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Abstract. We assume a scenario where an attacker can mount several indepen-
dent attacks on a single CPU. Each attack can be run several times in independent
ways. Each attack can succeed after a given number of steps with some given and
known probability. A natural question is to wonder what is the optimal strategy
to run steps of the attacks in a sequence. In this paper, we develop a formalism to
tackle this problem. When the number of attacks is infinite, we show that there is
a magic number of stepsm such that the optimal strategy is to run an attack for
msteps and to try again with another attack until one succeeds. We also study the
case of a finite number of attacks.
We describe this problem when the attacks are exhaustive keysearches, but the
result is more general. We apply our result to the learning parity with noise (LPN)
problem and the password search problem. Although the optimal m decreases as
the distribution is more biased, we observe a phase transition in all cases: the
decrease is very abrupt fromm corresponding to exhaustive search on a single
target tom= 1 corresponding to running a single step of the attack on eachtarget.
For all practical biased examples, we show that the best strategy is to usem= 1.
ForLPN, this means to guess that the noise vector is 0 and to solve thesecret by
Gaussian elimination. This is actually better than all variants of the Blum-Kalai-
Wasserman (BKW) algorithm.

1 Introduction

We assume that there are an infinite number of independent keys K1,K2, . . . and that
we want to find at least one of these keys by trials with minimalcomplexity. Each key
search can be stopped and resumed. The problem is to find the optimal strategy to run
several partial key searches in a sequence. In this optimization problem, we assume that
the distributionsDi for eachKi are known. We denoteD = (D1,D2, . . .). Consider the
problem of guessing a keyKi , drawn followingDi , which is not necessarily uniform.
We assume that we try all key values exhaustively from the first to the last following a
fixed ordering. If we stop the key search onKi afterm trials, the sequence of trials is
denoted byii · · · i = im. It has a worst-case complexitym and a probability of success
which we denote by PrD(im).

Instead of running parallel key searches in sequence, we could consider any other
attack which decomposes instepsof the same complexity and in which each step has

⋆ Supported by a grant of the Swiss National Science Foundation, 200021143899/1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148019025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a specific probability to be the succeeding one. We assume that the ith attack has a
probability PrD(im) to succeed withinm steps and that each step has a complexity 1.
The fundamental problem is to wonder how to run steps of theseattacks in a sequence
so that we minimize the complexity until one attack succeeds. For instance, we could
run attack 1 for up tomsteps and decide to give up and try again with attack 2 if it fails
for attack 1, and so on. We denote bys= 1m2m3m· · · this strategy. Unsurprisingly, when
theDi ’s are the same, the average complexity ofs is the ratio CD(1m)

PrD(1m) whereCD(1m) is

the expected complexity of the strategy 1m which only runs attack 1 form steps1 and
PrD(1m) is its probability of success.

Traditionally, when we want to compare single-target attacks with different com-
plexity C and probability of successp, we use as a rule of the thumb to compare the
ratio C

p . Quite often, we have a continuum of attacksC(m) with a number of steps lim-

ited to a variablem and we tunem so thatp(m) is a constant such as12. Indeed, the

curve ofm 7→ C(m)
p(m) is often decreasing (so has an L shape) or decreasing then increasing

(with a U shape) and it is optimal to targetp(m) = 1
2. But sometimes, the curve can

be increasing with aΓ shape. In this case, it is better to run an attack with very low
probability of success and to try again until this succeeds.In some papers, e.g. [14], we
consider minC(m)

p(m) as a complexity metric to compare attacks. Our framework justifies
this choice.

LPN and Learning with Errors (LWE) [21] are two appealing problems in cryptog-
raphy. In both cases, the adversary receives a matrixV and a vectorC=Vs+D wheres
is a secret vector andD is a noise vector. ForLPN, the best solving algorithm was pre-
sented in Asiacrypt 2014 [12]. It brings an improvement overthe well-knownBKW [5]
and its variants [15,11]. The best algorithm has a sub-exponential complexity.

Assuming thatV is invertible, by guessingD we can solves and check it with
extra equations. So, this problem can be expressed as the oneof guessing a correct
vectorD of small weight, which defines a biased distribution. Here, the distribution of
D corresponds to the weighted concatenation of uniform distributions among vectors of
the same weight. We can thus study this problem in our formalism. This was used in
[8]. This algorithm is also cited in [6] and by Lyubashevsky2.

Both LPN andLWE fall in the aforementioned scenario of guessing ak-bit biased
noise vector by a simple transformation. Work on breaking cryptosystems with biased
keys was also done in [18].

The guessing game that we describe in our paper also matches well the password
guessing scenario where an attacker tries to gain access to asystem by hacking an ac-
count of an employee. There exists an extensive work on the cryptanalytic time-memory
tradeoffs for password guessing [2,13,20,3,19,4], but thegame we analyse here requires
no pre-computation done by the attacker.

Our results. We develop a formalism to compare strategies and derive someuseful
lemmas. We show that when we can run an infinite number of independent attacks of the

1 CD(1m) can be lower thanm since there is a probability to succeed before reaching themth
step.

2 http://www.di.ens.fr/ ˜ lyubash/talks/LPN.pdf
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same distribution, an optimal strategy is of the form 1m2m3m· · · and it has complexity

min
m

CD(1m)

PrD(1m)

for some “magic” valuem. This justifies the rule of the thumb to compare attacks with
different probabilities of success.

When the probability that an attack succeeds at each new stepdecreases (e.g., be-
cause we try possible key values in decreasing order of likelihood), there are two re-
markable extreme cases:m= n (wheren is the maximal number of steps) corresponds
to the normal single-target exhaustive search with a complexity equal to theguesswork
entropy[17] of the distribution;m= 1 corresponds to trying attacks for a single step
until it works, with complexity 2−H∞ , whereH∞ is themin-entropyof the distribution.

When looking at the “magic” valuem in terms of the distributionD, we observe
that in many cases there is a phase transition: whenD is very close to uniform, we have
m= n. As soon as it becomes slightly biased, we havem= 1. There is no graceful
decrease fromm= n to m= 1.

We also treat the case where we have a finite number|D| of independent attacks to
run. We show that there is an optimal “magic” sequencem1,m2, . . . such that an optimal
strategy has form

1m12m1 · · · |D|m11m22m2 · · · |D|m2 · · ·

The best strategy is first to run all attacks form1 steps in a sequence then to continue to
run them form2 steps in a sequence, and so on.

Although our results look pretty natural, we show that thereare distributions making
the analysis counter-intuitive. Proving these results is actually non trivial.

We apply this formalism toLPN by guessing the noise vector then performing a
Gaussian elimination to extract the secret. The optimalmdecreases as the probabilityτ
to have an error in a parity bit decreases from1

2. Forτ = 1
2, the optimalm corresponds

to a normal exhaustive search. Forτ < 1
2 − ln2

2k , wherek is the length of the secret, the
optimalm is 1: this corresponds to guessing that we have no noise at all. So, there is a
phase transition.

Furthermore, forLPN with τ = k−
1
2 , which is what is used in many cryptographic

constructions, the obtained complexity ispoly ·e
√

k which is much better than the usual

poly ·2
k

log2 k that we obtain for variants of theBKW algorithm [6]. More generally, we
obtain a complexity ofpoly ·e−k ln(1−τ). It is not better than theBKW variants for con-
stantτ but becomes interesting whenτ < ln2

log2 k .

When the number of samples is limited in theLPN problem withτ = k−
1
2 , we can

still solve it with complexityeO(
√

k(lnk)2) which is better thaneO( k
ln lnk) with theBKW

variants [16].
For LWE, the phase transition is similar, but the algorithm form= 1 is not better

than theBKW variants. This is due to the 0 noise having a much lower probability in
LWE (which is 1− τ for LPN) in the discrete Gaussian distribution inZq.

For password search, we tried several empirical distributions of passwords and ob-
tained again that the optimalm is m= 1. So, the complexity is 2−H∞ .

3



Besides the 3 problems we study here, we believe that our results can prove to be
useful in other cryptographic applications.

Structure of the paper.Section 2 formalizes the problem and presents a few useful
results. In Section 3 we characterize the optimal strategies and show they can be given
a special regular structure. We then apply this in Section 4 with LPN and password
recovery. Due to lack of space, we do the same forLWE in the full version of this paper.
We study the phase transition of the ”magic” numberm in Section 5 and conclude in
Section 6.

