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Abstract In recent studies of atmospheric turbulent surface exchange in complex terrain,
questions arise concerning velocity-sensor tilt corrections and the governing flow equations
for coordinate systems aligned with steep slopes. The standard planar-fit method, a popular
tilt-correction technique, must be modified when applied to complex mountainous terrain.
The ramifications of these adaptations have not previously been fully explored. Here, we
carefully evaluate the impacts of the selection of sector size (the range of flow angles admitted
for analysis) and planar-fit averaging time. We offer a methodology for determining an
optimized sector-wise planar fit (SPF), and evaluate the sensitivity of momentum fluxes to
varying these SPF input parameters. Additionally, we clarify discrepancies in the governing
flow equations for slope-aligned coordinate systems that arise in the buoyancy terms due
to the gravitational vector no longer acting along a coordinate axis. New adaptions to the
momentum equations and turbulence kinetic energy budget equation allow for the proper
treatment of the buoyancy terms for purely upslope or downslope flows, and for slope flows
having a cross-slope component. Field data show that new terms in the slope-aligned forms
of the governing flow equations can be significant and should not be omitted. Since the
optimized SPF and the proper alignment of buoyancy terms in the governing flow equations
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both affect turbulent fluxes, these results hold implications for similarity theory or budget
analyses for which accurate flux estimates are important.

Keywords Complex terrain - Governing flow equations - Sensor tilt corrections - Slope
flows - Turbulent flux measurements

1 Introduction

Turbulence measurements over complex terrain have recently been given increased atten-
tion, largely motivated by the need to quantify greenhouse gas fluxes (Baldocchi et al. 2000;
Feigenwinter et al. 2008) and improve model parametrizations in numerical weather predic-
tion models for wind power, hydrological and meteorological forecasting, which typically
implement models that were developed for flat and statistically homogeneous terrain (e.g.,
Xue et al. 2001; Shamarock et al. 2008). For example, the flat-terrain relations developed
through Monin—Obukhov similarity theory are widely implemented in models, but break
down for steep, sloping terrain where the fluxes throughout the thin, slope-flow layer can
vary by far more than 10 % (Nadeau et al. 2012). Given this increased attention to turbulence
measurements over steep terrain, questions have arisen regarding discrepancies in the form
of the governing flow equations applied to these flow scenarios. The roots of these concerns
can be explained by the challenges that steep, sloping and/or geometrically variable terrain
poses for the choice of coordinate systems, and subsequently how best to measure and then
transform the velocity data into that coordinate system (Yuan et al. 2007, 2011; Ono et al.
2008; Ross and Grant 2014; Stiperski and Rotach 2014).

Near the surface in the atmospheric boundary layer (ABL), surface-normal wind shear
acts parallel to the local terrain, whereas buoyancy always acts parallel to the gravitational
force vector. In the case of flat terrain, it is obvious that the governing equations of motion
should be written for a horizontal/vertical coordinate system because the terrain normal
and gravitational vectors are parallel. However, for significantly steep terrain, the choice of
coordinate system is not obvious, and implicitly, any choice consequently must consider
that the forcings arising from buoyancy and shear are no longer perpendicular (Sun 2007).
Most commonly, an orthogonal coordinate system that follows the sloping terrain (slope-
normal/slope-parallel, hereafter SNSP; see Fig. 1c for a two-dimensional schematic) is used
to simplify the momentum equations. However, in the SNSP coordinate system, the buoyancy
force is no longer aligned with the terrain-normal direction. Clearly, the governing flow equa-
tions must be adapted to account for this reorientation. The SNSP forms of the momentum
equations have been interpreted consistently between studies for pure upslope or downslope
flows. However, the specific SNSP adaptations for slope flows with a cross-slope component
have been largely unaddressed. In addition, formulations of the terms accounting for buoyant
production or consumption of turbulence kinetic energy (TKE) in the TKE budget equation
are inconsistent among various studies (see Sect. 8 for a more complete problem description).
One of the primary goals of this study is to derive more generalized forms of the governing
flow equations that are also appropriate for streamwise-oriented, terrain-following, SNSP
coordinate systems, such that the adaptations are clear and that any discrepancies are easily
rectified.

An additional complication for steep, complex terrain is that the velocity measurements
must be taken within or transformed into the SNSP coordinate system. Herein, ‘complex
terrain’ refers mainly to geometrical variability of the terrain that is significant enough that
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it cannot be lumped into a single roughness length or canopy scheme. It has been shown
for sonic anemometer measurements over sloping terrain that mounting the sensor in an
SNSP coordinate system reduces flow distortion, especially in the surface-normal direction
(Geissbiihler et al. 2000; Christen et al. 2001). However, since exact sensor alignment is
difficult even for flat terrain, a tilt correction should also be performed to reduce cross-
contamination between velocity components (Lee et al. 2004). This cross-contamination not
only affects the mean velocity measurements through misalignment, but also contributes to
greater errors in flux estimates, especially for the momentum fluxes (Kaimal and Haugen
1969; Wilczak et al. 2001).

The planar-fit tilt correction described by Wilczak et al. (2001) is a commonly-used tech-
nique employed to reduce the cross-contamination errors due to sensor misalignment. For
measurements over more complex terrain, the sector-wise planar-fit (SPF) tilt correction is
often used (Yuan et al. 2007, 2011; Ono et al. 2008). For the SPF, planar-fit tilt corrections are
performed for individual wind-direction sectors. For example, it has been applied to a steeply
sloping alpine site (Nadeau et al. 2012), at other mountainous sites (Yuan et al. 2007, 2011;
Ono et al. 2008), and for benthic flux measurements in a river flow over a complex bedform
(Lorke et al. 2013). This popularity has arisen because the SPF technique has been shown
to provide better momentum flux estimates, compared to those of a single-sector planar fit,
by accounting for the terrain-induced directional variability of the mean streamline plane
(Ono et al. 2008). Implementation of the SPF approach requires selection of sector sizes,
sector locations, and the planar-fit averaging time (see Sect. 3). These parameters are typi-
cally reported in studies with little or no justification and without sensitivity analyses. Since
the appropriate SPF parameters are also site-dependent, their selection cannot be determined
ad hoc. Therefore, another primary aim herein is to provide an objective methodology for
determining the SPF degrees of freedom, and subsequently to quantify the implications of
these choices on the resulting averaged momentum fluxes.

Overall, we seek to address issues associated with adapting common techniques, such
as sensor tilt corrections and properly aligning the governing flow equations to SNSP coor-
dinate systems, for field sites having steep and/or complex topography. More specifically,
we address the governing assumptions and the most appropriate coordinate and equation
alignments that compose a framework that best captures the turbulence statistics over steep
and fully three-dimensional terrain. Field data from two sites, one flat and uniform, the other
steep and variable, are used as examples for the methodologies introduced herein, and are
presented in Sect. 2. Following Sect. 2 and with the exception of Sect. 10, the paper is orga-
nized into two parts: one addressing the optimization for sensor tilt corrections (Sects. 3-7)
and the other addressing adaptations of the governing flow equations for SNSP coordinate
systems (Sects. 8, 9). Each part begins with a more specific problem description, followed
by methodologies, examples from field data, and discussions and recommendations. Finally,
Sect. 10 summarizes the main conclusions and recommendations.

