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Abstract We investigate low-energy deformations of a thin elastic sheet subject to a dis-
placement boundary condition consistent with a conical deformation. Under the assumption
that the displacement near the sheet’s center is of order h| logh|, where h ! 1 is the thick-
ness of the sheet, we establish matching upper and lower bounds of order h2| logh| for the
minimum elastic energy per unit thickness, with a prefactor determined by the geometry
of the associated conical deformation. These results are established first for a 2D model
problem and then extended to 3D elasticity.

Keywords d-Cone · Thin elastic sheets · Energy scaling laws

Mathematics Subject Classification 74B20 · 74K20

1 Introduction

1.1 Motivation, Contribution, and Remaining Questions

In this paper, we investigate the following question:
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• What is the limiting behavior of a thin elastic sheet subject to a displacement boundary
condition consistent with a conical deformation? In particular:
– What is the elastic energy scaling law for such a sheet?
– Do deformations satisfying this scaling law converge in some sense to the associated

conical deformation?

We provide partial answers to these questions, demonstrating that:

• Under the additional assumption that the displacement near the sheet’s center is at most
Ch| logh|, where h ! 1 is the thickness of the sheet, the minimum elastic energy per unit
thickness satisfies matching upper and lower bounds of order h2| logh|, with a prefactor
determined by the geometry of the associated conical deformation.

With a stronger hypothesis on the displacement of the sheet’s center, Müller and Olbermann
have improved our result by giving an estimate for the leading order correction to our bounds
[8]. (See Sect. 1.3 for further discussion of our results and connections with [8].)

It is natural to conjecture that an h2| logh| energy scaling law holds even without a re-
striction on the deformation at the sheet’s center. Such a result is, however, beyond the
scope of our methods (except as indicated in Remark 2 following the proof of Theorem 1 in
Sect. 2).

In the real world, conical deformations can arise without fixing displacement boundary
conditions. For example, a conical deformation known as the d-cone forms when a thin
elastic sheet is placed on top of an open cylinder and a downward force is applied at the
center of the sheet [3]. Our work can be seen as a mathematical idealization of the d-cone
experiment. The physics literature includes numerous studies of nearly conical deformations
subject to geometric boundary conditions. Important contributions include those of Pomeau
and Ben Amar [3] and Cerda and Mahadevan [4]. In [3], it is shown that the d-cone arises
as the surface which minimizes bending energy among those surfaces satisfying a conical
boundary displacement condition and which are developable outside of an inner region. In
[4], the d-cone is modeled as an inextensible surface subject to the constraint that its edge lie
above an open cylinder and the resulting shape is found by solving a free boundary problem
for the edge deformation. For a more complete survey of the literature and many more
references, we refer to the excellent review by Witten [10]. It should perhaps be emphasized
that the results of the present paper (the energy scaling law, and the approximately conical
character of the deformation) are assumed rather than proved in the physics literature.

1.2 Two and Three-Dimensional Elastic Energies

In Sect. 2, we establish our results for a 2D model energy. This choice of energy simplifies
our analysis while capturing the essential features of our argument. We then extend our
results to more general 3D elastic energies in Sect. 3. In the present section, we describe
our 2D and 3D elastic energies and provide intuition as to why low-energy deformations
satisfying conical boundary conditions are nearly conical away from the sheet’s center.

Given a thin elastic sheet

Ωh = Ω ×
(

−h

2
,
h

2

)
, (1.1)

where Ω ⊂ R2 and h ! 1, our 2D model energy
∫

Ω

∣∣∇uT ∇u − I2
∣∣2 + h2|∇∇u|2 dx, (1.2)
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arises as an upper bound for the asymptotic behavior of the model energy

1
h

∫

Ω×(− h
2 , h

2 )

∣∣(∇φT ∇φ
)
− I3

∣∣2
dx (1.3)

for maps satisfying the Kirchhoff-Love ansatz

φ(x, y, z) = u(x, y) + zN(x, y), where N(x,y) = ux × uy

|ux × uy |
. (1.4)

Here, I2 is the 2 × 2 identity matrix, I3 is the 3 × 3 identity matrix, ∇u is the 3 × 2 Jacobian
( ∂ui

