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1. Introduction

The concept of Generalized Impedance Boundary Condition (GIBC) is now a rather
classical notion in the mathematical modeling of wave propagation phenomena (see
for instance, Refs. 13 and 16), and is used particularly in electromagnetism for
time harmonic scattering problems from obstacles that are partially or totally pen-
etrable. The general idea is to replace the use of an “exact model” inside (the
penetrable part of) the obstacle by approximate boundary conditions (also called
equivalent or effective conditions). This idea is pertinent if the boundary condi-
tion can be easily handled numerically, for instance when it is local. The same
type of idea led to the construction of local absorbing boundary conditions for the
wave equation,8,10 or more recently to the construction of On Surface Radiation
Conditions.5,4

The diffraction problem of electromagnetic waves by perfectly conducting obsta-
cles coated with a thin layer of dielectric material is well suited for the notion of
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impedance conditions: due to the small (typically with respect to the wavelength)
thickness of the coating, the effect of the layer on the exterior medium is, as a first
approximation, local (see for instance, Refs. 2, 7, 9, 13 and 16).

Another application, the one we have in mind here, is the diffraction of waves
by strongly absorbing obstacles, typically highly conducting materials in electro-
magnetism. In such a case, it is the well-known skin effect that creates a “thin
layer” phenomenon. The high conductivity limits the penetration of the wave to a
boundary layer whose depth is inversely proportional to its magnitude. Then, here
again, the effect of the obstacle is, as a first approximation, local.

The research on effective boundary conditions for highly absorbing obstacles
began with Leontovich before the apparition of computers and the development
of numerical methods. He proposed an impedance boundary condition, known as
the Leontovitch boundary condition. This condition “sees” only locally the tangent
plane to the frontier. Later, Rytov,15,16 proposed an extension of the Leontovitch
condition which was already based on the principle of an asymptotic expansion.
More recently, Antoine–Barucq–Vernhet6 proposed a new derivation of such condi-
tions based on the technique of pseudo-differential operators (following the original
ideas of Engquist–Majda10 for absorbing boundary conditions).

Our purpose in this paper is to revisit the question of GIBCs for the scattering
of waves by highly absorbing obstacles with a double objective:

• Propose a new construction of GIBCs which is based, as Rytov’s contruction,
on an ansatz for the asymptotic expansion of the exact solution but which is
technically different: we use a scaling technique and a boundary layer expansion
in the neighborhood of the boundary while Rytov uses an ansatz similar to the
one for high frequency asymptotics.

• Develop a complete mathematical analysis (existence and uniqueness of the solu-
tion, stability and error estimates) for the approximate problems with respect to
the medium’s absorption.

The second point is probably the main contribution of the present work. It
permits to make precise the notion of order of a given GIBC, whose meaning is not
always clear in the literature (it is sometimes related to the order of the differential
operators involved in the condition, sometimes linked to the truncation order of
some Taylor expansion,. . .): a GIBC will be of order k if it provides an error in
O(εk+1). A point deserves to be emphasized in this introduction: for a given order k

there is not uniqueness of possible GIBCs. We shall present here several GIBCs of
order 2 and 3; for the same order, different GIBCs may be distinguished by other
features, such as their adaptation to a given numerical method.

Not surprisingly, a large amount of work has been devoted in the mathematical
literature to the analysis or the study of numerical methods for wave propagation
models with GIBCs (see for instance, Refs. 1 and 17). Curiously, concerning a
rigorous asymptotic analysis of GIBCs for highly absorbing media, it seems that,
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although some of the works done by Artola–Cessenat3 goes in this direction (for
different problems than ours, however), there are few works on highly absorbing
media, as compared with the case of thin coatings.

In this first paper on the subject, we investigate in detail the question of GIBCs
for strongly absorbing media in the context of time harmonic acoustic waves in
3 dimensions. The case of Maxwell’s equations will be the object of a second paper
(note however that, in the degenerate 2D case, we get with this work GIBCs for
2D electromagnetic waves, at least in the case of TE polarization). The outline of
the paper is as follows. In Sec. 2, we present our model problem and give the basic
mathematical results for this problem (Theorems 2.1 and 2.2 and Corollary 2.1)).
We state the main results of our paper in Sec. 3: the so-called NtD (Sec. 3.1), DtN
(Sec. 3.2) and robust (in a sense defined in Sec. 3.2) GIBCs and the approximation
Theorems 3.1. Section 4 is devoted to the construction of GIBCs (see Sec. 4.4)
through the use of a standard scaling technique (cf. Sec. 4.2) that allows an analytic
description of the boundary layer (Sec. 4.3) using local coordinates (Sec. 4.1). The
central section of the paper is Sec. 5 where we prove error estimates for NtD GIBCs.
The analysis is split into two steps: a justification (Sec. 5.1) of the asymptotic
expansion of Sec. 4.2 (Lemma 5.1 and Corollary 5.1) and the study (Sec. 5.2) of
the GIBC itself (Lemmas 5.4 and 5.6). Finally we explain in Sec. 6 how to modify
the analysis for DtN and robust GIBCs.

2. Model Settings

Let Ω, Ωi and Ωe be open domains of R3 such that Ω̄ = Ω̄e ∪ Ω̄i and Ωi ∩ Ωe = ∅.
Ωi is supposed to be simply connected and ∂Ω ∩ ∂Ωi = ∅. In the sequel, we set
Γ = ∂Ωi and, for the simplicity of the exposition, we shall assume that Γ is a C∞

manifold (see Fig. 1). We are interested in the acoustic wave propagation inside the
domain Ω. We assume that the time and space scales are chosen in such a way that
the speed of waves is 1 and we assume that the medium inside Ωi is an absorbing

Fig. 1. Geometry of the medium.
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medium. In other words, the wave propagation is governed inside Ω, by:

∂2Uε

∂t2
+ σε(x)

∂Uε

∂t
− ∆Uε = F, (2.1)

where σε(x) is the function that characterizes the absorption of the medium and
ε a small parameter defined later:

σε(x) =
{

0, in Ωe,

σε > 0, in Ωi.
(2.2)

Considering a time harmonic source F (x, t) = f(x) sin ωt, where ω > 0 denotes a
given frequency, one looks for time harmonic solutions:

Uε(x, t) = Re (uε(x) exp iωt) .

Then, the function uε(x) is governed by the Helmholtz equation:

−∆uε − ω2uε + iω σε(x)uε = f, in Ω, (2.3)

where we assume that the support of the function f is contained in Ωe. Equa-
tion (2.3) has to be complemented with a boundary condition on the exterior
boundary ∂Ω, for instance an absorbing boundary condition (see Remark 2.1)

∂nuε + iωuε = 0, on ∂Ω. (2.4)

Remark 2.1. According to (2.4), the boundary ∂Ω can be seen as a physical
absorbing boundary where a standard impedance condition is applied. The prob-
lem (2.3), (2.4) can also be seen as a (low order) approximation of the outgoing
radiation condition at infinity for the exterior scattering problem in R3\Ωi.

We are interested in describing the solution behavior for large σε. For this, it is
useful to introduce as a small parameter the quantity:

ε =
√

1/ωσε ⇐⇒ σε = 1/(ωε2). (2.5)

It is easy to see that ε has the same dimension as a length. It represents in fact the
width of the penetrable boundary layer inside Ωi (also called the skin depth).

Our goal in this paper is to characterize, in an approximate way, the restriction
uε

e of uε to the exterior domain Ωe. In order to do so, it is useful to rewrite problem
((2.3), (2.4)) as a transmission problem between uε

i = uε
|Ωi

and uε
e = uε

|Ωe
:

(i) −∆uε
e − ω2uε

e = f, in Ωe,

(ii) −∆uε
i − ω2uε

i +
i

ε2
uε

i = 0, in Ωi,

(iii) ∂nuε
e + iωuε

e = 0, on ∂Ω,

(iv) uε
i = uε

e, on Γ,

(v) ∂nuε
i = ∂nuε

e, on Γ.

(2.6)
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2.1. Existence-uniqueness-stability

Some basic theoretical results related to problem (2.3) are presented in this section.
They constitute a preliminary step towards the forthcoming asymptotic analysis.

Theorem 2.1. There exists a unique solution uε ∈ H1(Ω) to problem ((2.3), (2.4)).
Moreover, there exits a constant C > 0 independent of ε such that

‖uε‖L2(Ω) ≤ C ‖f‖L2(Ω) . (2.7)

Proof. The existence and uniqueness proof is a classical exercise on the use of
Fredholm’s alternative. Let us simply recall that the uniqueness result rely on the
following identity:∫

Ω

|∇uε|2 − ω2|uε|2dx + i

(∫
∂Ω

ω|uε|2ds +
1
ε2

∫
Ωi

|uε|2dx

)
= 0

that is valid for any solution uε of the homogeneous boundary value problem asso-
ciated with (2.3), (2.4) (simply multiply Eq. (2.3) by ūε and integrate by parts
over Ω). In particular, uε = 0 in Ωi and by unique continuation uε = 0.