2 Field Experiment Sites

Datasets from two field experiment sites using the same sonic anemometer model-type are
used to illustrate the methodologies and developments presented herein. The two sites were
chosen because they represent drastically different topography (see Fig. 1), and therefore
nicely elucidate the complexities associated with measurements over complex topography.
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Slope Site §

Fig.1 a The PLAYA and b SLOPE field experiment sites. ¢ Schematic of a general slope-aligned (magenta,
x3, X1, for pure downslope flow, not drawn to scale with the SLOPE site) and horizontal-vertical (blue X3, X1)
coordinate systems (the hat accent over a variable indicates the horizontal/vertical coordinate system). d
Mountainous terrain surrounding the SLOPE site. For scale, the total slope length is ~1000 m

The first site (PLAYA) is essentially a control site for the sensor tilt-correction analysis.
The PLAYA site (40.13498°N, 113.45158°W) shown in Fig. 1a is located in the Great Salt
Lake Desert on the dry lake bed of the prehistoric Lake Bonneville (surrounding what is
presently The Great Salt Lake, Utah, USA). The terrain at the PLAYA site is flat, smooth
(aerodynamic roughness length, z, < 1 mm) and uniform (*1 m change in elevation per
10 km) (Metzger et al. 2007), and provides an idealized dataset for comparison and method-
ology validation. The site is so close to ideal that the nearby Surface Layer Turbulence and
Environmental Science Test (SLTEST) site has historically been used for fundamental, high
Reynolds number, wall-bounded flow studies (e.g., Klewicki et al. 1995; Kunkel and Marusic
2006; Hutchins and Marusic 2007) and measurements testing subgrid-scale schemes com-
monly used in large-eddy simulation models (e.g., Carper and Porté-Agel 2004; Higgins et al.
2007, 2009). The two dominant wind directions under fair weather conditions at the site are
northerly and southerly. In the present study, 20-Hz data from a sonic anemometer (CSAT3,
Campbell Scientific) mounted at 10.4 m above the ground on a 28-m tower during May
2013 are used. The sonic anemometer axis was oriented 250° from the north, such that the
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tower and mounting arm are located at 047°. The data were collected as part of the Mountain
Terrain Atmospheric Modeling and Observations (MATERHORN) Program (Fernando and
Pardyjak 2013; Fernando et al. 2015). Details of the full set of flux observations made at the
PLAYA site are given in Jensen et al. (2015).

The SLOPE site (45.90179°N, 7.12374°E) shown in Fig. 1b is located in Val Ferret, a
narrow alpine valley in Switzerland near the Italian and French borders (see also Simoni
et al. 2011; Mutzner et al. 2013; Nadeau et al. 2013; Oldroyd et al. 2014, for more site
and hydrometeorological descriptions). The slope has a west-facing aspect, and locally, a
slope angle of 35.5°. Figure 1d shows the steep, complex terrain surrounding the SLOPE site
tower, where vegetation surrounding the SLOPE tower is characterized by 0.3-m-high alpine
grasses and flowers. The dominant fair weather wind directions are east (downslope, ¢ ~ 85°,
where ¢ is defined as degrees from north) at night and north-west (upslope and up-valley,
¢ =~ 285°) during the day. The 20-Hz data from a sonic anemometer (CSAT3, Campbell
Scientific) mounted at a surface-normal height of 1.27 m above the ground from 1 September
to 5 October 2011 are used for methodology examples and subsequent flux analyses. The
sonic anemometer axis was oriented to the north, such that the tower and mounting arms
were located at 180° from the north. In addition, the anemometer was mounted with a SNSP
tilt from the vertical (e.g., Wsonic aligned with the surface normal and vsopic aligned with the
along-slope axis) to reduce flow distortion (Geissbiihler et al. 2000; Christen et al. 2001) and
tilt-correction angles into the streamline-defined SNSP coordinate system. This particular
measurement height was chosen for the analyses herein because wind speeds at this height
are the most consistent between typically day (anabatic) and night (katabatic) flow regimes.

Planar-fit and SPF tilt-correction methods require a long-term dataset to generate statisti-
cally robust fitting planes. Yuan et al. (2007) have shown for their SPF corrections that one
to two weeks of data are sufficient. However, the exact minimum ensemble averaging time
likely varies by site and SPF composition. Therefore, to ensure a sufficiently long ensemble
averaging time, data from approximately one month at the PLAYA and SLOPE sites were
selected. In addition, velocity data for flow behind sonic anemometers are often not used in
practice because the mounting arms can disturb the flow field (Foken 2008). Li et al. (2013)
suggest separating these sectors when performing SPF tilt corrections. However, these data
have been retained in the present study so as not to impose any sector definitions a priori.
Therefore, it should be assumed that data from these sectors are potentially of lower quality
(see also Li et al. 2013).

3 Tilt Corrections for Complex Terrain: Problem Description

Consider a time series of velocity, u#;, measured by a stationary sensor (in this case a three-
dimensional sonic anemometer) over, or surrounded by, complex and variable terrain. Here,
standard index notation is adopted such that u; = u is the streamwise velocity component,
uy = v is the spanwise velocity component, and u3 = w is the surface-normal velocity com-
ponent. Assuming that the flow near the surface follows the terrain, as shown by Sun (2007),
the total u; signal potentially contains a turbulent signal, an atmospheric wave-induced signal
(e.g., gravity waves or Kelvin—Helmholtz shear instabilities), and a terrain-induced signal
generated by departures from a purely planar underlying surface (local topographical features
such as dips, tilts and curvature as are typical of real terrain) or larger-scale terrain features
surrounding the measurement site (hills, valleys etc.) that can influence the flow field (see
Ono et al. 2008). Following a time series decomposition analogy, similar to a typical triple
decomposition (e.g., Cheng et al. 2005), the time series can be expressed by,
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wp =u; +uj + i; + i, )]

where u; is the mean, u; is the turbulent departure from the mean, i; is the wave signal,
and #; is the terrain-induced signal. A major difference between #; and i; is that #; is
typically identifiable by scale differences from u; (see Cheng et al. 2005; Vickers and Mahrt
2005), whereas u; is wind-direction dependent and not necessarily scale dependent. If the
analysis of any component of the time series (e.g., u: to calculate turbulent fluxes) is the
objective, then iZ; must be removed from the time series, since it will contaminate the other
signals. However, defining i; exactly and explicitly requires complete knowledge of the
sensor’s orientation with respect to the terrain for all possible sensor footprints and wind
directions. This is a task that is nearly impossible even for flat terrain. Therefore, the goal
of implementing a tilt-correction scheme for complex terrain is to use the measurements
to reduce cross-contamination between the directional velocity components, as previously
mentioned, but also to simultaneously reduce i; as much as possible.

The classical double-rotation tilt-correction scheme (traditionally used for uniform and
flat terrain) transforms the mean velocity components for the desired flux-averaging time, ty,
such that, u3 = u» = 0, for which an overbar indicates time averaging (Kaimal and Finnigan
1994). However, for situations where the real u3 in the atmosphere may or may not be zero
(e.g., anon-zero u3 due to subsidence), the planar-fit tilt-correction scheme is advantageous
because it allows for u3 # 0, and instead imposes that (#3) = 0, where the angle brackets
indicate the ensemble mean over several averaging periods (Lee 1998; Wilczak et al. 2001).
Hence, in planar-fit tilt-correction schemes, the tilt-corrected velocity time series maintains
the original sampling frequency, as opposed to the double-rotation scheme for which the
tilting transformations are performed on the flux-averaging windows. This has additional
advantages, for example, in performing spectral analyses with the tilt-corrected time series.
For planar-fit schemes, (13) = 0 is established by fitting a plane to the mean streamlines of
the flow. The best-fit plane is determined through a multiple linear regression by minimizing
S, the function given in Wilczak et al. (2001) (on p. 142, Eq. 47; the nomenclature has been
altered for consistency with the present usage),

N
S = Z(ﬁm.j — by —biuym,j — bzﬁzm,j)z, (2)
i=1

where subscript m indicates the measured velocity components (in this case, in the sonic
anemometer coordinate system), and subscript j indicates an individual averaged segment
ranging from 1 to N, the total number of averaged segments used to generate the planar fit;
the b-coefficients (subscripts do not invoke summation notation in this case) determine the
planar shift and tilt angles in order to transform the measurement coordinate system into
a streamline coordinate system; by is the mean offset instrument error in the measured u3

component, the pitch angle, y, can be determined by siny = —b;/ ,/b% + b% + 1 and the

roll angle, B, by sin = by/,/1 + b% (Wilczak et al. 2001): refer to Wilczak et al. (2001)
for a complete description of the planar-fit tilt-correction methodology. The planar-fit tilt
correction generates an orthonormal, streamline-aligned coordinate system; it is therefore
also assumed that it generates a terrain-following coordinate system (Wilczak et al. 2001).
However, if the complexity of the terrain causes significant variability in the streamline plane
for varying wind directions, then a single planar-fit tilt correction will be biased towards
the terrain over which the wind-direction sectors have the highest probability distribution.
Since the SPF technique performs the planar fitting for individual wind sectors, it can reduce
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this wind-direction-dependent bias in the tilt corrections, leading to more accurate turbulent
flux estimates in complex environments (Ono et al. 2008). Therefore, it is assumed that a
SPF scheme can remove a significant amount of #; from the time series, as well as reduce
cross-contamination between velocity components.

