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Abstract We consider the deformation of a thin elastic film bonded to a thick com-
pliant substrate, when the (compressive) misfit is far beyond critical. We take a varia-
tional viewpoint—focusing on the total elastic energy, i.e. the membrane and bending
energy of the film plus the elastic energy of the substrate—viewing the buckling of
the film as a problem of energy-driven pattern formation. We identify the scaling law
of the minimum energy with respect to the physical parameters of the problem, and
we prove that a herringbone pattern achieves the optimal scaling. These results com-
plement previous numerical studies, which have shown that an optimized herringbone
pattern has lower energy than a number of other patterns. Our results are different,
because (i) we make the scaling law achieved by the herringbone pattern explicit, and
(ii) we give an elementary, ansatz-free proof that no pattern can achieve a better law.
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Fig. 1 Schematic representation of the herringbone pattern. The lines indicate extrema of the buckled
film (they are not creases). Our analytical representation of the herringbone uses sinusoidal wrinkling. For
experimental realizations, see e.g. Fig. 1 of Chen and Hutchinson (2004b), Fig. 4 of Song et al. (2008a),
or Fig. 2 of Lin and Yang (2007)

1 Introduction

We study a variational problem modeling the deformation of a thin elastic film
bonded to a thick, compliant substrate. When the (compressive) misfit is large enough
the film buckles and complex, ordered structures are observed (see e.g. Bowden
et al. 1998; Cai et al. 2011; Chen and Hutchinson 2004a, 2004b; Huang et al. 2004,
2005; Lin and Yang 2007; Mahadevan and Rica 2005; Song et al. 2008a). In the
isotropic setting, a bifurcation analysis predicts a “checkerboard pattern” (Audoly
and Boudaoud 2008a; Cai et al. 2011) when the misfit is close to critical. For moder-
ate misfits, there seem to be numerous patterns with similar energies. For large misfits
it appears that a “herringbone” pattern (Fig. 1) is preferred (Cai et al. 2011, 2004a;
Chen and Hutchinson 2004b; Song et al. 2008a), along with its disordered analogue,
the “labyrinth” pattern (Huang et al. 2004, 2005).

The behavior for moderate misfit has been studied by time-dependent numerical
simulation (Huang et al. 2004, 2005), by looking for secondary bifurcations (Audoly
and Boudaoud 2008a, 2008b; Cai et al. 2011; Mahadevan and Rica 2005), and by
comparing the energies of specific patterns (Chen and Hutchinson 2004a, 2004b;
Song et al. 2008a). Far from the bifurcation, however, it is natural to focus on the
scaling law of the minimum energy, since different patterns should have different
scaling laws (Audoly and Boudaoud 2008c).

The contribution of the present paper is two-fold:

(i) we identify the scaling law of the minimum energy, by proving upper and lower
bounds that scale the same way, and

(ii) we “explain” the advantage of the herringbone pattern, by showing that it
achieves the optimal scaling law.

These achievements are linked: the upper bound announced in (i) is proved using the
herringbone pattern.

Our scaling-oriented viewpoint is similar to the one adopted by Audoly and
Boudaoud (2008c). That paper considered several patterns, determining for each the
associated scaling law. The one with the best law was a periodic “Miura-ori” fold-
ing pattern. Our analysis reveals that the Miura-ori pattern is not optimal; indeed, the
herringbone pattern does better (see Sect. 1.4).

To identify the energy scaling law, it is crucial to prove a lower bound as well as an
upper bound. Moreover, the lower bound must be ansatz-free, since it must apply to



J Nonlinear Sci (2013) 23:343–362 345

any pattern. The successful argument, which is surprisingly elementary, is presented
in Sect. 2.

We are not the first to show that a herringbone structure has relatively low energy;
this was previously shown numerically or semi-analytically in Cai et al. (2011), Chen
and Hutchinson (2004a, 2004b), Huang et al. (2004), Song et al. (2008a). We are,
however, the first to identify the energy scaling law associated with this structure,
and to give an ansatz-free argument that it is optimal.

Our work adds to the list of energy-driven pattern formation problems where the
scaling law of the minimum energy is known. Other examples involving wrinkling
include blisters in compressed thin films (Ben Belgacem et al. 2000, 2002; Jin and
Sternberg 2001), wrinkling in confined floating sheets (Kohn and Nguyen 2012), and
wrinkling in a sheet under tensile loading (Bella and Kohn 2012). Examples involving
different physical systems include the intermediate state of a type-I superconductor
(Choksi et al. 2008), domains in a uniaxial ferromagnet (Choksi et al. 1999), and
twinning near an austenite–martensite interface (Conti 2000; Kohn and Müller 1994).

Our scaling-oriented viewpoint has advantages and disadvantages. A key advan-
tage is that it permits rigorous analysis. A key disadvantage is that the configura-
tions observed in experiments may be local rather than global energy minimizers. In
fact, herringbone structures form mainly in systems where the preparation or elastic
properties or patterning introduce some anisotropy; in a fully isotropic setting one
typically sees a more disordered “labyrinth” structure (Bowden et al. 1998; Huang
et al. 2004, 2005; Huang and Im 2006; Im and Huang 2008; Lin and Yang 2007;
Vandeparre and Damman 2008). While the labyrinth structure looks like a disordered
analogue of the herringbone pattern, we do not know whether it achieves the optimal
scaling law (though there is numerical evidence that this is so (Huang et al. 2004)).
Systems where the misfit is associated with a diffusive effect often form structures
other than labyrinths and herringbones, see e.g. Breid and Crosby (2009), Ni et al.
(2011), Sultan and Boudaoud (2008); perhaps the diffusive kinetics introduces a dif-
ferent notion of “local minimum.”

