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This paper is dedicated to the construction and analysis of so-called Generalized
Impedance Boundary Conditions (GIBCs) for electromagnetic scattering problems from
imperfect conductors with smooth boundaries. These boundary conditions can be seen
as higher order approximations of a perfect conductor condition. We consider here the
3-D case with Maxwell equations in a harmonic regime. The construction of GIBCs is
based on a scaled asymptotic expansion with respect to the skin depth. The asymptotic
expansion is theoretically justified at any order and we give explicit expressions till the
third order. These expressions are used to derive the GIBCs. The associated boundary
value problem is analyzed and error estimates are obtained in terms of the skin depth.
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1. Introduction

Generalized Impedance Boundary Conditions (GIBC) have become a rather clas-
sical notion in the mathematical modeling of wave propagation phenomena (see
for instance, Refs. 13 and 16). They are used in electromagnetism for time har-
monic scattering problems from obstacles that are partially or totally penetrable.
The general idea is to replace the use of an “exact model” inside (the penetrable
part of) the obstacle by approximate boundary conditions (also called equivalent
or effective conditions). This idea is pertinent if the boundary condition can be
easily handled numerically, for instance when it is local. The diffraction problem of
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electromagnetic waves by perfectly conducting obstacles coated with a thin layer
of dielectric material is well suited for the notion of impedance conditions: due to
the small (typically with respect to the wavelength) thickness of the coating, the
effect of the layer on the exterior medium is, as a first approximation, local (see for
instance, Refs. 16, 13, 7, 3 and 1).

The application we consider here is the diffraction of waves by highly conducting
materials in electromagnetism. In such a case, it is the well-known skin effect that
creates a “thin layer” phenomenon. The high conductivity limitates the penetration
of the wave to a boundary layer whose depth is inversely proportional to the square
root of its magnitude. Then, here again, the effect of the obstacle is, as a first
approximation, local.

The first effective boundary conditions for highly absorbing obstacles was pro-
posed by Leontovich. This condition “sees” only locally the tangent plane to the
frontier. Later, Rytov,15, 16 proposed an extension of the Leontovitch condition,
and his analysis was already based on the principle of asymptotic expansions with
respect to the small parameter in the problem: the skin depth δ. More recently,
Antoine–Barucq–Vernhet2 proposed a new derivation of such conditions based on
the technique of pseudo-differential operator expansions. However, in all these
works, the rigorous mathematical justification of the resulting impedance condi-
tions was not treated.

This paper is the continuation of the work in Ref. 11, in which we considered
the case of the scalar wave equation. Our objective is to extend the results to the
case of 3D Maxwell’s equations by constructing and analyzing GIBCs of order 1, 2
and 3 (with respect to the skin depth, the small parameter of the problem). These
conditions are of impedance type (or H-to-E nature): they relate the tangential
traces of the electric and magnetic fields via a local impedance operator.

As in Ref. 11, the construction of the approximate conditions relies on an asymp-
totic expansion of the exact solution, based on a scaling technique and a boundary
layer expansion in the neighborhood of the boundary of the scatterer. Though the
organization of this paper contents is similar to Ref. 11, it is much more technical.
Moving from the scalar wave equation to the Maxwell system increases considerably
the complexity of the problem at two levels.

• The first one is linked with the algebra involved in the formal construction of the
asymptotic expansion of the exact solution (see Sec. 5). This is essentially due to
the vectorial nature of the unknowns and the expression of the curl operator in a
parametric coordinates system (see Sec. 3). The latter is based on the formulas
proposed in Ref. 10 with some simplifications.

• The second one is related to the mathematical analysis on the GIBCs. This is not
only due to the fact that we have to deal with the usual functional analysis dif-
ficulties linked to Maxwell equations (in particular trace operators and compact
embedding properties — see Secs. 6 and 7 and Appendix A) but also because
we have to face some new difficulties in the case of the third-order condition.
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The tangential differential operators that would naturally appear in the con-
struction of the third-order condition have no good “sign properties” to be able
to guarantee the existence of the approximate solution and the convergence (at
optimal order) to the true solution. This leads us to apply various regularization
procedures to construct the modified third-order conditions (see Sec. 4.2).

Our objectives in this work are essentially theoretical. The numerical pertinence
of obtained conditions have already been demonstrated in Ref. 6 where, in partic-
ular, the interest of using a third-order condition rather than a first or a second
order condition is clearly shown.

The outline of the paper is as follows. Section 2.1 contains a description of
the physical and mathematical diffraction problem under study with some basic
stability properties of the solutions and asymptotic estimates with respect to the
conductivity. We state the main results of our paper in Sec. 4: the GIBCs are
presented in Secs. 4.1 and 4.2 while the corresponding error estimates are given in
Sec. 4.3. The formal construction of the asymptotic expansion is given in Sec. 5. This
construction is rigorously justified in Sec. 6 by proving optimal error estimates at
each order. The last section is dedicated to the study of the boundary value problems
associated with the GIBCs as well as the proof of optimal error estimates between
these solutions and truncated asymptotic expansions. The main result of our paper
is obtained as a combination of the results of Secs. 7 and 6. Some nonstandard
technical results related to the H(curl) space (appropriate trace inequalities and
special compact embedding properties) that may have their own interest have been
gathered in Appendix A.

2. Description and Properties of the Mathematical Model

2.1. The model problem

Let Ωi be an open bounded domain in R3 with connected complement, occupied
by a homogeneous conducting medium. We denote by Γ the boundary of Ωi and
assume that this boundary is a C∞ manifold. We are interested in computing the
electromagnetic diffracted wave when the conductivity of the medium, denoted by
σδ, is sufficiently high (δ denotes a small parameter). More precisely we assume
that σδ → ∞ as δ → 0 and would like to study the asymptotic behavior of the
diffracted electromagnetic field as δ → 0 in order to derive efficient approximate
models to compute the diffracted waves.

We assume that the exterior domain is homogeneous and the time and space
scales are chosen such that the wave speed is 1 in this medium. The electromagnetic
wave propagation is therefore governed by the following Maxwell’s equations:

ε(x)
∂Eδ

∂t
+ σδ(x)Eδ − curlHδ = F, in Ω,

∂Hδ

∂t
+ curlEδ = 0, in Ω,
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where Ω ⊂ R3 denotes the propagative medium that we shall assume to be bounded,
regular and simply connected with connected boundary (for instance an open ball),
the functions σδ(x) and ε(x) are defined by:

(ε, σδ)(x) =

{
(1, 0), in Ωe,

(εr, σ
δ), in Ωi

where Ωe = Ω\Ωi and where εr > 0 denotes the relative electric permittivity of the
conducting medium. The right-hand side F denotes some source term that we shall
assume to be harmonic in time: F (x, t) = Re{f(x) exp(iωt)}, where ω > 0 denotes
a given frequency, and where Re(z) denotes the real part of z. Hence, the solutions
are also time harmonic:

Eδ(x, t) = Re{Eδ(x) exp(iωt)}, Hδ(x, t) = Re{Hδ(x) exp(iωt)},

where the field (Eδ, Hδ) is solution to the harmonic Maxwell system:{
(i) (iεω + σδ)Eδ − curlHδ = f, in Ω,

(ii) iωHδ + curlEδ = 0, in Ω.
(2.1)

We assume that the support of the source term f does not touch Ωi. The system of
equations (2.1) has to be complemented with a boundary condition on the exterior
boundary ∂Ω, for instance we work with the following absorbing boundary condition

Eδ
T −Hδ × n = g, on ∂Ω, (2.2)

where ET := n× (E × n), n is a normal vector to ∂Ω directed to the exterior of Ω
and g denoting some possible source term. As mentioned above we are interested in
describing the asymptotic behavior of the solution for large σδ. As suggested by the
expression of the analytic solution when Ωi is a half space, the appropriate small
length parameter is

δ := 1/
√
ωσδ ⇔ σδ = 1/(ωδ2).

This small parameter defines the so-called skin depth: the “width” of the penetrable
region inside the conducting medium is proportional to δ.

For the construction of approximate models in the exterior domain Ωe, it
is useful to rewrite the problem (2.1)–(2.2) as a transmission problem between
(Eδ

i , H
δ
i ) := (Eδ, Hδ)|Ωi

and (Eδ
e , H

δ
e ) = (Eδ, Hδ)|Ωe

as follows:
iωEδ

e − curlHδ
e = f, in Ωe,

iωHδ
e + curlEδ

e = 0, in Ωe,

Eδ
e, T −Hδ

e × n = g, on ∂Ω

Eδ
e × n = Eδ

i × n, on Γ,

(2.3)
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(
iεrω +

1
ωδ2

)
Eδ

i − curlHδ
i = 0, in Ωi,

iωHδ
i + curlEδ

i = 0, in Ωi,

Hδ
i × n = Hδ

e × n, on Γ.

(2.4)

We have chosen to split the two transmission conditions (namely the continuity
of the tangential electric and magnetic fields) in such a way that the first one
appears as a boundary condition in (2.3) for the interior field while the second one
appears as a boundary condition in (2.3) for the interior field. Roughly speaking,
the approximate models are then obtained from replacing in system (2.4) the exact
boundary condition on Γ by an approximate one, whose expression is derived from
seeking appropriate asymptotic expansion of the solution in the boundary layer
inside Ωi.

2.2. Stability and interior decay

With H(curl,O) denoting the space of functions V ∈ L2(O)3 such that curlV ∈
L2(U)3, where O is an open domain of R3, we define

H̃(curl,O) = {V ∈ H(curl,O);VT ∈ L2
t (∂O)}, (2.5)

where VT is the tangential trace of V (cf. Sec. 3 for more details), L2
t (∂O) denotes

the space of functions V ∈ L2(∂O)3 such that V · n = 0 on ∂O, where n denotes a
normal to ∂O. We recall that H̃(curl,O) is a Hilbert space with scalar product

(U, V )H̃(curl,O) = (U, V )L2(O) + (curlU, curlV )L2(O) + (UT , VT )L2
t (∂O).

Theorem 2.1. For given f ∈ L2(Ω)3 and g ∈ L2
t (∂Ω) there exists a unique solution

(Eδ, Hδ) ∈ H̃(curl,Ω) × H̃(curl,Ω) satisfying (2.1)–(2.2). Moreover, there exists a
positive constant C independent of δ such that,

‖Eδ‖H̃(curl,Ω) +
1
δ
‖Eδ‖L2(Ωi) ≤ C(‖f‖L2(Ω) + ‖g‖L2

t (∂Ω)). (2.6)

For any ν̄ > 0 small enough so that Ωi\Ων̄
i is a non-empty set, where Ων̄

i := {x ∈
Ωi; dist(x, ∂Ωi) < ν̄}, there exist two positive constants Cν̄ and cν̄ independent of δ
such that

‖Eδ
i ‖H(curl,Ωi\Ων̄

i ) + ‖Hδ
i ‖H(curl,Ωi\Ων̄

i ) ≤ Cν̄ (e−
cν̄
δ ‖f‖L2(Ω) + ‖g‖L2

t (∂Ω)). (2.7)

Proof. The proof of existence and uniqueness can be found in Ref. 14 (Theorem
4.17). The proof of stability is rather standard, based on a contradiction argument,
the Helmholtz decomposition and a compactness argument. See Theorem 2.1 of
Ref. 12 for more details. The proof of estimate (2.7) follows the same lines as
the scalar case treated in Ref. 11 and the details are also provided in Ref. 12,
Theorem 2.2.
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Estimate (2.7) indicates how the interior solution concentrates near the bound-
ary Γ. This result is also a consequence of the asymptotic analysis performed in
the following sections, but the methodology is more complex than the direct proof
given in Ref. 12.

3. Preliminary Material and Notation

We recall in this section some well-known facts on differential geometry and intro-
duce some notation in connection with surface operators and functional spaces.

Local coordinates. Let n be the normal field defined on Γ and directed to the interior
of Ωi. For a sufficiently small positive constant ν̄ (see condition (3.4) below) we
define

Ων̄
i = {x ∈ Ωi; dist(x, ∂Ωi) < ν̄}.

To any x ∈ Ων̄
i we uniquely associate the local parametric coordinates (xΓ, ν) ∈

Γ × (0, ν̄) through

x = xΓ + ν n, x ∈ Ων̄
i . (3.1)

Tangential (or surface) differential operators. In what follows we deal with various
fields defined on Γ: scalar fields ϕ (with values in C), vector fields V (with values
in C3) and matrix (or tensor) fields A (with values in L(C3)). By definition:

• A vector field V is tangential iff V · n = 0 (as a scalar field along Γ).
• A matrix field A is tangential iff A n = 0 (as a vector field along Γ).

For simplicity, we assume that these fields have at least C1 regularity, but this can
be removed by interpreting the derivatives in the sense of distributions.

We recall that the surface gradient operator ∇Γ is defined by:

∇Γϕ(xΓ) = ∇ϕ̂(xΓ), ∀ϕ : Γ → R,

where ϕ̂ is the 3-D vector field defined locally in Ων̄
i by ϕ̂(xΓ + ν n) = ϕ(xΓ). Note

that ∇Γϕ is a tangential vector field. We can define in the same way the surface
gradient of a vector field as a tangential matrix field whose columns are the surface
gradients of each component of the vector field.

We denote by −divΓ the L2(Γ)-adjoint of ∇Γ : −divΓ maps a tangential vector
field into a scalar field. More generally, if A(xΓ) is a tangential matrix field on Γ,
we define the operator A∇Γ for a scalar field ϕ(xΓ) by

(A∇Γ)u := A(∇Γu).