However, very little has been documented regarding how to select the degrees of freedom
for the SPF, such as the sector size, A, the sector centre location, and the planar-fit averaging
time, Tpr, which is the averaging time used to generate the input data segments (e.g., U, j in
Eq. 2) that are used to generate the planar fit. For example, Vickers and Mahrt (2006) show
that the choice of tpr can affect flux estimates, but they make no suggestion as to which tpr is
most appropriate. In the following sections, we propose objective methods to quantitatively
evaluate how well a particular A and tpf define the tilt-correction fitting planes and present
hypotheses regarding the optimal choices for A and 7pr.

3.1 Objectives for SPF Optimization

The primary objective is to find the optimal SPF that accounts for terrain irregularities by
‘tilting’ the sensors a posteriori into a streamline-oriented, terrain-following, orthogonal coor-
dinate system given a set of measured three-dimensional velocities. The primary hypothesis
is that the best transformation for each wind-direction sector will minimize a set of objective
‘cost functions’. The first proposed cost function is a root-mean-square (r.m.s.) error, Sy,
that describes how well the measured streamlines define the fitting plane for a particular A
and tpg, such that /s

S

Srms = ﬁ

where N is the number of averaged streamline segments generating the planar fit and S is
the planar-fit least-squares minimization function (Eq. 2). Note that increasing N increases
the statistical significance of the fitting plane, and it has been shown, for example by Yuan
et al. (2007), that some minimal N is required to converge the planar-fit tilt coefficients for
any given wind sector and tpp. This minimal N dictates the minimum ensemble averaging
time, or amount of data necessary to perform a statistically robust planar fit (see Yuan et al.
2007, for more details). Its exact value will vary by site and SPF composition, but in practice,
typically a few weeks or months provide a sufficient quantity of data (Wilczak et al. 2001;
Yuan et al. 2007, 2011; Ono et al. 2008). For a time series of finite length, A, tpr and N are
interlinked in such a way that the minimum S,,,; corresponds to large 7pr and small A (as
will be shown in Sect. 4) because fitting a plane to a single set of streamlines, as in the most
extreme case, will always be a better fit (smaller r.m.s. error) than multiple sets of streamlines.
This idea is similar to that where two points define a perfect line. In summary, S, s provides
information regarding the quality of the fitting plane, but its minimization is an insufficient
criterion for selecting optimal A and tpr. Hence, additional cost functions are necessary.
These additional six cost functions seek to locate ‘regions of converged’ tilt coefficients by
minimizing the absolute variability of the planar-fit b-coefficients for changing A,

= f(zpF, A), 3)

d(bo,1,2)
| = A 4
‘ oA f(tpE, A), “)
and for changing tpF,
9(bo,1,2)
’0‘2 = f(tpp, A). 5)
0TpF
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In practice, these partial derivatives can be estimated with finite differencing or other numer-
ical methods. In total, seven cost functions (Eqgs. 3, 4, 5) have been proposed, and their
minimizations can be utilized individually and/or in some combination, for example by sum-
ming or weighted summing, to search for optimal A and tpg. Since the units of the cost
functions are innately incongruent, it is recommended to use a normalized weighted sum
(i.e, normalizing each by its maximum), when analyzing their combined effects. Applied
examples of using the cost functions are shown in Sects. 4 and 5.

3.2 Hypotheses for the Optimal Planar-Fit Averaging Time, Tpy

Much has been written regarding the importance of selecting an appropriate averaging time
for computing turbulent fluxes, ¢ (e.g., Vickers and Mahrt 2005; Babi¢ et al. 2012). However,
little has been written regarding the appropriate averaging time for the data segments used
to compute the planar-fit coefficients, tpr. These two averaging times are not necessarily the
same for planar-fit methods, as opposed to double or triple-rotation tilt-correction methods,
for which ¢ also imposes the averaging time of the velocity vector transformation. In fact,
selecting the appropriate tpr aims to meet a different objective from selecting an appropriate
7 for converged flux estimates. In general, tpr should be large enough such that the mean
streamlines do not vary excessively and are representative of the mean flow, but small enough
such that the velocity signal is reasonably stationary. In addition, a smaller tpg provides a
larger N for the planar-fit plane to be well-defined with reduced uncertainty, and for the
b-coefficients to be well converged. Since statistical significance increases with N, it makes
sense to maximize N by choosing the smallest reasonable (minimizes the cost functions)
7pF, that converges the tilt coefficients for a particular sector size.

3.3 Hypotheses for Optimal SPF Sector Size, A

An optimal SPF wind sector will be large enough if it envelopes enough of the variability
in wind direction; for example, it should encompass some a priori unknown majority of the
fluctuations in wind direction, 0. However, it should be small enough to reduce the terrain-
induced perturbations to the velocity signal, ii;, which is the reason for using multiple sectors
in the first place. An important distinction must be noted for implementing a cost function
methodology to determine A for a dominant wind direction (i.e., a peak in a wind-direction
histogram) and a secondary wind direction (i.e., in the tails of the wind-direction histogram).
For sectors containing a dominant wind direction, the cost functions beyond a certain A
are insensitive to increasing A because the streamlines in the tails of the wind-direction
distribution are not statistically frequent enough to have an impact on the cost functions (see
examples of this insensitivity in Sect. 4). However, whatever transformation is determined
for that sector affects the whole sector, and the more statistically frequent streamlines will
determine the tilting angles, and subsequently bias the transformation for the streamlines in
the tails of the distribution (similar to the problems with using a single planar fit). Hence for
dominant wind directions, the optimal A should be the smallest A that minimizes the cost
functions. For secondary wind directions, it is more likely that a larger A will optimize the
planar fit because some threshold for N (which increases with A) is necessary to converge
the tilt coefficients (minimize the six b-coefficient cost functions in Egs. 4 and 5).
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Fig. 2 Sy;s (m sfl) cost function for a the PLAYA (dominant wind-direction sector is centred at ¢ = 5°)
and b the SLOPE sites (dominant wind-direction sector is centred at ¢ = 85°). Note the different scales for
A and tpf for the two sites, and that the colour data ranges have been rescaled to show details. The original
ranges are 0.015-0.13 and 0.007-0.037 m s~ for the PLAYA and SLOPE sites, respectively

4 Cost Function Examples

Examples of the cost function analyses provided for the PLAYA and SLOPE sites are for
A centred on a dominant wind direction (at ¢ = 5° and ¢ = 85°, respectively). Since the
PLAYA site is characterized by extremely flat terrain, very little change is expected in the
cost functions and planar-fit tilt angles for changing A and tpg. Therefore, to test extrema,
the test ranges for A and tpr are larger for the PLAYA site than those used for the more
complex SLOPE site. Figure 2 shows the S,,,s cost functions for the PLAYA and SLOPE
sites. As expected, this shows that S5 is largest for large A, and in particular for small 7pp,
because the mean streamlines require longer averaging times to be representative of the mean
flow patterns. As discussed previously, the general trend in S, tends toward minimization
with small A and large 7pr as N decreases. This result is expected because the r.m.s. error is
lowest for a single set of streamlines. However, for a given A and 7pr, increasing N increases
the convergence of the planar-fit tilt coefficients and the overall statistical significance of
the fitting plane. For datasets of finite length, insufficient N (due to the overall size of the
dataset, a small A, a wind-direction sector with a low probability density and/or a long tpp)
will result in non-representative planar-fit tilt angles.

These competing, site-dependent effects and lack of sufficient minimization criteria are
the reasons for introducing the six additional cost functions (Egs. 4, 5). Figure 3 shows
an example of the db/dtpr cost function. Since the b; coefficient is used to determine
the planar-fit pitch correction angle, y, Fig. 3 shows that y is highly sensitive to changes
in tpp for very small A (<20°) at both sites. Additionally, since Fig. 3 shows results for
dominant wind directions, it shows the insensitivity to increasing A for the variability cost
functions (Egs. 4, 5). As previously discussed, this insensitivity is due to the limited influence
that streamlines in the tails of the wind-direction histograms can have relative to the more
frequently represented streamlines in the peaks. In addition, the relatively high cost function
values for large tpr in Fig. 3a show that non-stationarity in the velocity measurements can
be reflected in the cost functions.