∂xj
), 1 ≤ i ≤ 3,1 ≤ j ≤ 2, and ∇φ is the 3 × 3 Jacobian ( ∂φi

∂xj
), 1 ≤ i, j ≤ 3. To see how

(1.2) arises as an upper bound for (1.3), first integrate in the z variable and drop higher order
terms. This leads to a functional of the form

∫

Ω

∣∣∇uT ∇u − I2
∣∣2 + ch2(|uxx · N |2 + |uxy · N |2 + |uyy · N |2

)
dx,

where c is a numerical constant. Simplifying the above expression by replacing the bending
energy |uxx · N |2 + |uxy · N |2 + |uyy · N |2 with |∇∇u|2 and replacing ch2 by h2 leads to the
model (1.2). We are not the first to use the two-dimensional model (1.2) as a laboratory for
understanding the behavior of thin sheets; see for example [2, 5].

In Sect. 3, we justify the simplifications made in deriving the energy (1.2) by extending
our results to 3D elastic energies

∫

Ωh

W(∇uh) dx.

Since we make use of results from [6], we assume that the 3D elastic energy W : M3×3 → R
satisfies the conditions imposed there:

1. W ∈ C0(M3×3),W ∈ C2 in a neighborhood of SO(3),
2. W is frame indifferent: W(F) = W(RF) for all F ∈ M3×3 and all R ∈ SO(3).
3. W(F) ≥ Cdist2(F,SO(3)), W(F) = 0 if F ∈ SO(3).

Study of the energy (1.2) yields insight as to why low-energy deformations subject to
a conical boundary condition are in fact approximately conical. The energy (1.2) consists
of two terms, the non-convex membrane energy |∇uT ∇u − I2|2 and the bending energy
h2|∇∇u|2. The membrane energy term indicates the preference of the midplane to deform
isometrically, while the bending energy term penalizes variation in the normal vector field
to the surface u(Ω) and accounts for the stretching of cross sections of the sheet which are
parallel to the midplane.

Since only rigid motions achieve zero energy, the minimization of (1.2), subject to bound-
ary conditions, typically involves a trade-off between the bending and stretching contribu-
tions. In order to understand this trade-off, observe that for h ! 1 the bending term functions
as a singular perturbation, indicating the sheet’s preference to bend rather than stretch. This
suggests that low energy deformations satisfy

∣∣∇uT ∇u − I2
∣∣2 ≈ 0 (1.5)

in all of Ω , except possibly in a small region in which ∇u undergoes rapid change. A conical
deformation smoothed near its tip is an example of a deformation satisfying (1.5).
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1.3 Statement of results

For the remainder of the paper, we assume that the reference configuration of our sheet is
given by

B1,h = B1 ×
(

−h

2
,
h

2

)
, (1.6)

where

Br =
{
x ∈ R2 : |x| < r

}
. (1.7)

Setting

Eh(u) =
∫

B1

∣∣∇uT ∇u − I2
∣∣2 + h2|∇∇u|2 dx, (1.8)

in Sect. 2 we prove the scaling law

Theorem 1 Let g ∈ C2(∂B1), g : ∂B1 → S2 be a unit-speed curve, and suppose P ∈ R3

satisfies

|P | ≤ Ch| log2 h|α (1.9)

for some 0 ≤ α < 1/2 and C > 0. Then

lim
h→0

1
h2| log2 h| min

u∈W2,2(B1);u=g on ∂B1
u(0)=P

Eh(u) = E.

The constant E is given by

E =
∫

B1\B1/2

∣∣∇2V
∣∣2

dx,

where V (x) = |x|g(x/|x|).

Remark 1 The requirement that g : ∂B1 → S2 be a unit-speed curve is motivated by our
expectation that low energy deformations satisfy (1.5). Theorem 1 will be proved in Sect. 2.
In Sect. 2, will also establish that uh → |x|g(x/|x|) in H 1(B1) as h goes to 0, whenever uh

satisfies Eh(uh) ≤ Ch2 log(h) for some C (see Proposition 1).