A key feature of our approach is its focus on the scaling law (not the prefactor).
As a result, our conclusions are compelling only for systems where the compres-
sive stress is far beyond critical—the “far-from-threshold” regime, in the language of
Davidovitch et al. (2011).

The problem studied here is part of a larger literature on the origins and applica-
tions of wrinkling patterns in thin elastic films. For recent reviews see Genzer and
Groenewold (2006), Song et al. (2009), and (for a broader, more theoretical perspec-
tive) Audoly and Pomeau (2010).

1.1 The Model

Our framework is very similar to those of prior analyses such as Audoly and
Boudaoud (2008a, 2008b, 2008c), Chen and Hutchinson (2004a, 2004b), Huang et al.
(2004, 2005), Song et al. (2008a), so the discussion of the model can be relatively
brief. We use von Karman plate theory, for a film of thickness h. To facilitate spatial
averaging, the system is assumed to be periodic with periodicity L in both directions
(but our energy scaling law will depend on L only through the nondimensionalized
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thickness h/L). We work with the (normalized) energy per unit area

E = Em + Eb + Es (1)

where

Em = αmh

L2

∫

[0,L]2

∣∣∣∣e(w) + 1
2
∇u3 ⊗ ∇u3 − ηI

∣∣∣∣
2

, (2)

is the membrane term,

Eb = h3

L2

∫

[0,L]2

∣∣∇2u3
∣∣2 (3)

is the bending term, and

Es = αs

L2 ‖u3‖2
H 1/2, (4)

is the substrate term. Here w = (w1,w2) is the in-plane displacement of the film;
u3 is the out-of-plane displacement; e(w) = 1

2 (Dw + DwT) is the linear strain asso-
ciated with w; and ∇u3 ⊗∇u3 is the rank-one 2 × 2 matrix (∇u3)(∇u3)

T. The misfit
η is assumed positive (so the film, if undeformed, is compressed by the substrate) and
small (so von Karman theory is appropriate). Notice that there is no elastic modulus
in front of Eb; thus, E has already been normalized by the stiffness of the film, and it
has the dimensions of length.

Since our goal is a scaling law (not the prefactor) there is no need to keep constants
of order one; in particular, our use of Hooke’s law with Poisson’s ratio zero in the
membrane term represents no loss of generality. It is tempting, by the same logic,
to set αm = 1, since von Karman plate theory assigns it a value of order 1. But we
will soon rescale the problem, and our rescaling changes the constant in front of the
membrane term (see Sect. 1.3). Therefore we prefer to keep αm explicit.

Our notation in (4) is that if u3(x) = ∑
ξ eiξ ·xû3(ξ) then

‖u3‖2
H 1/2 =

∑

ξ

|ξ ||û3|2(ξ). (5)

(Lest there be any confusion, please note: we are using the notation ‖ · ‖H 1/2 for
the homogeneous H 1/2 norm.) The nonlocal term Es represents the normalized elas-
tic energy of the substrate; in particular, the dimensionless constant αs in (4) is the
stiffness of the substrate divided by the stiffness of the film.

One might ask why the substrate term Es involves only u3, not the in-plane dis-
placement w. This modeling hypothesis is discussed e.g. in Audoly and Boudaoud
(2008a); briefly, the logic is that within von Karman theory the in-plane displace-
ments are much smaller than the out-of-plane displacements, so the substrate en-
ergy associated with w should be negligible. Actually, this argument is only partly
correct: it gets the scaling law of the minimum energy right (if the misfit η is suf-
ficiently small, see (13)), but it does not fully explain the herringbone pattern. In-
deed, the pattern has two well-separated length scales. The smaller one—the wave-
length of the wrinkling—is predicted unambiguously by the framework summarized
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above. But this framework leaves the larger one—the scale on which the wrinkling
direction oscillates—ambiguous (Chen and Hutchinson 2004b; Huang et al. 2004;
Song et al. 2008a).

To do better, one must keep the substrate energy associated with w (as already
noted in Huang et al. (2004)). Therefore in Sect. 4 we consider the improved model

E ∗ = Em + Eb + E ∗
s (6)

where Em and Eb are as before and

E ∗
s = αs

L2

(
‖u3‖2

H 1/2 + ‖w‖2
H 1/2

)
. (7)

While the inclusion of the substrate energy1 due to w does not change the energy
scaling law (if the misfit is sufficiently small), we shall show that it gives a preferred
value for the scale on which the wrinkling direction oscillates. But this preferred
value comes from optimizing a subdominant energy (see Remark 3), so getting the
value right is not energetically essential. This is consistent with the numerical and
experimental observation that while the length scale of the wrinkling is sharply de-
termined, the scale on which the wrinkling oscillates is much less sharply determined
(Chen and Hutchinson 2004b; Huang et al. 2004; Song et al. 2008a).

In practice the displacement (w1,w2, u3) should have mean value 0. This is im-
plicit in the model, since otherwise the elastic energy of substrate would be infinite (if
the substrate is semi-infinite). However, it is irrelevant to the mathematics, since the
energies E and E ∗ are unchanged when we subtract the mean displacement. There-
fore we may safely ignore the condition of having mean value 0 in our analysis of the
energy.

