
Could, or should the ancient Greeks have

discovered the Lucas-Lehmer test?

ROBERT GRANGER

1 Introduction

The Lucas-Lehmer (LL) test is the most efficient known for deterministically testing the
primality of Mersenne numbers, i.e., the integers Ml = 2l − 1, for l ≥ 1. The Mersenne
numbers are so-called in honour of the French scholar Marin Mersenne (1588-1648), who
in 1644 published a list of exponents l ≤ 257 which he conjectured produced all and only
those Ml which are prime, for l in this range, namely1 l = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127
and 257 [1]. Mersenne’s list turned out to be incorrect, omitting the prime-producing
l = 61, 89 and 107 and including the composite-producing l = 67 and 257, although this
was not finally confirmed until 1947, using both the LL test and contemporary mechanical
calculators [2]. The LL test is based on the following theorem.

Theorem 1.1. [3, 4] Define a sequence of integers xk by the recursion

x0 = 4, xk+1 = x2k − 2. (1)

Then Ml = 2l − 1 is prime if and only if Ml | xl−2.

When first encountered, this test may seem astonishing, giving the uninitiated virtu-
ally no hint as to why it is correct. Indeed, despite being developed by Lucas — albeit in
a slightly different form — in 1876 [3], it was not until Lehmer’s above formulation and
proof in 1930 [4] that the condition of the test was rigorously shown to be both necessary
and sufficient. In particular, the idea behind the test almost seems to have been delib-
erately obfuscated, though admittedly this in no small way contributes to its elegance.
However, once a key idea is understood, it is fairly straightforward to prove Theorem 1.1
with only a modicum of abstract algebra.

In this article, we argue that the LL test could in principle have been discovered by
the ancient Greeks, rather than arising as it did as a consequence of Lucas’ brilliant in-
sights. Our argument is based on two derivations together with supporting observations.
Firstly, we demonstrate how the LL test may be naturally extrapolated from Heron’s
1st century method for computing square roots when used to compute

√
3. Indeed, so

naturally does the test arise from this computation, that we contend that a 1st cen-
tury mathematician could feasibly have discovered it. Moreover, in the 3rd century BC,
Archimedes had already computed rational approximations to

√
3 for his estimate of π [5,

1Note that for Ml to be prime, l itself must be prime, since if a | l, then (2a − 1) | (2l − 1).
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p. 51], and so mathematicians of the era were certainly well motivated to consider this
problem. Secondly, although a matter of some historical debate, the upper and lower
bounds produced by Archimedes may also imply a knowledge of the continued fraction
method of approximating square roots — since they are convergents — a method which
was not published until 1572 by Bombelli [6], and which as we show also leads to the LL
test. Finally, interest in Mersenne primes would have no doubt been piqued by Euclid’s
well-known theorem on even perfect numbers [7, Book IX, Prop. 36], and so one expects
that contemporary mathematicians would have been ‘primed’ to make the discovery, had
they carried out either of the above computations. Taking each of these factors into
account, one is naturally led to ask not so much whether the LL test could have been
discovered by the ancient Greeks, but whether the LL test should have been discovered?
It is of course anachronistic to impose upon hypothetical ancient scholars a facility with
the techniques of modern mathematics; however, we readily invite the reader to make
their own assessment as to the merits of our argument.

While we do not believe a proof would have been within the reach of the mathematics
of the time, it is nevertheless tantalising to consider the possibility that had the LL test
been discovered, then the notions required to prove it might also have been found, if not
by the ancient Greeks, then at least at some time prior to its formulation more than two
millennia later.

In addition to our central argument, we present a new, simple and arguably more
natural variant of the LL test, which arises directly from both Heron’s method and con-
tinued fractions. We also explicate the key idea behind Theorem 1.1, and briefly explore
how various representations of the underlying group involved give rise to equivalent for-
mulations.

2 Discovering the Lucas-Lehmer test via Heron’s method

One way to compute the square root of an integer, or rather rational approximations
thereto, is to use Heron’s method [5, pp. 323–324], named after the 1st century Greek
mathematician Heron of Alexandria. This method was very probably also known to the
Babylonians [8].