The stability estimate (2.7) is proved by contradiction. Assume the existence of
a sequence fε with ‖fε‖L2(Ω) = 1 such that the corresponding solution of ((2.3),
(2.4)), denoted uε, satisfies ‖uε‖L2(Ω) → ∞ as ε → 0. Let us set

vε = uε/ ‖uε‖L2(Ω) and gε = fε/ ‖uε‖L2(Ω) .

Then ‖vε‖L2(Ω) = 1 and ‖gε‖L2(Ω) → 0 as ε → 0. One gets from (2.3){−∆vε − ω2vε + iωσεvε = gε, in Ω,

∂nvε + iωvε = 0, on ∂Ω.
(2.8)

Consequently (again, multiply the previous equation by v̄ε and integrate over Ω)∫
Ω

(|∇vε|2 − ω2|vε|2) dx + i

(
ω

∫
∂Ω

|vε|2ds +
1
ε2

∫
Ωi

|vε|2dx

)
=
∫

Ωe

gεv̄ε dx.

(2.9)

Taking the real part of (2.9) yields∫
Ω

|∇vε|2dx = −ω2

∫
Ω

|vε|2dx + Re

∫
Ωe

gεv̄εdx.

Therefore one deduces that vε is bounded in H1(Ω). Hence one can assume that, up
to the extraction of a subsequence, vε → v weakly in H1(Ω) and strongly in L2(Ω).
First we have ‖v‖L2(Ω) = 1. Taking the limit in (2.8), restricted to Ωe, yields{−∆v − ω2v = 0, in Ωe,

∂nv + iωv = 0, on ∂Ω.
(2.10)

On the other hand, taking the imaginary part in (2.9) shows in particular that

‖vε‖2
L2(Ωi)

≤ ε2 ‖gε‖L2(Ω) ‖vε‖L2(Ω) .
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Thus vε → 0 in L2(Ωi), hence v = 0 in Ωi. In particular, v = 0 on ∂Ωi. Combined
with (2.10), this condition shows that v = 0 in Ωe. We then get v = 0 in Ω which
is in contradiction with ‖v‖L2(Ω) = 1.

Corollary 2.1. There exists a constant C > 0 independent of ε such that

‖uε‖H1(Ω) ≤ C ‖f‖L2(Ω) and ‖uε‖L2(Ωi)
≤ Cε ‖f‖L2(Ω). (2.11)

Proof. This corollary is a direct consequence of energy identity∫
Ω

(|∇uε|2 − ω2|uε|2) dx + i

(∫
∂Ω

ω|uε|2ds +
1
ε2

∫
Ωi

|uε|2dx

)
=
∫

Ωe

fūε dx

and the stability result of Theorem 2.1.

Corollary 2.1 shows in particular that the solution converges to 0 like O(ε) inside
Ωi, at least in the L2 sense. This result is not optimal. A sharper one will be given
in Lemma 5.1, where we show that ‖uε‖L2(Ωi)

is O(ε3/2) (see Remark 5.2).

2.2. Exponential interior decay of the solution

It is shown that the norm of the solution in a domain strictly interior to Ωi goes to
0 more rapidly than power of ε. This is a first way to express that the main part
of the interior solution is concentrated near the boundary Γ. The precise result is
the following (we omit here the proof and refer the reader to Ref. 12, where some
numerical examples are also shown to illustrate this so-called skin effect):

Theorem 2.2. For any δ > 0 small enough such that Ωδ
i = {x ∈ Ωi; B(x, δ) ⊂ Ωi}

is not empty, where B(x, δ) denotes the closed ball of center x and radius δ, there
exist two positive constants Cδ and γδ independent of ε such that

‖uε
i‖H1(Ωδ

i ) ≤ Cδ exp(−γδ/ε) ‖f‖L2 .

3. Statement of the Main Results

We shall present various exterior boundary value problems that define different
approximations of the “exact” solution uε

e in the exterior domain. Each of these
approximate problems is made of the standard Helmholtz equation in the exterior
domain Ωe, the outgoing impedance condition on ∂Ω,{−∆uε,k − ω2uε,k = f in Ωe,

∂nuε,k + iωuε,k = 0 on ∂Ω,
(3.1)

and an appropriate GIBC on the interior boundary Γ. We shall denote by uε,k the
approximate solution, where the integer index k refers to the order of the GIBC. The
precise mathematical meaning of this order will be clarified with the error estimates
(see Theorem 3.1). Let us simply say here that a GIBC of order k is a boundary
condition that provides a (sharp) O(εk+1) error (in a sense to be given later).



July 29, 2005 15:29 WSPC/103-M3AS 00073

Generalized Impedance Boundary Conditions 1279

All the GIBCs that will be dealt with are of the form of a linear relationship
between the Dirichlet and Neumann boundary values, uε,k and ∂nuε,k, involving
local (differential) operators along the boundary Γ. The method that we shall use for
deriving these GIBCs naturally lead to Neumann-to-Dirichlet (NtD) GIBCs. These
are the ones that we choose to present first in Sec. 3.1. Although it is possible to
derive, at least formally, a GIBC of any order, the algebra becomes more involved
as k increases, and it is difficult to write a general theory (existence, stability and
error analysis). That is why we shall restrict ourselves, in this paper, to GIBCs of
order k = 0, 1, 2 and 3.

In Sec. 3.2, we shall show how to easily derive, from (NtD) GIBCs, some modified
GIBCs that can be of Dirichlet-to-Neumann (DtN) nature (as more commonly
presented in the literature) or of mixed type.

We do not discuss in this paper the better choice for a GIBC of a given order.
Several criteria can guide such a choice: the suitability of a particular numerical
method, the robustness of the GIBC (this question will be slightly discussed later)
or more importantly, its actual accuracy. It appears that a valuable comparison
between the accuracy of GIBCs of the same order will rely on numerical computa-
tions. Also, it is not clear from the subsequent convergence theorems whether, at
a given ε, a GIBC of order k + 1 is more accurate than a GIBC of order k or not.
The results only concern the asymptotic behavior as ε goes to zero. Finally, one can
easily be convinced that the asymptotic models are still meaningful for Lipschitz
interface Γ, even though the convergence study requires additional regularity. It
would be interesting to numerically check the accuracy of GIBCs with respect to
the scatterer regularity.

All these points are delayed to a forthcoming work of more numerical nature.

3.1. Neumann-to-Dirichlet GIBCs

Neumann-to-Dirichlet GIBC can be seen as a (local) approximation of the exact
Neumann-to-Dirichlet condition that would characterize uε

e, namely:

uε
e + Dε∂nuε

e = 0, on Γ, (3.2)

where Dε ∈ L(H− 1
2 (Γ), H

1
2 (Γ)) is the boundary operator defined by:

Dεϕ = uε
i (ϕ),

and uε
i is the unique solution of the interior boundary value problem:{

−∆uε
i (ϕ) − ω2uε

i (ϕ) +
i

ε2
uε

i (ϕ) = 0, in Ωi,

−∂nuε
i (ϕ) = ϕ, on Γ.

(3.3)

The absorbing nature of the interior medium is equivalent to the following absorb-
tion property of the operator Dε (this follows from Green’s formula):

∀ϕ ∈ H− 1
2 (Γ), Im 〈Dεϕ, ϕ〉Γ = − 1

ε2

∫
Ωi

|uε
i (ϕ)|2dx ≤ 0. (3.4)
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It is well known that the operator Dε is a nonlocal pseudo-differential operator
whose explicit expression is not known in general. Nevertheless as ε → 0, this
operator becomes “almost local” (even differential), which is more or less intuitive
according to the strong interior exponential decay of the solution for small ε.

In the following, α :=
√

2
2 + i

√
2

2 denotes the complex square root of i with
positive real part, H and G are the mean and Gaussian curvatures of Γ (see Sec. 4.1),
and ∆Γ denotes the Laplace–Beltrami operator along Γ. We claim that a Neumann-
to-Dirichlet GIBC of order k = 1, 2, 3 is given by:

uε,k + Dε,k∂nuε,k = 0, on Γ, (3.5)

for k = 1, Dε,1 =
ε

α
, (3.6)

for k = 2, Dε,2 =
ε

α
+ iHε2, (3.7)

for k = 3, Dε,3 =
ε

α
+ iHε2 − αε3

2
(
3H2 − G + ω2 + ∆Γ

)
. (3.8)

The main results of our paper are summarized in the following theorem:

Theorem 3.1. Let k = 0, 1, 2 or 3, then, for sufficiently small ε, the boundary
value problem ((3.1), (3.5)) has a unique solution uε,k ∈ H1(Ωe). Moreover, there
exists a constant Ck, independent of ε, such that

‖uε
e − uε,k‖H1(Ωe) ≤ Ckεk+1. (3.9)

3.2. Modified GIBCs

Dirichlet to Neumann GIBCs. If we introduce N ε := (Dε)−1, then the exact bound-
ary condition for uε

e can be rewritten as:

∂nuε
e + N εuε

e = 0, on Γ. (3.10)

In our terminology, a DtN GIBC will be of the form:

∂nuε,k + N ε,kuε,k = 0, on Γ, (3.11)

where N ε,k denotes some local approximation of N ε. They can be directly obtained
from Dε,k by seeking local operators N ε,k that formally satisfy:

Dε,k =
(N ε,k

)−1
+ O(εk+1). (3.12)

The expression of N ε,k is given by a formal Taylor expansion of (Dε,k)−1. One gets

for k = 2, N ε,2 =
α

ε
+ H, (3.13)

for k = 3, N ε,3 =
α

ε
+ H− ε

2α
(∆Γ + H2 − G + ω2). (3.14)

The important point here is that the results (existence, uniqueness and error esti-
mates) stated in Theorem 3.1 for problem (3.1), (3.5) still hold for problem (3.1),
(3.11). We refer to Sec. 6.