Theorem 1 is established by proving the lower bound

E ≤ lim inf
h→0

1
h2| log2 h| min

u∈W2,2(B1);u=g on ∂B1
u(0)=P

Eh(u)

and the upper bound

lim sup
h→0

1
h2| log2 h| min

u∈W2,2(B1);u=g on ∂B1
u(0)=P

Eh(u) ≤ E.
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The upper bound is achieved by a smooth deformation which agrees with the conical map
|x|g( x

|x| ) except within the ball of radius h| log(h)|α centered at the origin. In order to prove
the lower bound, we use the membrane energy to control the stretching of line segments.
Our starting point is the observation that a low energy deformation uh must satisfy

∣∣∣∣
∂uh

∂r

∣∣∣∣ ≈ 1, (1.10)

except possibly on a small set. Due to the boundary conditions and (1.9), it follows that a
deformation satisfying (1.10) closely approximates the conical map |x|g( x

|x| ). We complete
the proof by showing that any map with this property must have bending energy at least of
the same order, h2| log(h)|, as that of the trial function used in the proof of the upper bound.

In formulating Theorem 1, we have chosen to focus on a somewhat special problem: u

is defined on the unit disk, with a constraint on its value at 0. This choice is convenient,
but probably not necessary. Arguments similar to ours probably could be applied in a less
symmetric setting, e.g., when u is constrained at some point x0 += 0, provided the constraint
and boundary conditions are consistent with a conical configuration whose apex is at u(x0).

An earlier draft of this paper contained upper and lower bounds whose prefactors did not
match. We would like to thank Heiner Olbermann for suggesting the modification to our
original argument which led to the improved results reported here. In recent work, Müller
and Olbermann have improved Theorem 1 by estimating the leading order correction to our
bounds [8].

In Sect. 3, we extend our results to three dimensional elasticity. Our basic strategy is the
same as in Sect. 2, but we rely on the compactness and lower semi-continuity results from
[6]. Setting

Eh(uh) =
∫

B1,h

W(∇uh) dx,

we prove the following result.

Theorem 2 Let g : ∂B1 → S2 be a unit speed curve, set g̃(θ, z) = g(θ), and define the
surface s : B1 → R3 in polar coordinates by s(r, θ) = rg(θ). We have that

lim
h→0

1
h3| log2 h| min

u∈W1,2(B1,h)∩C(B̄1,h);max∂B1×(−h/2,h/2)) |u−g̃|≤Ch| log2 h|
maxBh,h

|u|≤Ch| log2 h|

Eh(u) = E,

where Bh,h = Bh × (− h
2 , h

2 ), and the constant E is given by

E =
∫

B1\B1/2

Q2(II ) dx ′.

Here, Q2 is a quadratic form on M2×2, given in [6], and II is the second fundamental form
of the surface s.

2 Two Dimensional Result

In this section, we state and establish results related to the 2D model energy (1.2). We begin
with the energy scaling law, which we repeat for the reader’s convenience:
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Theorem 1 Let g ∈ C2(∂B1), g : ∂B1 → S2 be a unit-speed curve, and suppose P ∈ R3

satisfies

|P | ≤ Ch| log2 h|α (2.1)

for some 0 ≤ α < 1/2 and C > 0. Then

lim
h→0

1
h2| log2 h| min

u∈W2,2(B1);u=g on ∂B1
u(0)=P

Eh(u) = E.

The constant E is given by

E =
∫

B1\B1/2

∣∣∇2V
∣∣2

dx,

where V (x) = |x|g(x/|x|).

Hereafter, C denotes a positive constant independent of h and g.

Proof In what follows, we suppose that h is small and set h∗ = h| log2 h|α .

Step 1: Proof of the upper bound.

Since g ∈ C2(∂B) and |P | ≤ Ch∗, we can find u ∈ C2(B̄) satisfying





u(x) = |x|g(x/|x|) for x ∈ B1 \ Bh∗ ,

u(0) = P,

|∇u| ≤ C on Bh∗ ,

|∇2u| ≤ C/h∗ on Bh∗ .