To compute successive approximations to
√
D, one starts with any initial positive

value x′0 (usually b
√
Dc, the largest integer ≤

√
D), and defines a sequence of rationals

x′k by:

x′k+1 =
1

2

(
x′k +

D

x′k

)
. (2)

It is easy to show that limk→∞ x
′
k =
√
D, and that the convergence is quadratic. Note

that Heron’s method is identical to Newton’s iteration for solving the equation f(x) =
x2 −D = 0.

We start by considering the sequence x′k of rationals given by Heron’s method for
computing

√
3, which for x′0 = b

√
3c = 1, begins

[1, 2, 7/4, 97/56, 18817/10864, 708158977/408855776, (3)

1002978273411373057/579069776145402304, . . .].
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Since each x′k is rational, for k ≥ 1 we write x′k = nk/dk, with n1 = 2, d1 = 1. Writing
recursion (2) in terms of (nk, dk) one has

x′k+1 =
1

2

(
x′k +

3

x′k

)
=

1

2

(
nk/dk +

3

nk/dk

)
=
n2k + 3d2k

2nkdk
,

and hence for k ≥ 1 one can express recursion (2) equivalently as

n1 = 2, d1 = 1, nk+1 = n2k + 3d2k, dk+1 = 2nkdk. (4)

Testing the first few terms, it seems that gcd(nk, dk) = 1 may be true for all k ≥ 1,
and indeed this is easily proven by induction (or as we show shortly). For this reason, or
perhaps due to mathematical curiosity, it is natural to factor the first few terms. Noting
that dk = 2k−1 ·

∏k−1
i=1 ni, we need only factor the nk’s. Starting from n1, this gives the

sequence:
[2, 7, 97, 31 · 607, 708158977, 127 · 7897466719774591, . . .].

This is not much data to go on, however the keen observer will notice that 7 | n2, 31 | n4
and 127 | n6, or rather (23 − 1) | n2, (25 − 1) | n4 and (27 − 1) | n6, but that (24 − 1) - n3
and (26 − 1) - n5.

Based on these five cases one might postulate that for l ≥ 3, if 2l − 1 is prime then
(2l − 1) | nl−1; and conversely, if 2l − 1 is composite then (2l − 1) - nl−1. Perhaps
annoyingly, this does not work for l = 2 (but for good reason, see §3.2), however this
is no reason not to test further small cases — up to l = 13 for instance — for which
the postulate is borne out. We thus have a very natural, but perhaps loosely supported
conjecture, which we formalise as follows:

Conjecture 2.1. For l ≥ 3 let p = 2l − 1, and let the sequence nk be given by recur-
rence (4). Then p is prime if and only if p | nl−1.

So is Conjecture 2.1 the LL test? Well, in this form not quite, but one can relate
the two with the following simple observation. Since nk/dk converges to

√
3, its square

converges to 3. The ‘error’ in this approximation shrinks to zero as k →∞. In particular
we have n21/d

2
1 = 3 + 1, n22/d

2
2 = 3 + 1/42, n23/d

2
3 = 3 + 1/562, and it seems that for k ≥ 1,

one has
n2k/d

2
k = 3 + 1/d2k, or n2k − 3d2k = 1.

This can be proven by induction by simply plugging in the formulae from recursion (4):

n2k+1 − 3d2k+1 = (n2k + 3d2k)
2 − 3 · (2nkdk)2 = (n2k − 3d2k)

2 = 1.

Hence the sequence of pairs (nk, dk) for k ≥ 1 are actually integral solutions to the
equation x2 − 3y2 = 1 (and so gcd(nk, dk) = 1, as claimed). Neglecting for the moment
that this is a Pell conic (the discussion of which we defer until §3.3), one deduces from
this that the recursion for nk may be rewritten as:

n1 = 2, nk+1 = n2k + 3d2k = 2n2k − 1. (5)
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Comparing (5) with (1), observe that n1 = x0/2, and by induction we have nk+1 =
2n2k − 1 = 2(xk−1/2)2 − 1 = (x2k−1 − 2)/2 = xk/2, and so accounting for the shift by one
position, recursion (5) is simply half the LL recursion (1)! Furthermore, since gcd(p, 2) = 1
we see that Conjecture 2.1 is equivalent to Theorem 1.1. Hence merely by computing

√
3

using Heron’s method and making some very elementary observations, it is in principle
possible to arrive at the LL test purely empirically.