Figure 4 shows examples of the normalized weighted sum of all seven cost functions
for both field sites. The normalized weighted sum was computed by normalizing each cost
function field by its maximum, then summing over the seven cost functions. This is just
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Fig. 3 The db;/dtpE cost function for a the PLAYA site for the dominant wind-direction sector centred at
¢ = 5°, and b the SLOPE site for the dominant wind-direction sector centred at ¢ = 85°. The colour data
ranges have been rescaled to show details. The original scales for each are: a 0-0.06 and b 0- 0.05

(a) Normalized Cost Function Sum (b) Normalized Cost Function Sum
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Fig. 4 The normalized weighted sum of all seven cost functions for a the PLAYA site for the dominant
wind-direction sector centred at ¢ = 5°, and b the SLOPE site for the dominant wind-direction sector centred
at ¢ = 85°. The colour data ranges have been rescaled to show details. The original scales for each are: a
0.3-4.2 and b 0.35-4.6

one possible method for analyzing the combined effects of the cost functions and it has two
advantages over a simple, unweighted sum. The first is that it ameliorates the problem of
having incongruent units between cost functions. The second is that it places all seven cost
functions on the same scale from zero to one, such that each cost function contributes equally
relative to the sum. The colour data in Fig. 4 have been rescaled to better show the details.
For both sites the maxima of the normalized cost function sums along the coordinate axes
are associated with very small tpr and very small A, as expected. In addition to the cost
functions, it is useful to also examine how the actual planar-fit pitch, y, and roll, B, tilt angles
vary with A and tpg, as shown in Fig. 5 for both sites. This provides a tangible sense of the
physical consequences of a particular choice for A and tpr. Figure 5a, ¢ show that, for the
PLAYA site, the planar-fit tilt angles vary by less than 1° for A > 20° and all 7pr in the
test ranges. In contrast, Fig. 5b, d containing the planar-fit tilt angles for the SLOPE site,
show much more variability (especially for y) over even the smaller test ranges of A and
TPF.
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Fig. 5 Variation in planar-fit tilt angles, y, or pitch (top), and B, or roll (bottom), for the PLAYA site (left)
for the dominant wind-direction sector centred at ¢ = 5°, and the SLOPE site (righr) for the dominant wind-
direction sector centred at ¢ = 85°. The colour data ranges for the PLAYA site have been rescaled to show
details. The original scales for these panels are: a —1.3° to 2.6° and ¢ —3.2° to —1.1°

5 Methodology for SPF Optimization

Since the planar-fit tilt angles for the PLAYA site show very little variability with A and 7pp
(see Fig. 5a, ¢), a single planar fit is sufficient. Therefore, this section details the methodology
used to select A, tpr and wind-sector centres for only the more complex SLOPE site. To
aid in the methodology description, Fig. 6 shows the 20-Hz wind-direction histogram for the
SLOPE site and the SPF sectors determined by the methodology presented herein. For ease
of reference, the sector labels in Fig. 6 identify the sector (A, B, C...) and show the order in
which the sectors were assigned (1 for dominant, 2 for secondary wind directions).

The following methodology was the one found most useful and objective for selecting A
and 7pr for the SLOPE site. However, the cost functions could potentially be used in other
ways to select these same SPF parameters.

1. Weidentify the dominant wind directions (i.e., the peaks in the wind-direction histogram),
since most sites have at least one or two dominant wind directions. We recommend starting
with the dominant wind directions because they account for the majority of wind vectors,
and so the SPF optimization of these sectors should take precedence.

2. For each of the dominant wind directions we calculate all the cost functions, and the
corresponding cost function sum (weighted or not) for a range of A (centred on each of
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Fig. 6 Wind-direction histogram and results of the complete cost function analysis for the SLOPE site. The
optimal SPF sector assignments are marked by the red vertical lines and the optimal tpgp was found to be
25 min. The labels at the top of each sector indicate the sector name (A, B, C...) for ease in reference and
the number indicates the order in which the sectors were defined (1 for dominant wind directions, 2 for the
secondary wind directions). In addition, the planar-fit tilt-correction angles (y and B) for each segment are
reported at the top of the figure

the dominant wind directions) and a range of tpp. For the SLOPE site example the test
ranges used were 10° < A < 180° with AA = 10° and 1 min < tpp < 171 min with
Atpr = 10 min, where A represents the respective step sizes within the test range.

3. We analyze the fields of the cost functions and the normalized cost function sum look-
ing for minima. For this analysis recall that for dominant wind directions the smallest
reasonable A should be used due to the insensitivity of the variability cost functions to
large A, as previously discussed. Additionally, recall that the selected rpr must be the
same for all SPF sectors, otherwise individual velocity points could be assigned more
than one planar-fit tilt due to overlapping averaged segments. Hence, for the analysis of
the dominant wind directions the objective is to select a sector size (smallest reasonable)
and a range of tpr that minimize the cost functions.

For example, using Fig. 4b and searching for the smallest reasonable A, a region between
30° < A < 60° and 20 min < tpr < 50 min can be found, which is characterized by a clear
minimum. In addition, the resulting planar-fit tilt angles (Fig. 5b, d) within this minimization
region show low variability between 40° < A < 60° for the same tpp range. Therefore,
A = 40° and an initial range of 20 min < 7pr < 50 min were chosen for the wind sector
centred at ¢ = 85° as shown in Fig. 6, sector A. Similarly using the same procedures, A = 40°
and an initial range of 20 min < 7pr < 50 min were also chosen for the other dominant wind
direction centred at ¢ = 285° to define sector B in Fig. 6. Even though A = 40° for both
dominant wind sectors in the example case, the result is somewhat coincidental and could
be different for a different site, or even another measurement height at the same site. In
fact, it was expected that the optimal A would be slightly smaller for the sector centred at
¢ = 285° because the observed daytime wind directions are typically less variable than those
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observed during the night. Now that the sectors have been assigned for all of the dominant
wind directions, the remaining sectors can be assigned. The optimal tpg, from within the
initial minimizing range, can be selected after all SPF sectors are determined, as discussed
below.

For the secondary wind-direction sectors, the cost function analyses are performed for
varied A over the remaining, or unassigned, wind-direction sectors and the same A A, Tpp
range and Atpg as were used for the dominant wind-direction sectors. The main difference
in the cost function analyses for secondary wind-direction sectors is in how the A test ranges
and sector centres are assigned, as enumerated below:

1. We first determine the limits for each test range. These are set as the edges of the sectors
that were previously defined for the dominant wind directions. For the example data, this
means that one of the four secondary test sector ranges starts at ¢ > 105° (the upper
edge of sector A), increases by AA = 10° and ends at the maximum A = 160°, which
corresponds with ¢ < 265°, the lower edge of sector B. Hence, the sector centres for
the off-wind directions change with A, as opposed to the dominant wind directions, for
which the sector centres are constant.

2. Once test ranges have been determined for the secondary directions, the computation
and minimization analyses of the cost functions are the same as for the dominant wind
directions, recalling that Tpr must be the same for all SPF sectors.

This process should be repeated for all secondary test sectors until all ¢ in the dataset have
been assigned to a sector. Finally, the optimal tpr can be chosen from the initial range
depending on the cost function results for all wind-direction sectors. If the secondary wind-
direction sectors do not narrow the initial range, then the shortest 7pr in the initial range
should be chosen because it is associated with a larger N. In the example case for the SLOPE
site, it was possible to assign all of the secondary sectors (sectors D through F in Fig. 6)
with these four test ranges, making in total six optimized SPF sectors. However, it may be
necessary for other datasets or sites to have more than six sectors if the optimal A for the
secondary sectors are not large enough to include all remaining ¢ and if N is sufficiently
large.