2 TheSTEP game

In this section we introduce our framework through which we address the fundamental
question of what is the best strategy to succeed in at least one attack when we can step
several independent attacks. LetD = (D1,D2, . . .) be a tuple of independent distribu-
tions. If it is finite,|D| denotes the number of distributions. We formalize our framework
as a game where we have a ppt adversaryA and an oracle that has a sequence of keys
(K1,K2, . . .) whereKi ← Di . At the beginning, the oracle assigns the keys according to
their distribution. These distributions are known to the adversaryA . The adversary will
test each keyKi by exhaustive search following a given ordering of possiblevalues. We
can assume that values are sorted by decreasing order of likelihood to obtain a minimal
complexity but this is not necessary in our analysis. We onlyassume a fixed order. So,
our framework generalizes to other types of attacks in whichwe cannot choose the or-
der of the steps. Each test onKi corresponds to a step in the exhaustive search forKi . In
general, we write “i” in a sequence to denote that we run one new step of theith attack.
The sequence of “i”s defines a strategys. It can be finite or not. The sequence of steps
we follow is thus a sequence of indices. For instance,im means “run theKi search form
steps”. The oracle is an algorithm that has a special command: STEP(i). When queried
with the commandSTEP(i), the oracle runs one more step of the ith attack ( so, it incre-
ments a counterti and tests ifKi = ti , assuming that possible key values are numbered
from 1). If this happens then the adversary wins. The adversary wins as soon as one
attack succeeds (i.e., he guesses one of the keys from the sequenceK1,K2, . . . ).

Definition 1 (Strategies).Let D be a sequence of distributions D= (D1, . . . ,D|D|)
(where|D| can be infinite or not). A strategy for D is a sequence s of indices between1
and|D|. It corresponds to Algorithm 1. We letPrD(s) be the probability that the strategy

Algorithm 1 Strategys in theSTEP game
1: initialize attacks 1, . . . , |D|
2: for j = 1 to |s| do
3: STEP(sj): run one more step of the attacksj and stop if succeeded
4: end for
5: stop (the algorithm fails)
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succeeds and CD(s) be the expected number ofSTEP when running the algorithm until
it stops. We say that the strategy is full ifPrD(s) = 1 and that it is partial otherwise.

For example fors= 11223344· · ·, Algorithm 1 tests the first two values for each key.

Definition 2 (Distributions). A distribution Di over a set of size n is a sequence of
probabilities Di = (p1, . . . , pn) of sum 1 such that pj ≥ 0 for j = 1, . . . ,n. We assume
without loss of generality that pn 6= 0 (Otherwise, we decrease n). We can equivalently
specify the distribution Di in an incrementalway by a sequence Di = [p′1, . . . , p

′
n] (de-

noted with square brackets) such that

p′j =
p j

p j + · · ·+ pn
p j = p′j(1− p′1) · · · (1− p′j−1)

for j = 1, . . . ,n.

We have PrD(i j) = p1+ · · ·+ p j = 1− (1− p′1) · · · (1− p′j), the probability of thej first
values underDi .

When considering the key search, it may be useful to assume that distributions are
sorted by decreasing likelihood. We note that the equivalent condition top j ≥ p j+1 with
the incremental description is1p′j

+ j ≤ 1
p′j+1

+ j +1, for j = 1, . . . ,n−1.

We define the distribution that the keys are not among the already tested ones.

Definition 3 (Residual distribution). Let D= (D1, . . . ,D|D|) be a sequence of distri-
butions and let s be a strictly partial strategy for D (i.e.,PrD(s) < 1). We denote by
“ |¬s” the residual distribution in the case where the strategy sdoes not succeed, i.e.,
the event¬s occurs.

We let #occs(i) denote the number of occurrences ofi in s. We have

D|¬s=
(

D1|¬1#occs(1), . . . ,D|D||¬|D|#occs(|D|)
)

whereDi |¬iti = [p′i,ti+1, . . . , p
′
i,ni

] if Di = [p′i,1, . . . , p
′
i,ni

]. Hence, defining distributions
in the incremental way makes the residual distribution being just a shift of the original
one.

We write PrD(s′|¬s) = PrD|¬s(s
′) andCD(s′|¬s) =CD|¬s(s

′).
Next, we prove a list of useful lemmas in order to compute complexities, compare

strategies, etc.

Lemma 4 (Success probability).Let s be a strategy for D. The success probability is
computed by

Pr
D
(s) = 1−

|D|
∏
i=1

Pr
Di
(¬i#occs(i))

Proof. The failure corresponds to the case where for alli, Ki is not in{1, . . . ,#occs(i)}.
The independence of theKi implies the result. ⊓⊔
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Lemma 5 (Complexity of concatenated strategies).Let ss′ be a strategy for D ob-
tained by concatenating the sequences s and s′. If PrD(s) = 1, we havePrD(ss′) =PrD(s)
and CD(ss′) =CD(s). Otherwise, we have

Pr
D
(ss′) = Pr

D
(s)+

(

1−Pr
D
(s)
)

Pr
D
(s′|¬s)

CD(ss′) = CD(s)+
(

1−Pr
D
(s)
)

CD(s
′|¬s)

Proof. The first equation is trivial from the definition of residual distributions and con-
ditional probabilities.

The prefix strategys succeeds with probability PrD(s). Let c be the complexity of
s conditioned to the event thats succeeds. Clearly, the complexity ofss′ conditioned
to this event is equal toc. The complexity ofss′ conditioned to the opposite event is
equal to|s|+CD(s′|¬s). So,CD(ss′) = PrD(s)c+ (1−PrD(s))(|s|+CD(s′|¬s)). The
complexity ofs conditioned to thats fails is equal to|s|. So,CD(s) = PrD(s)c+(1−
PrD(s))|s|. From these two equations, we obtain the result. ⊓⊔

Lemma 6 (Complexity with incremental distributions). Let Di = [p′i,1, . . . , p
′
i,ni

] and
let s be a strategy for D= (D1,D2, . . .). We have

Pr
D
(s) = 1−

|s|
∏
t′=1

(1− p′st′ ,#occs1···st′ (st′ )
)

CD(s) =
|s|
∑
t=1

t−1

∏
t′=1

(1− p′st′ ,#occs1···st′ (st′ )
)

Proof. By induction, the probability that the strategy fails on thefirst t − 1 steps is

qt = ∏t−1
t′=1(1− p′st′ ,#occs1···st′ (st′ )

). We can expressCD(s) = ∑|s|t=1 qt . So, we can deduce

PrD(s) andCD(s). ⊓⊔

Example 7.ForD1 = (p1, . . . , pn) = [p′1, . . . , p
′
n] andm≤ n, due to Lemma 6 we have

Pr
D
(1m) = p1+ · · ·+ pm = 1− (1− p′1) · · · (1− p′m)

and

CD(1m) =
m

∑
t=1

t−1

∏
j=1

(1− p′j)

=
m

∑
t=1

(pt + · · ·+ pn) = p1+2p2+ · · ·+mpm+mpm+1+ · · ·+mpn

The second equality uses the relations from Definition 2.

We want to concatenate an isomorphic copyw of a strategyv to another strategyu.
For this, we make sure thatw andu have no index in common.
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Definition 8 (Disjoint copy of a strategy).Two strategies v and w are isomorphic if
there exists an injective mappingϕ such that wt = ϕ(vt) for all t and Dϕ(i) = Di for all
i. So, CD(v) =CD(w). Let u and v be two strategies for D. Whenever possible, we define
a new strategy w= newu(v) such that v and w are isomorphic and w has no index in
common with u.

We can define it by recursion: if w1 = ϕ(v1), . . . ,wt−1 = ϕ(vt−1) are already defined
andϕ(vt) is not, we set it to the smallest index i (if exists) which doesnot appear in u
nor in w1, . . . ,wt−1 and such that Di = Dvt .

For instance, ifv = 1m, all Di are equal, andi is the minimal index which does not
appear inu, we havenewu(v) = im.