(2.2)

Due to the assumptions on g, we have

Eh(u) =
∫

Bh∗

∣∣∇uT ∇u − I2
∣∣2 + h2

∫

B2h∗

∣∣∇2u
∣∣2 + h2

∫

B\B2h∗

∣∣∇2u
∣∣2

≤ Ch2
∗ + Ch2 + h2

∑

n≥0;2−n−1≥h∗

∫

B2−n \B2−n−1

∣∣∇2u
∣∣2

. (2.3)

On the other hand, define Vn(x) = 2nu(2−nx) for x ∈ B1 \ B1/2. Then Vn = V if 2−n−1 ≥ h∗
and by a change of variables, we have

∫

B2−n \B2−n−1

∣∣∇2u
∣∣2 =

∫

B1\B1/2

∣∣∇2Vn

∣∣2 = E. (2.4)

Combining (2.3) and (2.4) yields

lim sup
h→0

1
h2| log2 h| min

u∈W2,2(B1);u=g on ∂B1
u(0)=P

Eh(u) ≤ lim sup
h→0

1
| log2 h|

∑

n≥0;2−n−1≥h∗

E = E.

Step 2: Proof of the lower bound.
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Let {uh} be a sequence of deformations satisfying

Eh(uh) ≤ Ch2
∣∣log(h)

∣∣. (2.5)

We begin by using (2.5) to control the behavior of the {uh} near the origin. It follows from
(2.5) that

∫

B1

∣∣∇uT
h ∇uh − I2

∣∣2 ≤ Ch2| log2 h|,
∫

B1

|∇uh|2 ≤ C,

and
∫

B1

∣∣∇2uh

∣∣2 ≤ C| log2 h|.

An application of the Sobolev embedding theorem [1] yields

‖uh‖C0,γ ≤ C(γ )| log2 h|1/2 (2.6)

for 0 < γ < 1. This implies

sup
|x|=h

∣∣uh(x)
∣∣ ≤ sup

|x|=h

∣∣uh(x) − uh(0)
∣∣ +

∣∣uh(0)
∣∣

≤ C(γ )| log2 h|1/2hγ + C(γ )h| log2 h|α. (2.7)

Using (2.7) and the sublinear growth of the logarithm, we see that for each γ ∈ (0,1) there
exists C ′(γ ) such that

sup
|x|=h

∣∣uh(x)
∣∣ ≤ C ′(γ )hγ . (2.8)

Next, we demonstrate that the {uh} approximate the conical map |x|g( x
|x| ). Our idea is

to use the membrane energy, the boundary conditions, and (2.8) to control the stretching of
radial line segments from the origin. To begin, we re-write the membrane energy in polar
coordinates and recall (2.5) to arrive at

∫

∂B1

∫ 1

0

∣∣∇uT
h ∇uh − I2

∣∣2
r dr dθ =

∫

B1

∣∣∇uT
h ∇uh − I2

∣∣2
dx ≤ Ch2| log2 h|.

It follows that
∫

∂B1

∫ 1

h

(∣∣∣∣
∂uh

∂r
(rθ)

∣∣∣∣
2

− 1
)2

r dr dθ ≤
∫

∂B1

∫ 1

0

∣∣∇uT
h ∇uh − I2

∣∣2
r dr dθ

≤ Ch2| log2 h|. (2.9)

Next, we separate the radial line segments from the origin into two classes, those with
“small” radial stretching energy and those with “large” radial stretching energy. To do this,
we set

A =
{
θ ∈ ∂B1;

∫ 1

h

(∣∣∣∣
∂uh

∂r
(rθ)

∣∣∣∣
2

− 1
)2

r dr ≤ h2| log2 h|2
}
. (2.10)
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On those radial lines with small stretching energy, {rθ : h ≤ r ≤ 1, θ ∈ A}, we prove, due to
the boundary conditions and (2.8), that the {uh} will be in close agreement with |x|g( x

|x| ).
We will establish that

∣∣uh(rθ) − rg(θ)
∣∣ ≤ C ′′(γ )max

(
r1/2hγ /2, hγ

)

for θ ∈ A, h ≤ r ≤ 1, and 0 < γ < 1, (2.11)

where C ′′(γ ) is a constant depending on γ . Since by Chebyshev’s inequality and (2.9) we
also have

∣∣H1(A) − H1(∂B1)
∣∣ ≤ C/| log2 h|, (2.12)

we see from (2.11) and (2.12) that the {uh} approximate the conical map |x|g( x
|x| ).