2.1 Could the ancient Greeks have made this discovery?

We have shown that one could feasibly have stumbled upon Conjecture 2.1 without ever
having been looking for a Mersenne number primality test. We now argue that a 1st

century mathematician could plausibly have done so.
Firstly, computing square roots is a naturally interesting and relevant endeavour.

Furthermore, as is well known, in the 3rd century BC Archimedes used the rational
approximations [5, p. 51]

265

153
<
√

3 <
1351

780
(6)

in his estimate of π. Hence there can be no doubt that this problem was addressed.
Secondly, once Heron’s method was available, it would be the natural algorithm to use.

Finally, assuming our hypothetical scholar was able to factor 18817, he could arguably
have extrapolated Conjecture 2.1 from the three observations (23 − 1) | n2, (24 − 1) - n3
and (25 − 1) | n4 alone. He could then have tested the divisibility of nl−1 by 2l − 1 for
larger l far more easily than he could have factored nl−1. Furthermore, he may also have
astutely observed that for a given l, the sequence n1, . . . , nl−1 need only be computed mod
2l−1, since only the remainder when nl−1 is divided by 2l−1 is needed, thus making the
computation far simpler. This is of course how one applies and implements Theorem 1.1
in practice. Using such observations he could then have checked the conjecture for other
small l and used trial division to test the primality of 2l−1, perhaps up to 213−1 = 8191
or even larger, and established sufficient grounds to confidently postulate Conjecture 2.1.

In actuality the Greeks were apparently only aware of primes of the form 2l − 1, for
l ≤ 7, which is somewhat surprising given that one would have expected their interest
to have been piqued by Euclid’s well-known theorem on even perfect numbers [7, Book
IX, Prop. 36], which states that if 2l − 1 is prime, then N = 2l−1(2l − 1) is perfect, i.e.,
the sum of its proper divisors equals N . While we do not attempt to explain the reasons
for this, we believe it plausible that a mathematician who was aware of Euclid’s theorem
would have been ‘primed’ to discover the LL test, should he have carried out the above
computation, or the one detailed next in §2.2.

We lastly remark that when Heron’s method is used to compute rational approxima-
tions to

√
6, with x′0 = b

√
6c = 2, one obtains the following sequence of numerators nk,

for k ≥ 0:

[2, 5, 72, 4801, 31 · 1487071, 52609 · 80789839489,

127 · 769 · 36810112513 · 10050007226929279, . . .].
(7)

As we found for
√

3, here one also has (23 − 1) | n2, (25 − 1) | n4 and (27 − 1) | n6, and
(24 − 1) - n3 and (26 − 1) - n5. While this does not readily apply to the square root of
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all non-square integers, this is surely no coincidence! We believe this lends weight to our
contention that a 1st century mathematician could feasibly have discovered the LL test.

2.2 Discovering the Lucas-Lehmer test via continued fractions

In this section we demonstrate how Heron’s method when used to compute
√

3 is naturally
related to the continued fraction expansion of

√
3, thus offering another possible avenue

of discovery of the LL test.
The Greeks are known to have routinely used continued fractions — based on the

ubiquitous Euclidean algorithm — in order to express rational numbers. When the
Pythagoreans found these numbers to be inadequate to represent all quantities (

√
2 being

the example par excellence), they were left with a real problem. However, in the 4th

century BC, Eudoxos found a way to represent not only those quantities arising from Eu-
clidean geometry, but all real numbers — as we call them today — by allowing arbitrary
infinite continued fractions [9, p. 57].

The continued fraction for
√

3 may be represented as [1; 1, 2], where the bar means
that the sequence [1, 2] is repeated indefinitely, and both the notation and the equality
may be deduced from the equation

√
3− 1 =

1

1 + 1
2+(
√
3−1)

. (8)

It is very likely that the ancient Greeks knew how to expand the square root of positive
integers as continued fractions, Theaetetos having established much of how to do this, as
recorded in Book X of Euclid’s Elements [7].