This methodology shows that the optimal sector sizes vary due to variable topography
and available data. As Fig. 6 shows, typically the optimal sectors for the ¢ in the tails of the
distribution have a larger A likely because increased N was necessary to improve the planar-
fit convergence. This illustrates the competing effects implied by the degrees of freedom for
the SPF approach, and that selecting evenly distributed sectors of a single sector size, as
typically done for the SPF approach (e.g., Yuan et al. 2007; Ono et al. 2008; Nadeau et al.
2013), may not objectively account for these competing effects. It is important to note (as
shown in the cost functions examples for the SLOPE vs. PLAYA sites) that the resulting
optimization is site-specific, and that the available data at any given site will determine the
optimization. For example, the sector labeled C in Fig. 6 is relatively small (A = 30°), which
likely indicates influences from site heterogeneity caused by some &2 to 3-m-high shrubs
that run parallel to upper portions of the main slope axis (see Fig. 1d). These shrubs are
located ~50 m north of the main slope axis that intersects with the tower and likely affect
streamlines from ¢ ~ 0° to 35°.

In addition, the planar-fit method requires that sensors are not moved during the time
series, and if they are moved throughout the experiment duration, a separate planar fit or
SPF must be performed for the respective datasets (Wilczak et al. 2001). This implies that
seasonal changes in vegetation or surface roughness may also require that a time series might
need to be split-up for the planar-fit or SPF methods. In fact at the SLOPE site, SPF tilt-
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correction angles for the lower sonic anemometers are significantly different for June and
July when the alpine grasses are tall and green from those in September and October when
the grasses are senescent and shorter (the analysis is not shown herein, but is mentioned as
a word of caution). This is one example of how even small differences in terrain (vegetation
and topography), can perturb the velocity time series, especially near the surface. However,
this significant seasonal difference in tilt-correction angles was not seen in the higher sonic
anemometers (at x3 &~ 4 to 6 m) at the SLOPE site probably because they sample larger scale
velocities over more extensive terrain and the change in vegetation is not significant enough
to perturb the velocities at that scale.

6 Resulting Momentum Fluxes for Varied SPF Schemes

As stated previously, the sensor tilt corrections have been shown to have a greater effect
on the momentum fluxes than on the heat fluxes (Kaimal and Haugen 1969; Wilczak et al.
2001). Therefore, to quantify the effects of, and sensitivities to, non-optimized sensor tilt
corrections for varied A and tpF, this section focuses on the resulting momentum fluxes
for varied SPF tilt corrections. The Ogive analyses (Babi¢ et al. 2012) of the daytime and
nighttime turbulent fluxes at the SLOPE site (not shown herein) have indicated that the
appropriate flux-averaging time, 7y, that converges fluxes is 30 min; this averaging time is
implemented for all flux calculations herein (recall the differences between 7t and tpr as
detailed in Sect. 3.2). Additionally, linear detrending in time of the tilted velocities was
implemented before calculating mean and fluctuating components of u;.

Figure 7 shows the differences between the momentum fluxes calculated from a variety of
non-optimized SPF tilt corrections and the momentum fluxes calculated from the optimized
SPF tilt corrections for the SLOPE site. The legend labels refer to the sector definitions and
the tpp. The sector definitions called ‘optimized’ refer to the sectors defined by the proposed
SPF optimization methodology, and shown in Fig. 6; the remaining sector definitions refer
to the number of evenly divided/distributed sectors of size A (i.e., 36 x 10° means the SPF
was performed on 36 evenly distributed, 10° wind sectors). For the test cases with evenly
distributed sectors, the sector centres are aligned as much as possible with the dominant wind
directions. Figure 7a shows a direct comparison scatter plot of momentum fluxes from the
varied, non-optimized SPF versus those from the fully optimized SPF as defined in Fig. 6.
Figure 7b quantifies the errors between the momentum fluxes from the varied SPF schemes
and those from the fully optimized SPF. It shows a segment of the absolute percentage-
difference time series for three consecutive clear-sky days. In general, the errors (absolute
percentage differences) are lower for clear-sky days, and in addition, the times series (Fig. 7b)
shows that the errors are lower for the daytime fluxes. This is not surprising since the daytime
flows are typically stronger and less variable than the nighttime flows. This could also indicate
a potential wind-speed dependence for planar-fit tilt-correction schemes, which was not
considered in these analyses.

Table 1 shows the overall statistics for the complete September—October time series. As
expected, a single planar fit (1 x 360°) performs poorly for the complex SLOPE site. However,
surprisingly, selecting small A (36 x 10°) results in the highest absolute percentage difference
in the momentum fluxes from the optimized SPF. This can be explained by the fact that smaller
sector sizes are likely to have a significant percentage of oy in each streamline segment that
are larger than or fall outside of the sector itself. In fact, for this dataset, choosing A values
that are too large provides better momentum-flux estimates than choosing A values that are
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Fig.7 Sensitivity of the momentum fluxes (u/1 ug) to varied SPF degrees of freedom (see text for more details
about the legend labels). The plots show how the momentum fluxes from non-optimized SPF schemes compare
to the optimized SPF momentum fluxes: a correlations with reporting of the respective biases [mean offsets
in (m2 5*2)] and sums of the squared residuals [SSR in (m™ s~")] and b a portion of the absolute percentage-
difference time series for three consecutive clear-sky days. Note the logarithmic scale on b. Date and local
time are shown on the x-axis

Table 1 Summary of statistics over the full month of data (1224 total averaged segments with tpgp = 25 min)

comparing u’l u’3 resulting from the various SPF parameters for the SLOPE site

Sector TPF Median absolute Mean absolute
definition (min) percentage difference percentage difference
Optimized 25 0 0

Optimized 5 8.6 100.4

Optimized 45 4.1 50.7

Optimized 100 4.6 60.7

Optimized 200 12.0 160.1

36 x 10° 25 27.3 422.0

6 x 60° 25 6.5 83.8

1 x 360° 25 21.7 298.6

too small. Large 7pr (200 min) also behaves poorly because high tpr values coincide with
smaller N so fewer representative streamlines are available to define the fitting plane. In
addition, large tpp potentially averages over events for which a separate planar fit might be

@ Springer



554 H. J. Oldroyd et al.

optimal (potentially non-stationary events). Not surprisingly, the SPF with the ‘optimized’
sector definitions and with Tpr = 45 min provided momentum fluxes most similar to those
from the fully optimized SPF. Recall that 45 min is in the initial range of 7pr from the
dominant wind-direction sector analyses (see Sect. 5; Fig. 4) and was later ruled out based on
the secondary wind-direction cost function analyses. Hence, the resulting fluxes should be far
less sensitive to the Tpp =45 min variation of the SPF. Finally, it is important to reiterate that
these results are site specific, and that only the methodologies are transferable to other sites.

7 SPF Discussion

The SPF methodology presented herein is appropriate for measurements over complex terrain
where the streamline-normal velocity component (#3) may be non-zero. However, in general,
the planar-fit and SPF tilt-correction approaches have drawbacks that should be discussed.

First, since the planar-fit tilt correction is not a pure rotation technique, the magnitudes of
the individual velocity vectors may not be conserved during the tilt-correction process. This
issue has been discussed previously (e.g., Sun 2007), but is typically not quantified or reported.
For the SLOPE site this lack of vector conservation before and after the tilt correction was
found to be small for the resultants of the velocity vectors (0.15 % absolute mean percentage
difference), especially over the flux-averaging time, ty. However, for some individual vectors
the erroris as high as 300 %, and since the focus has been on flux measurements, it makes sense
to quantify how this error translates to TKE conservation. The mean percentage differences
for TKE (0.09 %) and mean TKE (0.007 %) are smaller than for velocity (0.15 %). Hence,
for the SLOPE site this error is acceptable. However, this error is specific to the SLOPE site
example and should be quantified and verified as a general practice for other datasets.