We also define the operator (A∇Γ)· acting on a tangential vector field V (xΓ) as:

(A∇Γ) · V :=
3∑

i=1

(A∇ΓVi)i,

where the subscript i denotes the ith component of a vector in R3.
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We then define the surface curl of a tangential vector filed V (xΓ) and the surface
vector curl of a scalar function ϕ(xΓ) as

curlΓ V := divΓ(V × n) and
−−→
curlΓ ϕ := (∇Γϕ) × n.

Geometrical tools. In what follows, and for the sake of the notation conciseness, we
shall most of time not explicitly indicate the dependence on xΓ of the functions,
except when we feel it necessary. We shall be more precise in mentioning the possible
dependence with respect to the normal coordinate ν.

A particularly fundamental tensor field is the curvature tensor C, defined by
C := ∇Γn. We recall that C is symmetric and C n = 0. We denote c1, c2 the other
two eigenvalues of C (namely the principal curvatures) associated with tangential
eigenvectors τ1, τ2 (τ1 · n = τ2 · n = 0). We also introduce

g := c1c2 and h :=
1
2
(c1 + c2) (3.2)

which are respectively the Gaussian and mean curvatures of Γ, and also introduce
the associated matrix fields:

H = hIΓ and G = g IΓ, (3.3)

where IΓ(xΓ) denotes the projection operator on the tangent plane to Γ at xΓ.
Let us introduce (this is the Jacobian of the transformation (xΓ, ν) → x —

see (3.1))

J(ν)
(

= J(ν, xΓ)
)

:= det(I + ν C) = 1 + 2νh+ ν2g,

and we choose ν̄ sufficiently small in such a way that

∀ ν < ν̄, ∀xΓ ∈ Γ, J(ν, xΓ) = 1 + 2νh(xΓ) + ν2g(xΓ) > 0. (3.4)

Thus, for each ν < ν̄, there exists a tangential matrix field xΓ → Rν(xΓ) such that

(I + ν C(xΓ))Rν(xΓ) = IΓ(xΓ).

More precisely, there exists a tangential matrix field on Γ, M(xΓ), such that:

IΓ + νM := J(ν)Rν , ∀xΓ ∈ Γ, ∀ν < ν̄.

One easily sees (using for instance the eigenbasis (τ1, τ2, n) of C) that

M = 2H− C and MC = G.
The curl operator in local coordinates. The basic step of our forthcoming calculations
will be to rewrite the Maxwell equations in the domain Ων̄

i , by using the local
coordinates. For this, we need the expression of the curl operator in the variables
(xΓ, ν). It is shown in Ref. 10 that the curl of a 3-D vector field V : Ων̄

i → R3 is
given in parametric coordinates by:

curlV = [(Rν∇Γ) · (V̂ × n)]n+ [Rν∇Γ(V̂ · n)] × n− (RνCV̂ ) × n− ∂ν(V̂ × n),
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where V and V̂ (defined on Γ × (0, ν̄)) are related by

V̂ (xΓ, ν) = V (xΓ + ν n).

This formula can be written in a more convenient form, after multiplication
by J(ν):

J(ν)curl V = [
(
(I + νM)∇Γ

) · (V̂ × n)]n+ [(I + νM)∇Γ(V̂ · n)] × n

− [(C + νG)V̂ ] × n− J(ν)∂ν (V̂ × n),

or, in an equivalent form,

J(ν)curlV =
(
CΓ + νCM

Γ

)
V̂ − J(ν)∂ν (V̂ × n), (3.5)

where we have introduced the notation
CΓV̂ = (curlΓ V̂ )n+

−−→
curlΓ(V̂ · n) − CV̂ × n,

CM
Γ V̂ =

(
curlMΓ V̂

)
n+

−−→
curl

M

Γ (V̂ · n) − GV̂ × n

−−→
curl

M

Γ u := (M∇Γu) × n and curlMΓ V̂ = (M∇Γ) · (V̂ × n).

(3.6)

This expression is convenient for the asymptotic matching procedure, described
hereafter, because we made explicit the (polynomial) dependence of the operators
with respect to ν.

Functional spaces on Γ and trace spaces. We shall denote by Hs(Γ) the usual
Sobolev space on Γ for s real and denote by (·, ·)Γ and 〈·, ·〉Γ, respectively the
inner product in L2(Γ)3 and the duality bracket D′(Γ)3 −D(Γ)3.

Next, we introduce some notation for spaces of tangent vector fields on Γ. For
any s ≥ 0, we set:

Hs
t (Γ) = {V ∈ Hs(Γ)3/V · n = 0 on Γ} H0

t (Γ) = L2
t (Γ)

H−s
t (Γ) = {V ∈ H−s(Γ)3/ 〈V, ϕn〉Γ = 0, ∀ϕ ∈ Hs(Γ)} (≡ (Hs

t (Γ)
)′
,

as well as

Hs(divΓ,Γ) = {V ∈ Hs
t (Γ)3/divΓ V ∈ Hs(Γ)},

Hs(curlΓ,Γ) = {V ∈ Hs
t (Γ)3/curlΓ V ∈ Hs(Γ)},

equipped with their natural graph norms (we notice that H0(divΓ,Γ) and
H0(curlΓ,Γ) are often denoted by respectivelyH(divΓ,Γ) and H(curlΓ,Γ)). Finally,
we recall the well-known trace theorems stating that the two mappings{

u ∈ C∞(Ωe)3 �→ u× n|Γ
u ∈ C∞(Ωe)3 �→ uT := u− (u · n)n (≡ n× (u× n))

can be extended as continuous and surjective linear applications from H(curl,Ωe)
onto H− 1

2 (divΓ,Γ) and H− 1
2 (curlΓ,Γ) respectively. Moreover, H− 1

2 (divΓ,Γ) is the
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dual of H− 1
2 (curlΓ,Γ) and one has the Green’s formula:∫
Ω

(
curlu · v − u · curl v

)
dx = 〈u× n, vT 〉Γ = −〈v × n, uT 〉Γ,

∀(u, v) ∈ H(curl,Ωe)2.

4. Statement of the Main Results

We shall denote by (Eδ,k
e , Hδ,k

e ), the approximate solutions in the exterior domain
Ωe, the presence of the integer k meaning that these fields will provide an approx-
imation of order O(δk+1) of the exact exterior electromagnetic field (Eδ

e , H
δ
e ), in a

sense that will be made precise by the error estimates (see Theorem 4.1). They are
obtained by solving the standard Maxwell equations in the exterior domain Ωe

iωEδ,k
e − curlHδ,k

e = f in Ωe,

iωHδ,k
e + curlEδ,k

e = 0 in Ωe,

Eδ,k
e, T −Hδ,k

e × n = g on ∂Ω,

(4.1)

where n denotes the normal to ∂Ω directed to the exterior of Ω, coupled with an
appropriate GIBC on the interior boundary Γ of the form

Eδ,k
e × n+ ωDδ,k(Hδ,k

e, T ) = 0, (4.2)

where n denotes the normal to Γ directed to the exterior of Ωe,H
δ,k
e, T is the tangential

trace of Hδ,k
e , and where Dδ,k is an adequate local approximation of the H-to-E map

for the Maxwell equations inside Ωi, namely the operator:

Dδ : H− 1
2 (curlΓ,Γ) → H− 1

2 (divΓ,Γ)

defined by

Dδϕ = − 1
ω
Eδ

i × n|Γ,
where

(
Eδ

i (ϕ), Hδ
i (ϕ)

)
is the solution of the interior boundary value problem

(
iεrω +

1
ωδ2

)
Eδ

i (ϕ) − curl Hδ
i (ϕ) = 0, in Ωi,

iωHδ
i (ϕ) + curlEδ

i (ϕ) = 0, in Ωi,

Hδ
i,T (ϕ) = ϕ, on Γ.

4.1. The “natural” GIBCs for k = 0, 1, 2

The approach that we shall use in Sec. 5 for the formal derivation of the GIBCs
leads to the following expressions of Dδ,k (for k = 0, 1, 2, 3),

Dδ,0 = 0,

Dδ,1 = δ
√
i,

Dδ,2 = δ
√
i+ δ2(H− C),

(4.3)
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where
√
i :=

√
2

2 + i
√

2
2 denotes the complex square root of i with positive real part,

and C and H are the curvature and mean curvature tensors of Γ (we refer to Sec. 3
for more details). Note that the condition of order 0 simply expresses the fact that
the limit exterior problem when δ goes to 0 corresponds to the perfectly conducting
boundary condition.

4.2. The modified third-order GIBC

The same approach extended to k = 3 would suggest to take:

Dδ,3 = Dδ,3
0 , (4.4)

where by definition (we refer to Sec. 3 for the definition of the surface operators
∇Γ, divΓ, curlΓ and

−−→
curlΓ)

Dδ,3
0 := δ

√
i+ δ2(H− C) +

δ3

2
√
i
(C2 −H2 + εrω

2 + ∇Γ divΓ +
−−→
curlΓ curlΓ). (4.5)

However, we did not succeed in proving that such a choice was mathematically
sound due to the presence of the second order surface operator ∇Γ divΓ+

−−→
curlΓ curlΓ.

As a self-adjoint operator in L2
t (Γ), this operator (more precisely the associated

quadratic form) has no fix sign. This induces difficulties in the study of the forward
problem via variational techniques and, as a consequence, the well-posedness of the
corresponding boundary value problem is not clear: this is a new difficulty with
respect to the scalar wave equation.

This is why we propose hereafter another third-order condition, that (formally)
gives the same order of accuracy as the one in (4.3) but admits good mathematical
properties with respect to stability and error estimates. The reader will easily notice
that the proposed modifications are not the only possible ones (see Remarks 3.1
and 3.2 of Refs. 12 for more details), we exhibit only one particular choice. We shall
hereafter present the intuitive reasons that led us to introduce these modifications,
postponing the rational justification to the error analysis of Sec. 7.3.

The first desirable (and probably necessary) property is the absorption property:

Re
∫

Γ

Dδ,3ϕ · ϕ̄dσ ≥ 0,

for any smooth tangential vector field ϕ on Γ. Such a property is satisfied by the
exact DtN operator and expresses the absorbing nature of the conductive medium:

Re
∫

Γ

Dδ,3ϕ · ϕ̄dσ =
1
ωδ2

∫
Ωi

|Eδ
i (ϕ)|2dx.

It will play an essential role in proving the uniqueness of solutions. One can observe
that this condition is satisfied by Dδ,1 and Dδ,2. For Dδ,3, we see that

ReDδ,3
0 = δ

√
2

2
+δ2(H−C)+

δ3

2
√

2
(C2−H2+εrω

2)+
δ3

2
√

2
∇Γ divΓ+

δ3

2
√

2

−−→
curlΓ curlΓ.
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The problem comes from the operator ∇Γ divΓ which is negative in the L2 sense.
However, we can write formally

δ
√

2
2

+
δ3

2
√

2
∇Γ divΓ =

δ

2
√

2
+

δ

2
√

2
+

δ3

2
√

2
∇Γ divΓ

=
δ

2
√

2
(1 − δ2∇Γ divΓ)−1 +O(δ5), (4.6)

which suggests to define the real part of Dδ,3 as

ReDδ,3 =
δ

2
√

2
+ δ2(H− C) +

δ3

2
√

2

(C2 −H2 + εrω
2
)

+
δ3

2
√

2

−−→
curlΓ curlΓ

+
δ

2
√

2
(1 − δ2∇Γ divΓ)−1. (4.7)

Remark 4.1. The approximation process (4.6) is analogous to the process used
in the construction of absorbing boundary conditions for the wave equations, see
Refs. 8 and 4 for instance, where the Padé approximations are preferred to Tay-
lor approximations in order to enforce the stability of the resulting approximate
problem.

The second modification was guided by the existence proof for the boundary
value problem associated to the boundary condition (4.2). We realized that it was
useful that the imaginary part of Dδ,3 satisfies a “Garding type” inequality, namely
that the principal part of this operator be positive in the L2 sense. This property
is not satisfied by the imaginary part of Dδ,3

0 :

ImDδ,3
0 = δ

√
2

2
− δ3

2
√

2
(C2 −H2 + εrω

2) − δ3

2
√

2
∇Γ divΓ − δ3

2
√

2

−−→
curlΓ curlΓ.