The sequence of convergents for
√

3 arising from (8) is

[1, 2,
5

3
,
7

4
,
19

11
,
26

15
,
71

41
,
97

56
,
265

153
,
362

209
,
989

571
,
1351

780
, . . .], (9)

where them-th term cm equals the expansion of them-term truncation of [1; 1, 2]. Observe
that c1 = x′0, c2 = x′1, c4 = x′2, c8 = x′3 and it appears that in general one has

c2i = x′i. (10)

Note Archimedes’ lower and upper bounds for
√

3 from (6) also appearing in (9). Hence if
continued fractions were indeed Archimedes’ method of arriving at (6), then with a little
more effort than is required when using Heron’s method, the LL test could feasibly have
been discovered by this approach as well, having the form ‘p = 2l− 1 is prime if and only
if p divides the numerator of c2l−1 ’.

One way to prove (10) is as follows. By the definition of convergents and using (8),
we have c1 = 1, c2 = 2, and for m ≥ 1:

c2m+2 − 1 =
1

1 + 1
2+(c2m−1)

, c2m+1 − 1 =
1

1 + 1
2+(c2m−1−1)

,

and hence

c2m+2 =
2c2m + 3

c2m + 2
, c2m+1 =

2c2m−1 + 3

c2m−1 + 2
.
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Letting cm = am/bm, with a1 = b1 = b2 = 1 and a2 = 2, upon expanding, for m ≥ 1 this
becomes [

a2m+2

b2m+2

]
=

[
2 3
1 2

] [
a2m
b2m

]
,

[
a2m+1

b2m+1

]
=

[
2 3
1 2

] [
a2m−1
b2m−1

]
, (11)

and hence [
a2m+2

b2m+2

]
=

[
2 3
1 2

]m [
2
1

]
,

[
a2m+1

b2m+1

]
=

[
2 3
1 2

]m [
1
1

]
,

which also both hold for m = 0. For the LL test, one need only consider the even-terms
recurrence. The eigenvalues of the 2× 2 matrix appearing in (11) are 2±

√
3, which one

can check leads to the solution, for m ≥ 1:

a2m = ((2 +
√

3)m + (2−
√

3)m)/2,

b2m = ((2 +
√

3)m − (2−
√

3)m)/2
√

3,

or

c2m =
√

3 · (2 +
√

3)m + (2−
√

3)m

(2 +
√

3)m − (2−
√

3)m
.

On the other hand, the odd-terms recurrence has solution, for m ≥ 0:

a2m+1 = ((1 +
√

3)(2 +
√

3)m + (1−
√

3)(2−
√

3)m)/2,

b2m+1 = ((1 +
√

3)(2 +
√

3)m − (1−
√

3)(2−
√

3)m)/2
√

3,

giving

c2m+1 =
√

3 · (1 +
√

3)(2 +
√

3)m + (1−
√

3)(2−
√

3)m

(1 +
√

3)(2 +
√

3)m − (1−
√

3)(2−
√

3)m
.

In fact both expressions can be neatly tidied into a single one. Noting that(
1 +
√

3

1−
√

3

)2

=
2 +
√

3

2−
√

3
,

for m ≥ 1 we have

cm =
√

3 ·

(
1+
√
3

1−
√
3

)m
+ 1(

1+
√
3

1−
√
3

)m
− 1

. (12)

Equation (12) may also be rewritten in the convenient and attractive form

cm +
√

3

cm −
√

3
=

(
1 +
√

3

1−
√

3

)m
. (13)

Given any two elements cm, cn of the sequence of convergents for
√

3, equation (13)
enables one to compute cm+n easily:

cm+n =

(
1 +
√

3

1−
√

3

)m+n

=

(
cm +

√
3

cm −
√

3

)
·
(
cn +

√
3

cn −
√

3

)
=

( cmcn+3
cm+cn

+
√

3
cmcn+3
cm+cn

−
√

3

)
, (14)
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and hence

cm+n =
cmcn + 3

cm + cn
. (15)