Second, the SPF optimization methodology is not automated, since it requires an objec-
tive analysis of the cost functions and the making of decisions. Furthermore, an automated
algorithm may not be possible due to the insensitivities of the cost functions to increased
sector size (as discussed above in Sect. 3.3) and the fact that the global minima for the cost
functions cannot reflect this insensitivity. For example, in Fig. 4d the true minimum indicates
that A should be near 110° and tpg should be near 120 min. However, this would result in
significantly different tilting angles for the sector (see also Fig. 5) and would not reduce ii;
adequately. The lack of an automated algorithm makes the SPF optimization methodology
inefficient. Future work should include using the optimized SPF methodology to indicate
other, more efficiently determinable, predictors for the optimal A and tpg. For example, the
data from the SLOPE site (including those from the other four measurement heights) suggest
that the optimal A can be predicted by a factor of 7, the mean standard deviation in wind
direction encompassed within the sector. This relationship requires future verification with
data from other sites, and a similar predictor is simultaneously needed for the optimal 7pp
since 6y = f(A, TpF).

Third, the SPF technique inherently generates discontinuities in the tilting angles at the
wind-sector boundaries (Ross and Grant 2014). The uncertainties that these discontinuities
contribute to analyses will depend on the sizes of the discontinuities and the number of
affected data points in a particular mean segment. Researchers should at least flag affected
mean data segments and consider neglecting these segments if they contribute significantly
to the overall mean. Methods to address the discontinuity problems, such as curve fitting the
tilt-correction angles near the discontinuities or using overlapping SPF segments, should be
considered.
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Fourth, selecting the best SPF parameters for sectors characterized by very low wind
speeds (i.e., above the katabatic layer for downslope flow at the SLOPE site or during transi-
tion periods) can be very difficult with the current cost function methodology. This is likely
because the streamlines are too weak to define a clear fitting plane. An alternative method-
ology for very low-wind-speed sectors should be considered in future work. Finally, the cost
functions defined in Eqgs. 3—5 were written as functions of A and tpp alone. However, a
wind-speed or an atmospheric stability dependence on the SPF parameters cannot be ruled
out and should be investigated further.

8 Adaptations of the Governing Flow Equations: Problem Description

Now that the sonic anemometer tilt corrections have been optimized for the complex SLOPE
site, the adaptations of the governing flow equations can be addressed. This work focuses on
the momentum, velocity variance and TKE budget equations, but the transformations from
horizontal/vertical to slope-normal/slope-parallel (SNSP) coordinate systems presented in
Sect. 9 are generalized and applicable to other governing equations where gravity plays a
role, such as the turbulent flux or the higher-order moment prognostic equations. However,
prior to showing these adaptations, it is useful to examine the governing flow equations in
the horizontal/vertical coordinate system to better assess the complications associated with
adapting them to the SNSP system.

For flat terrain, neglecting Coriolis forces near the surface and viscous effects on the
mean motions, and employing the shallow-convection Boussinesq approximations (Dutton
and Fichtl 1969; Mahrt 1986), the mean momentum equations are, following Mahrt (1986)

o = O 1 9P A 0ajd,
o TUj = T A —8i3g— — ~
ot 0Xj  pa 0% 0, 0%

: (©)

where again employing index notation, i is the streamwise velocity component in the mean
flow direction, X1, i1 is the spanwise velocity component in the X, direction, and #3 is the
vertical velocity in the X3 direction; the overbar indicates time averaging, the primes indicate
turbulent excursions from the mean, and the ‘hat’ accent above a variable indicates that the
variable is in the horizontal/vertical coordinate system (see Fig. 1c); ¢ is time, p, is the
ambient air density at a reference height (note that hereafter, variables with the subscripted
a are taken at the reference level.), P is pressure, ;3 is the Kronecker delta operating on the
acceleration due to gravity, g, in the vertical direction, and the buoyancy forces under the
above assumptions are generated by the difference in virtual potential temperature, from the
ambient virtual potential temperature, A@ = 6, — . The momentum equations in the SNSP
coordinate system have been presented consistently in the literature for flows aligned with the
main slope axis (e.g., Manins and Sawford 1979; Mahrt 1982; Haiden and Whiteman 2005;
Nadeau et al. 2013). This transformation results in modifications to the gravitational term
(the fourth term in Eq. 6). Since the SNSP coordinate system is no longer aligned with the
gravitational force, the vertical projections of the SNSP buoyancy forces must be used. With
these transformations the buoyancy term in the u; (along-slope) component momentum
equations is —|—g(A9_ /éil)sin(aslope), and the u3 (slope-normal) component equation now
has —g(Aé /@,)cos(aslope) as the buoyancy forcing, where agjope is the main slope angle,
and the plus sign for the u; component clarifies that the buoyancy force drives the flow,
providing positive momentum. This formulation of the momentum equations is suitable for
flows aligned with the main slope axis (purely upslope or downslope flows). However, for
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slope flows having a cross-slope component (e.g., the daytime thermally-driven flows for
the SLOPE site are aligned with ¢ = 185°, or the upslope/up-valley direction) the proper
SNSP alignment has gone largely undocumented. A more general form of the momentum
equations that will appropriately hold for SNSP coordinate systems aligned with a cross-slope
component in i is developed below (Sect. 9).

In addition, the TKE budget equation for slope flows in the SNSP coordinate system has
been presented inconsistently in the literature. For flat terrain, the mean TKE budget equation
is (Stull 1988, pp. 115-195),

de - oe g = o @@ 1@ P)
o Tligg, TGO e T T T ey @

where e is TKE and ¢ is the dissipation rate of TKE. The third term in Eq. 7 represents
the buoyant production or consumption of TKE, and the §;3 Kronecker delta, again, makes
this term act only in the vertical direction. The main discrepancy found in the literature for
the SNSP transformation of the TKE budget equation is in the treatment of the buoyancy
term, arising from the physical constraint of the vertical gravitational force. For example,
Horst and Doran (1988) and Lobocki (2014) use —(g/é) (sinajope (u’1 0") — cosaslope (uge/)),
whereas Arritt and Pielke (1986) and Nadeau et al. (2013) use the slope-normal component of
buoyancy (gu36’/ 0). A third approach might be to use the covariance of the vertical velocity

and virtual potential temperature for the buoyancy term, g (@) /6. However, this potentially
limits the possible physical interpretations provided by analyzing the components separately.
A plausible reason for these discrepancies/confusions is that TKE is a scalar quantity, and
when non-orthogonality exists between the coordinate system and buoyant mechanisms (as
in the case of SNSP coordinate systems), it is not readily clear which approach is most
appropriate.

The final complication for adapting the governing equations to the SNSP coordinate sys-
tem for flows over steep, complex terrain is that the streamwise slope angle changes with
varying wind direction, ¢». Therefore, the coordinate system, and subsequently the tilt from
the horizontal of the mean streamline plane, change within the time series. This changing
coordinate system poses additional difficulties in applying the governing flow equations,
especially for the terms associated with gravitational forcing. The following section pro-
poses adaptations that can be used to generalize the governing flow equations, such that
transformation to the streamwise SNSP coordinate system for all ¢ becomes clear, and can
be used consistently.

9 Governing Flow Equations for Slope-Aligned Coordinate Systems

To derive more general forms of the governing flow equations that are easily adaptable
for SNSP and other orthogonal coordinate systems requires a more general formulation for
gravitational acceleration. The Kronecker delta convention used in Egs. 6 and 7 for the hor-
izontal/vertical coordinates makes the quantity §;3g for the gravitational acceleration act in
only the vertical direction, as expected. However, in a fixed SNSP coordinate system, the
directional vectors, i, j, kK = 1,2, 3, correspond respectively, to slope-parallel, slope-span
and slope-normal directions and in a SNSP coordinate system that follows the mean wind,
i, j,k =1,2,3 correspond to streamwise, span-wise and slope-normal directions, respec-
tively. Therefore, in both SNSP coordinate systems the Kronecker delta convention used in
the horizontal/vertical forms of the equations no longer correctly applies the gravitational
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forcing. If, instead, a more generalized Kronecker delta convention for the gravitational accel-
eration is used, the proper projections of the buoyancy forces can be made for all directions,
X;,in the SNSP coordinate system. This more general form of the Kronecker delta convention
is

—g(8i18ina + §josinay — §;3c083). (8)