In order to establish (2.11), we first prove the following lemma.

Lemma 1 Let v ∈ R3 be such that |v| = 1 and h ≤ r ≤ 1. Suppose f : [h,1] → R3 satisfies
f (1) = v and |f (h)| ≤ C1h

κ for some 0 < κ ≤ 1. Then

∣∣f (r) − rv
∣∣2 ≤ 2r

(∫ 1

h

∣∣∣∣

∣∣∣∣
df

ds

∣∣∣∣
2

− 1
∣∣∣∣ds + C2h

κ

)
+ C3h

2κ

for some constants C2,C3 depending on C1.

Proof Due to our assumptions on f , application of the fundamental theorem of calculus and
the Cauchy-Schwartz inequality lead to

∣∣f (r) − rv
∣∣2 ≤ 2

(∫ r

h

∣∣∣∣
df

ds
− v

∣∣∣∣ds

)2

+ C3h
2κ ≤ 2r

∫ 1

h

∣∣∣∣
df

ds
− v

∣∣∣∣
2

ds + C3h
2κ .

Expanding the square,

∣∣∣∣
df

ds
− v

∣∣∣∣
2

=
∣∣∣∣
df

ds

∣∣∣∣
2

+ 1 − 2
df

ds
· v =

∣∣∣∣
df

ds

∣∣∣∣
2

− 1 + 2
(

v − df

ds

)
· v.

The boundary conditions of f then imply that
∣∣∣∣

∫ 1

h

(
v − df

ds

)
· v dr

∣∣∣∣ ≤ C2h
κ

and the lemma follows. !

We now establish (2.11) using Lemma 1. According to Lemma 1 and (2.8),

∣∣uh(rθ) − rg(θ)
∣∣2 ≤ 2r

(∫ 1

h

∣∣∣∣

∣∣∣∣
∂uh

∂r
(sθ)

∣∣∣∣
2

− 1
∣∣∣∣ds + C2h

γ

)
+ C3h

2γ

for h ≤ r ≤ 1. (2.13)

An application of Cauchy-Schwartz shows that

∫ 1

h

∣∣∣∣

∣∣∣∣
∂uh

∂r
(sθ)

∣∣∣∣
2

− 1
∣∣∣∣ds ≤

(∫ 1

h

s

∣∣∣∣

∣∣∣∣
∂uh

∂r
(sθ)

∣∣∣∣
2

− 1
∣∣∣∣
2

ds

)1/2(∫ 1

h

1/s ds

)1/2

. (2.14)



Energy Scaling Laws for Conically Constrained Thin Elastic Sheets 259

Using (2.14) and (2.10), we can bound the term in parentheses on the right-hand side of
(2.13). Comparing this bound to the C3h

2γ term on the right-hand side of (2.13) yields
(2.11).

Using (2.11) and (2.12), we will now establish that

lim inf
h→0

1
| log2 h|

∥∥∇2uh

∥∥2
L2(h≤|x|≤1)

≥ E, (2.15)

which will conclude the proof of Theorem 1. In order to establish (2.15), fix ε > 0 and
0 < σ < γ < 1. We claim that

∥∥∇2uh

∥∥2
L2(2−n−1≤|x|≤2−n)

≥ E − ε if 2−n−1 ≥ hσ and h ! 1. (2.16)

Indeed, define Vn(x) = 2nuh(2−nx). It follows from (2.11) and (2.12) that

∣∣{x ∈ B1 \ B1/2;
∣∣Vn(x) − |x|g

(
x/|x|

)∣∣ ≥ C ′′(γ )h(γ−σ )/2}∣∣≤ C/| log2 h|.

By Lemma 2 (stated and proved just below), this implies

∥∥∇2uh

∥∥2
L2(2−n−1≤|x|≤2−n)

=
∥∥∇2Vn

∥∥2
L2(B1\B1/2)

≥ E − ε.

Using (2.16) to bound from below the contributions to the bending energy from the annuli
{x : 2−n−1 ≤ |x| ≤ 2−n}, we find that

lim inf
h→0

1
| log2 h|

∥∥∇2uh

∥∥2
L2(h≤|x|≤1)

≥ lim
h→0

1
| log2 h|

∑

n≥0;2−n−1≥hσ

(E − ε) = (E − ε)σ. (2.17)

Since σ < 1 and ε > 0 are arbitrary, the conclusion follows. !