The set of convergents C = {cm}m≥1 forms what is technically known as an infinite
cyclic semigroup (C,⊕) with generator c1, where the group operation ⊕ is defined by
cm⊕ cn = cm+n, which is given by (15). The semigroup (C,⊕) is therefore isomorphic to
(Z≥1,+), the set of positive integers under addition. Furthermore, by allowing m ≤ 0 on
the right-hand-side of (13), one can extend the set of convergents to form an isomorphism
with all of (Z,+); this results in cm = −c−m for m < 0, and c0 = ∞, which should be
interpreted in the following manner:

∞+
√

3

∞−
√

3
= 1.

However, we shall only be interested in m ≥ 0. What the above considerations show is
that recursion (2) in Heron’s method is just the doubling formula in (C,⊕), since (15)
gives

cm ⊕ cm = c2m =
c2m + 3

2cm
=

1

2

(
cm +

3

cm

)
,

which finally proves (10).
Incidentally, Lehmer’s proof of the LL test makes essential use of two sequences of

integers very similar to our am, bm. In particular, for m ≥ 1 let

Vm = (1 +
√

3)m + (1−
√

3)m and Um = ((1 +
√

3)m − (1−
√

3)m)/2
√

3.

One can easily check that for m ≥ 1, we have am/bm = cm = Vm/2Um. Regarding the
various proofs of the LL test, Tao has observed that ‘they are sometimes presented in
a way that involves pulling a lot of rabbits out of hats, giving the argument a magical
feel rather than a natural one’ [10]. One may agree that in accordance with this view,
Lehmer’s proof [4] does indeed seem quite unmotivated; see also [11, 12]. However, when
seen in the context of our new, simple and well-motivated formulation of the LL test, the
above connection between Vm, Um and the continued fraction expansion of

√
3 provides

one explanation as to how (and why) Lehmer’s proof arises.

3 A more natural variant of the Lucas-Lehmer test?

In this section we present a variant of the LL test, along with a proof derived from insights
developed in §2.2.

Theorem 3.1. For l ≥ 3 let p = 2l− 1 and define a sequence of elements of Z/pZ by the
recursion

x̄0 ≡ 1, x̄k+1 ≡
1

2

(
x̄k +

3

x̄k

)
(mod p). (16)

Then p is prime if and only if x̄l−1 exists and x̄l−1 ≡ 0 (mod p).
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Note that by 1/x̄ we mean the modular inverse of x̄ in Z/pZ (if it exists), i.e., the
unique element ȳ ∈ Z/pZ for which x̄ · ȳ ≡ 1 (mod p). For example, 1/2 ≡ 2l−1 (mod p)
since 2 · 2l−1 = 2l ≡ 1 (mod p). In general the modular inverse of x̄ exists if and only
if gcd(x̄k, p) = 1, and can be found using the Extended Euclidean Algorithm [13, Alg.
X, p. 325], or [14, §2.4], for example. Provided that inverses exist, all the usual rules
of arithmetic in Q such as cancellation and cross-multiplication apply in Z/pZ; when
p is prime, every non-zero element has an inverse and Z/pZ is the finite field Fp, for
which operations are exactly as they are in Q. Computing x̄k+1 then just involves a
multiplication of this inverse by 3, an addition and a modular division by 2, which can
be effected in binary as a cyclic bitshift to the right by one place, as is easily verified.
Hence, in order for x̄l−1 to be defined, we require that for 1 ≤ k ≤ l − 2, each x̄k must
be invertible mod p. If any x̄k is not invertible mod p, then computing gcd(x̄k, p) will
immediately give a factor of p, which gives even more information than simply proving
that p is not prime. However, the chance of this occurring for a given l is extremely small.

The reader will of course have noticed that recursion (16) is simply Heron’s method for
computing

√
3 as given by (2) and in (3), taken mod p. So how might one go about proving

Theorem 3.1? The only ingredients we need are some of the observations from §2.2 and a
handful of results from elementary number theory and abstract algebra. For completeness,
we now recall these results and some prerequisite definitions, which may be found in any
introductory texts in the areas, see for example [15] and [16].