Equation 8 shows three different slope angles: o, @» and «3. The slope angles o and o
are defined as the angles from the horizontal aligned with x; and x;, respectively. If x;
and u; follow the mean wind, then o and « will change with changing wind direction
(i.e., the angles of the terrain ‘seen’ by the mean wind, u| and u;). Park and Park (2006)
also observe this changing slope angle over larger scales. The slope angle «3 is defined as
the angle between the planar slope-normal direction, x3, and the vertical direction, and is a
constant angle (assuming a planar slope) that represents the main planar tilt of the terrain.
Since a1 and o change with wind direction (in a coordinate system aligned with the mean
wind direction), a convention relating wind direction to the sloping plane must first be defined
and established to generalize the mathematical definitions of «; for any slope aspect. This
generalized wind direction, v, is defined by a clockwise wind direction compass aligned
with zero at the top of the slope, such that for pure downslope flow, ¥y = 0° = 360° and for
pure upslope flow ¥ = 180°. Hence to transform the SNSP forms of the equations developed
herein to any site, a site-specific relationship between , the generalized, slope-referenced
wind direction and ¢, the meteorological wind direction defined from north is needed. For
example, ¥ = ¢ — 90° for the west-facing SLOPE site, where northerly winds are cross-
slope from left to right when looking up from the base of the slope. Subsequently, assuming
a planar slope | and «; are given by

a1 = arcsin(cosysines), )

and
ap = arcsin(cos(¢¥ — 90)sina3). (10)

Figure 8 shows an example schematic of how ¥, ¢ and «; are defined for a west-facing,
planar slope of agope = 35.5° = a3 (an idealization of the SLOPE site). If the planar-slope
assumption is not reasonable for a particular site, then «j 2.3 = f(¢) can alternatively come
from a high-resolution digital elevation model (DEM) with advanced geographic information
system (GIS) tools. To evaluate the planar-slope assumption for the SLOPE site, Fig. 9 shows
the elevation profiles for the ¢ = 90° and ¢ = 285° meteorological wind directions for the
SLOPE site. By visual inspection, the slope near the tower appears to be quite uniform, and
locally the planar-slope assumption seems reasonable. To better quantify this assumption, the
local slope angles given in the inset of Fig. 9 were estimated from a 10-m by 10-m grid taken
from a 1-m resolution DEM and centred at the observation tower. The local slope angle for
¢ = 285°, o = 33.6° is reasonably close to the mathematically derived (Eq. 9), planar-slope
angle, « = 34.1°. Table 2 summarizes the departures in local «-slope angles for various
¢, determined by comparing estimates from the DEM at the SLOPE site and the theoretical
slope angles assuming a purely planar slope. For most wind directions at the SLOPE site,
this departure is minimal, especially for the dominant wind directions (the first two rows in
Table 2). The largest percentage difference, 100 %, is for the pure cross-slope wind direction
(¢ = 0°) because the theoretical slope angle is zero and the DEM slope angle is non-zero. The
next largest percentage difference, 18.6 %, would add significant uncertainly to buoyancy
flux estimates for wind directions ¢ = 20° or ¢ = 200°. However, these wind directions
occur infrequently at the SLOPE site (see Fig. 6).
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Fig. 8 Idealized planar slope schematic for a west-facing (¥ = ¢ — 90°) slope with o3 = 35.5°. a The front
side of the slope showing the dominant wind directions for night (downslope flow; ¢ = 90°; magenta vectors,
X1, X2, n1) and day (upslope/up-valley flow; ¢ = 285°; green vectors, x1 4, x2 4). b The back, or underside,
of the slope showing o1 and ay for ¢ = 285°, a wind direction not aligned with the main slope angle

Substituting the generalized Kronecker delta convention (Eq. 8) into the gravitational term
for Eq. 6 gives the generalized mean momentum equations,

dig;  _ O 1 9P  Abg . , duiu';
— tiuj— = ———-—+ ——(;18inay + ;zsinay — §;3c0803) — .
at 3Xj Pa 0X; 6, ij

an

To compare with the slope-aligned forms of the mean momentum equations in the literature
for pure downslope flow, requires that | = a3 = aglope and ap = 0. With these slope
angles, sinay = 0 and the standard forms of the #; and u3 momentum balances given in
Manins and Sawford (1979), Mahrt (1982) and others are recovered. In addition, Eq. 11 is
now also appropriate for slope flows having a cross-slope component, a topic that has gone
largely undocumented. For example, at the SLOPE site the dominant daytime wind direction
is ¢ = 285° (upslope/up-valley flow), making ¢ = 195° and oy = —34.1°. In contrest to
the pure downslope flow case, o1 # o3, and the local gravitational forcing in the #; mean
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Fig. 9 Elevation profiles from the valley floor to the ridge top for the ¢ = 90° and ¢ = 285° wind directions
at the SLOPE site. The circles indicate the observation tower location at 1976 m a.s.1., where the two profiles
physically intersect. The inset shows a zoomed-in region near the tower and the local slope angles that were
estimated from a 1-m resolution digital elevation map over a 10-m by 10-m grid centred at the tower

Table 2 Magnitudes of the

terrain slope angles estimated ¢ 1, pEMm| loct, Difference (%)
from the DEM at the SLOPE site, 90°. 270° 35.50 35.5° 0
and determined theoretically ; . ' . ’ .
assuming a perfectly planar slope 105°, 285 33.6 34.1 —13
with a3 = 35.5° for various wind ~ (°, 180° 1.05° 0° 100
directions, and percentage ° o ° °
differences of the sine of these 200’ 2000 14'20 11'50 18.6
angles calculated by 40°,220 22.1 21.9 0.8
100(sinjer; pEm| — 45°,135° 27.5° 24.2° 11.2
sinjert, TH|)/sinje1 DEMI 60°, 240° 32.1° 30.2° 5.5
80°, 260° 35.1° 34.5° 1.4
120°, 300° 31.8° 30.2° 4.5
140°, 320° 20.9° 21.9° —4.6
160°, 340° 10.3° 11.5° —11.5

momentum balance is slightly reduced due to the reduced slope angle ‘seen’ by the mean
wind.

Similarly for the TKE budget equation, one could simply insert the generalized Kronecker
delta convention (Eq. 8) to obtain the SNSP appropriate adaptations. However, since docu-
mented discrepancies (as discussed in Sect. 8) have characterized the SNSP form of the TKE
budget equation, a more complete derivation is presented here. TKE is defined as (Stull 1988,
pp. 115-195),
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e=0.5u”. (12)

From Eq. 12, and also following Stull (1988, pp. 115-195), derivation of the TKE budget

equation requires summing the prognostic equations for velocity variances and dividing by
2. The prognostic equations for velocity variances (Stull 1988, pp. 115-195),
7 ") PN - AT A1) PPN

ou. — ou; g(uie) _ 0l B 8(ujui ) _ ga(uiP) e (13)

! —L = 426 — U .
ar T 3%, T i"i 9% 3% p 0%

were derived for a horizontal/vertical coordinate system as indicated by the Kronecker delta
convention in the third term. In the SNSP coordinate system, each of the three components
of the velocity variance can potentially have a contribution from buoyant forcing. To account
for these contributions, the more generalized Kronecker delta formulation (Eq. 8) is used,
and then Eq. 13 can be written for the SNSP system without violating the physical law of
gravity acting vertically. With these substitutions, Eq. 13 is now,

g w6)

au? au? w0
:—28i1sina1g(§’ ) 25sines® . + 28;3c08035 .

i - i

o " ax;

——om 0w 23w P)
—2uiu]- 78xl~ - 8]x~l - = Bl — = 2¢. (14)
j j po0X

If now Eq. 14 is substituted into the definition for mean TKE, 2¢ = W (Eq. 12), the TKE
budget equation for a general, planar-slope coordinate system is,

% e o g v
g +ﬁj—e = —sinozlg(u,1 ) — sinotzg(M,2 ) —l—(:osot3g(u,3 )
at 0x;j 0 6 0
s Jm e 1dwP) (15)

—u;u;
0x; 0x; o 0x;

and for flat terrain, «; = oy = a3 = 0 and the flat terrain form of the TKE budget (Eq. 7) is
recovered. Theoretically, for a planar slope, all three components of the buoyancy term must
be retained. To our knowledge, the o> buoyancy term has not been shown in the literature, an
oversight that is probably explained by two reasons. First, when i is rotated into the mean
wind direction, i, = 050 itis easy to overlook any contributions from u. The second reason
can be explained using the magenta vectors (x; ,) sketched in Fig. 8 for pure downslope flow.
In this case, a; = a3 = oglope = 35.5° and ap = 0° so (g/é)(—u/ze’sinaz) = 0, and the
formulations in Horst and Doran (1988) and Lobocki (2014) are recovered. However, pure
upslope or downslope flows are special cases, and for a wind direction not aligned with the
main slope axis (i.e., the green vectors in Fig. 8, x; 4) sinoz # 0 and (g/é)(—u’ze/sinaz) is
also not necessarily equal to zero.