July 29, 2005 15:29 WSPC/103-M3AS 00073

Generalized Impedance Boundary Conditions 1281

Robust GIBCs. As mentioned earlier, an important property of the “exact”
impedance condition is what we shall refer to as absorption property. It can be
formally formulated for Dε (resp. N ε) as:

Im

∫
Γ

Dεϕ · ϕ̄ ds ≤ 0,

(
resp. Im

∫
Γ

ϕ · N εϕds ≤ 0
)

, (3.15)

for all ϕ ∈ C∞(Γ) and all ε > 0.

Definition 3.1. We shall say that a NtD GIBC of the form (3.2) (resp. a DtN
GIBC of the form (3.10)) is robust if the absorption property (3.15) still holds for
all ε > 0, when Dε is replaced by Dε,k (resp. N ε is replaced by N ε,k).

In particular, establishing robustness implies the well-posedness of the approx-
imate problem for any ε > 0. With this respect, the second-order NtD GIBC (3.7)
is not robust since (3.15) is guaranteed only if εH ≤

√
2

2 , a.e. on Γ, which is a con-
straint for non-convex Ωi. However, the second order DtN GIBC (3.13) is robust
(thus can be seen as a robust version of (3.7)). Concerning the third-order condi-
tions, neither the NtD GIBC (3.8) nor the DtN GIBC (3.14) is robust. Indeed, one
has the identities:∫

Γ

Dε,3ϕ · ϕ̄ ds =
αε3

2

∫
Γ

|∇Γ ϕ|2ds + εᾱ

∫
Γ

[
1 +

εH
α

− i
ε2

2
(3H2 − G + ω2)

]
|ϕ|2ds,∫

Γ

ϕ · N ε,3ϕds =
αε

2

∫
Γ

|∇Γ ϕ|2ds +
ᾱ

ε

∫
Γ

[
1 +

εH
ᾱ

+ i
ε2

2
(H2 − G + ω2)

]
|ϕ|2ds,

from which one easily computes that
(
remember α =

√
2

2 + i
√

2
2

)
:

Im

∫
Γ

Dε,3ϕ · ϕ̄ ds =
√

2ε3

4

∫
Γ

|∇Γ ϕ|2ds − ε
√

2
2

∫
Γ

ρε
1|ϕ|2ds,

Im

∫
Γ

ϕ · N ε,3ϕds =
√

2ε
4

∫
Γ

|∇Γ ϕ|2ds −
√

2
2ε

∫
Γ

ρε
2|ϕ|2ds,

where the functions ρε
j converge (uniformly on Γ) to 1 as ε goes to 0 (and are thus

positive for ε small enough). The main problem is that the integrals in |∇Γ ϕ|2 come
with the wrong sign.

As we shall explain, it is possible to construct robust GIBCs of order 3. The
idea is to use some appropriate Padé approximation of the imaginary part of the
boundary operators that formally gives the same order of approximation but restore
absorption property. Consider for instance the NtD GIBC of order 3. Indeed

ImDε,3 = −ε

√
2

2

(
1 − ε

√
2H +

ε2

2
(3H2 − G + ω2 + ∆Γ )

)
.

One can therefore formally write

ImDε,3 = −ε

√
2

2

(
1 +

ε2

2
(3H2 − G + ω2)

)(
1 − ε

√
2H +

ε2

2
∆Γ

)
+ O(ε4).
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Note that, as H2−G = 1
4 (c1−c2)2, where c1 and c2 are the two principal curvatures

along Γ (see Sec. 4.1), we have

1 +
ε2

2
(3H2 − G + ω2) > 0.

It is then sufficient to seek a positive approximation of (1− ε
√

2H + ε2

2 ∆Γ) which
can be obtained by considering the formal inverse, namely

1 − ε
√

2H +
ε2

2
∆Γ =

{
1 + ε

√
2H +

ε2

2
(4H2 − ∆Γ )

}−1

+ O(ε3).

Therefore,

ImDε,3 = −ε

√
2

2

(
1 +

ε2

2
(3H2 − G + ω2)

)
×
(
1 + ε

√
2H +

ε2

2
(4H2 − ∆Γ )

)−1

+ O(ε4).

A robust NtD-like GIBC of order 3 is obtained by replacing Dε,3 by

Dε,3
r := ε

√
2

2

(
1 − ε2

2
(3H2 − G + ω2 + ∆Γ)

)
− iε

√
2

2

(
1 +

ε2

2
(3H2 − G + ω2)

)(
1 + ε

√
2H +

ε2

2
(4H2 − ∆Γ)

)−1

. (3.16)

This expression will be used in practice in the following form:

Dε,3
r ϕ := ε

√
2

2

[(
1 − ε2

2
(3H2 − G + ω2 + ∆Γ)

)
ϕ

− i

(
1 +

ε2

2
(3H2 − G + ω2)

)
ψ

]
, (3.17)

where ψ is a solution of

−ε2

2
∆Γψ + (1 + ε

√
2H + 2ε2H2)ψ = ϕ. (3.18)

One can easily verify, with a = (1 + ε
√

2H + 2ε2H2) > 0, that∫
Γ

ImDε,3
r ϕ · ϕ̄ ds = −ε

∫
Γ

√
2

2

(
1 +

ε2

2
(3H2 − G + ω2)

)
×
(

a|ψ|2 +
ε2

2
|∇Γ ψ|2

)
ds. (3.19)

The right-hand side is non-positive for all ε whence the absorption property
for Dε,3

r . Of course one can follow a similar procedure to derive robust DtN third-
order GIBC. The expression of this condition is based on the approximation:

Im N ε,3 =
√

2
2ε

(
1 +

ε2

2
(H2 − G + ω2)

){
1 − ε2

2
∆Γ

}−1

+ O(ε2). (3.20)
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Hence, replacing N ε,3 by

N ε,3
r :=

√
2

2ε

(
1 + ε

√
2H− ε2

2
(H2 − G + ω2 + ∆Γ)

)
+ i

√
2

2ε

(
1 +

ε2

2
(H2 − G + ω2)

){
1 − ε2

2
∆Γ

}−1

, (3.21)

in (3.14) gives another third-order DtN GIBC. This condition is robust in view of
the following identity, where the right-hand side is nonpositive for all ε,

Im

∫
Γ

ϕ · N ε,3ϕ ds = −
√

2
2ε

∫
Γ

(
1 +

ε2

2
(H2 − G + ω2)

)(
|ψ|2 +

ε2

2
|∇Γ ψ|2

)
ds,

(3.22)

where ψ is solution to − ε2

2 ∆Γψ + ψ = ϕ.

4. Formal Derivation of the GIBC

4.1. Preliminary material

Geometrical tools. Let n be the inward normal field defined on ∂Ωi and let δ be a
given positive constant chosen to be sufficiently small so that

Ωδ
i = {x ∈ Ωi; dist(x, ∂Ωi) < δ},

can be uniquely parametrized by the tangential coordinate xΓ on Γ and the normal
coordinate ν ∈ (0, δ) through

x = xΓ + νn, x ∈ Ωδ
i . (4.1)

Let us recall some concepts and identities from differential geometry (the notion
of surface differential operator is supposed to be known — see Ref. 11). Let C :=
∇Γn be the curvature tensor on Γ. We recall that C is symmetric and C n = 0.
We denote c1, c2 the eigenvalues of C (namely the principal curvatures) associated
with tangential eigenvectors τ1, τ2. G := c1c2 and H := 1

2 (c1 + c2) are respectively
the Gaussian and mean curvatures of Γ. Let us define the tangential operator Rν

on Γ by

(I + νC(xΓ))Rν(xΓ) = IΓ(xΓ),

where IΓ(xΓ) is the projection on the tangent plane to Γ at xΓ. Then one has
(see Ref. 11)

∇ = Rν∇Γ + ∂νn, (4.2)

where ∇Γ is the surface gradient on Γ. If one sets

Jν := det(I + ν C) = 1 + 2νH + ν2G,
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then from integration by part formulas and (4.2), one gets

∆ =
1
Jν

divΓ(RνJνRν)∇Γ +
1
Jν

∂νJν∂ν , (4.3)

where divΓ is the surface divergence on Γ. Define the tangential operator M as

IΓ + νM = JνRν ,

then M is independent of ν and one has

CM = GIΓ.