The following lemma was used in the proof of Theorem 1. Geometrically, it says that if
a surface is sufficiently close to a smooth fixed surface, then the amount by which it bends
must be at least comparable with that of the fixed surface.

Lemma 2 Let Ω be a smooth bounded domain, h > 0, α,β : (0,1) → R+, and v, vh ∈
W 2,2(Ω) be such that

lim
t→0

α(t) = lim
t→0

β(t) = 0

and
∣∣Sh :=

{
x ∈ Ω;

∣∣vh(x) − v(x)
∣∣ ≥ α(h)

}∣∣ ≤ β(h). (2.18)

Then for any ε > 0 there exists δ > 0, depending only on α, β , Ω , and v such that

∥∥∇2vh

∥∥
L2(Ω)

≥
∥∥∇2v

∥∥
L2(Ω)

− ε ∀h < δ.

Proof We prove the lemma by contradiction. Suppose that there exists ε0 > 0 and a sequence
(vhn) ⊂ W 2,2(Ω) satisfying (2.18) but

∥∥∇2vhn

∥∥
L2(Ω)

≤
∥∥∇2v

∥∥
L2(Ω)

− ε0. (2.19)
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The key step is establishing that

sup
n

‖vhn‖H 2(Ω) < ∞. (2.20)

Once (2.20) is established, it follows that vhn ⇀ v in W 2,2(Ω), which results in

lim inf
n→∞

∥∥∇2vhn

∥∥
L2(Ω)

≥
∥∥∇2v

∥∥
L2(Ω)

,

a contradiction.
In order to establish (2.20), consider

uhn = vhn −
(
aT

hn
x + bhn

)
,

where

ahn = 1
|Ω|

∫

Ω

∇vhn dx and bhn = 1
|Ω|

∫

Ω

vhn − ahnx dx.

It is clear that
∫

Ω

∇uh,n = 0 and
∫

Ω

uh,n = 0.

An application of Poincaré’s inequality, along with (2.19), then yields

‖uhn‖H 2(Ω) ≤ C
∥∥∇2uhn

∥∥
L2(Ω)

≤ C
∥∥∇2v

∥∥
L2(Ω)

− Cε0. (2.21)

It follows that

uhn = vhn −
(
aT

hn
x + bhn

)
⇀ u in H 2(Ω).

For x /∈ Shn we then have
∣∣v(x) −

(
aT

hn
x + bhn

)
− u(x)

∣∣ < α(hn)

from which it follows that the {ahn} and {bhn} are bounded. Boundedness of {ahn} and {bhn},
along with (2.21), leads to (2.20). !

Remark 2 The essence of our argument for Theorem 1 is that if u(0) is near 0 and u = g on
∂B1 then the image of each ray from the origin must be almost straight, because anything
else costs too much membrane energy. Can one dispense with the hypothesis that u(0) is
near 0? Well, if the boundary curve g(∂B1) met both {x · e > 0} and {x · e < 0} for every
unit vector e ∈ R3, then the smallness of the membrane energy could be used to prove that
u(0) had to be near 0. Alas, there is no such g: a curve on S2 with arclength 2π must lie in
a halfspace1 (see, e.g., Lemma 19 in Chap. 6 of [9]). However, the argument just sketched
can be applied in the context of the “e-cones” considered in [7].

The next result demonstrates that low-energy deformations, subject to the boundary con-
ditions of Theorem 1, converge in a non-oscillatory manner (strongly in H 1(B1)) to the
conical map |x|g( x

|x| ).

1We thank Heiner Olbermann for pointing this out.
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Proposition 1 Let g : ∂B1 → S2 be a unit speed curve and suppose that a sequence of
deformations {uh} satisfies

uh|∂B1 = g,
∣∣uh(0)

∣∣ ≤ Ch
∣∣log2(h)

∣∣α

for some 0 ≤ α < 1/2, and Eh(uh) ≤ Ch2
∣∣log2(h)

∣∣.