1.2 Main Results

We are interested in how the minimum of E or E ∗ depends on h and L (which have
the dimensions of length) and η, αm, αs (which are dimensionless). Our main results
concerning E are the following:

Theorem 1 (Lower bound) There is a constant C1, independent of all the parame-
ters, such that

min E ≥ C1 min
{
αmη2h,α

2/3
s ηh

}
. (8)

Theorem 2 (Upper bound) There is a constant C2, independent of all the parameters,
such that if either

αmη ≤ α
2/3
s (9)

or

αmηα−1
s

h

L
≤ 1 (10)

1In giving the substrate energies of u3 and w the same weight in (7) we have ignored a constant of order
one; as discussed earlier, this is appropriate since we seek only the energy scaling law.
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then

min E ≤ C2 min
{
αmη2h,α

2/3
s ηh

}
. (11)

When (9) holds the assertion is trivial: it suffices to consider (w1,w2, u3) = 0. When
(9) fails and (10) holds, the proof uses a version of the herringbone pattern, with
wrinkling on a length scale of order α

−1/3
s h.

The case of primary interest is when α
2/3
s ) αmη and h/L is sufficiently small. In

this far-beyond-critical setting, the theorems combine to show that the energy scaling
law is min E ∼ α

2/3
s ηh.

Turning now to E ∗: we shall show that if η is small enough then E ∗ has the same
scaling law as E ; moreover, the proof indicates the scale on which the wrinkling
direction should oscillate in the herringbone pattern. Our main result is:

Theorem 3 (The improved model) Since E ∗ ≥ E , the lower bound (8) applies to E ∗

as well as E . Concerning the upper bound: there is a constant C3, independent of all
the parameters, such that if either

αmη ≤ α
2/3
s (12)

or else

αmα
−4/3
s

(
h

L

)2

≤ 1 and η2 ≤ α−1
m α

2/3
s (13)

we have

min E ∗ ≤ C3 min
{
αmη2h,α

2/3
s ηh

}
. (14)

When (12) fails and (13) holds, the proof uses a version of the herringbone pattern,
with wrinkles on scale a0 ∼ α

−1/3
s h whose direction oscillates on the longer scale

α
1/2
m η−1/2α

−1/3
s a0.

Theorem 3 shows, in particular, that if αm and αs are held fixed and η satis-
fies a smallness condition (depending only on αs and αm), then min E ∼ min E ∗ ∼
min{αmη2h,α

2/3
s ηh} provided h/L is sufficiently small.

Theorem 1–3 will be proved in Sects. 2–4, respectively. Each section begins with
a brief summary of the main idea.

1.3 Reduction to L = 1 and η = 1

The reduction to L = 1 is a matter of nondimensionalization. The reduction to η = 1
uses the special form of the von Karman energy, and is restricted to E (though some-
thing similar can be done for E ∗, cf. (42)). Doing both reductions at once: let us define
(w̃1, w̃2, ũ3) by

w(x,y) = ηLw̃(x/L,y/L), u3(x, y) = √
ηLũ3(x/L,y/L) (15)
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so that w̃ and ũ3 are periodic with period 1, and

α̃m = αmη, h̃ = h/L.

Then (by mere algebra, starting from (1)) one verifies that

E = ηL

{
α̃mh̃

∫

[0,1]2

∣∣∣∣e(w̃) + 1
2
∇ũ3 ⊗ ∇ũ3 − I

∣∣∣∣
2

+ h̃3
∫

[0,1]2

∣∣∇2ũ3
∣∣2 + αs‖ũ3‖2

H 1/2

}
.

(16)
The expression in brackets is our functional E with L replaced by 1, η replaced by 1,
h replaced by h̃, and αm replaced by α̃m. It follows readily that if Theorems 1 and 2
hold when L = 1,η = 1 then they hold for all L and η. Lest there be any confusion:
in the original physical variables, h is the thickness of the film and the period cell
has size L. When we apply Theorem 2 in the reduced variables, the wrinkles have
scale α

−1/3
s h̃ in the nondimensionalized spatial variables (x/L,y/L). Therefore the

physical scale of the wrinkling is α
−1/3
s h̃L = α

−1/3
s h, as asserted by the theorem.

1.4 Perspective

The paper Audoly and Boudaoud (2008c) studies several patterns, identifying the
scaling law of each. The one with the best scaling law (the largest exponent of αs )
is the origami-inspired “Miura-ori” construction2 (see Fig. 2), which achieves (in
our notation) E ∼ α

1/16
m α

5/8
s η17/16h. Since the trivial deformation w = 0, u3 = 0 is

always a possibility, their argument shows that if h/L is sufficiently small then

min E ≤ C min
{
αmη2h,α

1/16
m α

5/8
s η17/16h

}
. (17)

Theorem 2 shows that while (17) is true, it is not optimal. Indeed, our herringbone
pattern does better since α

1/16
m α

5/8
s η17/16 > α

2/3
s η when αmη > α

2/3
s . We conclude,

in particular, that the Miura-ori pattern is quite distinct from the herringbone. Phys-
ically: the Miura-ori structure has a lattice of creases in which both the bending and
membrane energies are significant; therefore its scaling law depends on αm. In the
herringbone pattern, by contrast, the membrane energy is identically zero except in
the transition layers where the direction of wrinkling changes; since there are few
such layers, the membrane energy (though not identically zero) is subdominant, and
the energy scaling law is independent of αm.