This time, the problem is due to the negative operator −−−→
curlΓ curlΓ. The same

manipulations as before suggest to define the imaginary part of Dδ,3
r as

ImDδ,3
r =

δ

2
√

2
+

δ3

2
√

2

(C2 −H2 + εrω
2
)− δ3

2
√

2
∇Γ divΓ

+
δ

2
√

2
(1 + δ2

−−→
curlΓ curlΓ)−1. (4.8)

Modifications (4.7) and (4.8) lead us to introduce the operator

D̃δ,3 = δ

√
i

2
+ δ2(H− C) +

δ3

2
√
i
(C2 −H2 + εrω

2)

+
√

2
4
δ((1 − δ2∇Γ divΓ)−1 + δ2

−−→
curlΓ curlΓ)

+ i

√
2

4
δ((1 + δ2

−−→
curlΓ curlΓ)−1 − δ2∇Γ divΓ), (4.9)

which formally satisfies D̃δ,3 = Dδ,3
0 +O(δ5).
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It turns out that even if this condition is suitable for variational study of exis-
tence and uniqueness of the resulting boundary value problem, it did not enable
us to have a direct proof of optimal error estimates (although we think it can be
achieved by constructing the full asymptotic expansion associated with the asso-
ciated boundary value problem). We realized that the difficulties encountered in
the analysis are related to the fact that the operator D̃δ,3 is a pseudo-differential
operator of order 2, while the exact impedance operator which maps continuously
H−1/2(curlΓ,Γ) into H−1/2(divΓ,Γ) is something between an operator of order −1
and an operator of order 1. This gave us the idea to force our approximate operator
to be of order 0 by applying a regularization process (the Yosida regularization) to
the operators

−−→
curlΓ curlΓ and ∇Γ divΓ

−−→
curlΓ curlΓ � −−→

curlΓ curlΓ(1 + δ2
−−→
curlΓ curlΓ)−1 in O(δ2),

∇Γ divΓ � ∇Γ divΓ (1 − δ2∇Γ divΓ)−1
)

in O(δ2).
(4.10)

Such an approximation is consistent with the O(δ5) accuracy provided by D̃δ,3 since−−→
curlΓ curlΓ and ∇Γ divΓ are multiplied by δ3. Moreover, it does not affect the good
sign properties of the real and imaginary parts of the operator since we “divide”
by positive operators. Therefore, we propose as 3rd order condition:

Dδ,3 := δ

√
i

2
+ δ2(H− C) +

δ3

2
√
i

(C2 −H2 + εrω
2
)

+
√

2
4
δ
(
(1 − δ2∇Γ divΓ)−1 + δ2

−−→
curlΓ curlΓ (1 + δ2

−−→
curlΓ curlΓ)−1

)
+ i

√
2

4
δ
(
(1 + δ2

−−→
curlΓ curlΓ)−1 − δ2∇Γ divΓ (1 − δ2∇Γ divΓ)−1

)
. (4.11)

It happens that this operator has the good consistency, coercivity and continuity
properties that lead to optimal error estimates. More precisely:

• One can check that

Dδ,3 = Dδ,3
0 + δ5Rδ,3, (4.12)

where the operator Rδ,3, given by

Rδ,3 =
√

2
4

(1 + i)[
(
1 − δ2∇Γ divΓ

)−1(∇Γ divΓ)2

+ (1 + δ2
−−→
curlΓ curlΓ

)−1(
−−→
curlΓ curlΓ)2],

maps continuously Hs+4
t (Γ) into Hs

t (Γ) and satisfies the uniform bound

‖Rδ,3‖L(Hs+4
t (Γ);Hs

t (Γ)
) ≤ 1. (4.13)

• One can prove (see Lemma 7.1) that Dδ,3 is a pseudo-differential operator of
order 0 that has the following fundamental properties (obviously satisfied by
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Dδ,1 and Dδ,2)

∀ϕ ∈ L2
t (Γ), ‖Dδ,kϕ‖Γ ≤ C1δ‖ϕ‖Γ, Re (Dδ,kϕ,ϕ)Γ ≥ C2δ‖ϕ‖2

Γ,

with C1 and C2 strictly positive constants. These appear to be sufficient prop-
erties to transform the consistency properties Dδ,3 into optimal error estimates
(see the proof of Lemma 7.2).

4.3. Existence, uniqueness and error estimates

The natural functional spaces for the solutions of the approximate problems vary
according to the regularity of their traces on Γ. We shall distinguish the case k = 0
for which we set

V0
H = {H ∈ H(curl,Ωe); (H × n)|∂Ω ∈ L2

t (∂Ω)}, V0
E = {E ∈ V0

H ; (E × n)|Γ = 0},
from the case k = 1, 2 or 3 for which we set

Vk
H = Vk

E = H̃(curl,Ωe)

(see (2.5) for the definition of H̃(curl,Ωe)). Then we have the following central
theorem, that uses and combines the partial results of Secs. 4–6.

Theorem 4.1. For k = 0, 1, 2 or 3, there exists δk such that for δ ≤ δk, the
boundary value problem ((4.1), (4.2)) has a unique solution (Eδ,k

e , Hδ,k
e ) ∈ Vk

E ×Vk
H.

Moreover, there exists a constant Ck, independent of δ, such that

‖Eδ
e − Eδ,k

e ‖H(curl,Ωe) ≤ Ckδ
k+1.

Remark 4.2. For k = 0, 1, the above theorem holds for all δ.

5. Formal Derivation of the GIBCs

5.1. The asymptotic ansatz

To formulate our ansatz, it is useful to introduce a cutoff function χ ∈ C∞(Ωi) such
that χ = 1 in Ω ν̄

i and χ = 0 in Ωi\Ω 2 ν̄
i for a sufficiently small ν̄ > 0. For this ansatz

we are not interested in the part of the solution inside the support of (1−χ), since
we already know that the norm of the solution in this part exponentially decay to 0
as δ goes to 0 (is Theorem 2.1). For the remaining part of the solution, we postulate
the following expansions:{

Eδ
e (x) = E0

e (x) + δE1
e (x) + δ2E2

e (x) + · · · for x ∈ Ωe,

Hδ
e (x) = H0

e (x) + δH1
e (x) + δ2H2

e (x) + · · · for x ∈ Ωe,
(5.1)

where E�
e, H�

e , 
 = 0, 1, . . . are functions defined on Ωe and{
χ(x)Eδ

i (x) = E0
i (xΓ, ν/δ) + δE1

i (xΓ, ν/δ) + δ2E2
i (xΓ, ν/δ) + · · · for x ∈ Ων̄

i ,

χ(x)Hδ
i (x) = H0

i (xΓ, ν/δ) + δH1
i (xΓ, ν/δ) + δ2H2

i (xΓ, ν/δ) + · · · for x∈Ων̄
i ,

(5.2)
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where x, xΓ and ν are as in (3.1) and where E�
i (xΓ, η), H�

i (xΓ, η) : Γ × R+ �→ C

satisfy 
For a.e. xΓ ∈ Γ,

∫ +∞

0

|E�
i (xΓ, η)|2dη < +∞ = 0,

For a.e. xΓ ∈ Γ,
∫ +∞

0

|H�
i (xΓ, η)|2dη < +∞.

(5.3)

Remark 5.1. The condition (5.3) will imply that E�
i and H�

i are exponentially
decreasing with respect to η.

For a.e. xΓ ∈ Γ, lim
η→∞E�

i (xΓ, η) = 0, (exponentially fast)

For a.e. xΓ ∈ Γ, lim
η→∞H�

i (xΓ, η) = 0, (exponentially fast)

which corroborates the existence of a boundary layer as suggested by Theorem 2.1.

Remark 5.2. Expansion (5.2) makes sense since the local coordinates (xΓ, ν) can
be used inside the support of χ.

Next we shall identify the equations satisfied by (E�
e, H

�
e) and (E�

i , H
�
i ), 
 ≥ 0

by writing, formally, that we want to solve the transmission problem (2.3)–(2.4).
In the sequel, it is useful to introduce the notation{
Ẽδ

i (xΓ, η) := E0
i (xΓ, η) + δE1

i (xΓ, η) + δ2E2
i (xΓ, η) + · · · (xΓ, η) ∈ Γ × R

+,

H̃δ
i (xΓ, η) := H0

i (xΓ, η) + δH1
i (xΓ, η) + δ2H2

i (xΓ, η) + · · · (xΓ, η) ∈ Γ × R+,

(5.4)

so that ansatz (5.2) has to be understood as{
χ(x)Eδ

i (x) = Ẽδ
i (xΓ, ν/δ) +O(δ∞) for x ∈ Ων̄

i ,

χ(x)Hδ
i (x) = H̃δ

i (xΓ, ν/δ) +O(δ∞) for x ∈ Ων̄
i .

(5.5)

5.2. The equations for the exterior fields

This is the easy part of the job. The equations are directly derived from (2.3) and
we obtain that (Ek

e , H
k
e ) satisfy
iωEk

e − curlHk
e = fk, in Ωe,

iωHk
e + curlEk

e = 0, in Ωe,

Ek
e |T −Hk

e × n = gk, on ∂Ω,

(5.6)

where we have set f0 = f , g0 = g and fk = 0, gk = 0, for k ≥ 1, (5.6) being
complemented with the interface condition

Ek
e |Γ(xΓ) × n = Ek

i (xΓ, 0) × n, for xΓ ∈ Γ, (5.7)

which completely defines (Ek
e , H

k
e ) if Ek

i (xΓ, 0) × n is known.
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5.3. The equations for the interior fields

As indicated above, we need to compute the interior fields Ek
i . The principle consists

of expressing this field in terms of the tangential boundary values of (H�
e), 
 ≤ k

by solving the interior equations. More precisely, we now substitute the expansion
(5.4), (5.5) into the system (2.4) and assume that the quantity:

Hδ
e × n =

+∞∑
k=0

δkHk
e × n

is known on Γ. We need of course to rewrite the equations of (2.4) in the local
“scaled” coordinates

(xΓ, η = ν/δ).

Using formula (3.5) with ν = δη we obtain the following equalities in Γ × [0, ν̄
δ ),

J(δη)
(
iεrω +

1
ωδ2

)
Ẽδ

i − (CΓ + δηCM
Γ

)
H̃δ

i +
J(δη)
δ

∂ηH̃
δ
i × n = O(δ∞),

iJ(δη)ω H̃δ
i + (CΓ + δηCM

Γ )Ẽδ
i − J(δη)

δ
∂ηẼ

δ
i × n = O(δ∞).

(5.8)

These equations are complemented by the boundary condition

H̃δ
i (xΓ, 0) × n+O(δ∞) = Hδ

e × n(xΓ), xΓ ∈ Γ. (5.9)

The substitution of (5.4), (5.5) into (5.8), (5.9) leads to a sequence of problems
that enable us to inductively determine the fields (Ek

i , H
k
i ). The computations are

relatively delicate but straightforward. The most difficult task is to explain the
recurrence properly, which is the aim of this section. In Sec. 5.4, we shall compute
explicitly the first terms of the expansions.

It turns out to be very useful to make a change of unknown concerning the
electric field. This is motivated by the observation that

E0
i = 0. (5.10)

This fact can be explained along the following lines: indeed from (5.4) and (5.5)
one deduces (at least formally) that:

‖Eδ
i ‖2

L2(Ωi)
∼ δ

∫
Γ

∫ +∞

0

|E0
i (xΓ, η)|2dηdσ.

Therefore, estimate (2.6), which says that ‖Eδ
i ‖2

L2(Ωi)
= O(δ2), implies E0

i = 0.
The expansion for the electric field therefore starts with δE1

i while for the mag-
netic field H0

i �= 0. In some sense there is a natural shift of one power of δ between
the expansions of the electric and magnetic fields. This is why we introduce the
“normalized” electric field:

Ê
δ
i =

1
δ
Ẽδ

i , (5.11)
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and we seek an expansion of the form

Ê
δ
i (xΓ, η) := Ê

0
i (xΓ, η)+δÊ1

i (xΓ, η)+δ2Ê
2
i (xΓ, η)+ · · · (xΓ, η) ∈ Γ×R

+, (5.12)

with the correspondence

Ek+1
i = Ê

k
i , k ≥ 1.

We then rewrite (5.8) as a system of equations for (Êδ
i , H̃

δ
i ) (we have multiplied the

first equation by δ) in Γ × [0, ν̄
δ ),

J(δη)
(
iεrδω +

1
ω

)
Ê

δ
i −

(
δCΓ + δ2ηCM

Γ

)
H̃δ

i + J(δη)∂ηH̃
δ
i × n = 0,

iJ(δη)ωH̃δ
i + (δCΓ + δ2ηCM

Γ )Êδ
i − J(δη)∂ηÊ

δ
i × n = 0.

We rewrite the previous system as follows, by separating the “δ-independent” part,
kept on the left-hand side, from the remaining terms, put in the right-hand side,

∂ηH̃
δ
i × n+

1
ω

Ê
δ
i =

4∑
�=1

δ�A
(�)
H (Êδ

i , H̃
δ
i ) in Γ × R+,

−∂ηÊ
δ
i × n+ iω H̃δ

i =
2∑

�=1

δ�A
(�)
E (Êδ

i , H̃
δ
i ), in Γ × R+.

(5.13)

The linear operators {A(�)
H , 
 = 1, 2, 3} are given by:

A
(1)
H (u, v) = CΓ v − 2hη

(
∂ηv × n+

1
ω
u

)
,

A
(2)
H (u, v) = −iεrωu+ ηCM

Γ v − gη2

(
∂ηv × n+

1
ω
u

)
,

A
(3)
H (u, v) = −2ηhiεrωu,

A
(4)
H (u, v) = −2η2giεrωu,

and the linear operators {A(�)
E , 
 = 1, 2} are given by:A

(1)
E (u, v) = −CΓ u+ 2hη

(
∂ηu× n− iωv

)
,

A
(2)
E (u, v) = −ηCM

Γ u+ gη2
(
∂ηu× n− iωv

)
.

Substituting (5.4) and (5.12) into (5.13) then equating the same powers of δ leads
to the following systems:

∂ηH
k
i × n+

1
ω

Ê
k
i =

4∑
�=1

A
(�)
H (Êk−�

i , Hk−�
i ), in Γ × R+,

−∂ηÊ
k
i × n+ iωHk

i =
2∑

�=1

A
(�)
E (Êk−�

i , Hk−�
i ), in Γ × R+,

(5.14)

for k = 0, 1, 2, . . . , with the convention Ê�
i = H�

i = 0 for 
 < 0.
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Of course, these equations have to be complemented with the conditions (see
(5.9) and (5.3))

Hk
i (xΓ, 0) × n = Hk

e (xΓ, 0), ∀xΓ ∈ Γ,∫ +∞

0

|Hk
i (xΓ, η)|2dη < +∞ and

∫ +∞

0

|Êk
i (xΓ, η)|2dη < +∞.