• (Quadratic residues): For q a prime and a not divisible by q, if the congruence

x2 ≡ a (mod q)

is soluble then a is called a quadratic residue mod q; otherwise a is a quadratic
nonresidue mod q.

• (Legendre symbol): For q an odd prime, the values of the Legendre symbol (·/q)
are given by

(a/q) =


+1 if q - a and a is a quadratic residue mod q

0 if q | a
−1 if q - a and a is a quadratic nonresidue mod q

• (Euler’s criterion): For q an odd prime and any a we have

(a/q) ≡ a(q−1)/2 (mod q).

• (Characterisation of (3/q) and (−2/q)): For q an odd prime we have

(3/q) =

{
+1 if q ≡ ±1 (mod 12)

−1 if q ≡ ±5 (mod 12)
, (−2/q) =

{
+1 if q ≡ 1, 3 (mod 8)

−1 if q ≡ 5, 7 (mod 8)
.
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• (Finite fields): As stated above, if q is prime then Z/qZ is the finite field Fq.
Furthermore if (a/q) = −1, then

Fq2 = Fq(
√
a) = {x+ y

√
a | x, y ∈ Fq}

is the finite field of q2 elements. Observe that the multiplicative inverse of x+ y
√
a

is (x − y
√
a)/(x2 − ay2), with the denominator non-zero since (a/q) = −1. We

denote the multiplicative groups of Fq and Fq2 by F×q and F×
q2

respectively, which
are both cyclic groups.

• (Lagrange’s theorem): Let G be a finite group and let H be a subgroup of G. Then
the order of H divides the order of G. In particular, for any g ∈ G the order of the
subgroup generated by g divides the order of G.

3.1 A proof of Theorem 3.1

We begin with a few observations. Combining (10) and (13), for k ≥ 0 we have (over Q)

x′k +
√

3

x′k −
√

3
=

(
1 +
√

3

1−
√

3

)2k

. (17)

Note that (17) is also derivable directly from recurrence (2) alone, independently of our
consideration of continued fractions. For the sake of generality, consider (17) mod q for q
any prime for which (3/q) = −1. We therefore have Fq2 = Fq(

√
3), and in this extension

field, by Euler’s criterion we have

√
3
q

= 3(q−1)/2 ·
√

3 = −
√

3.

Hence for any x ∈ Fq we have(
x+
√

3

x−
√

3

)q+1

=
x−
√

3

x+
√

3
· x+

√
3

x−
√

3
= 1.

Since elements of Fq2 of the form (x +
√

3)/(x −
√

3) for x ∈ Fq are distinct (if (x +√
3)/(x−

√
3) = (y+

√
3)/(y−

√
3) then x = y, as is easily verified by cross-multiplying),

counting also the multiplicative identity element, we have a compact representation for
the group of all q + 1 solutions in Fq2 = Fq(

√
3) to the equation αq+1 = 1, which we

denote by Gq+1. Note that arithmetic in Gq+1 is exactly the same as it is for the set of
convergents C = {cm}m∈Z, with multiplication following from the third equality of (14),
and inversion given by ((x +

√
3)/(x −

√
3))−1 = (−x +

√
3)/(−x −

√
3). Furthermore,

since Gq+1 is a subgroup of the cyclic group F×
q2

, it too is cyclic. Observe that the only
element of order 2 in Gq+1 has x = 0 ∈ Fq, since(

x+
√

3

x−
√

3

)2

= 1 ⇐⇒ x ≡ 0 (mod q). (18)

We have the following lemma.
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Lemma 3.2. For any prime q ≡ 7 (mod 24), the element g = 1+
√
3

1−
√
3
∈ Gq+1 is not the

square of another element in Gq+1.

Proof. Suppose for x ∈ Fq that (
x+
√

3

x−
√

3

)2

= g.

Then x satisfies x2 − 2x + 3 = 0, or x = 1 ±
√
−2. However, (−2/q) = −1 for q ≡ 7

(mod 8) and so no such x ∈ Fq exists.