Our lower bound ensures that no pattern can have an energy scaling law better
than that of the herringbone. It remains an open question, however, whether there are
patterns other than the herringbone that achieve the same scaling. (In other words: we
do not know whether there are wrinkling patterns entirely different from our herring-
bones, which also satisfy E ≤ Cα

2/3
s ηh or E ∗ ≤ Cα

2/3
s ηh when α

2/3
s ) αmη, under

conditions analogous to (10) or (13).)

2The paper Audoly and Boudaoud (2008c) proposes the Miura-ori construction as a model for the her-
ringbone pattern in the far-from-critical regime; in particular, it does not differentiate between the two. In
our view, however, a key difference is that the Miura-ori construction involves sharp creases, while the
herringbone pattern involves smooth wrinkles.
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Fig. 2 Creases in the Miura-ori
construction. Here (unlike
Fig. 1) the lines show the
locations of creases in the
unbuckled film. After buckling
the image of each parallelogram
is planar

We describe our results as giving the “scaling law” of the minimum energy, be-
cause they bound it up to prefactors which are independent of all the parameters
(αm,αs ,η, h and L). Our results are not restricted to an asymptotic regime; rather,
they apply whenever the parameters satisfy certain inequalities. However, since the
upper and lower bounds have different prefactors, they are most informative in the
“far-from-threshold” regime when α

2/3
s ) αmη. For example, it is only in this regime

that our results rule out a lower bound analogous to (17) (i.e. a bound of the form
min E ≥ C min{αmη2h,α

1/16
m α

5/8
s η17/16h}).

This paper focuses on the case when the misfit is isotropic. Films with anisotropic
misfit have been studied both experimentally and theoretically, see e.g. Im and Huang
(2008) and Yin et al. (2009). Our lower bound has an obvious extension to the
anisotropic setting; it would be interesting to know the circumstances under which
the resulting bound gives the optimal scaling law.

Our model uses von Karman plate theory. The von Karman approximation can be
given a rigorous justification in some settings, see e.g. Friesecke et al. (2006). We
wonder whether it can be justified in the present setting. There are some systems
where the patterns involve large slopes (so the von Karman approximation is not
appropriate) or the strains are large (so linear elasticity is inadequate for modeling the
substrate), see e.g. Efimenko et al. (2005), Song et al. (2008b). We wonder whether
parts of our analysis might extend to a more fully nonlinear model.

Our model assumes that the film remains bonded to the substrate. There are sys-
tems where elastic misfit induces the nucleation and spreading of blisters, see e.g.
Gioia and Ortiz (1997), Jagla (2007). We wonder whether such blistering can be un-
derstood using an energy-based approach similar to that of the present paper. So far,
analysis has been restricted to the case where the blistered region is known in advance
and the substrate is rigid (Ben Belgacem et al. 2000, 2002; Jin and Sternberg 2001).

Taken together, Theorems 1 and 2 show that the herringbone comes within a con-
stant of the minimum energy when the substrate is sufficiently compliant (α2/3

s )
αmη) and the film is sufficiently thin (h/L ≤ αs(αmη)−1). When αs = 0 this con-
clusion is vacuous, since the “thinness” condition would then require h/L = 0.
Our functional with αs = 0 is, however, still interesting, since it describes the spa-
tially periodic “crumpling” of an elastic sheet (in the small-slope regime, mod-
eled using von Karman theory). An extensive literature has developed concerning
the crumpling of elastic sheets (Witten 2007), and the associated formation of sin-
gularities such as “ridges” (Conti and Maggi 2008; Lobkovsky and Witten 1997;
Venkataramani 2004). It seems plausible that the Miura-ori construction discussed
in Audoly and Boudaoud (2008c), Mahadevan and Rica (2005) might achieve the
optimal scaling when αs = 0; however, the lower bound implicit in this conjecture
remains an intriguing open question.
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2 Proof of the Lower Bound

This section presents the proof of Theorem 1. As explained in Sect. 1.3, it suffices to
consider the case when L = 1 and η = 1. Therefore our goal is to show that if u3 and
w are periodic with period 1, then3

αmh

∫

[0,1]2

∣∣∣∣e(w) + 1
2
∇u3 ⊗ ∇u3 − I

∣∣∣∣
2

+ h3
∫

[0,1]2

∣∣∇2u3
∣∣2 + αs‖u3‖2

H 1/2

! min
{
αmh,α

2/3
s h

}
. (18)

The argument is simple in concept. There are two cases:

(i) If
∫

|∇u3|2 is small, then (as we shall see) the membrane term is nearly αmh
times

∫
|e(w)− I |2. Since w is periodic, the integral is bounded away from 0, so

the membrane term cannot be too small.
(ii) If

∫
|∇u3|2 is large, then the interpolation inequality

‖∇u3‖L2 "
∥∥∇2u3

∥∥1/3
L2 ‖u3‖2/3

H 1/2 (19)

(easily proved for any periodic function using the Fourier transform) shows that
the bending and substrate terms cannot both be small.

Either way, the total energy cannot be too small.