Therefore, identity (4.3) can be transformed into

∆ =
1
Jν

divΓ

(
1
Jν

(IΓ + νM)2
)
∇Γ +

1
Jν

∂νJν∂ν ,

or, in an equivalent form

J3
ν∆ = JνdivΓ (IΓ + νM)2∇Γ −∇Γ Jν · (IΓ + νM)2∇Γ

+ J3
ν∂2

νν + 2J2
ν (H + νG)∂ν . (4.4)

This latter expression is more convenient for the asymptotic matching procedure,
that we shall describe later, because we made the dependence of the operators
coefficients polynomial with respect to ν.

The asymptotic ansatz. As it is quite standard, the derivation of the approximate
boundary conditions will be based on an ansatz, i.e. a particular expansion of the
solution in terms of ε. To formulate this ansatz, it is useful to introduce a cutoff
function χ ∈ C∞(Ωi) such that χ = 1 in Ωδ/2

i and χ = 0 in Ωi\Ωδ
i . We do not

consider (1 − χ)uε
i since this term converges exponentially to 0 with ε (this is

Theorem 2.2). For the remaining part of the solution, we postulate the following
expansions:

uε
e(x) = u0

e(x) + εu1
e(x) + ε2u2

e(x) + · · · , forx ∈ Ωe, (4.5)

where u�
e, � = 0, 1, . . . are functions defined on Ωe and

χ(x)uε
i (x) = u0

i (xΓ, ν/ε) + εu1
i (xΓ, ν/ε) + ε2u2

i (xΓ, ν/ε) + · · · , for x ∈ Ωδ
i , (4.6)

where x, xΓ and ν are as in (4.1) and where u�
i(xΓ, η) : Γ × R+ �→ C are functions

such that

lim
η→∞u�

i(xΓ, η) = 0 for a.e. xΓ ∈ Γ. (4.7)

The latter condition will ensure that the u�
i ’s are exponentially decreasing with

respect to η. In the next section, we shall identify the set of equations satisfied by
(u�

e) and (u�
i) and the formal expansions (4.5) and (4.6) will be justified in Sec. 5.

It will be useful to introduce the notation

ũε
i (xΓ, η) := u0

i (xΓ, η) + εu1
i (xΓ, η) + ε2u2

i (xΓ, η) + · · · , (xΓ, η) ∈ Γ × R
+, (4.8)

so that ansatz (4.6) has to be understood as

χ(x)uε
i (x) = ũε

i (xΓ, ν/ε) + O(ε∞) for x ∈ Ωε/2
i . (4.9)
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4.2. Asymptotic formal matching

Let us first consider the exterior field uε
e. It is clear that each uk

e in the expansion
(4.5) satisfies (simply substitute (4.5) into (2.6)(i) and (2.6)(iii)):{

−∆uk
e − ω2uk

e = 0 in Ωe,

∂nuk
e + iωuk

e = 0 on ∂Ω.
(4.10)

Concerning the interior field, from (2.6)(ii), (4.9) and the substitution ν = εη

in (4.4), we obtain the following equation, after some rearrangements:

(−∂2
ηη + i)ũε

i = (1 − J3
εη)(−∂2

ηη + i)ũε
i + 2εJ2

εη(H + εηG)∂ηũε
i + ε2ω2J3

εηũε
i

+ ε2JεηdivΓ (IΓ + εηM)2∇Γ − ε2∇Γ Jεη · (IΓ + εηM)2∇Γ ũε
i .

(4.11)

Considering that Jν is a polynomial of degree 2 in ν, (4.11) can be rewritten as:

(−∂2
ηη + i)ũε

i =
8∑

�=1

ε�A�ũ
ε
i , on Γ × R

+, (4.12)

where A� are some partial differential operators in (xΓ, η) that are independent
of ε. Formal identification gives, after rather lengthy than complicated calculations,

A1 = 2H∂η − 6ηH(−∂2
ηη + i), (4.13)

A2 = ∆Γ + ω2 + 2η(G + 4H2)∂η − 3η2(G + 4H2)(−∂2
ηη + i), (4.14)

A3 = 2η
[H∆Γ + divΓ(M∇Γ ) −∇Γ H · ∇Γ + 3ω2H]

+ 4η2H [(3G + 2H2)∂η

]− 4η3H(3G + 2H2)(−∂2
ηη + i), (4.15)

A4 = η2
[
G∆Γ + 4H divΓ(M∇Γ ) + divΓ(M2∇Γ )

]
− η2

[∇Γ G · ∇Γ + 4∇Γ H · (M∇Γ ) − 3ω2(G + 4H2)
]

+ 4η3G(G + 4H2)∂η − 3η4G(G + 4H2)(−∂2
ηη + i), (4.16)

A5 = 2η3
[
G divΓ (M∇Γ ) + H divΓ (M2∇Γ )

]
− 2η3

[∇Γ G · (M∇Γ ) + ∇Γ H · (M2∇Γ ) − 2ω2H(3G + 2H2)
]

+ 10η4G2H∂η − 6η5G2H (−∂2
ηη + i), (4.17)

A6 = η4
[
G divΓ (M2∇Γ ) −∇Γ G · (M2∇Γ ) + 3ω2G(G + 4H2)

]
+ 2η5 G3∂η − η6 G3(−∂2

ηη + i), (4.18)

A7 = 6η5ω2G2H, (4.19)

A8 = η6ω2G3. (4.20)

Therefore, making the substitution (4.8) in Eq. (4.12) and equating the terms of the
same order in ε, we obtain an induction on k that allows us to recursively determine
the uk

i ’s as functions of η. With the convention uk
i ≡ 0 for k < 0, one can write it
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in the form

(−∂2
ηη + i)uk

i =
8∑

�=1

A�u
k−�
i , on Γ × R

+, (4.21)

for all k ≥ 0. For any k ≥ 0, if one assumes that the fields ul
i and ul

e are known
for l < k, then Eq. (4.21) can be seen as an ordinary differential equation in η for
η ∈ [0, +∞[ whose unknown η �→ uk

i (xΓ, η) (the variable xΓ is only a parameter).
As this equation is of order 2, in addition to the decay condition at infinity (4.7),
the solution of (4.21) with respect to η requires one initial condition at η = 0.
This condition will be provided by one of the two interface conditions (2.6)(vi) and
(2.6)(v). Here we choose to use condition (2.6)(v) which gives us a nonhomogeneous
Neumann condition at η = 0 whose right-hand side will be given by the exterior
field uk−1

e , namely (substitute (4.5) and (4.6) into (2.6)(v) and identify the series
after the change of variable ν = εη)

∂ηuk
i (xΓ, 0) = ∂nuk−1

e |Γ(xΓ), xΓ ∈ Γ. (4.22)

With such a choice, the other condition (2.6)(vi) will serve as a nonhomogeneous
Dirichlet boundary condition for the exterior field uk

e , to complete (4.10):

uk
e |Γ(xΓ) = uk

i (xΓ, 0), xΓ ∈ Γ. (4.23)

Remark 4.1. Choosing (4.22) as the boundary condition for (4.21) will naturally
lead to NtD GIBCs. The alternative choice (4.23) would naturally lead to DtN
GIBCs. Our choice seems to be more natural because, thanks to the shift of index
in (4.22), the right-hand side naturally appears as something known from previous
steps. Condition (4.23) plays the role of a coupling condition!