We are now ready to present our proof of Theorem 3.1.

Proof. Assume p is prime. Since p ≡ 7 (mod 24) we have p ≡ 7 (mod 12) and p ≡ 7
(mod 8), and hence (3/p) = −1 and (−2/p) = −1 respectively. By Lemma 3.2, g ∈ Gp+1

is not a square and as p+ 1 = 2l and Gp+1 is cyclic, the order of g is 2l. Hence g2
l−1

has
order 2 in Gp+1 and so by (17) considered mod p, and (18), we have x̄l−1 ≡ 0 (mod p).
Furthermore, no smaller power of g has order 2 and so by (18) again, x̄k 6≡ 0 (mod p) for
1 ≤ k ≤ l − 2 and hence x̄l−1 exists.

For the converse, suppose x̄l−1 exists and x̄l−1 ≡ 0 (mod p), and let q be a prime
divisor of p, for which (3/q) = −1. Such a q always exists since otherwise, by the
characterisation of (3/q) one would have p ≡ ±1 (mod 12), whereas for odd l one has
p ≡ 7 (mod 12). Then considering the entire sequence x̄k mod q, each element exists

and x̄l−1 ≡ 0 (mod q). Hence by (18) we have g2
l−1

= −1 ∈ Gq+1, i.e., the order of g is
2l = p+ 1. By Lagrange’s theorem we have (p+ 1) | (q+ 1), and since q | p, we must have
q = p, and so p is prime.

3.2 Some remarks on the variant test

Firstly, observe that the above proof breaks when l = 2, since 3 ≡ 0 (mod 22 − 1)
and hence g = 1, which explains the exception noted in §2. Secondly, our variant test
is slower than the original LL test, because of the modular inversions2, so we do not
propose that this method should be used in practice. Thirdly, while we have argued that
the LL test could in principle have been discovered by the ancient Greeks (in the form
of Conjecture 2.1), it should be evident that they almost certainly could not have proven
its correctness, given the tools required to do so. Fourthly, as an exercise we invite the
reader to prove the correctness of the corresponding variant test for

√
6 as given by (7)

as well, using the above approach.
Furthermore, the key idea behind the test should now be clear from the proof of

Theorem 3.1; it consists of simply checking the order of a particular element within a
particular group. In particular, if p is prime then g ∈ Z/pZ(

√
3) has order p + 1, from

which one infers the necessity of the condition x̄l−1 ≡ 0 (mod p). Conversely, if g has
order p+1 in Z/pZ(

√
3) then considering the sequence x̄k mod q for a hypothetical divisor

q of p with (3/q) = −1, the order of the subgroup Gq+1 being q + 1 forces q = p, from

2At asymptotic bitlengths the algorithm in [14, §2.4] for modular inversion in Z/(2l − 1)Z is of the
order of log l times slower than the fastest-known algorithm for squaring in Z/(2l − 1)Z [17, Alg. 9.5.18].
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which one infers the sufficiency of x̄l−1 ≡ 0 (mod p). This key idea is akin to the classical
primality test due to Lucas, in which identifying an element of order n − 1 in (Z/nZ)×

proves that n is prime, since the order of (Z/nZ)× is n − 1 if and only if n is prime.
While this idea can be adapted for testing the primality of other integers, what makes it
particularly simple for Mersenne numbers is that p + 1 = 2l, and so in order to identify
a generator one only needs to find a non-square element in a suitable group, and likewise
testing that the order of this element is p+ 1 only requires repeated squaring.

We can now tie everything together. Our proof of Theorem 3.1 shows that g has
order p + 1 = 2l in Z/pZ(

√
3) if and only if p is prime. Equivalently, we may state

that g2
k

has order 2l−k in Z/pZ(
√

3) if and only if p is prime. Observe that over Q we

have g2 = 7 + 4
√

3 = n2 + d2
√

3 and g2
k

= nk+1 + dk+1

√
3 for k ≥ 1, with (nk, dk)

defined exactly as in (4). Then letting (n̄k, d̄k) be the mod p reduction of (nk, dk) and
also using (5), we have n̄k+1 ≡ 2n̄2k − 1 (mod p) and d̄k+1 ≡ 2n̄kd̄k (mod p). Hence our
proof can alternatively be expressed as n̄l−1+ d̄l−1

√
3 has order 4 in Z/pZ(

√
3) if and only

if p is prime. An element x of order 4 must satisfy x2 + 1 = 0 ∈ Z/pZ(
√

3) and therefore

(n̄l−1 + d̄l−1
√

3)2 + 1 = 2n̄2l−1 − 1 + 2n̄l−1d̄l−1
√

3 + 1 = n̄l−1(2n̄l−1 + 2d̄l−1
√

3) = 0.