(5.15)

The reader can already notice how the roles of the variables η and xΓ have been
separated. The variable xΓ appears as parameter for determining (Êk

i , H
k
i ) from the

previous (Ê�
i , H

�
i )’s since, for each xΓ, one simply has to solve an ordinary differential

system in the variable η. The solutions to this inductive system of equations can be
expressed in a general way using the result of the following technical lemma. For
that purpose it is useful to introduce

Pk(Γ,R+; C3) :=

u(xΓ, η) =
k∑

j=1

aj(xΓ)ηj , aj ∈ C∞(Γ; C3)

 .

Lemma 5.1. Let (f, g) ∈ Pk(Γ,R+; C3)2 and ϕ ∈ C∞(Γ; R3), Then the problem,
Find (u, v) ∈ C∞(Γ;C∞(R+))2 such that,∂ηv × n+

1
ω
u = e−

√
i ηf(η, ·), in Γ × R+,

−∂ηu× n+ iω v = e−
√

i ηg(η, ·), in Γ × R
+,

(5.16)

with the conditions:
∀xΓ ∈ Γ, u(xΓ, 0) × n = ϕ(xΓ),

∀xΓ ∈ Γ,
∫ +∞

0

|u(xΓ, η)|2dη < +∞,

∫ +∞

0

|v(xΓ, η)|2dη < +∞,
(5.17)

has a unique solution, which is of the form

u(xΓ, η) = e−
√

iηp(xΓ, η) and v(xΓ, η) = e−
√

i ηq(xΓ, η) (5.18)

with (p, q) ∈ Pk+1(Γ,R+; C3)2 and with the square root definition
√
i :=

√
2

2 (1 + i).

Proof. This is a simple exercise on ordinary differential equations. We refer to
Ref. 12, Lemma 4.1 for the details of the proof.

As an application of this lemma we obtain the following result.

Theorem 5.1. The fields Hk
e × n ∈ C∞(Γ; C3) being given, there exists a unique

sequence

{(Êk
i , H

k
i ) ∈ C∞(Γ; C3)2, k = 0, 1, 2, . . .}
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satisfying the sequence of problems (5.14)–(5.15). Moreover,

(e
√

i η
Ê

k
i , e

√
i ηHk

i ) ∈ Pk(Γ,R+; C3)2. (5.19)

Proof. This theorem can be proved by using an induction on k and by carefully
exploiting the polynomial structure with respect to η of the operators A(�)

E and A(�)
H

(we refer again to Ref. 12, Lemma 4.2 for the technical details).

5.4. Explicit computation of the interior fields for k = 1, 2, 3

This section is devoted to the presentation of the technical details related to the
computation of the asymptotic terms up to the order k = 3. In the sequel, we shall
systematically use the following formulas, deduced from (3.6),

(CΓ V ) · n = curlΓVT , CΓ V × n =
−−→
curlΓ(V · n) × n− (CV × n

)× n, (5.20)

(CM
Γ V ) · n = curlMΓ VT , CM

Γ V × n =
−−→
curl

M

Γ (V · n) × n− (GV × n
)× n. (5.21)

Computation of (Ê0
i ≡ E1

i , H
0
i ). For k = 0, (5.14) gives∂ηH

0
i × n+

1
ω

Ê
0
i = 0, in Γ × R+,

−∂ηÊ
0
i × n+ iωH0

i = 0 in Γ × R+,

(5.22)

whose unique L2 solution satisfying H0
i,T (xΓ, η) = H0

e,T (xΓ) is given by:Ê0
i (xΓ, η) ≡ E1

i (xΓ, η) =
√
iω
(
H0

e × n
)
(xΓ)e−

√
i η,

H0
i (xΓ, η) = H0

e,T (xΓ)e−
√

i η,
(5.23)

from which we deduce the useful information for the construction of the GIBCs,
namely:

E1
i × n(xΓ, 0) = −

√
iωH0

e,T (xΓ). (5.24)

Computation of (Ê1
i ≡ E2

i , H
1
i ). For k = 1, (5.14) gives, using (5.22)∂ηH

1
i × n+

1
ω

Ê
1
i = CΓH

0
i , in Γ × R+,

−∂ηÊ
1
i × n+ iωH1

i = −CΓÊ
0
i , in Γ × R+.

(5.25)

We project (5.25) on n, use (5.20) and (5.23) for Ê0
i and H0

i , to obtain:
Ê

1
i · n = ωCΓH

0
i · n = ω

[
curlΓH0

e,T

]
(xΓ)e−

√
i η, in Γ × R+,

H1
i · n =

i

ω
CΓ Ê

0
i · n = − 1√

i

[
curlΓ

(
H0

e × n
)]

(xΓ)e−
√

i η in Γ × R+.
(5.26)

Next, we eliminate Ê1
i in (5.25) and get the following equation in H1

i,T(
∂2

ηη − i
)
H1

i,T = n× ∂η

[
CΓH

0
i

]− 1
ω
n× (CΓÊ

0
i × n).
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We use again (5.20) and (5.23) to transform the right-hand side. Using the following
identity, that can easily be deduced from the definitions (3.2) and (3.3)(C(V × n)

)× n− CV = −2HV for all V ∈ R
3,

we finally get after some easy manipulations

(∂2
ηη − i)H1

i,T = 2
√
iHH0

e,T (xΓ)e−
√

i η,

whose unique L2 solution satisfying H0
i (xΓ, η) = H0

e,T (xΓ) is given by:

H1
i,T (xΓ, η) = (H1

e,T (xΓ) − ηHH0
e,T (xΓ))e−

√
i η. (5.27)

Coming back to the first equation of (5.25), we get

E
1
i × n(xΓ, η) = ω(−

√
iH1

e,T (xΓ) + (C −H)H0
e,T (xΓ) + η

√
iHH0

e,T (xΓ))e−
√

i η.

(5.28)

In particular,

E2
i × n(xΓ, 0) = ω(−

√
iH1

e,T (xΓ) + (C −H)H0
e,T (xΓ)). (5.29)

Remark 5.3. Notice that (5.26)–(5.28) prove Theorem 5.1 for k = 1.

Computation of (Ê2
i ≡ E3

i , H
2
i ). The calculations are much harder and tedious than

for the two previous cases. That is why we shall restrict ourselves to the main steps.
Also, for the sake of simplicity, we shall often omit to mention the dependence of
the various quantities we manipulate with respect to xΓ.

For k = 2, (5.14) gives, using (5.25)
∂ηH

2
i × n+

1
ω

Ê
2
i = r2H , in Γ × R+

−∂ηÊ
2
i × n+ iωH2

i = r2E , in Γ × R+,

(5.30)

where we have set{
r2H = CΓH

1
i − iεrωE0

i + η
(
CM

Γ − 2hCΓ

)
H0

i ,

r2E = −CΓÊ1
i − η

(
CM

Γ − 2hCΓ

)
E0

i .

We can go directly to the evaluation of H2
i,T which satisfies (apply n × ∂η to the

first equation of (5.30), divide the second equation by ω and add the two results)(
∂2

ηη − i
)
H2

i,T = n× ∂η r
2
H − 1

ω
r2E,T . (5.31)

The next step consists of expressing the right-hand side of (5.31) in terms of the
previous (E�

i , H
�
i )’s. Using (5.20), (5.21) and the fact that H0

i · n = 0, we first
compute that

n× r2H = n×−−→
curlΓ

(
H1

i · n)− CH1
i,T − η

(G − 2hC)H0
i,T − iεrω

(
n× E

0
i

)
,
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Next, we use the expressions (5.23), (5.26) and (5.27) and the identity

n×−−→
curlΓ

(
curlΓ(V × n)

)
= −∇Γ

(
divΓV

)
to obtain

n× r2H =
[

1√
i

(∇Γ divΓ + εrω
2
)
H0

e,T − CH1
e,T

]
e−

√
iη + η

(
3hC − G)H0

e,T e
−√

iη.

After differentiation, we get

n× ∂ηr
2
H = [−(∇Γ divΓ + εrω

2)H0
e,T + (3hC − G)H0

e,T +
√
iCH1

e,T ]e−
√

iη

− η
√
i
(
3hC − G)H0

e,T e
−√

iη. (5.32)

In the same way, using again (5.20), (5.21) and the fact that E
0
i ·n = 0, we calculate

r2E,T = n× (r2E × n) = −curlΓ
(
E

1
i · n)+

(CE
1
i

)× n+ η
[(G − 2hC)E0

i

]× n.

Next, we notice that

CV = −C[(V × n) × n
]

(and the same with G)

and use the expressions (5.23), (5.26) and (5.28) respectively for E0
i × n, E1

i ·n and
E1

i × n to obtain

− 1
ω
r2E,T = [

−−→
curlΓ(curlΓH0

e,T

)
+ η

√
i(
(G − 3h C)H0

e,T × n) × n]e−
√

iη

+ [C((H− C)H0
e,T × n) × n−

√
i(C(H1

e,T × n
)
) × n]e−

√
iη.

This can be written in a simplified form, using the following identities that hold for
all V ∈ R3 and that are easily deduced from (3.2) and (3.3)

{C((H− C)V ) × n)} × n = (3hC − C2 − 2H2)V,

(C(V × n)) × n = (C − 2H)V,

{(3HC − G)(V × n)} × n = (3HC + G − 6H2)V.

We obtain

− 1
ω
r2E,T = [

−−→
curlΓ(curlΓH0

e,T ) + (3HC − C2 − 2H2)H0
e,T ]e−

√
iη

−
√
i(C − 2H)H1

e,T e
−√

iη + η
√
i(3HC + G − 6H2

)
H0

e,T e
−√

iη. (5.33)

Substituting (5.32) and (5.33) in (5.31) leads to the following equation

(∂2
ηη − i)H2

i,T = e−
√

i η{2
√
iHH1

e,T + (C2 + 2H2 − G)H0
e,T

−(�∆Γ + εrω
2)H0

e,T − η
√
i(6H2 − 2G)H0

e,T },

where �∆Γ := ∇Γ divΓ −−−→
curlΓ curlΓ is the vectorial Laplace Beltrami operator.

Since the L2 solution to

(∂2
ηη − i)u = (a+ b η) e−

√
i η in R

+,
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is given by

u(η) =
(
u(0) +

(
a

2
√
i
− b

4i

)
η +

b

4
√
i
η2

)
e−

√
i η,

we deduce that H2
T is given by the expression

H2
i,T (xΓ, η) = e−

√
i η

{
H2

e,T − ηHH1
e,T − η

2
√
i

(C2 −H2
)
H2

e,T

+
η

2
√
i

(
�∆Γ + εrω

2
)
H2

e,T +
η2

2
(
3H2 − G)H1

e,T

}
.

Finally we go back to the first equation of obtaining, after lengthy calculations that
we do not detail here,

E
2
i,T × n = ωe−

√
i η

{
−
√
iH2

e,T + (C −H)H1
e,T − 1

2
√
i

(C2 −H2
)
H0

e,T

− 1
2
√
i

(
εrω

2 + ∇Γ divΓ +
−−→
curlΓ curlΓ

)
H0

e,T

+ η

(√
iHH1

e,T +
1
2
(
5H2 − 6HC + C2 − �∆Γ − εrω

2
)
H0

e,T

)

− η2

√
i

2
(
3H2 − G)H0

e,T

}
.

In particular, for η = 0,

E3
i,T × n = ωe−

√
i η

{
−
√
iH2

e,T + (C − H)H1
e,T − 1

2
√
i

(C2 −H2
)
H0

e,T

− 1
2
√
i

(
εrω

2 + ∇Γ divΓ +
−−→
curlΓ curlΓ

)
H0

e,T

}
. (5.34)

5.5. Construction of the GIBCs

The GIBCS of order k is obtained by considering the truncated expansions in Ωe

Eδ
e,k :=

k∑
�=0

δ�E�
e and Hδ

e,k :=
k∑

�=0

δ�H�
e

as (formal) approximations of order k + 1 of Eδ
e and Hδ

e respectively (notice that
k appears here as a subscript while it appears as an exponent in the notation of
the solution of the approximate problem (4.1), (4.2)). Using the “second” interface
condition, namely (5.7), one has

Eδ
e,k|Γ(xΓ) × n =

k∑
�=0

δ�E�
i (xΓ, 0) × n for xΓ ∈ Γ. (5.35)
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Substituting into (5.35) the computed expressions of E�
i (xΓ, 0) for 
 = 1, 2 and 3,

respectively given by (5.24), (5.29) and (5.34) leads to an identity of the form

Eδ
e,k × n+ ωDδ,k

[
(Hδ

e,k)T

]
= δk+1 ϕδ

k on Γ, for k = 0, 1, 2, (5.36)

and

Eδ
e,3 × n+ ωDδ,3

0

[
(Hδ

e,3)T

]
= δ4 ϕδ

3,0 on Γ, (5.37)

where Dδ,k, k = 0, 1, 2 are given by (4.3) and Dδ,3
0 is given by (4.5) and where

ϕδ
k ∈ C∞(Γ)3, k = 0, 1, 2 are tangential vector fields given by

ϕδ
0 = 0,

ϕδ
1 =

√
iωH1

e,T ,

ϕδ
2 =

√
iωH2

e,T + ω(C − H)
(
H1

e,T + δH2
e,T

)
,

(5.38)

and obviously satisfy the estimates (for δ small enough)

‖ϕδ
k‖Hs

t (Γ) ≤ Ck(s), k = 0, 1, 2 (5.39)

where Ck(s) is independent of δ, while ϕδ
3,0 ∈ C∞(Γ)3 is given by

ϕδ
3,0 =

√
iωH3

e,T + ω(C −H)
(
H3

e,T + δH2
e,T

)
+

1
2
√
i

(C2 −H2
)(
H1

e,T + δH2
e,T + δ3H3

e,T

)
+

1
2
√
i

(
εrω

2 + ∇Γ divΓ +
−−→
curlΓ curlΓ

)(
H1

e,T + δH2
e,T + δ3H3

e,T

)
. (5.40)

The GIBC (4.2) is obtained for k = 0, 1, 2 by neglecting the right-hand side of (5.36).
For k = 3, the same process leads to the condition (4.4) that is modified according
to the process explained in Sec. 4.2. Notice that according to that construction, we
have

Eδ
e,3 × n+ ωDδ,k

[
(Hδ

e,3)T

]
= δ4 ϕδ

3on Γ, where ϕδ
3 = ϕδ

3,0 + δRδ,3
[
(Hδ

e,3)T

]
,

(5.41)

and using the property (4.13) of Rδ,3,

‖ϕδ
3‖Hs

t (Γ),≤ C3(s), (5.42)

where C3(s) is independent of δ.