Lemma 9 (Complexity of a repetition of disjoint copies).Let s be a non-empty strat-
egy for D. We define new strategies s+1,s+2, . . ., disjoint copies of s, by recursion as fol-
lows: s+r = newss+1···s+(r−1)

(s). We assume that s+1,s+2, . . . ,s+(r−1) can be constructed.
If PrD(s) = 0, then

CD(ss+1s+2 · · ·s+(r−1)) = r ·CD(s).

Otherwise, we have

CD(ss+1s+2 · · ·s+(r−1)) =
1− (1−PrD(s))r

PrD(s)
CD(s)

For r going to∞, we respectively obtain CD(ss+1s+2 · · ·) = +∞ and

CD(ss+1s+2 · · · ) =
CD(s)
PrD(s)

For instance, fors= 1m andDi all equal, the disjoint isomorphic copies ofs ares+r =
(1+ r)m. I.e., we runm steps the(1+ r)th attack. So,ss+1s+2 · · ·s+(r−1) = 1m2m· · · rm.

Proof. We prove it by induction onr. This is trivial for r = 1. Let s̄r = ss+1s+2 · · ·s+r .
If it is true for r−2, then

CD(s̄r−1) = CD(s̄r−2)+ (1−Pr
D
(s̄r−2))CD(s+(r−1)|¬s̄r−2)

=

{

1−(1−PrD(s))r−1

PrD(s)
CD(s)+ (1−PrD(s̄r−2))CD(s+(r−1)|¬s̄r−2) if PrS(s)> 0

(r−1) ·CD(s)+ (1−PrD(s̄r−2))CD(s+(r−1)|¬s̄r−2) if PrS(s) = 0

Clearly, we have 1−PrD(s̄r−2) = (1−PrD(s))r−1 andCD(s+(r−1)|¬s̄r−2) =CD(s). So,
we obtain the result. ⊓⊔

Example 10.For all Di equal, if we lets= 1m, we can compute

CD(1
m2m· · · rm) =

1− (1−PrD(1m))r

PrD(1m)
CD(1

m)

=
1− (pm+1+ · · ·+ pn)

r

p1+ · · ·+ pm
(p1+2p2+ · · ·+mpm+mpm+1+ · · ·+mpn)
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We now considerr = ∞. For an infinite number of i.i.d distributions we have

CD(1m2m· · ·) = CD(1m)

PrD(1m)

=
p1+2p2+ · · ·+mpm+mpm+1+ · · · ,mpn

p1+ · · ·+ pm

=
∑m

i=1 ipi +m(1− p1+ · · ·+ pm)

p1+ · · ·+ pm

= Gm+m

(

1
PrDi (1

m)
−1

)

whereGm =CD1|1m(1m) andD1|1m = ( p1
PrD1(1

m) , . . . ,
pm

PrD1(1
m)). If D1 is ordered,Gm cor-

responds to the guesswork entropy of the key with distributionD1|1m.
We can see two extreme cases fors= 1m2m· · · . On one end we have a strategy of

exhaustively searching the key until it is found, i.e. takem= n. On the other extreme we
have a strategy where the adversary tests just one key beforeswitching to another key,
i.e. m= 1. For the sequencess= 12· · · ands= 1n2n · · · , i.e. m= 1 andm= n, when
D1 is ordered by decreasing likelihood, we obtain the following expected complexity:

m= 1⇒ CD(12· · ·) = 1
p1

= 2−H∞(D1)

m= n⇒ CD(1n2n · · · ) =CD(1n) = Gn,

whereH∞(D1) andGn denote the min-entropy and the guesswork entropy of the distri-
butionD1, respectively.

We now define a way to compare partial strategies.

Definition 11 (Strategy comparison).We define

minCD(s) = inf
s′;PrD(ss′)=1

CD(ss′)

the infimum of CD(ss′), i.e. the greatest of its lower bounds. We write s≤D s′ if and only
if minCD(s) ≤minCD(s′). A strategy s is optimal ifminCD(s) =minCD( /0), where/0 is
the empty strategy (i.e. the strategy running no step at all).

So,s is better thans′ if we can reach lower complexities by starting withs instead ofs′.
The partial strategys is optimal if we can still reach the optimal complexity when we
start bys.

Lemma 12 (Best prefixes are best strategies).If u and v are permutations of each
other, we have u≤D v if and only if CD(u)≤CD(v).

Proof. Note that PrD(u) = 1 is equivalent to PrD(v) = 1. If PrD(u) = 1, it holds that
minCD(u) = CD(u) andminCD(v) = CD(v). So, the result is trivial in this case. Let us
now assume that PrD(u)< 1 and PrD(v)< 1. For anys′, by using Lemma 5 we have

CD(us′) =CD(u)+
(

1−Pr
D
(u)
)

CD(s
′|¬u)
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So,

inf
s′;PrD(us′)=1

CD(us′) =CD(u)+
(

1−Pr
D
(u)
)

inf
s′;PrD(us′)=1

CD(s
′|¬u)

The same holds forv. Sinceu andv are permutations of each other, we haveD|¬u=
D|¬v. So, PrD(us′) = PrD(vs′) and CD(s′|¬u) = CD(s′|¬v). Hence, infCD(s′|¬u) =
infCD(s′|¬v). Furthermore, we have PrD(u) = PrD(v). So,minCD(u) ≤ minCD(v) is
equivalent toCD(u)≤CD(v). ⊓⊔

3 Optimal strategy

The question we address in this paper is: what is the optimal strategy for the adversary
so that he obtains the best complexity in ourSTEP formalism? That is, we try to find
the optimal sequences for Algorithm 1. At a first glance, we may think that agreedy
strategy always making a step which is the most likely to succeed is an optimal strategy.
We show below that this is wrong. Sometimes, it is better to run a series of unlikely steps
in one given attack because we can then run a much more likely one of the same attack
after these steps are complete. However, criteria to find this strategy are not trivial at all.

The greedy algorithm is based on looking at thei for which the next applicablep′j
in Di is the largest. With our formalism, this defines as follows.

Definition 13 (Greedy strategy).Let s be a strategy for D. We say that s is greedy if

Pr
D
(st |¬s1 · · ·st−1) = max

i
Pr
D
(i|¬s1 · · ·st−1)

for t = 1, . . . , |s|.
The following example shows that the greedy strategy is not always optimal.

Example 14.We take|D| = ∞ and all Di equal toDi = (2
3,

7
36,

5
36) = [2

3,
7
12,1]. Af-

ter testing the first key, we haveD|¬1 = (D′,D2,D3, . . .) with D′ = ( 7
12,

5
12) = [ 7

12,1].
Since2

3 > 7
12, the greedy algorithm would then test a new key and continue testing new

keys. I.e., we would haves= 1234· · · as a greedy strategy. By applying Lemma 5, the
complexity is solution toc= 1+ 1

3c, i.e.,c= 3
2. However, the one-key strategys= 111

has complexity
2
3
+2

7
36

+3
5
36

=
53
36

<
3
2

so the greedy strategy is not the best one.

Remark:The above counterexample works even when|D| is finite. If we takeD =
(D1,D2) with Di = (2

3,
7
36,

5
36) = [2

3,
7
12,1], the greedy approach would test the strategy

s= 1211 that has a complexity of

1+
1
3

(

1+
1
3

(

1+
5
12
·1
))

=
161
108

.

This is greater than53
36, the complexity of the strategy 111.

Next, we note that we may have no optimal strategy as the following example shows.
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Example 15 (Distribution with no optimal strategy).Let qi be an increasing sequence
of probabilities which tends towards 1 without reaching it.Let Di = [qi ,qi , . . . ,qi ,1] of
supportn. We haveC(in) = 1

qi
(1− (1−qi)

n) which tends towards 1 asi grows. So, 1 is
the best lower bound of the complexity of full strategies. But there is no full strategy of
complexity 1.

When the number of different distributions is finite, optimal strategies exist.

Lemma 16 (Existence of an optimal full strategy).Let D= (D1,D2, . . .) be a se-
quence of distributions. We assume that we have in D a finite number of different distri-
butions. There exists a full strategy s such that CD(s) is minimal.

Proof. Clearly,c = infCD(s) over all full strategiess is well defined. Essentially, we
want to prove thatc is reached by one strategy, i.e. that the infimum is a minimum.
First, if c = ∞, all full strategies have infinite complexity, and the result is trivial. So,
we now assume thatc<+∞ and we prove the result by a diagonal argument.