Thus n̄l−1 ≡ 0 (mod p) if and only if p is prime, proving Conjecture 2.1 and the original
LL test, Theorem 1.1.

3.3 Connection with other proofs of the Lucas-Lehmer test

Our proof of Theorem 3.1 is very closely related to two other recent proofs of the LL
test. While we do not go into all the details, for completeness we very briefly sketch these
connections.

Firstly, the formulation of our proof of the LL test in terms of nk, as just given above, is
almost identical to that given by Gross in terms of the norm 1 algebraic torus associated
to the real quadratic field Q(

√
3) [18, Prop. 1.2-1.3]. The central difference between

our proof and Gross’ is the element representation we have chosen, which elucidates the
connection with Heron’s method and continued fractions.

Secondly, the definition of the algebraic torus just noted also happens to coincide with
the definition of the Pell conic

P = {(x, y) ∈ Q×Q | x2 − 3y2 = 1}.

As noted in §2, the sequence of pairs (nk, dk) for k ≥ 1 are integral points on P. The
recursion for (nk, dk) is the point-doubling formula from a more general abelian group
law which allows one to add any two points on P. In particular, for P = (xP , yP ) and
Q = (xQ, yQ) we have P +Q = (xPxQ + 3yP yQ, xP yQ + xQyP ); observe that if we define
cP = xP /yP and cQ = xQ/yQ then this group law is nothing but the one already derived
for the convergents of

√
3 in (15). As was shown by Lemmermeyer, the LL test arises

when checking the order of the point P = (2, 1) on the mod p reduction of this group of
points [19, Prop. 4]. Furthermore, by using a rational parameterisation of P which goes
back perhaps as far as Diophantus [20, §1], one obtains an LL-style test based on Heron’s
method for computing −1/

√
3 with x0 = −2/3, akin to Theorem 3.1.
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4 Concluding remarks

In this expository article we have argued that the LL test could have been discovered nat-
urally when computing rational approximations to

√
3, and that the ancient Greek mathe-

maticians could feasibly have done so. We have also proven a natural and well-motivated
variant of the LL test which arises from Heron’s method and continued fractions, and
briefly described its connection with other proofs of the original LL test.

In addition to the algebraic torus interpretation of the LL test, Gross has provided
another test for the primality of Mersenne numbers based on the successive doubling of
a point on the elliptic curve y2 = x3 − 12x over Q [18, Prop. 2.2], which we state mod p.

Theorem 4.1. For l ≥ 3 let p = 2l− 1 and define a sequence of elements of Z/pZ by the
recursion

x0 ≡ −2, xk+1 ≡
(x2k + 12)2

4xk · (x2k − 12)
(mod p).

Then p is prime if and only if xl−1 exists and xl−1 ≡ 0 (mod p).

As with Theorem 3.1, the elliptic curve test is slower than the original LL test, and it
seems unlikely that any primality test of Mersenne numbers based on checking the order
of special elements will ever be faster.

Finally, we remark that at the time of writing there are 47 known Mersenne primes,
the largest of which is 243,112,609 − 1; should the reader wish to assist in finding others
we refer them to www.mersenne.org, which hosts the Great Internet Mersenne Prime
Search. While it is conjectured that there are infinitely many Mersenne primes —
Wagstaff has heuristically estimated that the number of Mersenne primes ≤ x tends
to (eγ/ log 2) log log x as x → ∞, where γ is the Euler-Mascheroni constant [21] — a
proof of this natural conjecture still seems very far from reach.
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