5.6. Towards the theoretical justification of the GIBCs

Our goal in the next two sections is to justify the GIBCs (4.2) by estimating

Eδ
e − Eδ,k

e and Hδ
e −Hδ,k

e ,
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where (Eδ,k
e , Hδ,k

e ) is the solution of the approximate problem ((4.1), (4.2)), whose
well-posedness will be shown in Sec. 7.1 (see Theorem 7.1). It appears nontrivial to
work directly with the differences Eδ

e −Eδ,k
e and Hδ

e −Hδ,k
e , we shall use the trun-

cated series (Eδ
e,k, H

δ
e,k) introduced in Sec. 5.5 as intermediate quantities. Therefore,

the error analysis is split into two steps:

(1) Estimate the differences Eδ
e − Eδ

e,k and Hδ
e −Hδ

e,k ; this is done in Sec. 6, and
more precisely in Lemma 6.1 and Corollary 6.1.

(2) Estimate the difference Eδ
e,k − Eδ,k

e and Hδ
e,k −Hδ,k

e ; this is done in Sec. 7.2
and more precisely in Theorem 7.7.

Remark 5.4. Notice that step 1 of the proof is completely independent of GIBC
and will be valid for any integer k. Also, for k = 0, the second step is useless since
Ẽδ,0 = Eδ,0.

6. Error Estimates for the Truncated Expansions

6.1. Main results

Let us introduce the fields Eδ,k
χ (x), Hδ,k

χ (x): Ω �→ C3 such that

Eδ,k
χ (x) =



k∑
�=0

δ�E�
e(x) = Eδ

e,k, for x ∈ Ωe,

χ(x)
k∑

�=0

δ�E�
i (xΓ, ν/δ) for x ∈ Ωi,

Hδ,k
χ (x) =



k∑
�=0

δ�H�
e(x) = Hδ

e,k, for x ∈ Ωe,

χ(x)
k∑

�=0

δ�H�
i (xΓ, ν/δ) for x ∈ Ωi,

where the local coordinates xΓ and ν are defined as in Sec. 3 and the cutoff function
χ is defined as in Sec. 5.1. These fields are good candidates to be good approxima-
tions of the exact fields (Eδ, Hδ). The main result of this section is:

Lemma 6.1. For any k, there exists a constant Ck independent of δ such that
(i) ‖Eδ − Eδ,k

χ ‖H(curl,Ω) ≤ Ckδ
k+ 1

2 ,

(ii) ‖Eδ − Eδ,k
χ ‖L2(Ωi) ≤ Ckδ

k+ 3
2 ,

(iii) ‖Eδ × n− Eδ,k
χ × n‖

H− 1
2 (Γ)

≤ Ckδ
k+1.

(6.1)

The proof of Lemma 6.1, postponed to Sec. 6.3, rely on a fundamental a priori
estimates that we shall state and prove in Sec. 6.2. We first give a straightforward
corollary of Lemma 6.1.
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Corollary 6.1. For any k, there exists a constant C̃k independent of δ such that:{
‖Eδ

e − Eδ
e,k‖H(curl,Ωe) ≤ C̃kδ

k+1,

‖Hδ
e −Hδ

e,k‖H(curl,Ωe) ≤ C̃kδ
k+1.

Proof. Simply write

Eδ
e − Eδ

e,k = Eδ
e − Eδ

e,k+1 + δk+1Ek+1
e

which yields, since Eδ
e,k = Eδ,k+1

χ in Ωe,

‖Eδ
e − Eδ

e,k‖H(curl,Ωe) ≤ ‖Eδ
e − Eδ,k+1

χ ‖H(curl,Ωe) + δk+1‖Ek+1
e ‖H(curl,Ωe).

Using the estimate (6.1(i)) of Lemma 6.1, we get

‖Eδ
e − Eδ

e,k‖H(curl,Ωe) ≤ Ckδ
k+ 3

2 + δk+1‖Ek+1
e ‖H(curl,Ωe) ≤ C̃kδ

k+1.

The estimates for Hδ
e −Hδ

e,k is an immediate consequence of{
−iω(Hδ

e −Hδ
e,k) + curl(Eδ

e − Eδ
e,k) = 0 in Ωe,

iω(Eδ
e − Eδ

e,k) + curl(Hδ
e −Hδ

e,k) = 0 in Ωe.

6.2. A fundamental a priori estimate

The proof of Lemma 6.1 relies on the following fundamental technical lemma.

Lemma 6.2. Assume that Eδ ∈ H(curl,Ω) satisfies{
curl curlEδ − ω2Eδ = 0, in Ωe,

iωEδ
T − curlEδ × n = 0, on ∂Ω,

(6.2)

together with the following inequality∣∣∣∣∫
Ω

(|curlEδ|2 − ω2|Eδ|2)dx+ iω

(∫
∂Ω

|Eδ × n|2ds+
1
δ2

∫
Ωi

|Eδ|2dx
)∣∣∣∣

≤ A(δs+ 1
2 ‖Eδ × n‖

H− 1
2 (Γ)

+ δs‖Eδ‖L2(Ωi)), (6.3)

for some non-negative constants A and s independent of δ. Then there exists a
constant C independent of δ such that

‖Eδ‖H(curl,Ω) ≤ C δs+1, ‖Eδ‖L2(Ωi) ≤ C δs+2, ‖Eδ×n‖
H− 1

2 (Γ)
≤ C δs+ 3

2 , (6.4)

for sufficiently small δ.

Proof. For convenience, we shall denote by C a positive constant whose value may
change from one line to another but remains independent of δ. We divide the proof
into two steps.

Step 1. We first prove by contradiction that ‖Eδ‖L2(Ω) ≤ C δs+1. This is the main
step of the proof which will use two important technical lemmas that are proven in
the Appendix.
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Assume that the positive quantity

λδ := δ−(s+1)‖Eδ‖L2(Ω)

is unbounded as δ → 0. After extraction of a subsequence, still denoted
Eδ with δ → 0, we can assume that λδ → +∞. Let Ẽδ = Eδ/‖Eδ‖L2(Ω) (so that
‖Ẽδ‖L2(Ω) = 1).

Our goal is to show that, up to the extraction of another subsequence, Ẽδ

converges strongly in L2(Ωe) and to obtain a contradiction by looking at the limit
field Ẽ.

To show this, we wish to apply to Ẽδ the compactness result of Appendix A.5
with O = Ωe. Since div Eδ = 0 and Ẽδ is bounded in L2(Ωe), we only need to show
that:

(i) curl Ẽδ is bounded in L2(Ωe),

(ii) Ẽδ × n|∂Ω converges in H− 1
2 (∂Ω),

(iii) Ẽδ × n|Γ converges in H− 1
2 (Γ).

(6.5)

We first notice that after division by ‖Eδ‖L2(Ω), the inequality (6.3) yields∣∣∣∣∫
Ω

(|curl Ẽδ|2 − ω2|Ẽδ|2)dx+ iω

(∫
∂Ω

|Ẽδ × n|2ds+
1
δ2

∫
Ωi

|Ẽδ|2dx
)∣∣∣∣

≤ A

λδ
(δ−1‖Ẽδ‖L2(Ωi) + δ−

1
2 ‖Ẽδ × n‖

H− 1
2 (Γ)

). (6.6)

We shall now establish estimates on the two terms on the right-hand side of (6.6)
in terms of ‖curl Ẽδ‖L2(Ω) (namely inequalities (6.10) and (6.12)).

Considering the imaginary part of the left-hand side of (6.6), we observe that
since 1/λδ is bounded,

‖Ẽδ‖2
L2(Ωi)

≤ Cδ
3
2 ‖Ẽδ × n‖

H− 1
2 (Γ)

+ Cδ‖Ẽδ‖L2(Ωi).

Next, we use the trace inequality (A.1) of Appendix A.1 with O = Ωi to get

‖Ẽδ‖2
L2(Ωi)

≤ Cδ
3
2 ‖Ẽδ‖ 1

2
L2(Ωi)

(‖Ẽδ‖ 1
2
L2(Ωi)

+ ‖curl Ẽδ‖ 1
2
L2(Ωi)

) + Cδ‖Ẽδ‖L2(Ωi),

which yields, after division by ‖Ẽδ‖ 1
2
L2(Ωi)

,

‖Ẽδ‖ 3
2
L2(Ωi)

≤ C1δ‖Ẽδ‖ 1
2
L2(Ωi)

+ C2δ
3
2 ‖curl Ẽδ‖ 1

2
L2(Ωi)

. (6.7)

Let K be a positive constant to be fixed later. Using Young’s inequality
ab ≤ 2/3a3/2 + 1/3b3 with a = K−1δ and b = K‖Ẽδ‖ 1

2
L2(Ωi)

, we get

δ‖Ẽδ‖ 1
2
L2(Ωi)

≤ 2
3
K− 3

2 δ
3
2 +

K3

3
‖Ẽδ‖ 3

2
L2(Ωi)

. (6.8)

Choosing C1K
3 = 3/2 and substituting (6.7) into (6.8), one deduces

‖Ẽδ‖ 3
2
L2(Ωi)

≤ Cδ
3
2 (1 + ‖curl Ẽδ‖ 1

2
L2(Ωi)

), (6.9)
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which yields

δ−1‖Ẽδ‖L2(Ωi) ≤ C(1 + ‖curl Ẽδ‖ 1
3
L2(Ωi)

). (6.10)

Now considering the real part of the left-hand side of (6.6) and using the fact that
‖Ẽδ‖L2(Ω) = 1, we observe that

‖curl Ẽδ‖2
L2(Ω) ≤ C(1 + δ−

1
2 ‖Ẽδ × n‖

H− 1
2 (Γ)

+ δ−1‖Ẽδ‖L2(Ωi)). (6.11)

On the other hand, after multiplication by δ−
1
2 , the trace inequality (A.1) applied

to Ẽδ is equivalent to

δ−
1
2 ‖Ẽδ × n‖

H− 1
2 (Γ)

≤ Cδ
1
2 {δ−1‖Ẽδ‖L2(Ωi)} + C{δ−1‖Ẽδ‖L2(Ωi)}

1
2 ‖curl Ẽδ‖ 1

2
L2(Ωi)

.

After applying the Cauchy–Schwarz inequality to the second term of the right-hand
side of the above inequality, we easily get, since δ is bounded

δ−
1
2 ‖Ẽδ × n‖

H− 1
2 (Γ)

≤ C{δ−1‖Ẽδ‖L2(Ωi) + ‖curl Ẽδ‖L2(Ωi)},

≤ C{1 + ‖curl Ẽδ‖ 1
3
L2(Ωi)

+ ‖curl Ẽδ‖L2(Ωi)}, (6.12)

where we used (6.10) for the second inequality. Substituting (6.12) into (6.11) gives

‖curl Ẽδ‖2
L2(Ω) ≤ C(1 + ‖curl Ẽδ‖ 1

3
L2(Ωi)

+ ‖curl Ẽδ‖L2(Ωi)).