We now constructs= s1s2 · · · by recursion. We assume thats1s2 · · ·sr is constructed
such thatminC(s1s2 · · ·sr) = c. We concatenates1, . . . ,sr to im wherem is such that
PrD[im−1|¬s1 · · ·sr ] = 0 and PrD[im|¬s1 · · ·sr ] > 0. The values ofi to try are the ones
such thati appears ins1, . . . ,sr (we have a finite number of them), and the ones which do
not appear, but we can try only one for each differentDi . We take the choice minimizing
minC(s1s2 · · ·sr im) and setsr+1 = im. So, we construct a strategys.

If one key Ki is tested until exhaustion, we have PrD(s) = 1. If no key is tested
until exhaustion, there is an infinite number of keys with same distributionDi which are
tested. Ifp= PrD[im] is the nonzero probability with the smallestmof this distribution,
there is an infinite number of tests which succeed with probability p. So, PrD(s) ≥
1− (1− p)∞ = 1. In all cases, asshas a probability to succeed of 1,s is a full strategy.

What remains to be proven is thatCD(s) = c. We now denote bysi the ith step ofs.
Let qt be the probability thats fails on the firstt − 1 steps. We haveCD(s) =

∑|s|t=1 qt . Let ε > 0. For eachr, by construction, there exists a tail strategyv such that
CD(s1 · · ·sr−1v)≤ c+ ε. Sinceqt is also the probability thats1 · · ·sr−1v fails on the first
t−1 steps fort ≤ r, we have∑r

t=1qt ≤CD(s1 · · ·sr−1v)≤ c+ ε. This holds for allr. So,
we haveCD(s)≤ c+ε. Since this holds for allε > 0, we haveCD(s)≤ c. Consequently,
CD(s) = c: s is an optimal and full strategy. ⊓⊔

The following two results show what is the structure of an optimal strategy.

Theorem 17. Let D= (D1,D2, . . .) be a sequence of distributions. We assume that we
have in D a finite number of pairwise different distributionsbut an infinite number of
copies of each of them in D. There exists a sequence of indicesi1 < i2 < · · · and an
integer m such that Di1 =Di2 = · · · and s= im1 im2 · · · is an optimal strategy of complexity
CD(i

m
1 )

PrD(im1 )
.

Here are examples of optimalm for different distributions.

Example 18 (Uniform distribution).For the uniform distributionpi =
1
n, with 1≤ i ≤ n.

We get PrD(1m) = m
n andGm = m+1

2 . With this we obtainCD(1m2m· · · ) = n− m−1
2 .

Thus, the value ofm that minimizes the complexity ism= n andCD(1m2m· · ·) = n−1
2 .

The best strategy is to exhaustively search the key until it is found.
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Example 19 (Geometric distribution).For the geometric distribution with parameterp,
we havepi = (1− p)i−1p, with i = 1,2, . . . or Di = [p, p, . . .]. Due to Lemma 5, we can
see that for every infinite strategys, CD(s) = 1

p.

In Appendix A we study concatenations of uniform distributions.
We note that Th. 17 does not extend if some distribution has a finite number of

copies as the following example shows.

Example 20 (Distribution with no optimal strategy of the form im1 im2 · · · ). Let D1 = [1−
ε,ε,ε, . . . ,ε,1] of supportn andD2 = D3 = · · ·= [p, . . . , p,1] for ε < p≤ 1

2 andn large
enough. Given a full strategys, the formula in Lemma 5 defines a sequenceqt(s) =
p′st ,#occs1···st (st)

. We can see that for all full strategiessands′, if |s| ≤ |s′| andqt(s)≥ qt(s′)

for t = 1, . . . , |s|, thenCD(s) ≤CD(s′). With this, we can see thats= 12n is better than
all full strategies with length at leastn+ 1. There are only two full strategies with
smaller length: 1n and 2n. We haveCD(2n) = 1−(1−p)n

p ≈ 1
p ≥ 2 asn grows. We have

CD(12n) = 1+ ε 1−(1−p)n

p ≈ 1+ ε
p asn grows, soCD(12n)<CD(2n) for n large enough.

We haveCD(1n) = 1+ ε 1−(1−ε)n−1

ε = 2− (1− ε)n−1 ≈ 2 soCD(12n) < CD(1n) for n
large enough. For all strategies of length at leastn+ 1, s= 12n collected the largest
possiblep′ values. So, the best strategy iss= 12n. It is better than any strategy of form
im1 im2 · · · .

When we have a finite number of distributions, we may have no optimal strategy
of the form in Th. 17. We may have multiple layers of repetition of im as the following
result shows.

Theorem 21. Let D1 be a distribution of finite support n. Let D= (D1,D2, . . . ,D|D|) be
a finite sequence of length|D| in which D1 = D2 = · · ·= D|D|. There exists a sequence
m1, . . . ,mr such that the strategy

s= 1m12m1 · · · |D|m11m22m2 · · · |D|m2 · · ·1mr

is optimal.

We provide toy examples below.

Example 22.We takeD = (D1,D2) with D1 = D2 = (3
5,

9
25,

1
50,

1
50) = [3

5,
18
20,

1
2,1]. Here

are the complexities of some full strategies.

CD(1111) =
146
100

= 1.46

CD(12111) =
792
500

= 1.584

CD(11211) =
732
500

= 1.464

CD(121211) =
7892
5000

= 1.5784

CD(112211) =
7292
5000

= 1.4584

so the last strategy is the best one. Notice that this is also agreedy strategy.
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Example 23.We takeD = (D1,D2) with D1 = D2 = ( 70
100,

20
100,

5
100,

3
100,

1
100,

1
100) =

[ 70
100,

2
3,

1
2,

3
5,

1
2,1]. Here are the complexities of some full strategies.

CD(111111) = 1.48

CD(1211111) = 1.44

CD(12121111) = 1.438

CD(121212111) = 1.439

CD(121122111) = 1.444

so s= 12121111 is the best one. For this example we have that the optimal strategy
requiresm1 = 1, m2 = 1 andm3 = 4. It is also greedy.

3.1 Proof of Th. 17

To prove the result, we first state a useful lemma.

Lemma 24 (Is it better to dosor s′ first?). If s and s′ are non-empty and have no index

in common (i.e., if st 6= s′t′ for all t and t′), then ss′ ≤D s′s if and only if CD(s)
PrD(s)

≤ CD(s
′)

PrD(s′)
in [0,+∞], with the convension thatcp =+∞ for c> 0 and p= 0.

Proof. Due to Lemma 5, when PrD(s)< 1 we have

CD(ss′) =CD(s)+
(

1−Pr
D
(s)
)

CD(s
′|¬s)

Sinces′ does not make use of the distributions which are dropped inD|¬s, we have
CD(s′|¬s) =CD(s′). So,

CD(ss′) =CD(s)+
(

1−Pr
D
(s)
)

CD(s
′)

This is also clearly the case when PrD(s) = 1. Similarly,

CD(s
′s) =CD(s

′)+
(

1−Pr
D
(s′)
)

CD(s)

So,CD(ss′)≤CD(s′s) is equivalent to

CD(s)+
(

1−Pr
D
(s)
)

CD(s
′)≤CD(s

′)+
(

1−Pr
D
(s′)
)

CD(s)

So, this inequality is equivalent toCD(s)
PrD(s)

≤ CD(s′)
PrD(s′)

. ⊓⊔

We can now prove Th. 17.

Proof (of Th. 17).Due to Lemma 16, we know that optimal full strategies exist. Letsbe
one of these. We leti be the index of an arbitrary key which is tested ins. We can write
s= u0im1u1im2 · · · imr ur wherei appears in nou j andmj > 0 for all j, andu1, . . . ,ur−1

are non-empty.
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Sinces is optimal, by permutingimj and eitheru j−1 or u j , we obtain larger com-
plexities. So, by applying Lemma 24, we obtain

CD(im1)

PrD(im1)
≤ CD(u1|¬u0)

PrD(u1|¬u0)
≤ CD(im2|¬im1)

PrD(im1|¬im1)
≤ ·· · ≤CD(ur |¬u0 · · ·ur−1)

We now want to replaceur in sby some isomorphic copy ofswhich is not overlap-
ping with u0im1u1im2 · · · imr . Due to the optimality ofs, we would deduce

CD(ur |¬u0 · · ·ur−1)≤CD(s|¬u0 · · ·ur−1) =CD(s)

so CD(im1)
PrD(im1)

≤CD(s) which would imply that the repetition of isomorphic copies of im1

are at least as good ass, so CD(im1)
PrD(im1)

= CD(s) due to the optimality ofs. But to replace
ur in s by the isomorphic copy ofs, we need to rewrite the originals containingur by
some isomorphic copy in which indices are left free to implement another isomorphic
copy ofs.