4.3. Description of the interior field inside the boundary layer

We are interested in getting analytic expression for the “interior fields” uk
i by solving

the boundary problem (in the variable η) made of (4.21), (4.22) and (4.7). To
simplify the notation, we shall set:

duk
e(xΓ) := ∂nuk

e |Γ(xΓ), xΓ ∈ Γ. (4.24)

Using standard techniques for linear differential equations, it is easy to prove that
the solution uk

i is of the form:

uk
i (xΓ, η) = P k

xΓ
(η)e−αη, (4.25)

for all k ≥ 0, where P k
xΓ

is a polynomial with respect to η of degree k whose
coefficients depend on du0

e, . . ., duk−1
e

(
note that α =

√
2

2 + i
√

2
2

)
. More precisely,

these polynomials satisfy an (affine) induction of order 8, of the form:

P k
xΓ

(η) = − 1
α

duk−1
e (xΓ) + Lk

(
P k−1

xΓ
(η), . . . , P k−7

xΓ
(η)
)
,

where Lk is a linear form on C7 whose coefficients are linear in the dul
e(xΓ)’s. We

shall not give here the expression of Lk for any k but restrict ourselves to the first
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four functions uk
i (this is sufficient for GIBCs up to order 3)

u0
i (xΓ, η) = 0, (4.26)

u1
i (xΓ, η) = − 1

α
du0

e(xΓ)e−αη, (4.27)

u2
i (xΓ, η) =

{(
− 1

α
du1

e(xΓ) +
H
α2

du0
e(xΓ)

)
+ η

H
α

du0
e(xΓ)

}
e−αη, (4.28)

u3
i (xΓ, η) =

{
− 1

α
du2

e(xΓ) +
H
α2

du1
e(xΓ)

− 1
2α3

(3H2 − G + ω2)du0
e(xΓ) − 1

2α3
∆Γ[du0

e](xΓ)

+ η

[H
α

du1
e(xΓ) − 1

2α2
(∆Γ − G + 3H2 + ω2)du0

e(xΓ)
]

+ η2 1
2α

(G − 3H2)du0
e(xΓ)

}
e−αη. (4.29)

4.4. Construction of the GIBCs

Let us first check inductively that, starting from u0
i = 0 and u0

e solution of the
exterior Dirichlet problem, the fields uk

e and uk
i are well defined. Assume that u�

e

and u�
i are known for � ≤ k − 1. The du�

e’s are known by (4.24), and uk
i is given

by expression (4.25) (more precisely (4.26) to (4.29) for k = 0, 1, 2, 3). Then, uk
e is

determined as the solution of (we set f0 = f and fk = 0 for k ≥ 1):
−∆uk

e − ω2uk
e = fk, in Ωe,

∂nuk
e + iωuk

e = 0, on ∂Ω,

uk
e = uk

i |η=0, on Γ.

(4.30)

Remark 4.2. Since f is compactly supported in Ωe, by induction we deduce, using
standard elliptic regularity results, that uk

e is a smooth function in a neighborhood
of Γ and uk

e(xΓ, 0) is also a smooth function.

The GIBC of order k is obtained by considering the truncated expansion:

ũε,k :=
k∑

�=0

ε�u�
e, (4.31)

as an approximation of order k of uε
e. For example, for k = 0, we have ũε,0 = u0

e

and from Eqs. (4.23) and (4.26), we deduce that ũε,0 = 0 on Γ. In this case, we
set uε,0 = ũε,0 and the homogeneous Dirichlet boundary condition is the GIBC of
order 0.

For larger k, another approximation is needed. The principle of the calculation
is the following. Using the second interface condition, namely (2.6)(iv), one has

ũε,k|Γ(xΓ) =
k∑

�=0

ε�u�
i(xΓ, 0) for xΓ ∈ Γ. (4.32)



July 29, 2005 15:29 WSPC/103-M3AS 00073

1288 H. Haddar, P. Joly & H.-M. Nguyen

Substituting (4.26)–(4.29) into (4.32) leads to a boundary condition of the form

ũε,k + Dε,k∂nũε,k = εk+1gε
k on Γ, with gε

k = O(1), (4.33)

where Dε,k is some boundary operator. The GIBC of order k that defines uε,k (not
ũε,k) is then obtained by neglecting the right-hand side of (4.33).

Obtaining (4.33) is purely algebraic and we shall not give the details of the
computations that are rather straightforward and could be automatized. Notice
however that their complexity increases rapidly with k! For k ≤ 3, the reader easily
checks that the operators Dε,k’s are the ones mentioned in Sec. 3.1 and that the
gε

k’s are given by:
gε
1 =

1
α

∂nu1
e, gε

2 =
1
α

∂nu2
e + iH∂n(u1

e + εu2
e),

gε
3 =

1
α

∂nu3
e + iH∂n(u2

e + εu3
e)

− 1
2
[∆Γ∂n + (3H2 − G + ω2)∂n]

(
u1

e + εu2
e + ε2u3

e

)
.

(4.34)

5. Error Analysis of NtD GIBCs

Our goal in this section is to estimate the difference

uε
e − uε,k, (5.1)

where uε,k is the solution of the approximate problem ((3.1), (3.5)), whose well-
posedness will be shown in Sec. 5.2 (Lemma 5.4). It appears nontrivial to work
directly with the difference uε

e − uε,k, we shall use the truncated series ũε,k intro-
duced in Sec. 4.4 as an intermediate quantity. Therefore, the error analysis is split
into two steps:

(1) Estimate the difference uε
e − ũε,k; this is done in Sec. 5.1, Lemma 5.1 and

Corollary 5.1.
(2) Estimate the difference ũε,k − uε,k; see Sec. 5.2, Lemma 5.6.

Estimates of Theorem 3.1 are a direct consequence of Corollary 5.1 and Lemma 5.6.

Remark 5.1. Note that step 1 of the proof is independent of the GIBC and will
be valid for any k. Also, for k = 0, the second step is useless since ũε,0 = uε,0.

5.1. Error analysis of the truncated expansions

Let us introduce the function ũε,k
χ (x) : Ω �→ C such that

ũε,k
χ (x) =


∑k

�=0 ε�u�
e(x), for x ∈ Ωe,

χ(x)
∑k

�=0 ε�u�
i(xΓ, ν/ε), for x ∈ Ωi,

(5.2)
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where χ, xΓ and ν are as in Sec. 4.1. The main result of this section is:

Lemma 5.1. For any k, there exists a constant Ck independent of ε such that

‖uε − ũε,k
χ ‖H1(Ω) ≤ Ckεk+ 1

2 ,

‖uε − ũε,k
χ ‖L2(Ωi) ≤ Ckεk+ 3

2 ,

‖uε − ũε,k
χ ‖L2(Γ) ≤ Ckεk+1.

(5.3)

Note that this gives an O(εk+1)H1(Ωe)-error estimate for the “exterior field”:

Corollary 5.1. For any k, there exists a constant C̃k independent of ε such that:

‖uε − ũε,k‖H1(Ωe) ≤ C̃kεk+1. (5.4)

Proof. Simply write

uε − ũε,k = uε − ũε,k+1 + εk+1uk+1
e ,

which yields, since uε,k+1 = uε,k+1
χ in Ωe,

‖uε − ũε,k‖H1(Ωe) ≤ ‖uε − ũε,k+1
χ ‖H1(Ωe) + εk+1‖uk+1

e ‖H1(Ωe),

that is to say, thanks to the first estimate of Lemma 5.1:

‖uε − ũε,k‖H1(Ωe) ≤ Ckεk+ 3
2 + εk+1‖uk+1

e ‖H1(Ωe) ≤ C̃kεk+1.

Remark 5.2. For k = 0, since ũε,0
χ = 0 inside Ωi (cf. (4.27)), one deduces from

the second estimate of (5.3) that ‖uε‖L2(Ωe) ≤ Cε
3
2 .

Next we state a trace lemma (Lemma 5.2 whose proof — essentially a modi-
fication of the standard trace theorem — is omitted here, see Ref. 12) and a sta-
bility estimate (Lemma 5.3) that constitute the basic ingredients to the proof of
Lemma 5.1.

Lemma 5.2. Let O be a bounded open set of Rn with C1 boundary, then there
exists a constant C only depending on O such that

‖u‖2
L2(∂O) ≤ C

(
‖∇u‖L2(O)‖u‖L2(O) + ‖u‖2

L2(O)

)
, for all u ∈ H1(O). (5.5)

Lemma 5.3. Let vε ∈ H1(Ω) satisfying−∆vε − ω2vε = 0, in Ωe,

∂nvε + iωvε = 0, on ∂Ω,
(5.6)

and the a priori estimate∣∣∣∣∫
Ω

(|∇vε|2 − ω2|vε|2) dx + i

(∫
∂Ω

ω|vε|2 ds +
1
ε2

∫
Ωi

|vε|2 dx

)∣∣∣∣
≤ A

(
εs+ 1

2 ‖vε‖L2(Γ) + εs‖vε‖L2(Ωi)

)
, (5.7)
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for some non-negative constants A and s independent of ε. Then there exists a
constant C independent of ε such that

‖vε‖H1(Ω) ≤ C εs+1, ‖vε‖L2(Ωi) ≤ C εs+2, ‖vε‖L2(Γ) ≤ C εs+ 3
2 , (5.8)

for sufficiently small ε.

Proof. We first prove by contradiction that ‖vε‖L2(Ω) ≤ C εs+1. This is the main
step of the proof. Let wε = vε/‖vε‖L2(Ω) and assume that λε := ε−s−1‖vε‖L2(Ω) is
unbounded as ε → 0. Estimate (5.7) (note that it is not homogeneous in vε) yields∣∣∣∣∫

Ω

(|∇wε|2 − ω2|wε|2) dx + i

(∫
∂Ω

ω|wε|2 ds +
1
ε2

∫
Ωi

|wε|2 dx

)∣∣∣∣
≤ A

λε

(
ε−

1
2 ‖wε‖L2(Γ) + ε−1‖wε‖L2(Ωi)

)
. (5.9)

For the sake of conciseness, we will denote by C a positive constant whose value
may change from one line to another but remains independent of ε. For instance,
since 1/λε is bounded, (5.9) yields in particular,

‖wε‖2
L2(Ωi)

≤ Cε
3
2 ‖wε‖L2(Γ) + Cε‖wε‖L2(Ωi).