This proves (6.5)(i). We also deduce, thanks to (6.10) and (6.12), that

δ−1‖Ẽδ‖L2(Ωi) and δ−
1
2 ‖Ẽδ × n‖

H− 1
2 (Γ)

are bounded, (6.13)

which proves in particular (6.5)(ii) (Ẽδ × n converges to 0 in H− 1
2 (Γ)). This also

means that the right-hand side of (6.6) remains bounded. Thus, going back to (6.6)
shows that ‖Ẽδ × n‖L2(∂Ω) is bounded, which proves (6.5)(iii) by the compactness
of the L2(∂Ω) embedding into H− 1

2 (∂Ω).
Now we shall conclude the proof of Step 1. From (6.5)(i) one deduces that

Ẽδ is a bounded sequence in H(curl,Ω), therefore, up to extracted subsequence,
we can assume that Ẽδ weakly converges in H(curl,Ω) to some Ẽ. Considering the
restriction to Ωe, thanks to (6.5) we can apply the compactness result of Lemma A.5
and deduce that an extracted subsequence of Ẽδ, denoted again by Ẽδ for simplicity,
strongly converges to Ẽ in L2(Ωe). On the other hand, we observe from (6.13) that
Ẽδ strongly converges to 0 in L2(Ωi), hence Ẽ = 0 in Ωi, which implies in particular

Ẽ× n = 0 on Γ. (6.14)

Passing to the weak limit in equations (6.2) one easily verify that{
curl curl Ẽ− ω2Ẽ = 0, in Ωe,

iωẼT − curl Ẽ× n = 0, on ∂Ω,
(6.15)

The uniqueness of solutions to (6.14)–(6.15) in H(curl,Ωe) implies that also Ẽ = 0
in Ωe. We therefore obtain that Ẽδ converges to 0 in L2(Ω) which is a contradiction
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with ‖Ẽδ‖L2(Ω) = 1. Consequently λδ is bounded, that is to say

‖Eδ‖L2(Ω) ≤ Cδs+1. (6.16)

Step 2. We shall now proceed with the proof of estimates (6.1). Considering the
imaginary part of the left-hand side of estimate (6.3) and applying Lemma A.1
(with O = Ωi) yields

‖Eδ‖2
L2(Ωi)

≤ C(δs+ 5
2 ‖curlEδ‖ 1

2
L2(Ωi)

‖Eδ‖ 1
2
L2(Ωi)

+ δs+2‖Eδ‖L2(Ωi)).

Using two times the Young inequality ab ≤ 1/2(a2 + b2), the first time with

a = δ
1
2 ‖curlEδ‖ 1

2
L2(Ωi)

and b = ‖Eδ‖ 1
2
L2(Ωi)

,

and the second time with

a = ‖Eδ‖L2(Ωi) and b = δs+2,

leads to (we also use ‖curlEδ‖L2(Ωi) ≤ ‖curlEδ‖L2(Ω))

‖Eδ‖2
L2(Ωi)

≤ C(δ2s+4 + δs+2(‖Eδ‖L2(Ωi) + δ‖curlEδ‖L2(Ω))). (6.17)

On the other hand, considering this the real part of the left-hand side of estimate
(6.3) and using (6.16), we get

‖curlEδ‖2
L2(Ω) ≤ C(δ2s+2 + δs+ 1

2 ‖curlEδ‖ 1
2
L2(Ωi)

‖Eδ‖ 1
2
L2(Ωi)

+ δs‖Eδ‖L2(Ωi)),

which gives, using Young’s inequality once again,

‖curlEδ‖2
L2(Ω) ≤ C(δ2s+2 + δs(‖Eδ‖L2(Ωi) + δ‖curlEδ‖L2(Ω))). (6.18)

Combining (6.17) and (6.18) leads to

‖Eδ‖2
L2(Ωi)

+ δ2‖curlEδ‖2
L2(Ω) ≤ C(δ2s+4 + δs+2(‖Eδ‖L2(Ωi) + δ‖curlEδ‖L2(Ω))),

which yields

‖Eδ‖L2(Ωi) + δ‖curlEδ‖L2(Ω) ≤ Cδs+2

and in particular the second inequality of (6.4). The third inequality of (6.4) is a
consequence of the first two and the application of Appendix A.1 in Ωi.

Remark 6.1. Notice that since we simply used in the first step of the proof the
fact that 1/λδ is bounded, we have proved in fact that

lim
δ→0

δ−(s+1)‖Eδ‖L2(Ω) = 0.

6.3. The proof of Lemma 6.1

Let us introduce, for each integer k, the error fields

Eδ,k = Eδ
e − Eδ,k

χ , Hδ,k = Hδ
e −Hδ,k

χ . (6.19)
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The idea of the proof is to show that Eδ,k satisfies an a priori estimate of the type
(6.3) and then to use the stability Lemma 6.2. To prove such an estimate, we shall
use the equations satisfied by (Eδ,k,Hδ,k), respectively in Ωi and Ωe.

The equations in Ωe. It is straightforward to check that in the exterior domain Ωe,
the errors

(Eδ,k
e ,Hδ,k

e ) := (Eδ,k|Ωe ,Hδ,k|Ωe)

satisfies the homogeneous equation:{
(i) curlHδ,k

e + iωEδ,k
e = 0, in Ωe,

(ii) curl Eδ,k
e − iωHδ,k

e = 0, in Ωe,
(6.20)

and

(Eδ,k
e )T −Hδ,k

e × n = 0, on ∂Ω. (6.21)

Eliminating Hδ,k
e in (6.20), we get{

curl (curlEδ,k
e ) − ω2Eδ,k

e = 0, in Ωe,

curl Eδ,k
e × n+ iω

(Eδ,k
e

)
T

= 0, on ∂Ω.
(6.22)

The equations in Ωi. Now consider the restrictions to Ωi and set

(Eδ,k
i ,Hδ,k

i ) := (Eδ,k|Ωi ,Hδ,k|Ωi).

It is also useful to introduce the fields

Eδ
i,k(xΓ, ν) :=

k∑
�=0

δ�E�
i

(
xΓ,

ν

δ

)
, Hδ

i,k(xΓ, η) :=
k∑

�=0

δ�H�
i

(
xΓ,

ν

δ

)
,

so that using the local coordinates, we can write

Eδ,k
χ (x) = χEδ

i,k(xΓ, η), Hδ,k
χ (x) = χHδ

i,k(xΓ, η) in Ωi.

Our goal is to show that (Eδ,k
χ , Hδ,k

χ ) satisfy the “interior equations” except that
two small source terms appear at the right-hand side, respectively due to the cutoff
function χ and the truncation of the series at order k. We first compute that

curlHδ,k
χ + iωEδ,k

χ − 1
ω δ2

Eδ,k
χ = χ

(
iωEδ

i,k + curlHδ
i,k − 1

ω δ2
Eδ

i,k

)
+ ∇χ×Hδ

i,k,

curlEδ,k
χ − iωHδ,k

χ = χ(curlEδ
i,k − iωHδ

i,k) + ∇χ× Eδ
i,k.

(6.23)

Thanks to the exponential decay of Eδ
i,k(xΓ, η) and Hδ

i,k(xΓ, η) with respect to η

(cf. Theorem 5.1), the terms in factor of ∇χ are exponentially small in δ.
It remains to compute the terms in factor of χ. These calculations are tedious,

but the idea is simple and consists — in some sense — to do the same calculations
as in Sec. 5.3 but in the reverse sense. According to (5.11) we define

E
δ
i,k :=

Eδ
i,k

δ
=

k−1∑
p=0

δp
E

p
i .
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With the notation of Sec. 5.3, we have

curlEδ
i,k − iωHδ

i,k = rδ,k
i (xΓ, ν/δ), (6.24)

where the function rδ,k
i (x, η) is given by

rδ,k
i = ∂ηE

δ
i,k × n− iω Hδ

i,k +
2∑

�=1

δ�A
(�)
E (Eδ

i,k, H
δ
i,k).

Replacing Eδ
i,k and Hδ

i,k by their polynomial expansion in δ, we get

rδ,k
i =

k−1∑
p=0

δp
(
∂ηE

p
i × n− iω Hp

i

)− iω δkHk
i +

2∑
�=1

δ�
k−1∑
p=0

δpA
(�)
E (Ep

i , H
p
i ).

Using Eq. (5.14) satisfied by the E
p
i ’s and Hp

i ’s, we get

rδ,k
i = −iω δkHk

i +
2∑

�=1

k−1∑
p=0

δp+�A
(�)
E (Ep

i , H
p
i ) −

2∑
�=1

k−1∑
p=0

δpA
(�)
E (Ep−�

i , Hp−�
i ).

Applying the change of index p+ l → p in the first sum, we get

rδ,k
i = −iω δkHk

i +
2∑

�=1

k−1+�∑
p=0

δpA
(�)
E (Ep−�

i , Hp−�
i ) −

2∑
�=1

k−1∑
p=0

δpA
(�)
E (Ep−�

i , Hp−�
i ),

that is to say

rδ,k
i = −iω δkHk

i +
2∑

�=1

k−1+�∑
p=k

δpA
(�)
E (Ep−�

i , Hp−�
i ).

Paying attention to the above expression and using the form of the functions E
p
i

and Hp
i (cf. Theorem 5.1), we see that

curlEδ
i,k − iωHδ

i,k = δk
(
gδ

k,0 + δgδ
k,1) in supp χ,

where the functions gδ
0 and gδ

1 are of the form

gδ
k,q(x) = pk,q

(
xΓ,

ν

δ

)
e−

√
i ν

δ , pk,q ∈ Pk(Γ,R+; C3), q = 0, 1. (6.25)

From (6.25), we easily deduce that

‖χgδ
k,q‖L2(Ωi) ≤ Ck,qδ

1
2 , ‖χ curl gδ

k,q‖L2(Ωi) ≤ C′
k,qδ

1
2 , q = 0, 1. (6.26)

In the same way, using again local coordinates, we have

iωEδ
i,k + curlHδ

i,k − 1
δ2
Eδ

i,k =
1
δ
sδ,k

i (x, ν/δ),

with

sδ,k
i = ∂ηH

δ
i,k × n+

1
ω

E
δ
i,k −

4∑
�=1

δ�A
(�)
H (Eδ

i,k, H
δ
i,k).
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Replacing Eδ
i,k and Hδ

i,k by their polynomial expansion in δ we get

sδ,k
i =

k−1∑
p=0

δp

(
∂ηH

p
i × n+

1
ω

E
p
i

)
−

4∑
�=1

δ�
k−1∑
p=0

δpA
(�)
H (Ep

i , H
p
i )

+ δk∂ηH
p
i × n−

4∑
�=1

δ�+kA
(�)
H (0, Hk

i ).

Using equations (5.14) satisfied by the E
p
i ’s and Hp

i ’s, we get

sδ,k
i =

4∑
�=1

k−1∑
p=0

δpA
(�)
H (Ep−�

i , Hp−�
i ) −

4∑
�=1

k−1∑
p=0

δp+�A
(�)
H (Ep

i , H
p
i )

+ δk∂ηH
p
i × n−

4∑
�=1

δ�+kA
(�)
H (0, Hk

i ),

or equivalently

sδ,k
i =

k+�−1∑
p=k

δp
4∑

�=1

A
(�)
H (Ep−�

i , Hp−�
i )

+ δk∂ηH
p
i × n−

4∑
�=1

δ�+kA
(�)
H (0, Hk

i ).

This time, we see that we can write

iωEδ
i,k + curlHδ

i,k − 1
δ2
Eδ

i,k =
1
δ

3∑
q=0

δqhδ
k,q in supp χ,

where the expression of hδ
k,q is similar to the gk,q’s (see formula (6.25)) and implies

in particular that

‖χhδ
k,q‖L2(Ωi) ≤ Ck,qδ

1
2 , q = 0, 1, 2, 3. (6.27)

In summary, taking the difference between (6.23) and (2.4) we have shown that
curlHδ,k

i + iωEδ,k
i − 1

ωδ2
Eδ,k

i = δk−1χ

(
3∑

q=0

δqhδ
k,q

)
+ ∇χ×Hδ

i,k,

curlEδ,k
i − iωHδ,k

i = δkχ

(
1∑

q=0

δqgδ
k,q

)
+ ∇χ× Eδ

i,k,

where eliminating Hδ,k
i we get

curl curl Eδ,k
i − ω2Eδ,k

i +
i

δ2
Eδ,k

i = f δ
k (6.28)
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with

f δ
k := δkχ

(
1∑

q=0

δqcurl gδ
k,q

)
+ ∇χ×

(
1∑

q=0

δqgδ
k,q

)
+ ∇χ× curl

(∇χ× Eδ
i,k

)

− iωδk−1χ
( 3∑

q=0

δqhδ
k,q

)
− iω∇χ×Hδ

i,k.

Taking into account the form of the functions gδ
k,q and the exponential decay of the

the fields Ep
i and Hp

i (Theorem 5.1), and since the support of ∇χ is separated from
Γ, there exists a constant τ > 0 such that:

‖∇χ× curl
(∇χ× Eδ

i,k

) ‖L2(Ωe) ≤ C1(k)e−τ δ,∥∥∥∥∥∇χ×
(

1∑
q=0

δqgδ
k,q

)∥∥∥∥∥
L2(Ωe)

≤ C2(k)e−τ δ,

‖∇χ×Hδ
i,k ‖L2(Ωe) ≤ C3(k)e−τ δ.

Combining these inequalities with estimates (6.26) and (6.27), we see that:

‖f δ
k‖L2(Ωe) ≤ Ckδ

k− 1
2 . (6.29)

Error estimates. We can now proceed with the final step of the proof. First, we
multiply Eq. (6.22) by Eδ,k

e and integrate over Ωe. Using the Stokes formula and
the boundary condition in (6.22), we get∫

Ωe

|curlEδ,k
e |2dx−ω2

∫
Ωe

|Eδ,k
e |2dx−iω

∫
∂Ω

|Eδ,k
e ×n|2+〈curlEδ,k

e ×n, (Eδ,k
e

)
T
〉Γ = 0.

