separable).

The signal ρ is then convolved with a Gaussian pulse to simulate
the effect of a diffuse light and then sampled at a relatively low rate:
50 samples are taken in the 1D case and 40 samples in each dimen-
sion in the 2D case (Fig. 3.B). Recall that the theory states that the
smoothing kernel should be periodic; this is not the case in our ex-
periments. This difference can however be neglected as the kernels
we use decay fast enough.

The diffuse component parameters (surface normal n and dif-
fuse albedo kd) are estimated with photometric stereo [14] from a
lowpass version of ρ. After we subtract the (filtered) diffuse compo-
nent, we are left with a low-frequency version of the specular peak
(Fig. 3.C). We run the FRI algorithm on its DFT coefficients to obtain
the location of the specularity.

We then estimate the width of the specularity; this is a nonlinear
problem which we tackle with the Levenberg-Marquardt algorithm.
Recall that this procedure requires to know the extended light shape.
In practice, it can be measured by lighting a purely specular material
with the desired light kernel from several locations. The rendering
equation (1) shows that when ρ is a Dirac pulse, Lo directly provides
pointwise samples of the shape of the light.

Finally, the BRDF is reconstructed using the recovered parame-
ters (Fig. 3.D). Visually, the estimation matches closely the original
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Fig. 3: Example of the estimation of the BRDF parameters with FRI in the 1D (top) and 2D (bottom) cases. (A) original BRDF ρ; (B) signal
lowpass-filtered with a Gaussian kernel (σ = 0.5 in 1D and Σ = [0.3,0; 0,0.3] in 2D) and sampled; (C) lowpass specularity after subtraction
of the diffuse part; (D) Reconstructed signal: the specularity is estimated with FRI and the diffuse component with photometric stereo. The
parameter θi represents the inclination of the incoming light vector and (`x, `y) are the coordinates of its projection onto the xy plane.

shape. Quantitatively, we measure an SNR of 43.4 dB in the 1D case
and 52.2 dB in the 2D case.

6. BRDF ACQUISITION WITH A CUSTOM-MADE DEVICE

To confirm the above results, we perform a practical acquisition with
a custom-made light dome; it consists of an extensible motorized arm
with a light source at its extremity. The arm can be rotated around
the center, where a camera is installed (see Fig. 4). This enables us to
position the incoming light at almost any location on the hemisphere.
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Fig. 4: Light dome for BRDF acquisition: (left) draft and (right)
photograph of it capturing the spatially varying BRDF of a painting.

We propose to localize the specularity of a flat mirror (its dif-
fuse component is considered nil and it does not produce inter-
reflections). We position it with an angle with respect to the camera
plane such that t0 does not correspond to an inclination of 0.

We focus the camera on the surface of the mirror and take 100
photographs of it; for each capture, we vary the inclination angle θi
of the illumination. Moreover, we use both (almost) pointwise and
extended light sources; the extended kernel is obtained by placing a
diffusion filter of unknown shape in front of the light. For a single
pixel selected in the middle of the frame, the two captured BRDFs are
shown in Fig. 5. By taking only 20 samples from the filtered BRDF,
we can effectively recover the location of the specularity with FRI;
this is clearly impossible from 20 pointwise samples.
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 BRDF with pointwise light (100 samples)
 Diffused BRDF (100 samples)
 Diffused BRDF (20 samples)
 FRI location estimation

Fig. 5: 1D BRDFs of a mirror with pointwise (continuous line) and
extended (dashed line) light source, where θi is the inclination of the
light direction. The location (*) is estimated from 20 samples (●).

7. CONCLUSION

We have proposed a new FRI-based technique to estimate the loca-
tion of a single Dirac pulse convolved with an unknown symmetric
sampling kernel. We applied the method to the problem of identify-
ing the specular component of the BRDF in numerical simulations
and in a practical experiment. In both cases, we showed that the
specularity is well approximated from a small number of samples.
We also expect that the sampling framework we put in place will en-
able us to extend the method to materials with multiple specularities.

One of the limitations of the presented approach is that it essen-
tially uses a projection of the light vectors onto the xy plane. Instead,
it would be beneficial to directly perform the estimation in the spher-
ical domain; recent work [15] has indeed shown that the FRI scheme
can be applied on the sphere as well.
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