Proof of Theorem 1 As noted above, we have only to prove (18). Since w2 is peri-
odic,

∫
[0,1]2 ∂yw2 = 0. Therefore, using Jensen’s inequality in the form (

∫
[0,1]2 f )2 ≤∫

[0,1]2 f 2, we have

∫

[0,1]2

[
∂yw2 + 1

2
|∂yu3|2 − 1

]2

≥
[∫

[0,1]2

1
2
|∂yu3|2 − 1

]2

.

So it suffices to show that

αmh

[∫

[0,1]2

1
2
|∂yu3|2 − 1

]2

+ h3
∫

[0,1]2

∣∣∇2u3
∣∣2 + αs‖u3‖2

H 1/2 ! min
{
αmh,α

2
3
s h

}
.

(20)
Let c0 be a constant between 0 and 1 (for example, c0 = 1/2 would be convenient).
If

[∫

[0,1]2

1
2
|∂yu3|2 − 1

]2

≥ c0

then the validity of (20) is obvious. Otherwise we have
[∫

[0,1]2

1
2
|∂yu3|2 − 1

]2

< c0,

3Here and in the rest of the paper, a ! b means a ≥ Cb for some positive universal constant C. Similarly,
a " b means that a ≤ Cb for some constant C, and a ∼ b means a " b and b " a.
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whence

1
2

∫

[0,1]2
|∇u3|2 ≥ 1 +

∫

[0,1]2

(
1
2
|∂yu3|2 − 1

)

≥ 1 − c
1/2
0

! 1.

We conclude using the interpolation inequality (19) that

∥∥∇2u3
∥∥1/3

L2 ‖u3‖2/3

H
1
2

! 1.

Therefore

h3∥∥∇2u3
∥∥2

L2 + αs‖u3‖2
H 1/2 = h3∥∥∇2u3

∥∥2
L2 + 1

2
αs‖u3‖2

H 1/2 + 1
2
αs‖u3‖2

H 1/2

!
(
h3∥∥∇2u3

∥∥2
L2α

2
s ‖u3‖4

H 1/2

)1/3

! hα
2/3
s

using the arithmetic mean–geometric mean inequality in the second line. So the de-
sired inequality (20) is valid, and the proof is complete. #

Remark 1 In stating Theorem 1 we assumed that w was periodic in both variables.
But the proof uses much less: the only property of w that we used was

∫
∂yw2 = 0,

which is true for example if w2 is periodic only in y. A symmetric argument would
work if

∫
∂xw1 = 0, which is true for example if w1 is periodic only in x. We used

the periodicity of u3 in both directions, however, to define the substrate energy Es and
to justify the interpolation inequality (19).

3 Proof of the Upper Bound

This section presents the proof of Theorem 2. As explained in Sect. 1.3, it suffices to
consider the case when L = 1 and η = 1. If αm ≤ α

2/3
s the result is obvious, using

(w1,w2, u3) = 0. Therefore our task is to show that if

α
2/3
s ≤ αm (21)

and if h satisfies

αmα−1
s h ≤ 1 (22)

then a version of the herringbone pattern (using wrinkling on scale α
−1/3
s h) achieves

αmh

∫

[0,1]2

∣∣∣∣e(w) + 1
2
∇u3 ⊗ ∇u3 − I

∣∣∣∣
2

+ h3
∫

[0,1]2

∣∣∇2u3
∣∣2 + αs‖u3‖2

H 1/2 " α
2/3
s h.

(23)
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The basic idea4 is this: in the left half of the period cell we use straight wrinkles
perpendicular to (1,1) with wavelength a0, superimposed on an in-plane shear of or-
der 1. This can be done in such a way that the membrane term vanishes identically:
e(w)+ 1

2∇u3 ⊗∇u3 − I = 0. In the right half of the period cell we use a similar (ac-
tually, mirror-image) construction, with straight wrinkles perpendicular to (−1,1).
This can be done in such a way that (w1,w2, u3) are continuous and periodic. There
is a “boundary layer” in the middle, where the two families of wrinkles meet; the
condition (22) will ensure that its contribution to the energy is negligible. The length
scale of the wrinkling is selected by optimizing the bending and substrate terms,
which are of order h3a−2

0 and αsa0, respectively, leading to a0 ∼ hα
−1/3
s . Since (21)

and (22) combine to give

hα
−1/3
s ≤ 1, (24)

the scale of the wrinkling is not larger than that of the period cell.
Like any herringbone pattern, this construction has two length scales: the scale of

the wrinkling (of order hα
−1/3
s ) and the scale of the superimposed in-plane shear (of

order 1). The former is physical, while the latter is not. Indeed, the scale on which
the superimposed in-plane shear oscillates should be selected by a substrate term
associated with w, which the functional E omits. We will do better in Sect. 4, by
considering E ∗ rather than E .

The idea at the heart of our construction—the fact that the one-dimensional
wrinkling superimposed on an in-plane shear can make the membrane term vanish
identically—goes back (at least) to the work of Jin & Sternberg and Ben Belgacem,
Conti, DeSimone & Müller on blisters in compressed thin films (Ben Belgacem et al.
2000; Jin and Sternberg 2001).

Proof of Theorem 2 As noted above, we need only show that if (21) and (22) hold,
then there exist (w1,w2, u3) (periodic in both variables with period 1) such that (23)
holds. The argument will be presented in several steps:

Step 1: Specify (w1,w2, u3) in [0,1/2] × [0,1].
Step 2: Estimate the membrane energy in [0,1/2] × [0,1].
Step 3: Estimate the bending energy in [0,1/2] × [0,1].
Step 4: Estimate the L2-norms of u3 and ∇u3 in [0,1/2] × [0,1].
Step 5: Specify (w1,w2, u3) in [1/2,1] × [0,1] and derive the conclusion.