Since it is unclear from the theoretical formulations if the oy component of the buoyancy
term is significant with respect to the other two components, Fig. 10 uses the data from the
SLOPE site to investigate this. Figure 10a shows all three buoyancy components from the
TKE budget equation for three consecutive clear-sky days. Figure 10b shows the correspond-
ing time series of their respective slope angles on the left, blue axis and the wind-direction
angles, ¢ and ¥ on the right, grey axis for reference. Above all, Fig. 10 shows that, except in
the case of pure downslope flow, for example at night, all three components of the buoyancy
term can be significant and should be retained in TKE budget analyses. In this example, the
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Fig. 10 Three consecutive clear-sky diurnal cycles showing a SNSP components of the buoyancy flux from
Eq. 15 and the resultant buoyancy flux computed by two equivalent methods, summing the SNSP components
and using the vertical velocity component, and b the respective slope angles (blue left axis) for each component.
For reference, the corresponding time series of wind-direction angles, ¢ and ¥ are also shown (grey right
axis). The shaded regions indicate the nighttime, downslope flow regimes. Note the diurnal sign changes in
a1 corresponding to the diurnal patterns in ¢ (see also Fig. 6). Date and local time are shown on the x-axis

(g/ é)(—ué@’ sinap) term contributes little to the vertical buoyancy flux; however, it is non-
zero. This implies that for a SNSP coordinate system for which u follows the mean wind
direction, the (g/ 9_)(—14’2«9’ sinap) term is potentially significant for some sites, and should
not be neglected a priori.

In addition, Fig. 10a shows that the resultant buoyancy flux computed by summing the three
flux components is equivalent to the buoyancy flux computed by using the vertical velocity
component, i#46’, as expected (note the ‘hat’ notation for the horizontal/vertical coordinate

system). Using the vertical velocity component to calculate the total buoyancy flux, g /6, s’
may appear as a more simple formulation to use. However, using the three components can
elucidate a richness of information regarding physical mechanisms because it clarifies how
fluxes over sloping terrain differ from their flat terrain counterparts. For example, since the
along-slope buoyancy fluxes are now aligned with the momentum fluxes one can explore how
the two interact. These results also have implications for the flux Richardson number, Riy, that
is defined as the ratio of shear production terms to the buoyant production/destruction terms
from the TKE budget equation. Therefore, in a SNSP coordinate system, the flux Richardson
number is

i (—sinal w0’ — sinap uh0’ + cosaz u’39’) g” L6’
. _ 0 _ 9
Rif = — = —. (16)
—aU; —0U;
uiuj ax]' uiuj 3)6]'
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These results show that, in using the SNSP coordinate system, the buoyancy terms in
the governing equations must retain extra terms. In addition, when x; and u; follow the
mean wind direction the physical interpretations of the buoyancy fluxes in the TKE budget
equation become more complex because o1 and «» change in magnitude and sign throughout
a diurnal cycle. Therefore, in future studies where a planar-slope assumption is reasonable,
it is recommended that a fixed SNSP coordinate system is adopted. In such a case, x; and
u1 are not rotated into the mean wind direction and are aligned with the main slope axis.
Hence, us> # 0, necessarily, and x, and u; are aligned with the cross-slope direction. For the
fixed SNSP coordinate system the general SNSP forms of the governing equations derived
herein remain valid and oy = a3 = asope and ap = sinay = 0, which is a significant
simplification when analyzing the buoyancy fluxes in the TKE budget. However, care must be
taken to ensure that the signs for 1 align properly with the fixed coordinate system chosen.
For example, if positive x1 is aligned with the upslope direction, then «; = —a3. Conversely,
if positive x is aligned with the downslope direction, then oy = a3 for the equations herein
to produce the correct signs. One disadvantage associated with using a fixed SNSP coordinate
system, is that analysis of the momentum budget becomes more complicated because the i
component of the momentum balance equations must be retained for flows not aligned with
the dominant slope axis.

10 Summary and Conclusions

Herein, solutions for addressing challenges associated with adapting field data and the gov-
erning flow equations to coordinate systems aligned with steep slopes in three-dimensional,
complex terrain have been proposed and developed for practical use. First, to reduce the artifi-
cial, terrain-induced portion of the measured velocity signal, it;, a methodology is developed
that provides objective cost functions for selecting appropriate sector sizes, A, and planar-fit
averaging time tpf for the sector-wise planar-fit (SPF) tilt-correction scheme. Through the
ensemble minimization of these cost functions an optimized SPF helps to place the three-
dimensional velocity measurements into a more planar, terrain-following coordinate system.
Field data from an alpine, steep-slope site show that significant deviations from the optimized
SPF produce large errors in the momentum flux estimates as shown in Fig. 7 and summarized
in Table 1. In particular, some of the highest errors in the momentum fluxes are produced by
using small A (422 % mean absolute percentage difference for A = 10°) or very large tp
(160 % mean absolute percentage difference for tpp =200 min) for the SPF because the data
segments defining each planar fit contain too much variability such that the mean streamlines
are not representative of observed velocity signals. In addition, using a single planar fit also
performed poorly because of the geometrically variable terrain surrounding the SLOPE site.
The cost functions also show that, for the very idealized, flat site (PLAYA), a single planar
fit is likely sufficient because the planar-fit coefficients, and subsequent planar-fit tilt angles,
do not change much for varying A and tpr, except for very large tpg.

Second, simplifications, inconsistencies and oversights found in the slope-flow literature
that can be associated with improper treatment of the buoyancy terms for the governing flow
equations in the slope-normal/slope-parallel (SNSP) coordinate system are addressed. New
and generalized adaptations for the governing flow equations are developed for slope-aligned
coordinate systems. In particular, these SNSP forms of mean momentum equations can prop-
erly account for a coordinate system changing in time to follow the terrain in the mean wind
direction and hence, a slope flow that is not aligned with the main slope axis (i.e., has a
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cross-slope component). In such cases, the buoyancy forces are reduced in the streamwise
(#1 component) equation because the slope angle ‘seen’ by u is less steep than the angle
experienced by pure upslope or downslope flows. In addition, a generalized, terrain-following,
TKE budget equation is derived that is appropriate for orthogonal, planar coordinate systems.
Therefore, it is appropriate for both flat and sloping terrain if the x3 and i3 components are
aligned with the surface-normal direction. This equation contains all three directional contri-
butions to the buoyancy flux, and therefore,the buoyant production/destruction term of the full
budget equation. Data from the SLOPE site show that the typically omitted sin(er2) g (u50")/ 0
component of the buoyancy flux was found to be non-zero for slope flows having a cross-slope
component, and should not necessarily be neglected. Subsequently for these cases, the flux
Richardson number must also contain all three components. For pure upslope or downslope
flows the sin(ag)g(u’zé’)/é term is zero because ap = 0, and the Horst and Doran (1988)
and Lobocki (2014) formulations are sufficient.

In summary, the study was motivated by a need to revisit traditional methodologies for
more complex measurement sites. The results presented herein are largely site specific, though
the methodologies and especially the derivations are adaptable to other sites. The standardiza-
tion of methodologies for properly handling atmospheric measurements over very complex
sites is still in the developmental stage. Even the optimized SPF scheme presented herein has
some imperfections that need attention, such as discontinuities in tilting angles, problems
fitting a plane to very low-wind-speed sectors, the efficiency in selecting optimized SPF
parameters, the wind-speed-dependence on the SPF parameters, and velocity-vector conser-
vation. However, this SPF scheme is an important step towards improved and standardized
methodologies because it offers a clear technique with which more objective decisions can
be made for SPF implementations over complex terrain.
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