Next, we use Lemma 5.2 with O = Ωi to get

‖wε‖2
L2(Ωi)

≤ Cε
3
2 ‖wε‖ 1

2
L2(Ωi)

(
‖wε‖ 1

2
L2(Ωi)

+ ‖∇wε‖ 1
2
L2(Ωi)

)
+ Cε‖wε‖L2(Ωi),

which yields, after division by ‖wε‖ 1
2
L2(Ωi)

,

‖wε‖ 3
2
L2(Ωi)

≤ C1ε‖wε‖ 1
2
L2(Ωi)

+ C2ε
3
2 ‖∇wε‖ 1

2
L2(Ωi)

. (5.10)

Using Young’s inequality ab ≤ 2/3a3/2+1/3b3 with a = K−1ε and b = K‖wε‖ 1
2
L2(Ωi)

(where K is a positive constant to be fixed later) we can write

ε‖wε‖ 1
2
L2(Ωi)

≤ 2
3
K− 3

2 ε
3
2 +

K3

3
‖wε‖ 3

2
L2(Ωi)

. (5.11)

Choosing C1K
3 = 3/2 and substituting (5.10) into (5.11), we deduce a first main

inequality,

‖wε‖ 3
2
L2(Ωi)

≤ Cε
3
2

(
1 + ‖∇wε‖ 1

2
L2(Ωi)

)
. (5.12)

Now, observe that another consequence of (5.9) is, since ‖wε‖L2(Ω) = 1,

‖∇wε‖2
L2(Ω) ≤ C

(
1 + ε−

1
2 ‖wε‖L2(Γ) + ε−1‖wε‖L2(Ωi)

)
. (5.13)

On the other hand, using Lemma 5.2 once again, we have

ε−
1
2 ‖wε‖L2(Γ) ≤ Cε

1
2
{
ε−1‖wε‖L2(Ωi)

}
+ C

{
ε−1‖wε‖L2(Ωi)

} 1
2 ‖∇wε‖ 1

2
L2(Ωi)

,
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which, using (5.13), implies

‖∇wε‖2
L2(Ω) ≤ C + C

{
ε−1‖wε‖L2(Ωi)

}(
1 + ‖∇wε‖ 1

2
L2(Ωi)

)
(5.14)

for ε bounded.
Coming back to (5.12), we deduce that

ε−1‖wε‖L2(Ωi) ≤ C
(
1 + ‖∇wε‖ 1

3
L2(Ωi)

)
, (5.15)

that we use in (5.14) to obtain

‖∇wε‖2
L2(Ω) ≤ C

(
1 + ‖∇wε‖ 2

3
L2(Ωi)

)
.

This implies in particular that ‖∇wε‖L2(Ω) is uniformly bounded with respect to ε

and therefore wε is a bounded sequence of H1(Ω). Up to an extracted subsequence,
one can therefore assume that wε converges weakly in H1(Ω) and strongly L2(Ω)
to some w with ‖w‖L2(Ω) = 1.

From (5.12), we deduce that w = 0 in Ωi. On the other hand, taking the weak
limit in the equations satisfied by wε in Ωe and on ∂Ω, then using that w ∈ H1(Ω)
one gets 

−∆w − ω2w = 0, in Ωe,

∂nw + iωw = 0 on ∂Ω,

w = 0 on Γ.

(5.16)

Therefore w = 0 in Ωe, hence w = 0 in Ω which contradicts ‖w‖L2(Ω) = 1. Conse-
quently

‖vε‖L2(Ω) ≤ Cεs+1. (5.17)

Estimate (5.7) and Lemma 5.2 yields

‖vε‖2
L2(Ωi)

≤ C
(
εs+ 5

2 ‖∇vε‖ 1
2
L2(Ωi)

‖vε‖ 1
2
L2(Ωi)

+ εs+2‖vε‖L2(Ωi)

)
(5.18)

and using (5.17)

‖∇vε‖2
L2(Ω) ≤ C

(
ε2s+2 + εs+ 1

2 ‖∇vε‖ 1
2
L2(Ωi)

‖vε‖ 1
2
L2(Ωi)

+ εs‖vε‖L2(Ωi)

)
. (5.19)

Therefore, combining these two estimates, it is not difficult to obtain

‖vε‖2
L2(Ωi)

+ ε2‖∇vε‖2
L2(Ω) ≤ C

(
ε2s+4 + εs+2

(‖vε‖L2(Ωi) + ε‖∇vε‖L2(Ω)

))
,

which yields

‖vε‖L2(Ωi) + ε‖∇vε‖L2(Ω) ≤ Cεs+2.

This corresponds to the first two estimates of (5.8). The third one is a direct con-
sequence of these two estimates by the application of Lemma 5.2 to Ωi.

Proof of Lemma 5.1. Let us set eε
k = uε − ũε,k

χ . The idea of the proof is to show
that eε

k satisfies an a priori estimate of the type (5.7) and then to use the stability
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Lemma 5.3. To prove such an estimate, we shall use the equations satisfied by eε
k,

respectively in Ωi and Ωe as well as transmission conditions across Γ.
The exterior equation. By construction, ũε,k

χ satisfies in Ωe the nonhomogeneous
Helmholtz equation with the radiation boundary condition on ∂Ω and right-hand
side f (this is a direct consequence of (4.10) for each k). Hence, eε

e,k = eε
k|Ωe satisfies

the homogeneous equation:{−∆eε
e,k − ω2eε

e,k = 0, in Ωe,

∂neε
e,k + iωeε

e,k = 0, on ∂Ω.
(5.20)

The interior equation. The truncated series ũε,k
χ does not exactly satisfy the damped

Helmholtz equation inside Ωi. They verify this equation with a small right-hand
side. To see that, let us set:

ũε,k
i =

k∑
�=0

ε�u�
i , so that ũε,k

χ = χũε,k
i in Ωi. (5.21)

Indeed

∆ũε,k
χ + ω2ũε,k

χ − i

ε2
ũε,k

χ = χ

{
∆ũε,k

i + ω2ũε,k
i − i

ε2
ũε,k

i

}
+ 2∇χ · ∇ũε,k

i + ∆χũε,k
i .

Inside the support of χ the local coordinates (xΓ, ν = εη) can be used to make the
identification [cf. (4.12)]

∆ + ω2 − i

ε2
≡ 1

J3
ν ε2

(
−∂2

ηη + i −
8∑

�=1

ε�A�

)
. (5.22)

From Eq. (4.21), after multiplication by the correct power of ε and addition, it is
not difficult to see (after some lengthy calculations) that(

−∂2
ηη + i −

8∑
�=1

ε�A�

)
ũε,k

i = −εk+1
8∑

�=1

�−1∑
p=0

εpA�−p−1u
k+p+1−�
i . (5.23)

Therefore, thanks to (5.22) and (5.23),

∆ũε,k
χ + ω2ũε,k

χ − i

ε2
ũε,k

χ = gε
k,i, in Ωi, (5.24)

where the function gε
i is given, with obvious notation, by

gε
k,i = −εk−1χ

8∑
�=1

�−1∑
p=0

εpA�−p−1u
k+p+1−�
i (., ν/ε) + 2∇χ · ∇ũε,k

i + ∆χũε,k
i . (5.25)

From expression (4.25) and the identity∫ +∞

0

(ν

ε

)n

e
− ν√

2ε dν = Cnε, ∀ n ∈ N,
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it is not difficult to deduce the following estimate for each uq
i :(∫

Ωδ
i

|uq
i (., ν/ε)|2 dx

) 1
2

≤ Cq(δ)ε
1
2 . (5.26)

In the same way, one easily shows that:(∫
Ωδ

i \Ω
δ
2
i

{|ũε,k
i |2 + |∇ũε,k

i |2}dx

) 1
2

≤ C(δ)ε−
1
2 exp(−δ/(

√
2 ε)). (5.27)

Regrouping estimates (5.26) and (5.27) into (5.25), yields

‖gε
k,i‖L2(Ωi) ≤ Cεk− 1

2 . (5.28)

Taking the difference between (5.24) and (2.6)(ii), we see that eε
i,k := eε

k|Ωi
satisfies

−∆eε
i,k +

(
−ω2 +

i

ε2

)
eε

i,k = gε
k,i, in Ωi. (5.29)

The transmission equations. From interface condition (4.23) it is clear that ũε,k
χ ,

and thus eε
k, is continuous across Γ. However, from (4.22), due to the shift of index

between left- and right-hand sides, the normal derivative of ũε,k
χ , and thus of eε

k,
is discontinuous across Γ. More precisely, straightforward calculations lead to the
following transmission conditions{

eε
e,k − eε

i,k = 0, on Γ,

∂neε
e,k − ∂n eε

i,k = εk∂nuk
e , on Γ.