Then {uh} converges strongly in H 1(B1) to the conical deformation |x|g( x
|x| ).

Proof Let dh(x) be the test function defined by (2.2). We will prove that

‖uh − dh‖H 1(B1) ≤ Chα for 0 ≤ α < 1/4.

We first establish the following lemma.

Lemma 3 Let {uh} be as in Proposition 1. Then

‖uh − dh‖L2(B1) ≤ Chβ for 0 ≤ β < 1/2. (2.22)

Proof The bound

‖uh − dh‖L2(Bh∗ ) ≤ Chλ for 0 ≤ λ < 1

follows from (2.6). The bound

‖uh − dh‖L2(B1\Bh∗ ) ≤ Chβ for 0 ≤ β < 1/2

follows from integrating (2.13) in r and θ , applying Cauchy-Schwartz as in (2.14), and using
the hypothesis on Eh(uh). !

Next, we establish
∥∥∇(uh − dh)

∥∥2
L2(B1)

≤ Chβ
∣∣log2(h)

∣∣1/2 for 0 ≤ β < 1/2. (2.23)

Our proof of (2.23) relies on the interpolation inequality

‖∇f ‖2
L2(B1)

≤ C‖f ‖L2(B1)‖∇∇f ‖L2(B1), (2.24)

valid for f ∈ W 2,2(B1) satisfying f |∂B1 = 0, applied to f = uh − dh. The estimate (2.23)
follows from (2.24), (2.22) and

∥∥∇∇(uh − dh)
∥∥

L2(B1)
≤ C

∣∣log2(h)
∣∣1/2

. (2.25)

In order to establish (2.25), we note that

‖∇∇uh‖L2(B1) ≤ C
∣∣log2(h)

∣∣1/2
,

due to our hypothesis on Eh(uh), and

‖∇∇dh‖L2(B1) ≤ C
∣∣log2(h)

∣∣1/2

by construction.
The conclusion of Proposition 1 now follows from (2.23), (2.22), and the fact that dh →

|x|g(x/|x|) in H 1(B1) as h goes to 0. !
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3 Three Dimensional Result

In this section, we extend our two dimensional results to three dimensional deformations
uh : B1,h → R3 and elastic energies

Eh(uh) =
∫

B1,h

W(∇uh) dx,

where W satisfies the conditions described in Sect. 1.2.
Throughout this section we use the following rescalings of uh|{2−j−1<r<2−j ,|z|<h/2}: we

define uh,j = 2j uh(x/2j ), h̃j = 2j h, and vh,j = uh,j (x1, x2, h̃j x3). Performing a change of
variables, we have that

1
h3

∫

2−j−1<r<2−j , |z|<h/2
W(Duh)dx = 1

h̃3
j

∫

1/2<r<1, |z|<h̃j /2
W(Duh,j ) dx.

Using the notation ∇′y = y,1 ⊗ e1 +y,2 ⊗ e2 to denote the in-plane gradient, we can perform
an additional change of variables in x3 to arrive at

1
h3

∫

2−j−1<r<2−j , |z|<h/2
W(Duh)dx

= 1

h̃2
j

∫

1/2<r<1, |z|<1/2
W

(
∇′vh,j ,

1

h̃j

vh,j,3

)
dx. (3.1)

The goal of this section is to prove Theorem 2, which we repeat for the reader’s conve-
nience:

Theorem 2 Let g : ∂B1 → S2 be a unit speed curve, set g̃(θ, z) = g(θ), and define the
surface s : B1 → R3 in polar coordinates by s(r, θ) = rg(θ). We have that

lim
h→0

1
h3| log2 h| min

u∈W1,2(B1,h)∩C(B̄1,h);max∂B1×(−h/2,h/2)) |u−g̃|≤Ch| log2 h|
maxBh,h

|u|≤Ch| log2 h|

Eh(u) = E,

where Bh,h = Bh × (− h
2 , h

2 ), and the constant E is given by

E =
∫

B1\B1/2

Q2(II ) dx ′.

Here, Q2 is a quadratic form on M2×2, given in [6], and II is the second fundamental form
of the surface s.

Proof
Step 1: Proof of the upper bound.