For that, we split the sequence(1,2,3, . . .) into two subsequencesv andv′ which
are non-overlapping (i.e.vt 6= vt′ for all t andt ′), complete (i.e. for every integerj, v
containsj or v′ containsj), and representing each distribution with infinite number of
occurrences (i.e. for allj, there exist infinite sequencest1 < t2 < · · · andt ′1 < t ′2 < · · ·
such thatD j = Dvtℓ

= Dv′
t′
ℓ

for all ℓ). For that, we can just constructv andv′ iteratively:

for eachj, if the number ofj ′ < j such thatD j ′ =D j in v or v′ is the same, we putj in v,
otherwise (we may have only one more instance inv), we put j in v′ (to balance again).
For instance, if allDi are equal, this construction puts all oddj in v and all evenj in v′.
Hence, we can defines′ = newv(s) ands′′ = newv′(s). s′ will thus only use indices in
v′ while s′′ will only use indices inv. Therefore,s′ ands′′ will be isomorphic, with no
index in common. So,CD(s) =CD(s′) =CD(s′′).

Following the split ofs, the strategys′ can be writtens′ = u′0i′m1u′1i′m2 · · · i′mr u′r with

CD(im1)

PrD(im1)
=

CD(i′
m1)

PrD(i′m1)
≤CD(u

′
r |¬u′0 · · ·u′r−1) =CD(u

′
r |¬u′0i′m1u′1i′m2 · · · i′mr )

If we replaceu′r in s′ by s′′, sinces′ is optimal, we obtain a larger complexity. So,

CD(u
′
0i′m1u′1i′m2 · · · i′mr u′r)≤CD(u

′
0i′m1u′1i′m2 · · · i′mr s′′)

These two strategies have the prefixu′0i′m1u′1i′m2 · · · i′mr in common. We can write their
complexities by splitting this common prefix using Lemma 5. By eliminating the com-
mon terms, we deduce

CD(u
′
r |¬u′0i′m1u′1i′m2 · · · i′mr )≤CD(s

′′|¬u′0i′m1u′1i′m2 · · · i′mr ) =CD(s
′′) =CD(s)

We deduce
CD(im1)

PrD(im1)
≤CD(s)

Let i1 < i2 < · · · be a sequence of keys using the distributionDi . By Lemma 9, the
strategyim1 im2 · · · has complexityCD(im1)

PrD(im1) . Sinces is optimal, we haveCD(im1)
PrD(im1) ≥CD(s).

Therefore,CD(i
m1)

PrD(im1) =CD(s). ⊓⊔
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3.2 Proof of Th. 21

For the proof of Theorem 21 we need the result of the followinglemma.

Lemma 25. Let s= uiav jbw be an optimal strategy with n occurrences of each key. We
assume that i6= j, a < b, u does not end with i, v has no occurrence of either i or j,
and w has equal number of occurrences for i and j. Furthermore, we assume that either
a 6= 0, or v is nonempty and starts with some k such that u does not endwith k. Then,
CD(s) =CD(u jb−aiav jaw).

Lemma 25 will be used in two ways.

1. For s= u′ jcv jbw with c > 0, b > 0, v with no i or j, and balanced occurrences
of i and j in w, which has the same complexity ass′ = u′ jb+cvw (so, to apply the
lemma we definea = 0, u = u′ jc, k = j, ands= u′ jci0v jbw; all hypotheses are
verified exceptv non-empty, but the result is trivial for emptyv). This means that
we can regroupjc and jb when there are separated by av with no i and followed by
a balanced tailw.

2. Fors= uiav jbw with 0< a< b, v with no i or j, and balanced occurrences ofi and
j in w, which has the same complexity ass′ = u jb−aiav jaw. This means that we can
balanceia and jb when there are separated by av with no i or j and followed by a
balanced tailw.

The proof of Lemma 25 is given in Appendix B.
In what follows, we say that a strategy is in anormal formif for all t, i 7→ #occs1···st (i)

is a non-increasing function, i.e. #occs1···st (i) ≥ #occs1···st (i +1) for all i. For instance,
1112322133 is normal as the number ofSTEP(1) is at no time lower than the number
of STEP(2) and the same for the number ofSTEP(2) andSTEP(3).

Since all distributions are the same, all strategies can be rewritten into an equiv-
alent one in a normal form: for this, for the smallestt such that there existsi such
that #occs1···st (i) < #occs1···st (i + 1), it must be thatst = i + 1 and #occs1···st−1(i) =
#occs1···st−1(i+1). We can permute all valuesi andi+1 in the tailstst+1 · · · and obtain
an equivalent strategy on which the function becomes non-increasing at stept and is
unchanged before. By performing enough such rewriting, we obtain an equivalent strat-
egy in normal form. For instance, 12231332 is not normal. Thesmallestt is t = 3 when
we make a secondSTEP(2) while we only did a singleSTEP(1). So, we permute 1 and
2 at this time and obtain 12132331. Then, we havet = 7 and permute 2 and 3 to obtain
12132321. Then, againt = 7 to permute 1 and 2 to obtain 12132312 which is normal.

We now prove Th. 21.

Proof (of Th. 21).Let sbe an optimal strategy. Due to the assumptions, it must be finite.
We assume w.l.o.g. thats is in normal form. We note that we can always completes in a
form s2a23a3 · · · so that the final strategy has exactlyn occurrences of eachi. So, we as-
sume w.l.o.g. thatshas equal number of occurrences. We writes= 1m1x11m2x2 · · ·1mr xr

where thext ’s are non-empty and with no 1 inside.
As detailed below, we rewritexr (and push some steps earlier inxr−1) so that we

obtain a permutation of the blocks 2mr , . . . , |D|mr . The rewriting is done by preserving
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the probability of success (which is 1) and the complexity (which is the optimal com-
plexity). Then, we do the same operation inxr−1 and continue untilx1. When we are
done, eachxt becomes a permutation of the blocks 2mt , . . . , |D|mt . Finally, we normalize
the obtained rewriting ofsand obtain the result.

We assume thats has already been rewritten so that for eacht ′ = t +1, . . . , r, the
xt′ sub-strategy is a permutation of the blocks 2mt′ , . . . , |D|mt′ . Then, we explain how
to rewritext . We make a loop forj = 2 to |D|. In the loop, we first regroup all blocks
of j ’s by using Lemma 25 withi = 1: while we can writext = u′ jcv jbw′ wherec> 0,
b > 0, v is non-empty with noj, andw′ has no j, we write u = 1m1x11m2x2 · · ·1mt u′

andw= w′1mt+1xt+1 · · ·1mr xr , and seta= 0 andi = 1. This rewritesxt = u′ jb+cvw′ by
preserving the complexity and making a permutation. When this while loop is com-
plete, we can only find a single block ofj ’s in xt and writext = v jbw′, wherev and
w′ have no j. So, we apply again Lemma 25 to balance 1mt and jb: we write u =
1m1x11m2x2 · · ·xt−1 andw=w′1mt+1xt+1 · · ·1mr xr , and seta=mt andi = 1. This rewrites
1mt xt to jb−mt 1mt v jmt w′ by preserving the complexity and making a permutation. So,
this rewritesxt to v jmt w′ andxt−1 to xt−1 jb−mt . When the loop ofj is complete,xt is a
permutation of the blocks 2mt , . . . , |D|mt .

Interestingly, the sequencem1, . . . ,mr is unchanged from our starting optimal nor-
mal full strategys. If we rather start from an optimal full strategys which is not in
normal form, we can still see how to obtain this sequence: foreacht, m1+ · · ·+mt is
the next record number of steps for an attacki after them1+ · · ·+mt−1 record. That is
the number of steps for the attacki whensdecides to move to another attack. ⊓⊔

3.3 Finding the optimal m

We provide here a simple criterion for the optimalm of Th. 17.