Step 1: Fix 0 < a0 ≤ 1 such that

a0 ∼ hα
−1/3
s and

1
a0

∈ πN+. (25)

Such an a0 exists by (24). We define

Ω1,δ =
(
[0, δ] ∪ [1/2 − δ,1]

)
× [0,1] and Ω2,δ = [δ,1/2 − δ] × [0,1],

4The summary presented here focuses on the rescaled problem, with misfit η = 1. For a brief summary
using the original variables see Remark 2 at the end of this section.
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where δ is a small positive number such that

a0 " δ " α
2/3
s α−1

m . (26)

Such a δ exists by (22).
We choose (w1,w2, u3) on Ω2,δ as follows:

w1(x, y) = a0

4
sin

(
4(x + y)

a0

)
, (27)

w2(x, y) =a0

4
sin

(
4(x + y)

a0

)
− 2x, (28)

and

u3(x, y) = a0 cos
(

2(x + y)

a0

)
. (29)

To extend this deformation to Ω1,δ , we use a smooth “cutoff function” ϕδ such
that

ϕδ(x) = 0 for x ≤ 1
4
δ,

ϕδ(x) = 1 for
3
4
δ < x <

1
2

− 3
4
δ,

ϕδ(x) = 0 for
1
2

− 1
4
δ < x <

1
2

and

|ϕδ| " 1,
∣∣ϕ′

δ

∣∣ " δ−1,
∣∣ϕ′′

δ

∣∣ " δ−2.

(Such a function can, for example, be obtained by taking

ϕδ(x) =






ψ(x/δ) for x ≤ δ,

1 for δ ≤ x ≤ 1
2 − δ,

ψ([ 1
2 − x]/δ) for 1

2 − δ ≤ x ≤ 1
2 ,

with ψ chosen so that ψ(x) = 0 for x ≤ 1/4 and ψ(x) = 1 for x ≥ 3/4.) Our exten-
sion of the definition to Ω1,δ is now given by

w1(x, y) = a0

4
ϕδ(x) sin

(
4(x + y)

a0

)
,

w2(x, y) = a0

4
ϕδ(x) sin

(
4(x + y)

a0

)
− 2x,

and

u3(x, y) = a0ϕδ(x) cos
(

2(x + y)

a0

)
;
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these formulas apply for all x ∈ [0,1/2], since they reduce to (27)–(29) when δ ≤
x ≤ 1/2 − δ. Clearly

u3(0, y) = u3(1/2, y) = 0,

∇u3(0, y) = ∇u3(1/2, y) = (0,0),

w1(0, y) = w1(1/2, y) = 0,

while

w2(0, y) = 0, and w2(1/2, y) = −1.

We also have

|∇u3| + |∇w1| + |∇w2| " 1 and
∣∣∇2u3

∣∣ " 1/a0 (30)

in [0,1/2] × [0,1]. (We use here the fact that a0 " δ.)

Step 2: The membrane energy on [0,1/2] × [0,1] is

αmh

∫ 1/2

0

∫ 1

0

∣∣∣∣e(w1,w2) + 1
2
∇u3 ⊗ ∇u3 − I

∣∣∣∣
2

.

From (29), we have

∂yu3 = −2 sin
(

2(x + y)

a0

)
in Ω2,δ, (31)

which implies

1
2
|∂yu3|2 = 2 sin2

(
2(x + y)

a0

)
in Ω2,δ . (32)

On the other hand, from (28) we obtain

∂yw2 = cos
(

4(x + y)

a0

)
in Ω2,δ . (33)

A combination of (32) and (33) yields

∂yw2 + |∂yu3|2
2

− 1 = 0 in Ω2,δ . (34)

Since

∂xw1 = ∂yw1 = ∂yw2 = ∂xw2 + 2 and ∂xu3 = ∂yu3 in Ω2,δ,

it follows from (34) that

∂xw1 + |∂xu3|2
2

− 1 = 0 and ∂yw1 + ∂xw2 + ∂xu3∂yu3 = 0 in Ω2,δ . (35)
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Combining (34) and (35), we have

∫

Ω2,δ

∣∣∣∣e(w) + 1
2
∇u3 ⊗ ∇u3 − I

∣∣∣∣
2

= 0.

On the other hand from (30) we have

αmh

∫

Ω1,δ

∣∣∣∣e(w) + 1
2
∇u3 ⊗ ∇u3 − I

∣∣∣∣
2

" αmhδ " hα
2/3
s

using (26). Thus the membrane energy on [0,1/2] × [0,1] has the desired bound:

αmh

∫ 1/2

0

∫ 1

0

∣∣∣∣e(w) + 1
2
∇u3 ⊗ ∇u3 − I

∣∣∣∣
2

dy dx " hα
2/3
s . (36)

Step 3: The bending energy in [0,1/2] × [0,1] is

h3
∫ 1/2

0

∫ 1

0

∣∣∇2u3
∣∣2

.