Next, we multiply the equation (6.28) by Eδ,k
i and integrate over Ωi. We get∫

Ωi

|curlEδ,k
i |2dx− ω2

∫
Ωi

|Eδ,k
i |2dx− 1

δ2

∫
Ωi

|Eδ,k
i |2 − 〈(curl Eδ,k

e × n
) · (Eδ,k

i

)
T
〉Γ

=
∫

Ωi

f δ
k · Eδ,k

i dx.

Adding the last two equalities we get, since Eδ,k ∈ H(curl; Ω),∫
Ω

|curl Eδ,k|2 − ω2

∫
Ω

|Eδ,k|2 − iω

(∫
∂Ω

|Eδ,k × n|2 +
1
δ2

∫
Ωi

|Eδ,k|2
)

= 〈curlEδ,k
e × n− curlEδ,k

i × n,
(Eδ,k

)
T
〉Γ +

∫
Ωi

f δ
k · Eδ,k

i dx. (6.30)

It remains to compute the jump

curl Eδ,k
e × n− curlEδ,k

i × n ≡ curlEδ
e,k × n− curlEδ

i,k × n

across Γ. Taking the trace on Γ of Eq. (6.24), we get, with ρδ,k
i (xΓ) = rδ,k

i (xΓ, 0),

curlEδ
i,k × n = iωHδ

i,k × n+ ρδ,k
i on Γ.
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The function ρδ,k
i is not zero but small. In particular, according to the expression

of rδ,k
i , we have

‖ρδ,k
i ‖

H
1
2 (Γ)

≤ Ckδ
k. (6.31)

On the other hand, taking the trace on Γ of the first equation of (6.20) we get

curlEδ
e,k × n = iωHδ

e,k × n, on Γ.

The continuity conditions (5.15) imply Hδ
i,k × n = Hδ

e,k × n on Γ so that

curl Eδ,k
e × n− curlEδ,k

i × n ≡ curlEδ
e,k × n− curlEδ

i,k × n = ρδ,k
i . (6.32)

Substituting (6.32) into (6.30) and using the estimates (6.29) and (6.31), we get∣∣∣∣∫
Ω

|curl Eδ,k|2 − ω2

∫
Ω

|Eδ,k|2 − iω

(∫
∂Ω

|Eδ,k × n|2 +
1
δ2

∫
Ωi

|Eδ,k|2
)∣∣∣∣

≤ Ck

(
δk− 1

2 ‖Eδ,k × n‖L2(Ωi) + δk‖Eδ,k × n‖
H− 1

2 (Γ)

)
.

We can finally apply Lemma 6.2 with Eδ = Eδ,k and s = k− 1
2 , which provides the

desired estimates.

7. Analysis of the GIBCs

7.1. Well-posedness of the approximate problems

We shall prove in this section that the approximate fields (Eδ,k, Hδ,k), solution of
(4.1), (4.2) for k = 0, 1, 2, 3, are well defined. In fact, for k ≤ 2 this result is an
application (or an adaptation) of classical results about Maxwell equations with an
impedance boundary condition of the form

E × n+ ω ZHT = 0 on Γ,

where Z is a function with positive real part (see for instance Ref. 14). To include
the case k = 3 it is sufficient to extend these results to the cases where Z is a
continuous operator form L2

t (Γ) into L2
t (Γ) with positive definite real part. More

precisely we shall assume that there exists two positive constants z∗ and z∗ such
that {

(i) ‖Zϕ‖Γ ≤ z∗‖ϕ‖Γ,

(ii) Re (Zϕ,ϕ)Γ ≥ z∗‖ϕ‖2
Γ,

(7.1)

for all ϕ ∈ L2
t (Γ). These properties are satisfied by the operators Dδ,k, k = 1, 2, 3 for

δ sufficiently small, and can be seen as a special consequence of Lemma 7.1 (stated
and proved in the next section) where the dependence of the constants z∗ and z∗ in
terms of δ is also given (which is important for error analysis). The functional space
adapted to this type of boundary conditions is the same as for constant impedances,
namely H̃(curl,Ωe) (see (2.5) for the definition of this space).
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Theorem 7.1. Let f ∈ L2(Ωe) be compactly supported in Ωe and g ∈ L2
t (∂Ωe).

Then the boundary value problem
curlH + iωE = 0, in Ωe,

curlE − iωH = 0, in Ωe,

E × n+HT = g, on ∂Ω,

E × n+ ωZHT = g, on Γ,

has a unique solution (E,H) in H̃(curl,Ωe) × H̃(curl,Ωe).

Proof. The proof uses basically the same arguments as for classical impedance
conditions (see Ref. 14) and the details are provided in Ref. 12, Theorem 6.1 of
Ref. 12.

7.2. Error estimates for the GIBCs

The error estimates rely on some key properties of the boundary operator Dδ,k

that we shall summarize in the following lemma. We recall that Dδ,k = 0, δ
√
i and

δ
√
i + δ2(H − C) for k = 0, 1 and 2, respectively. For k = 3, we denote by Aδ and

Bδ the two operators

Aδ :=
(
1 − δ2∇Γ divΓ

)−1
, Bδ =

(
1 + δ2

−−→
curlΓ curlΓ

)−1
.

By Lax–Milgram’s Lemma these operators are well defined as continuous operators
from L2

t (Γ) to respectively H(divΓ,Γ) and H(curlΓ,Γ). Setting

αδ :=
1

2
√

2
+ δ(H− C) +

δ2

2
√

2
(C2 −H2 + εrω

2),

βδ :=
1

2
√

2
− δ2

2
√

2
(C2 −H2 + εrω

2),

the expression (4.11) of Dδ,3 can be written in the form
Dδ,3ϕ = δ αδϕ+

√
2

4
δ(Aδϕ+ δ2

−−→
curlΓ curlΓBδϕ)

+ iδ βδϕ+ i

√
2

4
δ
(
Bδϕ− δ2∇Γ divΓA

δϕ
)
.

The main properties of the operators Dδ,k are summarized in the following lemma.

Lemma 7.1. Let k = 1, 2 or 3. There exist a constant δk > 0 and two constants
C1 > 0 and C2 > 0, independent of δ, such that

(i) ‖Dδ,kϕ‖Γ ≤ C1δ‖ϕ‖Γ,

(ii) Re (Dδ,kϕ,ϕ)Γ ≥ C2δ‖ϕ‖2
Γ,

(7.2)

for all ϕ ∈ L2
t (Γ) and δ ≤ δk.
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Proof. These properties are straightforward for k = 1 and 2. We shall concentrate
on the case k = 3. We first observe that αδ and βδ are bounded functions on Γ,
and if ϕ ∈ L2

t (Γ) then δ2∇Γ divΓA
δϕ = (Aδϕ−ϕ) ∈ L2

t (Γ) and δ2
−−→
curlΓ curlΓBδϕ =

(−Bδϕ+ ϕ) ∈ L2
t (Γ). Therefore Dδ,3ϕ ∈ L2

t (Γ) and one has
(Dδ,3ϕ, ψ)Γ = δ(αδϕ, ψ)Γ +

√
2

4
δ((Aδϕ, ψ)Γ + δ2(

−−→
curlΓ curlΓBδϕ, ψ)Γ)

+ iδ(βδϕ, ψ)Γ + i

√
2

4
δ
(
(Bδϕ, ψ)Γ − δ2(∇Γ divΓA

δϕ, ψ)Γ
) (7.3)

for all ϕ, ψ ∈ L2
t (Γ). For δ sufficiently small, the functions αδ and βδ satisfy

0 < α∗ < |αδ| < α∗ and 0 < β∗ < |βδ| < β∗ (7.4)

for some positive constants α∗, α∗, β∗ and β∗ independent of δ. On the other hand,
from the identities

(1 − δ2∇Γ divΓ)Aδϕ = ϕ and (1 + δ2
−−→
curlΓ curlΓ)Bδϕ = ϕ

one respectively deduces{
(Aδϕ,ϕ)Γ = ‖Aδϕ‖2

Γ + δ2‖divΓA
δϕ‖2

Γ,

−(∇Γ divΓA
δϕ,ϕ)Γ = ‖divΓA

δϕ‖2
Γ + δ2‖∇Γ divΓA

δϕ‖2
Γ

(7.5)

and (Bδϕ,ϕ)Γ = ‖Bδϕ‖2
Γ + δ2‖curlΓBδϕ‖2

Γ,

(
−−→
curlΓ curlΓBδϕ,ϕ)Γ = ‖curlΓBδϕ‖2

Γ + δ2‖−−→curlΓ curlΓBδϕ‖2
Γ.

(7.6)

Property (ii) is obtained as an immediate consequence of (7.5), (7.6) and (7.4) when
applied to (7.3) with ψ = ϕ. Identities (7.5) and (7.6) also respectively imply,

‖Aδϕ‖Γ ≤ ‖ϕ‖Γ, δ2‖∇Γ divΓA
δϕ‖Γ ≤ ‖ϕ‖Γ,

‖Bδϕ‖Γ ≤ ‖ϕ‖Γ and δ2‖−−→curlΓ curlΓBδϕ‖Γ ≤ ‖ϕ‖Γ.

Property (i) is then easily obtained from (7.3) with ψ = Dδ,3ϕ and using these
estimates, as well as (7.4).

7.3. Error estimates for the GIBCs

We shall set for k = 0, 1, 2, 3,
Ẽδ,k

e = Eδ,k
e −

k∑
�=0

E�
e,

H̃δ,k
e = Hδ,k

e −
k∑

�=0

H�
e .

(7.7)
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Using (5.36), together with (4.12) and (4.13) when k = 3, we see that (Ẽδ,k
e , H̃δ,k

e ) ∈
Vk

E × Vk
H is solution of the boundary value problem:

curl H̃δ,k
e + iωẼδ,k

e = 0, in Ωe,

curl Ẽδ,k
e − iωH̃δ,k

e = 0, in Ωe,(Ẽδ,k
e

)
T
− H̃δ,k

e × n = 0, on ∂Ω,

Ẽδ,k
e × n+ ωDδ,k(H̃δ,k

e )T = δk+1 ϕδ
k on Γ,

(7.8)

where the vector fields ϕδ
k remain bounded with respect to δ in all spaces Hs

t (Γ)3.
Eliminating Ẽδ,k

e , we see that H̃δ,k
e ∈ Vk

H satisfies
curl

(
curl H̃δ,k

e ) − ω2H̃δ,k
e = 0 in Ωe,

curl H̃δ,k
e × n− iω2Dδ,k(H̃δ,k

e )T = δk+1 ϕδ
k, on Γ,

curl H̃δ,k
e × n− iω(H̃δ,k

e )T = 0, on ∂Ω.

The proof of error estimates is based on some key a priori estimates that we shall
give hereafter. We multiply by H̃δ,k

e the equation satisfied by H̃δ,k
e in Ωe, integrate

over Ωe and use Green’s formula to obtain, after having used the boundary condi-
tions on ∂Ω and Γ:∫

Ωe

(|curl H̃δ,k
e |2 − ω2|H̃δ,k

e |2)dx− i

∫
∂Ω

|(H̃δ,k
e )T |2dσ

− iω2
(Dδ,k(H̃δ,k

e )T , (H̃δ,k
e )T

)
Γ

= δk+1〈ϕδ
k, (H̃δ,k

e )T 〉Γ, (7.9)

where 〈, 〉Γ here denotes a duality pairing between H−1/2(div,Γ) and
H−1/2(curl,Γ). Considering the imaginary part of (7.9) and using (7.2)(ii) together
with trace theorems in H(curl,Ωe), one obtains the existence of two non-negative
constants C1 and C2 independent of δ such that

C1δ‖(H̃δ,k
e )T ‖2

Γ + ‖(H̃δ,k
e )T ‖2

∂Ω ≤ C2δ
k+1‖H̃δ,k

e ‖H(curl,Ωe). (7.10)

More precisely we have C1 = 0 for k = 0 and C1 > 0 for k �= 0. Using (7.2)(i) and
(7.10) one also deduces that

|Im (Dδ,k(H̃δ,k
e )T , (H̃δ,k

e )T

)
Γ
| ≤ C3δ

k+1‖H̃δ,k
e ‖H(curl,Ωe), (7.11)

for some constant C3 independent of δ. Now considering the real part of (7.9) and
using (7.11) as well as the trace theorem in H(curl,Ωe), one gets the existence of
two positive constants C4 and C5 independent of δ such that

‖H̃δ,k
e ‖2

H(curl,Ωe) ≤ C4δ
k+1‖H̃δ,k

e ‖H(curl,Ωe) + C5‖H̃δ,k
e ‖2

L2(Ωe). (7.12)

Based on these a priori estimates we are in a position to prove the following
result.
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Lemma 7.2. For k = 0, 1, 2 or 3, there exist a constant C independent of δ and
δ0 > 0 such that

‖Ẽδ,k
e ‖H(curl,Ωe) + ‖H̃δ,k

e ‖H(curl,Ωe) ≤ Ckδ
k+1

for all δ ≤ δ0.

Proof. According to estimate (7.12) and the first two equations of (7.8), it is
sufficient to prove the existence of a constant C independent of δ such that

‖H̃δ,k
e ‖L2(Ωe) ≤ Cδk+1. (7.13)

Let us assume that (7.13) does not hold, i.e. λδ := δk+1/‖H̃δ,k
e ‖L2(Ωe) goes to 0 as

δ → 0, and consider the scaled fields

hδ = H̃δ,k
e /‖H̃δ,k

e ‖L2(Ωe) and eδ = Ẽδ,k
e /‖H̃δ,k

e ‖L2(Ωe).