(5.30)

Error estimates. We can now proceed to the final step of the proof. Multiplying
Eq. (5.20) by eε

e,k and integrating over Ωe, we obtain by using Green’s formula,∫
Ωe

|∇eε
e,k|2 dx − ω2

∫
Ωe

|eε
e,k|2 dx + iω

∫
∂Ω

|eε
e,k|2 dσ =

∫
Γ

∂neε
e,keε

e,k dσ. (5.31)

Multiplying Eq. (5.29) by eε
i,k and integrating over Ωi, one gets∫

Ωi

|∇eε
i,k|2 dx − ω2

∫
Ωe

|eε
i,k|2 dx +

i

ε2

∫
Ωi

|eε
i,k|2 dx

= −
∫

Γ

∂neε
i,keε

i,kdσ +
∫

Ωi

gε
k,ie

ε
i,k dx. (5.32)

Adding together (5.32) and (5.31) and using (5.30) and (5.28), gives∣∣∣∣∫
Ω

|∇eε
k|2 − ω2

∫
Ω

|eε
k|2 + iω

∫
∂Ω

|eε
k| +

i

ε2

∫
Ωi

|eε
k|2
∣∣∣∣

≤ Ck

(
εk‖eε

k||L2(Γ) + εk− 1
2 ‖eε

k‖L2(Ωi)

)
, (5.33)

where Ck is a constant independent of ε. Ones deduces the desired estimates by
applying Lemma 5.3.
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5.2. Error estimates for the GIBCs

Existence and uniqueness results for the approximate problems. We shall check here
that the uε,k’s are well defined. This is our next result.

Lemma 5.4. For k = 0, 1, 2, 3, the boundary value problem:
−∆uε,k − ω2uε,k = f, in Ωe,

∂nuε,k + iωuε,k = 0, on ∂Ω,

uε,k + Dε,kuε,k = 0, on Γ,

(5.34)

admits a unique solution in H1(Ωe) provided that εH ≤ √
2/2 if k = 2 or ε is small

enough if k = 3.

Proof. Since the proof for k = 0, 1, 2 is quite classical, we shall concentrate here
on the case k = 3. We start by reformulation problem (5.34) as a system.

New formulation of the problem. Introducing ϕε = ∂nuε,3|Γ as a new unknown,
problem (5.34) is equivalent, for k = 3, to find (uε,3, ϕε) ∈ H1(Ωe) × H1(Γ)
such that 

−∆uε,3 − ω2uε,3 = f, in Ωe,

∂nuε,3 + iωuε,3 = 0, on ∂Ω,

∂nuε,3 = ϕε, on Γ,

−∆Γϕε − 2i

ε2
θ3(ε)ϕε =

2iα

ε3
uε,3 on Γ,

(5.35)

where we have set θ3(ε) = 1 − εH
α − i ε2A(ω)

2 with A(ω) = 3H2 − G + ω2.
Next we show that problem (5.35) is of Fredholm type. For this, we first note

that (5.35) is equivalent to the variational problem:Find (uε,3, ϕε) ∈ H1(Ωe) × H1(Γ) such that ∀(v, ψ) ∈ H1(Ωe) × H1(Γ),

a1

(
(uε,3, ϕε), (v, ψ)

)
+ aε

2

(
(uε,3, ϕε), (v, ψ)

)
=
∫

Ωe

f v̄ dx,
(5.36)

where we have set:

a1((u, ϕ), (v, ψ)) =
∫

Ωe

∇u · ∇v̄ dx + iω

∫
∂Ω

uv̄ dx +
∫

Γ

(∇Γ ϕ · ∇Γ φ̄ + ϕ ψ̄)ds

aε
2((u, ϕ), (v, ψ)) = −ω2

∫
Ωe

uv̄ dx −
∫

Γ

[
1 +

2i

ε2
θ3(ε)

]
ϕψ̄ ds

− 2iα

ε3

∫
Γ

uψ̄ ds −
∫

Γ

ϕv̄ ds.

One next remarks that a1(·, ·) is coercive in H1(Ωe)×H1(Γ) while aε
2(·, ·) is weakly

compact in H1(Ωe) × H1(Γ):

(un, ϕn) ⇀ (u, ϕ) in H1(Ωe) × H1(Γ) ⇒ aε
2 ((un, ϕn)(un, ϕn)) → aε

2 ((u, ϕ)(u, ϕ)).
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Therefore, to prove the existence of the solution of (5.35) (or (5.36)), it is sufficient
to prove uniqueness.

Uniqueness proof. We prove the uniqueness result for ε small enough by contra-
diction. If uniqueness fails then, up to the extraction of a sequence of values of ε

tending to 0, one can assume that there exists a nontrivial solution (uε,3, ϕε) of the
homogeneous problem associated with (5.35), which we can normalize so that:

‖uε,3‖L2(Ωe) = 1. (5.37)

We multiply the Helmholtz equation by the complex conjugate of uε,3 and after
integration by parts, we replace, in the boundary term on Γ, the trace of uε,3 by
its expression as a function of ϕε from the last equation of (5.35). This leads to∫

Ωe

(|∇uε,3|2 − ω2|uε,3|2) dx +
ᾱε3

2

∫
Γ

|∇Γ ϕε|2 ds

+ εα

∫
Γ

θ3(ε)|ϕε|2 ds + iω

∫
∂Ω

|uε,3|2 ds = 0.

We now take the real part of the last equality (contrary to what is more usual,
taking the imaginary part does not provide the desired estimate since the term in
|∇Γ ϕε|2 comes with the wrong sign) and use (5.37) to get∫

Ωe

|∇uε,3|2 dx +
ε3
√

2
4

∫
Γ

|∇Γ ϕε|2 ds + ε

∫
Γ

Re(αθ3(ε))|ϕε|2 ds ≤ ω2. (5.38)

Since Re(αθ3(ε)) tends to
√

2/2 as ε goes to 0, we deduce that uε,3 is bounded in
H1(Ωe). Therefore, up to the extraction of a subsequence, we can assume that:

uε,3 → u, weakly in H1(Ωe),
uε,3 → u, strongly in L2(Ωe),
∆uε,3 → ∆u, weakly in L2(Ωe),

the latter property being deduced from the Helmholtz equation. By trace theo-
rem, ∂nuε,3|Γ (resp. ∂nuε,3|∂Ω) converges to ∂nu|Γ (resp. ∂nu|∂Ω) in H− 1

2 (Γ) (resp.
H− 1

2 (∂Ω)). Of course, at the limit, we have:{−∆u − ω2u = 0, in Ωe,

∂nu + iωu = 0, in ∂Ω,
(5.39)

while, passing to the (weak) limit in the last boundary equation of (5.35) after
multiplication by ε3, we obtain

u = 0, on Γ. (5.40)

From (5.39) and (5.40), we get u = 0 which contradicts ‖u‖L2(Ωe) = 1.
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Analysis of the difference uε,k − ũε,k. From now on, we shall set for k = 0, 1, 2, 3,

eε,k := uε,k − ũε,k. (5.41)

The starting point of the error analysis is to remark that eε,k is a solution of a
homogeneous Helmholtz equation with outgoing absorbing condition on ∂Ω,{−∆eε,k − ω2eε,k = 0 in Ωe,

∂neε,k + iωeε,k = 0 on ∂Ω,
(5.42)

and satisfies a nonhomogeneous GIBC boundary condition on Γ with small right-
hand side. This comes directly from the construction of the GIBC itself and is
obtained by making the difference between (4.33) and (3.5). Let us formulate this
as a lemma:

Lemma 5.5. For k = 1, 2, 3, there exists a smooth function gε
k and Ck > 0 inde-

pendent of ε such that

eε,k + Dε,k∂neε,k = εk+1gε
k, (5.43)

with the estimate

‖gε
k‖H

1
2 (Γ)

≤ Ck, for k = 1, 2, 3. (5.44)

This result is a consistency result for the boundary condition. Combined with
a stability argument, it is then possible to obtain the following estimates.