The integrand is at most of order a−2
0 , by (30). Using the choice of a0, (25), we

conclude that the bending energy has the desired bound:

h3
∫ 1/2

0

∫ 1

0

∣∣∇2u3
∣∣2

dy dx " hα
2/3
s . (37)

Step 4: We need the L2 norms of u3 and ∇u3, because we will use them to estimate
the substrate energy by interpolation. The definition of u3 yields

∫ 1/2

0

∫ 1

0
|u3|2 " |a0|2 " h2α

−2/3
s , (38)

and by (30) we have
∫ 1/2

0

∫ 1

0
|∇u3|2 " 1. (39)

It follows in particular that

αs‖u3‖L2([0,1/2]×[0,1])‖∇u3‖L2([0,1/2]×[0,1]) ≤ hα
2/3
s . (40)

Step 5: We extend (w1,w2, u3) to [1,2] × [0,1] by setting

u3(x, y) = u3(1 − x, y),
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w2(x, y) = w2(1 − x, y), and

w1(x, y) = −w1(1 − x, y),

when (x, y) ∈ [1/2,1] × [0,1]. Then ∇xw1, ∇yw2, |∇xu3|2 and |∇yu3|2 are all even
in x, while ∇xw2 + ∇yw1 and ∇xu3∇yu3 are both odd in x. Thus the membrane
energy on [0,1]2 is exactly twice the membrane energy on [0,1/2]× [0,1]. Similarly,
the bending and substrate energies are also twice their values on [0,1/2]× [0,1]. We
conclude that

αmh

∫

[0,1]2

∣∣∣∣e(w) + 1
2
∇u3 ⊗ ∇u3 − I

∣∣∣∣
2

+ h3
∫

[0,1]2

∣∣∇2u3
∣∣2 " hα

2/3
s .

Also, combining the interpolation inequality

‖u3‖H 1/2 " ‖u3‖1/2
L2 ‖∇u3‖1/2

L2 (41)

with (40) we have

αs‖u3‖2
H 1/2 " hα

2/3
s .

This establishes (23), completing the proof. #

Remark 2 Our construction amounts to a herringbone with just two columns. The
preceding discussion focuses on the rescaled problem. In the original variables, where
the membrane energy is a constant times

∫
|e(w) + 1

2∇u3 ⊗ ∇u3 − ηI |2, the defor-
mation in the left “column” of the herringbone is the superposition of

(i) a uniform in-plane shear (w′, u′
3) with u′

3 = 0 and e(w′) =
( 0 −η

−η 0

)
, and

(ii) a wrinkling deformation (w′′, u′′
3) chosen so that e(w′′) + 1

2∇u′′
3 ⊗ ∇u′′

3 =
( η η

η η

)
.

The superposition w = w′ + w′′, u = u′′ achieves e(w) + 1
2∇u3 ⊗ ∇u3 − ηI = 0

pointwise, however, the average of e(w) is not zero; rather, it is
( 0 −η

−η 0

)
. The right

column of the herringbone fixes this: there the deformation is a superposition of
the opposite in-plane shear with a suitable wrinkling deformation, again achieving
e(w)+ 1

2∇u3 ⊗∇u3 −ηI = 0 pointwise, this time with average in-plane strain
( 0 η

η 0

)
.

By combining the two deformations in equal area fractions, the construction achieves
average in-plane strain zero, permitting w to be spatially periodic.

4 The Improved Model

In the original physical variables (x, y) ∈ [0,L]2, the construction of Sect. 3 has wrin-
kles of wavelength α

−1/3
s (h/L)L = α

−1/3
s h, superimposed upon an in-plane shear

that oscillates on the domain-size scale L. We could have decreased the wavelength
of the in-plane shear oscillation (at the expense of introducing additional transition
layers), but there was no reason to do so, because our substrate term involved only u3.
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As explained in Sect. 1.1, to do better we must account for the substrate energy
associated with w. Therefore we turn now to the functional E ∗, defined by (6). Nondi-
mensionalizing as in Sect. 1.3, we have

E ∗ = ηL

{
α̃mh̃

∫

[0,1]2

∣∣∣∣e(w̃) + 1
2
∇ũ3 ⊗ ∇ũ3 − I

∣∣∣∣
2

+ h̃3
∫

[0,1]2

∣∣∇2ũ3
∣∣2

+ αs‖ũ3‖2
H 1/2 + αsη‖w̃‖2

H 1/2

}
(42)

with α̃m = αmη and h̃ = h/L. As in (16), the expression in brackets on the right has
membrane and bending terms identical to those of E with η replaced by 1, h replaced
by h̃, and αm replaced by α̃m. The substrate term associated with u3 is also identical
to that of (16). The only difference from (16) is the presence of the substrate energy
associated with w—which has coefficient αsη rather than αs . Since η is small, it is
tempting to ignore this term, i.e. to study E rather than E ∗. However, it is the substrate
energy associated to w that sets the length scale on which the wrinkling direction
oscillates.

Our plan for proving Theorem 3 is simple: we proceed exactly as for Theorem 2,
except that we let the direction of wrinkling oscillate on scale * rather than on the
scale of the domain. Optimization of * identifies the optimal herringbone pattern. The
conditions in (13) identify the regime where this pattern makes sense (the optimal *
is larger than the scale of the wrinkling and smaller than that of the period cell) and
its energy has the same scaling as our lower bound.