Dividing (7.12) by ‖H̃δ,k
e ‖2

L2(Ωe) implies in particular that (hδ) is a bounded
sequence in H(curl,Ωe). Dividing (7.10) by the same quantity and using the latter
result shows that

C1δ‖hδ
T ‖2

Γ + ‖hδ
T‖2

∂Ω → 0 as δ → 0. (7.14)

The last boundary condition in (7.8) combined with property (7.2)(i) shows in
particular that

‖eδ
T ‖Γ ≤ C6δ‖hδ

T‖Γ + λδ ‖ϕδ
k‖Γ

(with the alternative, C6 and C1 > 0 or C6 = C1 = 0). We therefore conclude
that ‖eδ

T‖Γ goes to 0 as δ → 0. The first three equations of (7.8) imply that eδ is
a bounded sequence in H̃0(curl,Ωe) (see definition in the proof of Theorem 7.1).
Therefore, up to extracted subsequence, one can assume that eδ converges strongly
in L2(Ωe) and weakly in H̃0(curl,Ωe) to some e ∈ H̃0(curl,Ωe). Passing to the limit
as δ → 0 in (7.8), we observe that e ∈ H̃0(curl,Ωe) is solution of

curl curl e− ω2e = 0, in Ωe,

curl e× n− iωeT × n = 0, on ∂Ω,

e× n = 0 on Γ,

and therefore e = 0. We then deduce that curlhδ strongly converges to 0 in L2(Ωe).
Coming back to identity (7.9) and considering the real part, one deduces after
division by ‖H̃δ,k

e ‖2
L2(Ωe) that

‖hδ‖2
H(curl,Ωe) ≤ λδ C̃0‖hδ‖H(curl,Ωe) + C̃1‖curlhδ‖2

L2(Ωe) + C̃2|Im (Dδ,khδ
T , h

δ
T )|.
(7.15)

Property (7.2)(i) shows that

|Im (Dδ,khδ
T , h

δ
T )| ≤ C̃3δ|hδ

T |2Γ → 0

according to (7.14). Therefore, considering the limit as δ → 0 in (7.15) implies that
hδ strongly converges to 0 in H(curl,Ωe), which contradicts ‖hδ‖L2(Ωe) = 1.
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Appendix A. Technical Lemmas

The first lemma is a slight variation of the classical trace lemma in H(curl, O).

Lemma A.1. Let O be a bounded open subset of R3 of class C2 (and which is
locally from one side of its normal). Then there exists a constant C depending only
on O such for all u ∈ H(curl, O), that

‖u× n‖2

H− 1
2 (∂O)

≤ C‖u‖L2(O)

(‖curlu‖L2(O) + ‖u‖L2(O)

)
. (A.1)

Proof. (i) Let us consider first the case where there exist a > 0, b > 0, δ > 0 and
h ∈ C2(R2) ∩W 2,∞(R2) such that, if ϕ(y1, y2, y3) :=

(
y1, y2, y3 + h(y1, y2)

)
,

supp u ⊂ ϕ( ] − a, a[×] − b, b[×]0, δ[ ) ⊂ O,

{∂O ∩ supp u} ⊂ Σ := {ϕ(y1, y2, 0); (y1, y2) ∈] − a, a [×]− b, b [}.
Setting ũ := u ◦ ϕ, ñ := n ◦ ϕ, and f :=

(
1 + |Dh|2)− 1

2 , one has for y3 = 0,

ũ× ñ = f

(
ũ2 + ũ3

∂h

∂y2
, ũ3

∂h

∂y1
− ũ1,−ũ1

∂h

∂y2
+ ũ2

∂

∂y1
h

)
. (A.2)

Let us consider the first component of ũ× ñ. Setting u∗2 = ũ2 + ũ3
∂h
∂y2

, we have,

∂u∗2
∂y3

= −r1 +
∂ũ3

∂y2
+ ũ3

∂2h

∂y3∂y2
, (A.3)

where

r1 := (curlu ◦ ϕ) · e1 =
∂ũ3

∂y2
− ∂ũ3

∂y3

∂h

∂y2
− ∂ũ2

∂y3
.

Let F be the Fourier transform in (y1, y2), (ξ1, ξ2) the dual variables, ûi the Fourier
transform of ũi and û∗2 the Fourier transform of u∗2. By definition of the norm in
H− 1

2 (R2),

‖u∗2(·, ·, 0)‖2

H− 1
2

=
∫

R2
(1 + |ξ|2)− 1

2 |û∗2(ξ1, ξ2, 0)|2dξ1dξ2.

Since

|û∗2(ξ1, ξ2, 0)|2 = −2Re
∫ δ

0

[
∂û∗2
∂y3

û∗2

]
(ξ1, ξ2, y3)dy3

using (A.3), we have, r̂1 being the Fourier transform of r1,

|û∗2(ξ1, ξ2, 0)|2 = 2Re
∫ δ

0

[r̂1û∗2](ξ1, ξ2, y3)dy3

− 2Re
∫ δ

0

iξ2[ũ3û∗2](ξ1, ξ2, y3)dy3

− 2Re
∫ δ

0

[
F
(
ũ3

∂2h

∂y3∂y1

)
ũ∗2

]
(ξ1, ξ2, y3)dy3.
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We divide the above equality by (1 + |ξ|2)− 1
2 and integrate over ξ. Next we use

(1 + |ξ|2)− 1
2 ≤ 1, |ξ2|(1 + |ξ|2)− 1

2 ≤ 1 and Plancherel’s theorem to obtain, since
h ∈W 2,∞(R2),

‖u∗2(·, ·, 0)‖2

H− 1
2
≤ 2
∫ δ

0

∫
R2

|r1||u∗2|dy + C

∫ δ

0

∫
R2

|u3||u∗2|dy.

Coming back to the variable x through the change of variable x = ϕ(y), we easily
get, since |u∗2| ≤ |u2| + C|u3|,

‖u∗2(·, ·, 0)‖2

H− 1
2
≤ C(‖u‖2

L2(O) + ‖u‖L2(O)‖curlu‖L2(O)),

where the constant C only depends on h.
Finally, using Lemma A.2 (note that f belongs to W 1,∞), we get, since (ũ ×

ñ)1 = fu∗2

‖(ũ× ñ)1‖2

H− 1
2
≤ C(‖u‖2

L2(O) + ‖u‖L2(O)‖curlu‖L2(O)). (A.4)

We proceed in the same way for the other two components of ũ× ñ.

(ii) Obtaining the same inequality in the general case can be deduced by using a
partition of unity (ϕi)i=1,...,N of O and noticing that

‖curlϕiu‖L2(O) = ‖ϕicurlu+ ∇ϕi × u‖L2(O)

≤ ‖ϕi‖∞‖curlu‖L2(O) + ‖∇ϕi‖∞‖u‖L2(O).

The proof of the previous lemma uses the following result whose proof can be found
in Lemma A.2 of Ref. 12.

Lemma A.2. Let f ∈ W 1,∞(Rn) and g ∈ H− 1
2 (Rn), then f g ∈ H− 1

2 (Rn) and
one has,

‖f g‖
H− 1

2 (Rn)
≤ 3

1
4 ‖f‖W 1,∞(Rn)‖g‖H− 1

2 (Rn)
.

Lemma A.3. Let O ⊂ R3 be a bounded open set with a C2 boundary Γ. There
exists a constant C that depends only on Γ such that

‖u‖
H

1
2 (Γ)

≤ C(‖∇Γu‖
H− 1

2 (Γ)
+ ‖u‖L2(Γ)) ∀u ∈ H

1
2 (Γ).

Proof. In the case O = {(x1, x2, x3) ∈ R3/x3 ≥ 0} one can check by using Fourier
transform in the plane (x1, x2) that

‖u‖2

H
1
2 (Γ)

= ‖∇Γu‖2

H− 1
2 (Γ)

+ ‖u‖2
L2(Γ) .

The inequality is therefore trivially verified in this case. The general case can be
easily deduced by using local parameterizations of the boundary Γ. This is where
the C2-regularity of Γ is taken into account.
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The next lemma is a sharper version of classical compact-embedding theorem
for spaces of L2 functions with bounded divergence and curl into L2. Let us define

H(curl, div, O) := {u ∈ L2(O)3/curlu ∈ L2(O)3 and div u ∈ L2(O)}

equipped with the norm

‖u‖2
H(curl,div,O) = ‖u‖2

L2(O) + ‖curlu‖2
L2(O) + ‖div u‖2

L2(O).

Lemma A.4. Let O ⊂ R3 be a bounded simply connected open set with C2 bound-
ary Γ. Then every bounded sequence (uk)k∈N of H(curl, div, O) such that

(uk|Γ × n)k∈N is convergent in H
− 1

2
t (Γ) (A.5)

has a convergent subsequence (uk′) in L2(O)3.

Proof. Our proof is an adaptation of the proof given by Costabel in the case where,
instead of (A.5), one has an L2 control of the boundary term of the sequence (see
Theorem 2 of Ref. 5).

The idea is to make a Helmholtz decomposition of uk of the form:

uk = wk + ∇pk, (wk, pk) ∈ H1(O) × L2(O), divwk = 0, (A.6)

constructed in such a way that:

(i) wk is bounded inH1(O) (and thus admits a converging subsequence in L2(O)3):
this uses the fact that curluk is bounded in L2(O)3,

(ii) ∇pk admits a converging subsequence in L2(O)3 : this uses the fact that div uk

is bounded in L2(O)3 and that (uk × n)|Γ converges according to (A.5).

The proof of (i) is the same as is Ref. 5 and is omitted here. One can also see
Lemma A.4 of Ref. 12 for the details of the construction of wk. For the remaining of
the proof, we can therefore assume that (up to extracted subsequence) wk converges
in L2(O).

Since curl(uk−wk) = 0 and O is simply connected, one can construct pk (unique
up to an additive constant) such that ∇pk = uk −wk (use for instance Theorem 2.9
of Ref. 9). Fixing pk by imposing that

∫
O
pkdx = 0 gives raise to a bounded

sequence pk in H1(O) by the Poincaré–Wirtinger inequality. Since we further have
that (div uk) is bounded in L2(O) and (wk) is bounded in H1(O), then, up to
extracted subsequence, one can assume that div uk is convergent in H−1(O), wk|∂O

is convergent in H− 1
2 (∂O) and pk|∂O is convergent in L2(∂O). We shall deduce that

pk is strongly convergent in H1(O). We first observe that pk satisfies{
−∆pk = div uk, in O,

∇pk × n = uk × n− wk × n, on ∂O.
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Let m and k be two indices. From{
∆(pk − pm) = div(uk − um) in O,

∇(pk − pm) × n = (uk − um) × n− (wk − wm) × n on ∂O,
(A.7)

and using the classical theory for elliptic equations one gets the existence of a
constant C1 such that

‖∇pk −∇pm‖L2(Ω) ≤ C1(‖div(uk − um)‖H−1(O) + ‖pk − pm‖
H

1
2 (∂O)

). (A.8)

On the other hand, using Lemma A.3 one has

‖pk − pm‖
H

1
2 (∂O)

≤ C2(‖∇(pk − pm) × n‖
H− 1

2 (∂O)
+ ‖pk − pm‖L2(∂O)). (A.9)

From the second equation of (A.7)–(A.9) it is easily seen that

‖∇pk −∇pm‖L2(Ω) ≤ C3(‖div(uk − um)‖H−1(O) + ‖(uk − um) × n‖
H− 1

2 (∂O)

+ ‖wk − wm‖
H− 1

2 (∂O)
+ ‖pk − pm‖L2(∂O)).

Using assumption (A.5) one concludes ∇pk is a Cauchy sequence in L2(∂O). The
result of the lemma is then proved since uk = wk + ∇pk.

Lemma A.4 also applies to domains Ωi that are not simply connected. This is
proved in the following lemma.

Lemma A.5. The result of Lemma A.4 applies to bounded open domains O ∈ R3

of class C2.

Proof. Let x be an arbitrary point in O. If x ∈ O, one defines Ux as a ball centered
at x such that Ux ⊂ O. If not, one defines Ux as a neighborhood of x such that
there exits a bijective map φx : Q �→ Ux such that

φx ∈ C1(Q), φ−1 ∈ C1(Ux), φ(Q+) = Ux ∩O and φ(Q0) = U ∩ ∂O,
where Q denotes the unit cube of R3, Q+ := {x ∈ Q|x3 > 0}, and Q0 = {x ∈
Q|x3 = 0}.

With this definition one observes that Ux ∩ O is a simply connected domain
for all x ∈ O. By the compactness of O one can extract a finite covering of O
from {Ux;x ∈ O}. Let us denote by {Ui, i ∈ I} this finite covering and consider a
partition of unity (θi)i∈I ⊂ C∞(R3) subordinated to this covering, i.e.

supp θi ⊂ Ui,
∑
i∈I

θi = 1 on O.

Then define ui
n := θi un for all i ∈ I. It is easy to see that for every i, the sequence

(ui
n) satisfies the hypotheses of Lemma A.4 with O replaced by Ui. Using a finite

diagonal process, one can therefore assume that there exists a subsequence nk such
that

ui
nk

converges in L2(Ui) for all i ∈ I.

Consequently, the sequence unk
=
∑

i∈I u
i
nk

is convergent in L2(O).
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d’ondes dans des domaines rectangulaires, Tech. Report. no 1794, INRIA (1992).

5. M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lip-
schitz domains, Math. Meth. Appl. Sci. 12 (1990) 365–368.
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