Lemma 26. We let D1 = (p1, . . . , pn) = [p′1, . . . , p
′
n] be a distribution and define D=

(D1,D1, . . .). Let m be such that s= 1m2m· · · is an optimal strategy based on Th. 17.
We have 1

p′m
≤CD(1m2m· · ·)≤ 1

p′m+1
.

Proof. We lets= 2m3m· · · We know thatCD(1m+1s) ≥CD(1ms) since 1ms is optimal.
So,

0≤ CD(1m+1s)−CD(1ms)

= (1−Pr
D
(1m))(CD(1s|¬1m)−CD(s))

= (1−Pr
D
(1m))(1− p′m+1 ·CD(s))

from which we deduce 1
p′m+1
≥CD(s). Similarly, we have

0≥ CD(1
ms)−CD(1

m−1s)

= (1−Pr
D
(1m−1))(CD(1s|¬1m−1)−CD(s))

= (1−Pr
D
(1m−1))(1− p′m ·CD(s))

from which we deduce1
p′m
≤CD(s). ⊓⊔
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We note that ifpm = pm+1, then

p′m+1 =
pm+1

pm+1+ · · ·+ pn
=

pm

pm+1+ · · ·+ pn
>

pm

pm+ pm+1+ · · ·+ pn
= p′m

which is impossible (given the result from Lemma 26). Consequently, we must have
pm 6= pm+1. So, in distributions when we have sequences of equal probabilities pt , we
can just look at the largest indext in the sequence as a possible candidate for being the
valuem.

Lemma 26 has an equivalent for Th. 21 (given in the full version of this paper due
to lack of space).

4 Applications

4.1 Solving sparseLPN

We will model the Learning Parity with Noise (LPN) problem in ourSTEP game. As
we will see, we use the noise bits as the keys the adversaryA is trying to guess. First of
all, we formally give the definition of theLPN problem.

Definition 27 (SearchLPN). Let s
U←− Z

k
2, let τ ∈]0, 1

2[ be a constant noise parameter
and letBerτ be the Bernoulli distribution with parameterτ. Denote by Ds,τ the distri-
bution defined as

{(v,c) | v U←− Z
k
2,c= 〈v,s〉⊕d,d← Berτ} ∈ Z

k+1
2 .

AnLPN oracleO
LPN
s,τ is an oracle which outputs independent random samples accord-

ing to Ds,τ.
Given queries from the oracleOLPN

s,τ , the searchLPN problem is to find the secret s.

As studied in [6], theLPN-solving algorithms which are based onBKW [5] have a

complexitypoly ·2
k

log2 k . The naive algorithm guessing that the noise is 0 and runninga
Gaussian elimination until this finds the correct solution works with complexitypoly ·
(1−τ)−k. So, the latter is much better as soon asτ < ln2

log2 k , and in particular forτ = k−
1
2

which is the case for some applications [1,9]. Experiments reported in [6] also show that
for τ = k−

1
2 , the Gaussian elimination outperforms theBKW variants fork> 500.

The Gaussian elimination algorithm just reduces to finding ak-bit noise vector. It
guesses that this vector is 0. If this does not work, the algorithm tries again with new
LPN queries. We can see this as guessing at least onek-bit biased vectorKi which
follows the distributionDi = Berkτ defined by Pr[Ki = v] = τHW(v)(1− τ)k−HW(v) in
our framework. The most probable vector isv= 0 which has probability Pr[Ki = 0] =
(1− τ)k. The above algorithm corresponds to tryingK1 = 0 thenK2 = 0, ... i.e., the
strategy 123· · · in our framework. We can wonder if there is a better 1m2m3m· · · . This
is the problem we study below. We will see that the answer is no: usingm= 1 is the
best option as soon asτ is less than1

2− ε for ε = ln2
2k which is pretty small.
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For instance, forLPN768, 1√
768

we obtainCD(12· · ·) = 241. I.e., 241 calls to theSTEP

command which corresponds to collectingk LPN queries and making a Gaussian elim-
ination to recover the secret based on the assumption that the error bits are all 0. If
we add up the cost of running Gaussian elimination in order torecover the secret, we
obtain a complexity of 270. This outperforms all theBKW variants and proves that
LPN768, 1√

768
is not a secure instance for a 80-bit security. Furthermore,this algorithm

outperforms even the covering code algorithm [12]. Our results are strengthened by the
results from [6] where we see that there is a big difference between the performance of
CD(12· · ·) and the one of the covering code algorithm.

Di is a composite distribution of uniform ones in the sense defined in Appendix A.

Namely,Di = ∑k
w=0 τk(1− τ)k−wUw whereUw is uniform of support

(

k
w

)

. By Theo-

rem 17, we know that there exists a magicm for which the strategys= 1m2m· · · is
optimal. The analysis of composite distributions further says thatm must be of form

m= Bw = ∑w
i=0

(

k
i

)

for some magicw. Let cm be the complexity of 1m2m· · · . A value

w= k, i.e.m= n corresponds to the exhaustive search of the noise bits. Forw= 0, i.e.
m= 1, the adversary assumes that the noise is 0 every time he receivesk queries from
theLPN oracle.

We first computed experimentally the optimalm for theLPN100,τ instance where we
take 0< τ < 1

2. The magicm takes the value 1 for aτ which is not close to12. As shown
on Fig. 1, it changes ton= 2100 around the valueτ = 0.4965. This boundary between
two different strategies corresponds to the valueτ = 1

2 − ln2
2k computed in our analysis

below. Interestingly, there is no intermediate optimalmbetween 1 andn.
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Fig. 1: The change of optimalm for solvingLPN100,τ

For cryptographic parameters, c1 is optimal. The optimalw depends onτ. The case
whenτ is lower than1

k is not interesting as it is likely that no error occurs so allw lead
to a complexity which is very close to 1. Conversely, forτ = 1

2, the exhaustive search
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has a complexity ofcn =
1
2(2

k +1) andw= 0 has a complexity ofc1 = 2k. Actually,
Di is uniform in this case and we know that the optimalm completes batches of equal
consecutive probabilities. So, the optimal strategy is theexhaustive search.

We now show that forτ < 0.16, the best strategy is obtained forw= 0.

Below, we usepBw = τw(1− τ)k−w andc1 = (1− τ)−k.

Letwc be a threshold weight and letα=Pr(1Bwc). For 0<w≤wc, due to Lemma 26,
if cBw is optimal we have

cBw ≥
1

p′Bw

=
PrD(¬1Bw−1)

pBw

≥ PrD(¬1Bwc )

pBw

=
1−α
pBw

=
1−α
( τ

1−τ
)w c1≥

1−α
τ

1−τ
c1

For τ < 0.16, we have τ
1−τ < 0.20. So, ifα ≤ 4

5 we obtaincBw > c1. This contradicts

thatw is optimal. Forwc = τk, the Central Limit Theorem gives us thatα≈ 1
2 which is

less than4
5. So, now such that 0< w≤ τk is optimal.

Now, for w≥ wc, we have

cw =
CD(1Bw)

PrD(1Bw)
≥CD(1

Bw) =
Bw

∑
i=1

ipi +BwPr
D
(¬1Bw)≥ Bwc Pr

D
(¬1Bwc) = (1−α)Bwc

By using the boundBwc ≥
(

k
wc

)wc
, for wc = τk we haveα ≈ 1

2 and we obtaincw ≥
1
2τ−τk. We want to compare this toc1 = (1− τ)−k. We look at the variations of the
functionτ 7→ −kτ lnτ− ln2+ k ln(1− τ). We can see by derivating twice that forτ ∈
[0, 1

2], this function increases then decreases. Forτ = 0.16, it is positive. Forτ = 1
k , it is

also positive. So, forτ ∈ [1
k ,0.16], we havecBw ≥ c1.

Therefore, for allτ < 0.16, c1 is the best complexity som= 0 is the magic value.
Experiment shows that this remains true for allτ < 1

2− ln2
2k . Actually, we can easily see

thatc1 becomes lower than2
k+1
2 for τ≈ 1

2− ln2
2k . We will discuss this in Section 5.