Proof of Theorem 3 Since the argument is an extension of the one for Theorem 2
we shall work with the nondimensionalized problem, whose period cell is [0,1]2. We
shall show that if

α̃m ≥ α
2/3
s , α̃mα

−4/3
s η−1h̃2 ≤ 1, and η ≤ α̃−1

m α
2/3
s (43)

then there exists a periodic herringbone-type deformation (w̃1, w̃2, ũ3) on [0,1]2,
involving wrinkles with wavelength on scale h̃α

−1/3
s , whose direction oscillates on

the longer scale (h̃α
−1/3
s )α̃

1/2
m α

−1/3
s η−1/2 such that

α̃mh̃

∫

[0,1]2

∣∣∣∣e(w̃) + 1
2
∇ũ3 ⊗ ∇ũ3 − I

∣∣∣∣
2

+ h̃3
∫

[0,1]2

∣∣∇2ũ3
∣∣2 + αs‖ũ3‖2

H 1/2 + αsη‖w̃‖2
H 1/2 " h̃α

2/3
s . (44)

Theorem 3 follows immediately from this assertion and (42).
The remainder of this section addresses (44). To simplify the notation stay parallel

to the proof of Theorem 2, we henceforth drop all the tildes.
The proof of Theorem 2 used wrinkling on scale a0 ∼ hα

−1/3
s , with normal (1,1)

on the left half of the cell and normal (−1,1) on the right half of the cell, and with
a transition layer of width δ where the direction of wrinkling reverses. The precise
value of δ was unimportant provided that δ ! a0.
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Here we proceed similarly, except that we take the scale on which the wrinkling
reverses to be *, with (2*)−1 a positive integer. Since there is no advantage to taking
δ large, we take δ ∼ a0.

To be more explicit about the construction:

• For x between δ and * − δ, (w1,w2, u3) is exactly as it was in the proof of Theo-
rem 2 between δ and 1/2 − δ.

• For x in [0, δ] or [* − δ,*], we use a cutoff function exactly as in Theorem 2,
except for replacing 1/2 by *. Thus w1 = 0 and u3 = 0 near x = 0 and near x = *,
while w2 = −2x near x = 0 and near x = *.

• Having defined the deformation in [0,*], we now extend it to [*,2*] by reflection
as in the proof of Theorem 2, using even reflection for u3 and w2 and odd reflection
for w1, i.e.

u3(x) = u3(2* − x), w2(x) = w2(2* − x),

w1(x) = −w1(2* − x) for * < x < 2*.

• The resulting deformation is a periodic function of x ∈ [0,2*]. We may therefore
extend it to all x ∈ [0,1] by periodicity (using the hypothesis that (2*)−1 is an
integer).

For this construction to make sense, the boundary layers must not touch one another.
Remembering the choice δ ∼ a0, this requires that a0 " *.

The membrane energy is now

αmh

∫

[0,1]2

∣∣∣∣e(w) + 1
2
∇u3 ⊗ ∇u3 − I

∣∣∣∣
2

" αmha0*
−1,

since the integrand vanishes except in the 1/* “transition layers,” each having width
2δ ∼ a0, where the integrand is of order 1.

The estimates of the bending energy and the substrate energy associated with u3
are exactly as in the proof of Theorem 2:

h3
∫

[0,1]2

∣∣∇2u3
∣∣2 " h3a−2

0 , αs‖u3‖2
H 1/2 " αsa0,

since |u3| " a0, |∇u3| " 1, and |∇2u3| " a−1
0 pointwise.

To estimate the substrate energy of w, we observe that w2 is a piecewise-linear
sawtooth function of x with wrinkles superimposed. The wrinkles have amplitude
∼a0 and slope ∼1; the sawtooth has amplitude ∼* and slope ∼1. Since a0 " *, the
sawtooth dominates in the estimation of the L2 norm, giving ‖w2‖L2 ∼ *. The other
component w1 is different: it consists only of wrinkles, and its estimation is similar to
that of u3: |w1| " a0 and |∇w1| " 1, whence in particular ‖w1‖L2 " a0. Since a0 " *
it follows that ‖w‖L2 " *; therefore, using the interpolation inequality (41),

ηαs‖w‖2
H 1/2 " ηαs‖w‖L2‖∇w‖L2 " ηαs*.

Adding the preceding estimates, we get an upper bound for the total energy:
(
h3a−2

0 + αsa0
)
+

(
αmha0*

−1 + ηαs*
)
.
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The first term is optimally of order hα
2/3
s , achieved when a0 ∼ hα

−1/3
s . The second

term is optimally of order

(αmha0)
1/2(ηαs)

1/2

by the arithmetic mean–geometric mean inequality, achieved when

*2 ∼ αmha0

ηαs
. (45)

Using a0 ∼ hα
−1/3
s , one verifies that

* ∼ a0

(
αm

ηα
2/3
s

)1/2

. (46)

Notice that a0 " *, as a consequence of the first condition in (43) (using also that
η ≤ 1). The third condition in (43) ensures that the energy terms involving * are
subdominant, since

(αmha0)
1/2(ηαs)

1/2 " hα
2/3
s ⇔ η " α−1

m α
2/3
s .

For the construction to be feasible we need * " 1; this is ensured by the second
condition in (43). #

Remark 3 Since the energy terms involving * are subdominant, the system has lit-
tle incentive to use the optimal value of *. This is consistent with the numerical and
experimental observation that while the length scale of the wrinkling is sharply de-
termined, the scale on which the wrinkling oscillates is much less sharply determined
(Chen and Hutchinson 2004b; Huang et al. 2004; Song et al. 2008a).
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