Let N = sx × sy be the unit normal to s(x, y), which is well-defined for r > 0. Accord-
ing to the proof of Theorem 6.2 in [6], there exists yh : {B1 \ B1/2 × (−1/2,1/2)} → R3

satisfying

yh|r=1/2,1 = rg + hzN and lim
h→0

1
h2

∫

1/2<r<1,|z|<1/2
W

(
∇′yh,

1
h

yh,3

)
dx = E. (3.2)
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In order to define a low energy sequence uh : B1,h → R3, it suffices to define the correspond-
ing vh,j . For j satisfying 2−j ≥ h| log2(h)|1/4, set vh,j = yh̃j

. Given ε > 0, it follows from
(3.2) and (3.1) that for all such j and sufficiently small h,

1
h3

∫

2−j−1<r<2−j ,|z|<h/2
W(Duh)dx < E + ε.

Defining uh|{0<r<h| log2(h)|1/4,|z|<h/2} = rg(θ) + r
h| log2(h)|1/4 zN , we have

1
h3

∫

r<h| log2(h)|1/4,|z|<h/2
W(Duh)dx < C| lnh|1/2.

Putting all of this together, we have that

lim
h→0

1
h3| log2(h)|

∫

Bh
1

W(Duh) ≤ lim
h→0

1
h3| log2 h|

∑

j≥0;2−j ≥h| log2 h|1/4

(E + ε)h3 = (E + ε).

Since ε > 0 was arbitrary, we are finished.

Step 2: Proof of the lower bound.
Let uh be a minimizer. This implies, as in the proof of Theorem 1,

max
(θ,z)∈A, h≤r≤1

∣∣uh(rθ, z) − rg(θ)
∣∣ ≤ C(γ )max

(
r1/2hγ /2, hγ

)
for 0 < γ < 1, (3.3)

and
∣∣H2(A) − H2(∂B1 × (−h/2, h/2)

)∣∣ ≤ Ch/| log2 h|, (3.4)

where

A =
{
(θ, z) ∈ ∂B1 × (−h/2, h/2);
∫ 1

h

(∣∣∣∣
∂uh

∂r
(rθ, z)

∣∣∣∣
2

− 1
)2

r dr ≤ h2| log2 h|2
}
. (3.5)

In addition, it follows, as in the proof of Theorem 1, that

∣∣{(x ′, z
)
∈ (B1 \ B1/2) × (−1/2,1/2);

∣∣vh,j

(
x ′, z

)
−

∣∣x ′∣∣g
(
x ′/

∣∣x ′∣∣)∣∣ ≥ Ch(γ−σ )/2}∣∣

≤ C/| log2 h|, (3.6)

for 0 < σ < γ < 1 and 2−j ≥ hσ . Next, we claim that, for any ε > 0,

1
h3

∫ h/2

−h/2

∫

2−j−1<|x′|<2−j

W(Duj ) dx

= 1

h̃2
j

∫

1/2<r<1, |z|<1/2
W

(
∇′vh,j ,

1

h̃j

vh,j,3

)
dx ≥ E − ε, (3.7)
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if 2−j > hσ and h is sufficiently small. If (3.7) were false for some ε > 0, then there would
exists hj → 0, nj satisfying 2−nj > hσ , h̃j,nj

= hj 2nj , such that

1

h̃2
j,nj

∫

1/2<r<1, |z|<1/2
W

(
∇′vhj ,nj

,
1

h̃j,nj

vhj ,nj ,3

)
dx < E − ε.

Applying Theorem 4.1 of [6], we conclude that the rescaled gradients (∇′vhj ,nj
, 1

h̃j,nj

vhj ,nj ,3)

are compact in L2(B1 \ B1/2 × (−1/2,1/2)). Convergence of {vhj ,nj
} to rg(θ) in L2(B1 \

B1/2 × (−1/2,1/2)) then follows from compactness of the rescaled gradients and the point-
wise estimate (3.6). This leads to a contradiction, since it follows, by lower-semicontinuity
of the bending energy as given by Theorem 6.1 of [6], that the estimate (3.7) must hold.

The lower bound follows from (3.7) as in the proof of Theorem 1 since ε > 0 and 0 <

σ < 1 are arbitrary. !
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