SolvingLPN with O(k) queries. We now concentrate on them = n case to limit
the query complexity toO(k). (In our framework, we need onlyk queries but we
would practically need more to check that we did find the correct value.) So, we es-
timate the complexity of the full exhaustive search on one error vectorx of k bits for
LPN, i.e.,CD(1n). If pt is the probability thatx is thet-th enumerated vector, we have
CD(1n) = ∑n

t=1 t pt . Fort betweenBw−1+1 andBw, the sum of thept ’s is the probabil-
ity that we have exactlyw errors. So,CD(1n)≤ ∑k

w=0BwPr[w errors]. We approximate
Pr[w errors] to the continuous distribution. So, the Hamming weight has anormal dis-
tribution, with meankτ and standard deviationσ =

√

kτ(1− τ). We do the same for
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Bw≈ 2k√
2π

∫ 2w−k√
k

−∞ e−
v2
2 dv. With the change of variablesw= kτ+ tσ, we have

CD(1n) ≤
k

∑
w=0

Bw Pr[w errors]

≈ 2k

2π

∫ +∞

−∞

(∫ 2w−k√
k

−∞
e−

v2
2 dv

)

1
σ

e
− (w−kτ)2

2σ2 dw

=
2k

2π

∫∫
v≤ 2kτ−k+2tσ√

k

e−
t2+v2

2 dv dt

The distance between the origin(t,v) = (0,0) and the linev= 2kτ−k+2tσ√
k

is

d =
√

k
1−2τ

√

1+4τ(1− τ)

By rotating the region on which we sum, we obtain

CD(1n)≈ 2k

2π

∫∫
x≥d

e−
x2+y2

2 dx dy=
2k
√

2π

∫ +∞

d
e−

x2
2 dx∼ 2k

d
√

2π
e−

d2
2

On Fig. 2 we can see that this approximation ofCD(1n) is very good forτ = k−
1
2 .

So, the complexityCD(1n) is asymptotically 2k(1− 1
2 ln2)+O(

√
k). Interestingly, the

dominant part of log2CD(1n) is 0.2788× k and does not depend onτ as long as1
k ≪

τ≪ 1
2. Although very good for the lowk that we consider, this approximation ofCD(1n)

deviates, probably because of the imprecise approximationof the Bw’s. Next, we de-
rive a bound which is much higher but asymptotically better (the curves crossing for
k≈ 50 000). We now use the boundBw ≤ kw and do the same computation as before.
We have

CD(1
n) ≤

k

∑
w=0

kw Pr[w errors]

≈ 1√
2π

∫ +∞

−∞
kkτ+tσe−

t2
2 dw

=
e

1
2 (σ lnk)2+kτ lnk

√
2π

∫ +∞

−∞
e−

(t−σ lnk)2

2 dw

= e
1
2 (σ lnk)2+kτ lnk

So,CD(1n) = e
1
2

√
k(lnk)2+O(

√
k lnk) for τ = k−

1
2 . It is better than theeO( k

ln lnk) of Lyuba-
shevsky [16] in the sense that it is asymptotically better and that we useO(k) queries
instead ofk1+ε. However, this new bound forCD(1n) is very loose.

Outside the scenario of a sparseLPN, we display in Figure 3 the logarithmic com-
plexity to solveLPN in ourSTEP game when the noise parameter is constant.

Comparing log2(CD(1n)) with the approximation we obtained, i.e. log2

(

2k

d
√

2πe−
d2
2

)

,

we obtain the following results which validate our approximations (See Table 1).
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Fig. 3: log2(CD(1n)) for constantτ

τ log2(CD(1n)) log2

(

2k

d
√

2π
e−

d2

2

)

0.1 1350.04 1314.81
0.125 1458.86 1429.33
0.25 1794.57 1788.49
0.4 1966.67 1966.55

Table 1: log2(CD(1n)) vs. log2

(

2k

d
√

2π
e−

d2

2

)

for k= 2000
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4.2 Password recovery

There are many news nowadays with attacks and leaks of passwords from different
famous companies. From these leaks the community has studied what are the worst
passwords used by the users. Having in mind these statistics, we are interested to see
what is the best strategy of an outsider that tries to get access to a system having access
to a list of users. The goal of the attacker is to hack one account. He can try to hack sev-
eral accounts in parallel. Within our framework, we computeto see what is the optimal
m for the strategy 1m2m· · · . In this given scenario, the strategy corresponds to making
m guesses for each user until it reaches the end of the list and starting again with new
guesses.

We consider the statistics that we have found for the 10000 Top Passwords3 and
the one done for the database with passwords in clear from theRockYou hack4. Studies
on the distribution of user’s passwords were also done in [10,23,7,22]. The first case-
study analyses what are the top 10000 passwords from a total 6.5 million username-
passwords leaked. The most frequent passwords are the following:

password p1 = 0.00493
123456 p2 = 0.00400
12345678 p3 = 0.00133
1234 p4 = 0.00089

In the case of the RockYou hack, where 32 million of passwordswere leaked, we
have that the most frequent passwords and their probabilityof usage is:

123456 p1 = 0.009085
12345 p2 = 0.002471
123456789 p3 = 0.002400
Password p4 = 0.000194

Moreover, approximately 20% of the users used the most frequent 5000 passwords.
What these statistics show is that users frequently choose poor and predictable pass-
words. While dictionary attacks are very efficient, we studyhere the case where the
attacker wants to minimize the number of trials until he getsaccess to the system, with
no pre-computation done. By using our formulas of computingCD(1m2m· · · ), we ob-
tain in both of the above distributions thatm= 1 is the optimal one. This means that
the attacker tries for each username the most probable password and in average after
couple of hundred of users (for the two studies we obtainCD to be≈ 203 and≈ 110),
he will manage to access the system. We note that havingm= 1 is very nice as for the
typical password guessing scenario, we need to have a smallm to avoid complications
of blocking accounts and triggering an alarm that the systemis under an attack.

5 On the phase transition

Given the experience of the previous applications, we can see that for “regular” dis-
tributions, the optimalm falls from m= n to the minimalm as the bias of the dis-

3 https://xato.net/passwords/more-top-worst-passwords /#.VNiORvnF-xW
4 http://www.imperva.com/docs/WP_Consumer_Password_Wo rst_Practices.pdf
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tribution increases. We letn1 be such thatp1 = p2 = · · · = pn1 6= pn1+1 and n2 be
such thatpn1+1 = · · · = pn1+n2 6= pn1+n2+1. Due to Lemma 26, the magic valuem
can only ben1, n1 + n2, or more. We study here when the curves ofCD(1n12n1 · · · ),
CD(1n1+n22n1+n2 · · · ), andCU(1n) = n+1

2 cross each other.

Lemma 28. We consider a composite distribution D1 = αU1 + βU2+(1−α−β)D′,
where U1 and U2 are uniform of support n1 and n2. For U uniform, we have

CD(1
n12n1 · · · )≤CD(1

n1+n22n1+n2 · · · )⇐⇒ α−β
n1

n2
≥ α

(

α+β
1−n1/n2

2

)

CD(1n12n1 · · ·)≤CU(1n)⇐⇒ n/n1+1
2

≥ 1
α

Note that for 2−H∞ ≥ 2
n, we haveα

n1
≥ 2

n so the second property is satisfied.

As an example, forn1 = n2 = 1, the first condition becomesα−β ≥ α2 which is
the case of all the distribution we tried for password recovery. The second condition
becomes 2−H∞ ≥ 2

n+1, which is also always satisfied.
ForLPN, we haven1 = 1,n2 = k, α = (1−τ)k, andβ = n2τ(1−τ)k−1. The first and

second conditions become

(1− τ)k≤ 1−2τ
1+ k−3

2 τ
and (1− τ)k≥ 2

2k+1

respectively. They are always satisfied unlessτ is very close to1
2: by lettingτ = 1

2− ε
with ε→ 0, the right-hand term of the first condition is asymptotically equivalent to 8ε

k+1

and the left-hand term tends towards 2−k. The balance is thus forτ ≈ 1
2− k+1

8 2−k. The
second condition gives

τ≤ 1−
(

2k+1
2

)− 1
k

=
1
2
− ln2

2k
−o

(

1
k

)

So, we can explain the phase transition inLPNk,τ as follows: if we makeτ decrease
from 1

2, for each fixedm, the complexity of all possibleCD(1m) smoothly decrease. The
function form= n1 crosses the one ofm= n1+n2 before it crossesn+1

2 which is close
to the value of the one form= n. So, the curve form= n1 becomes interestingafter
having beaten the curve form= n1 + n2. This proves that we never have a magicm
equal ton1+n2. Presumably, it is the case for all other curves as well. Thisexplains the
abrupt fall fromm= n to m= 1 which we observed on Fig. 1.