Lemma 5.6. For k = 1, 2, 3, there exists Ck > 0 independent of ε such that

‖uε,k − ũε,k‖H1(Ωe) ≤ Ckεk+1. (5.45)

Proof. From (5.42) and (5.43) and Green’s formula,∫
Ωe

(|∇eε,k|2 − ω2|eε,k|2) dx + iω

∫
∂ω

|eε,k|2 ds

+
∫

Γ

Dε,k∂neε,k · ∂neε,k ds = εk+1

∫
Γ

gε
k∂neε,k ds. (5.46)

Setting ϕε
k = ∂neε,k|Γ, and introducing the functions θ1(ε) = 1, θ2(ε) = 1 − εH

α ,
(θ3(ε) has been defined in the proof of Lemma 5.4, one can derive the following
general identity by using the explicit expressions of the Dε,k’s,∫

Ωe

(|∇eε,k|2 − ω2|eε,k|2)dx + iω

∫
∂ω

|eε,k|2 ds

+ εα

∫
Γ

θk(ε)|ϕε
k|2 ds + νk

ᾱε3

2

∫
Γ

|∇Γ ϕε
k|2 ds = εk+1

∫
Γ

gε
k∂neε,k ds, (5.47)

where νk = 0 for k = 0, 1, 2 and ν3 = 1. Taking the real part,∫
Ωe

(|∇eε,k|2 − ω2|eε,k|2)dx + ε

∫
Γ

Re(αθk(ε))|ϕε
k|2 ds

+ νk

√
2ε3

4

∫
Γ

|∇Γ ϕε
k|2 ds = εk+1Re

∫
Γ

gε
k∂neε,k ds. (5.48)
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In particular, since νk ≥ 0 and Re(αθk(ε)) tends to
√

2 as ε tends to 0, we obtain
the following estimate, for ε small enough,∫

Ωe

(|∇eε,k|2 − ω2|eε,k|2) dx ≤ εk+1‖gε
k‖H

1
2 (Γ)

‖∂neε,k‖
H− 1

2 (Γ)

≤ Ckεk+1‖eε,k‖H1(Ω), (5.49)

where the latter inequality comes from (5.44) and the fact that eε,k is a solution of
the Helmholtz equation inside Ωe. The remaining part of the proof is then rather
straightforward. We first prove by contradiction that

‖eε,k‖L2(Ωe) ≤ Ckεk+1. (5.50)

If (5.50) were not true, then µε
k = ε−(k+1)‖eε,k‖ would blow up (for a subsequence)

as ε goes to 0. Then, introducing

wε,k = eε,k/‖eε,k‖L2(Ωe),

ones derives from (5.49)∫
Ωe

|∇wε,k|2 dx ≤ ω2 + Ck(µε
k)−1‖wε,k‖H1(Ω) ≤ Ck(1 + ‖wε,k‖H1(Ω)). (5.51)

Therefore, wε,k is bounded in H1(Ω) and thus, up to the extraction of a subse-
quence, converges weakly in H1(Ωe) but strongly in L2(Ωe) to some wk ∈ H1(Ωe)
that satisfies ‖wk‖L2(Ωe) = 1 as well as{

−∆wk − ω2wk = 0, in Ωe,

∂nwk + iωwk = 0, on ∂Ω.
(5.52)

Finally, passing to the limit (in the weak sense) in the boundary condition

wε,k + Dε,k∂nwε,k = gε
k/‖eε,k‖L2(Ωe) = (µε

k)−1(gε
k/εk+1), (5.53)

we see (gε
k/εk+1 is bounded and (µε

k)−1 tends to 0) that wk also satisfies

wk = 0, on Γ. (5.54)

System ((5.52), (5.54)) implies that wk = 0, which contradicts ‖wk‖L2(Ω) = 1.
Therefore, (5.50) holds and the estimate is a direct consequence of (5.50) and (5.49).

6. About the Analysis of Modified GIBCs

The error analysis of modified GIBCs can be done in a similar way as for the NtD
GIBCs. We shall restrict ourselves to stating the results and indicating the needed
modifications.
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6.1. Analysis of DtN GIBCs

Theorem 6.1. Let k = 1, 2 or 3, then assuming ε being sufficiently small when k =
3, the boundary value problem ((3.1), (3.11)) has a unique solution uε,k ∈ H1(Ωe).
Moreover, there exists a constant Ck, independent of ε, such that

‖uε
e − uε,k‖H1(Ωe) ≤ Ck εk+1. (6.1)

Proof. We shall only treat here the case k = 3 (the others are easy) and directly
go to the proof of estimate (6.1) assuming the existence and uniqueness of the
solution. Of course, we only need to treat the difference uε,3− ũε,3, namely to prove
the equivalent to Lemma 5.6.

Rather curiously, it appears that treating the boundary condition directly in its
DtN form (3.11) does not immediately give the optimal error estimate. This is why
we shall rewrite it as an NtD condition by introducing the inverse of the operator
N ε,3 (note that, by Lax–Milgram’s lemma, N ε,3 is an isomorphism from Hs+2(Γ)
onto Hs(Γ)). We hereafter repeat the approach of Lemma 5.6. One first checks that
the error eε,3 satisfies the homogenenous Helmholtz equation in Ωe together with
the nonhomogeneous boundary condition (see Remark 6.1 below):

eε,3 +
(N ε,3

)−1
∂neε,3 = ε4gε

3, (6.2)

where gε
3 is a smooth function satisfying:

‖gε
3‖H

1
2 (Γ)

≤ Ck, for k = 1, 2, 3. (6.3)

Proceeding as in the proof of Lemma 5.6, we obviously get∫
Ωe

(|∇eε,k|2 − ω2|eε,3|2) dx + iω

∫
∂ω

|eε,3|2 ds

+
∫

Γ

(
N ε,3

)−1

∂neε,3 · ∂neε,3 ds = εk+1

∫
Γ

gε
3∂neε,3 ds. (6.4)

The key point is that, at least for ε small enough, and any ψ smooth enough,

Re

∫
Γ

(
N ε,3

)−1

ψ · ψ dx ≤ 0. (6.5)

This is a consequence of

Re

∫
Γ

N ε,3ϕ · ϕdx ≤ 0, for any ϕ smooth enough,

that follows from the identity (proved in Sec. 3.2)∫
Γ

ϕ · N ε,3ϕ ds =
αε

2

∫
Γ

|∇Γ ϕ|2 ds +
ᾱ

ε

∫
Γ

[
1 +

εH
ᾱ

+ i
ε2

2
(H2 − G + ω2)

]
|ϕ|2 ds

and the observation that

Reα = Reᾱ =
√

2/2, lim
ε→0

[
1 +

εH
ᾱ

+ i
ε2

2
(H2 − G + ω2)

]
= 1.
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Therefore we have shown that, as soon as ε is small enough,∫
Ωe

(|∇eε,k|2 − ω2|eε,3|2) dx ≤ εk+1‖gε
k‖H

1
2 (Γ)

‖∂neε,k‖
H− 1

2 (Γ)
. (6.6)

The conclusion of the proof is identical to the one of Lemma 5.6 (cf. (5.49)).

Remark 6.1. Proceeding as in Sec. 4.4 (for formulas (4.34)), one first gets:

∂neε,3 + N ε,3eε,3 = ε3hε
3,

where hε
3 (as gε

3 in formula (4.34)) is a polynomial of degree 3 in ε, whose coefficients
are smooth functions of xΓ, explicitly known in terms of u1

e, u
2
e and u3

e. In particular
hε

3 = O(1), in any Sobolev norm. One then deduces (6.2) with gε
3 = (εN ε,3)−1 hε

3.

One finally obtains (6.3) after having noticed that (cf. (3.14):

(εN ε,3)−1 =
1
α

{
1 +

ε

α
H + i

ε2

2
(∆Γ + H2 − G + ω2)

}−1

= O(ε).

6.2. Analysis of robust GIBCs

Theorem 6.2. For any ε > 0, the boundary value problem associated with (3.1)
and the boundary condition:

uε,3 + Dε,3
r ∂nuε,3 = 0, on Γ, (6.7)

where Dε,3
r is given by (3.16), has a unique solution uε,3 ∈ H1(Ωe). Moreover, there

exists a constant C3, independent of ε, such that

‖uε
e − uε,3‖H1(Ωe) ≤ C3ε

4. (6.8)

The same result holds if one replaces (6.7) by:

∂nuε,3 + N ε,3
r uε,3 = 0, on Γ, (6.9)

where N ε,3
r is given by (3.21).

We shall note that the proof of this theorem is almost identical to that of
Theorem 6.1 or Lemma 5.6. The main difference lies in the fact that the algebra
to obtain equivalent to identities (5.5) and (6.2) is slightly more complicated and
the calculations equivalent to property (6.5) are longer. The fact that existence
and uniqueness results are valid for any positive ε is a consequence of robustness
properties (3.19) and (3.22).
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Grands Systèmes des Sciences et de la Technologie, RMA Res. Notes Appl. Math.,
Vol. 28 (Masson, 1994), pp. 11–21.

4. X. Antoine and H. Barucq, Microlocal diagonalization of strictly hyperbolic pseudo-
differential systems and application to the design of radiation conditions in electro-
magnetism, SIAM J. Appl. Math. 61 (2001) 1877–1905.

5. X. Antoine, H. Barucq and A. Bendali, Bayliss–Turkel-like radiation conditions on
surfaces of arbitrary shape, J. Math. Anal. Appl. 229 (1999) 184–211.

6. X. Antoine, H. Barucq and L. Vernhet, High-frequency asymptotic analysis of a dissi-
pative transmission problem resulting in generalized impedance boundary conditions,
Asymp. Anal. 26 (2001) 257–283.

7. A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a
time-harmonic wave for the Helmholtz equation, SIAM J. Appl. Math. 58 (1996)
1664–1693.

8. F. Collino, Conditions absorbantes d’ordre élevé pour des modèles de propagation
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