Proof. We have

CD(1n12n1 · · · ) = CD(1n1)

PrD(1n1)
=

α n1+1
2 +(1−α)n1

α

and

CD(1n1+n22n1+n2 · · · ) = CD(1n1+n2)

PrD(1n1+n2)
=

α n1+1
2 +β

(

n1+
n2+1

2

)

+(1−α−β)(n1+n2)

α+β
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so

CD(1n1)

PrD(1n1)
≤ CD(1n1+n2)

PrD(1n1+n2)
⇐⇒

α n1+1
2 +(1−α)n1

α
≤

α n1+1
2 +β

(

n1+
n2+1

2

)

+(1−α−β)(n1+n2)

α+β
⇐⇒

α−β
n1

n2
≥ α

(

α+β
1−n1/n2

2

)

For the second property, we have

CD(1n12n1 · · ·)≤CU(1n)⇐⇒ CD(1n1)

PrD(1n1)
≤CU (1n)

⇐⇒ α n1+1
2 +(1−α)n1

α
≤ n+1

2

⇐⇒ n/n1+1
2

≥ 1
α

⊓⊔

6 Conclusions

Our framework enables the analysis of different strategiesto sequentialize algorithms
when the objective is to make one succeed as soon as possible.

When the algorithms have the same distribution and are unlimited in number, the
optimal strategy is of form 1m2m· · · for some magicm. As the distribution becomes
biased, we observe a phase transition from the regular single-algorithm run 1n (i.e.,
m= n) to the single-step multiple algorithms 123· · · (i.e.,m= 1) which is very abrupt
in the application we considered:LPN and password recovery.

The phase transition phenomenon is further studied. In particular, we show that the
fall from m= n to m= 1 does not go through anym∈ {2, . . . , k(k+1)

2 }.
ForLPN, the solving algorithm we obtain outperforms the classicalones.
When we have a limited number of algorithms, the optimal strategy has the form

1m1 · · · |D|m11m2 · · · |D|m2 · · · . ForLPN, this simple algorithm outperforms the classical

ones, even the one from Asiacrypt 2014 [12] for the relevant parameters usingτ∼ k−
1
2 .

A Composite distributions

We give a formula to compute the optimal strategies for distributions obtained by com-
posing several distributions. The formula is useful when wewant to regroup equal
consecutivep j ’s in a distributionD1 so thatD1 appears as a composition of uniform
distributions.
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Lemma 29. Let U1, . . . ,Uk be independent distributions of support n1, . . . ,nk, respec-
tively. Let Ui = (pi,1, . . . , pi,ni ). Given a distribution(α1, . . . ,αk) of support k, we define
D1 = α1U1+α2U2+ . . .+αkUk by D1 = (α1p1,1, . . . ,α1p1,n1,α2p2,1, . . . ,αkpk,nk).

Let m= ∑i
j=1n j . We have

Pr
D1
(1n11n2 · · ·1ni ) = α1+ · · ·+αi

CD1(1
n11n2 · · ·1ni ) =

i

∑
j=1

α jCU j (1
n j )+

i

∑
j=1

n j

(

1−
j

∑
k=1

αk

)

We note that if allUi are ordered and ifαi pi,ni ≥ αi+1pi+1,1 for all 1≤ i < k, thenD1 is
ordered as well.

We letD = (D1,D1, . . .). If we assume thatUi are uniform distributions, we can use
the observation following Lemma 26 to deduce from Th. 17 thatthe optimal strategy is
1m2m· · · for m= ∑i

j=1n j andi minimizing

minCD( /0) = min
i





∑i
j=1 α jCU j (1

n j )+∑i
j=1n j

(

1−∑ j
k=1 αk

)

∑i
j=1α j





Proof. We prove it by induction oni. It is trivial for i = 0. We assume the result holds
for i−1. By induction, we have

CD1(1
n1 · · ·1ni ) =CD1(1

n1 · · ·1ni−1)+ (1−Pr
D1
(1n1 · · ·1ni−1))CD1(1

ni |¬(1n1 · · ·1ni−1))

=
i−1

∑
j=1

α jCU j (1
n j )+

i−1

∑
j=1

n j

(

1−
j

∑
k=1

αk

)

+αiCUi (1
ni )+ni

(

1−
i

∑
k=1

αk

)

=
i

∑
j=1

α jCU j (1
n j )+

i

∑
j=1

n j

(

1−
j

∑
k=1

αk

)

The second equality is obtained from the fact that

CD1(1
ni |¬(1n1 · · ·1ni−1)) =

αi

αi + · · ·+αk
(pi,1+2pi,2+ . . .+ni pi,ni )+ni(

αi+1+ · · ·+αk

αi + · · ·+αk
)

=
αi

1−PrD1(1
n1 · · ·1ni−1)

CUi (1
ni )+ni(

1−PrD1(1
n1 · · ·1ni−1)−αi

1−PrD1(1
n1 · · ·1ni−1)

)

⊓⊔

B Proof of Lemma 25

Proof. We will show below that there existsd > 0 such thata≤ b−d andCD(s) =
CD(u jdiav jb−dw). Hence, we can rewritesby replacingu by u jd andb by b−d. Since
d> 0 anda≤ b−d, we can just apply this rewriting rule enough time untilb is lowered
down toa. Hence, we obtain the result.
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To findd, we first writes= u0im1u1im2 · · · imr ur iav jbw wherei appears in nout , the
mt are nonzero, andu1, . . . ,ur are non-empty. (Note that sincea < b, we must have
m1 + · · ·+mr > 0 sor ≥ 1.) Let n′ be the equal number of occurrences ofi and j in
uiav jb. Let t be the smallest index such thatm1+ · · ·+mt > n′−b. (Fort = 0, the left-
hand term is 0 butn′ ≥ b; for t = r, the left-hand term isn′−a and we know thata< b;
so,t exists andt > 0.) We writemt = m′+d such thatm1+ · · ·+mt−1+m′ = n′−b. So,
d> 0. Note thatb−d= b−mt +m′ = n′−m1−·· ·−mt = mt+1+ · · ·+mr +a. So,b−
d ≥ a. Clearly,d ≤ b. We writes= HidBiav jdT with headH = u0im1u1im2 · · ·ut−1im

′
,

bodyB= ut imt+1 · · · imr ur , and tailT = jb−dw. Clearly,H hasn′−b occurrences ofi and
HidBiav hasn′−b occurrences ofj. Sinces is optimal forD, idBiav jd is optimal for
D|¬H. We note thatB does not start withi (t is between 1 andr andut is nonempty and
with no i) and thatiav is non-empty and with noj (eithera 6= 0 or v is nonempty and
with no j). We split idBiav jd = idx1 · · ·xℓiay1 · · ·yℓ′ jd where two consecutive blocks in
the listid,x1, . . . ,xℓ, ia,y1, . . . ,yℓ′ , jd have no key in common. (Fora= 0, we can always
split so thatxℓ andy1 have no key in common by using the first termk of v which is not
the last ofu: we just takey1 as a block ofk’s andxℓ as a block with nok.) We can apply
Lemma 24 and obtain

CD(id|¬in
′−b)

PrD(id|¬in′−b)
≤ CD(ia|¬in

′−a)

PrD(ia|¬in′−a)
≤ CD(y1|¬· · · )

PrD(y1|¬· · · )
≤ CD(yℓ′ |¬· · · )

PrD(yℓ′ |¬· · · )
≤ CD( jd|¬ jn

′−b)

PrD( jd|¬ jn′−b)

Since the first and the last terms are equal, all of them are equal. So, we can permute
two consecutive blocks which have no index in common. Hence,we can propagatejd

earlier until it is stepped beforeia, since we know there is no other occurrence ofj in
the exchanged blocks. We obtain that

CD(HidBiav jdT) =CD(HidB jdiavT)

as announced. ⊓⊔
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