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Abstract

In this paper, we present some new characterizations of Sobolev spaces. Here is a typical result. Let
g€ LP(RN), 1 < p < +0o0; we prove that g € WP (RN) if and only if

§P
sup / / ————dxdy < +o0.
0<b<I lx — y|N+P
RN RN
lg(x)—g(y)[>48

Moreover,

lim / / dedyleNp/Wg(x)V’dx, Vger’p(RN),
5§—0 lx — y|N+p p
RN RN RN
lg(x)—g(»)[>8

where K, is defined by (12).

This result is somewhat related to a characterization of Sobolev spaces due to J. Bourgain, H. Brezis,
P. Mironescu (see [J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, in: J.L. Menaldi,
E. Rofman, A. Sulem (Eds.), Optimal Control and Partial Differential Equations, A Volume in Honour of
A. Bensoussan’s 60th Birthday, IOS Press, 2001, pp. 439-455]). However, the precise connection is not
transparent.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction
We first recall a result due to J. Bourgain, H. Brezis, P. Mironescu.

Theorem 1. (J. Bourgain, H. Brezis, P. Mironescu) Let g € LP(RY), 1 < p < +00. Then g €
WL (RN) if and only if

lg(x) —gWI?
5l

x—y|)dxdy<C, Vn > 1,
lx — y|?

RN RN

for some constant C > 0. Moreover,

— p
n_)m/ Ig(T;_igﬂ (|x—y|)dxdy=KN’pf‘vg(x)‘l’d)“ Vg e LP(RV),

RN RN RN

where Ky p is defined by (12). Here (p,)neN is a sequence of functions satisfying
pn 20, ,on(x)z,o,,(lx|),

lim /,o,,(r)erldr =0, V>0,
n—0o0

and

+o0
lim /,o,,(r)rN_ldrzl.

n—o00
0

Here is a typical example.

Proposition 1. Let g € LP(RN), 1 < p < +00. Then g € WP (RN) if and only if

f/ 18@) —eWI” dy < +oo.

lx — y|N+pP

0<8<1 |1n5|
RN RN
S<|x—y|<1

Moreover,

lg(x) —gMI” / »
dxdy=K \Y dx.
8»0|ln8| // T =gVt T RN |Vg()|"dx

RN
5<|x )\<l

The reader can find many other interesting examples in [1,3].
In this paper, we present some new characterizations of Sobolev spaces. Our first result is the
following.
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Theorem 2. Let 1 < p < 400. Then
(@) There exists a constant C, , depending only on N and p such that

SP
// mdxdy CNp/|Vg(x)|pdx Vé >0, VgGWIP(RN). )

RN
Ig(X) g(y)\>5

(b) If g € LP(RN) satisfies

sup / / ————dxdy < +00, )
0<s<1 IN“’

Ig(X) g())\>5

then g € WhP(RN).
(c) Moreover, for any g € wkp(RN),

. r
51% // iy |N+pdxdy_—KN,,/|Vg(x)| dx, (3)

RN RN
lg(x)—g (1>

where K, is defined by (12).

Remark 1. Assertions (a) and (c) are due to A. Ponce and J. Van Schaftingen [5]. Our proof of
assertion (c) is slightly different from their original proof.

In the proof of Theorem 2 we will use the following theorem (Theorem 3) which is closely
related to Theorem 1. However we do not know any simple statement unifying Theorems 1-3.

Theorem 3. Let 1 < p < +00. Then
(a) Forevery g e WhP(RV),

elgx) — pte 1
sup / / 1800 gzsi)jr);[ dxdy + / / ISy dxdy
O<e<l |x_y| |X—y|

RN RN RN RN
[g(x)—g(MI<1 lg(x)—g(»I>1
< cN,p/|Vg<x>|”dx,
RN

where Cy ), is a positive constant depending only on N and p.
(b) If g € LP(RN) satisfies

elg(x) —g(IP** 1
sup // |x—y|N+p dxdy+ mdxdy<+oo,

O<e<l
RN RN RN RN
lg(x)—gI< lg(x)—g()I>1

then g € WhP(RN).
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(c) Moreover, for any g € wbhp(@®RN),

i elg(x) — g™ )
lim // Xy dxdy:KN’p/|Vg(x)| dx,

e—0

RN RN RN
lg(x)—g(MI<]

where Ky ), is defined by (12).

The remainder of this paper is organized as follows. In Section 2 we present the proofs of The-
orems 2 and 3. In Section 3 we discuss some variants and generalizations. Finally, in Section 4,
we discuss some partial results for the case p = 1 which seems to be delicate.

2. Proof of Theorems 2 and 3

2.1. Some useful lemmas

We first prove the following lemmas. They will be used in the proofs of Theorems 2 and 3.
Here is the first lemma.

Lemma 1. Let 2 be a measurable set in R™, & and @ be two measurable nonnegative functions
on $2, and o > —1. Then

o 1 a+1 1
W (x)dxds = —— T ()P (x)dx + ——W¥(x)dx.
o+ 1 o+ 1
0 &(x)>68 D(x)L1 D(x)>1

Proof. Applying Fubini’s theorem, one has

/ / 8”‘111(x)dxd8—/lll(x) / §dsdx.

0 &(x)>68
5<d>(x)

A direct computation gives the conclusion of Lemma 1. 0O
The second lemma is as follows:
Lemma 2. Let g € WHP(RY), 1 < p < +00. One has

/f y|N+p CN»P/|V8(X)|de, Vs >0, )

RN RN RN
lg(x)—g(y)I>8

where Cy_p, is a positive constant depending only on N and p.
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Proof. Using polar coordinates, one has

b4
————dxdy= dhdxd 5
[ i [ [ [ o

§N I RN
[g(x)—g(¥)|>5 lg(x+ho)—g(x)|>4

Therefore, it suffices to show that there exists a constant C;, depending only on p such that for

allo e SN,
Y
p
/ / o dhdx < /|Vg(x)| dx. (6)
RN 0 RV
|g(x+ho)—g(x)|>8
Without loss of generality, one may assume that 0 = ey = (0,...,0, 1).
Note that

|g(x +hen) — g (x>|<h ‘—(x s)

0g
ds < hMN( )(x)

for almost everywhere (x, 1) € RN x (0, +-00). Here My (f) denotes the maximal function of f
with respect to the variable x in the positive direction, i.e.,

xnN+h

My (f)(x', xn) =Zug ][ |f(x',s)|ds. (7
XN

Hence

r &P T &P
// dhdx < f[ dhdx.
hp+1 hp+1

RN 0 RN 0
|g§(x+hen)—g(x)|>8 hMy (3g/9xN)(x)>8

Thus, by a direct computation,

o0
8P g
RN 0

R

(®)

|g(x+hen)—g(x)|>8

On the other hand, using the theory of maximal functions (see, e.g., [6, Chapter 1]), one finds

[ [ (G Yoo anwar' < c[/

RN-1 R

de dx’,
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which shows that
g
‘M N < > (x)

Therefore, (6) follows immediately from (8) and (9). The proof is complete. O

p/|Vg(x)|pdx. )

RN

Here is the third lemma.
Lemma 3. Let g € WHP(RY), 1 < p < +00. Then

. p
g}% ff =y |N+pdxdy_ KN,,/|Vg(x)| dx,

RN RN
lg(x)—g(y)|>d

where Ky p, is defined by (12).

Proof. First, we claim that there exists a constant C;, depending only on p such that for every

o eSV,
oo
/f th dhdx < C,,/|Vg(x)|pdx V8 > 0, (10)
RN 0 RN
| lrtdhe) —g) |y
and
oo
: P
lim ff th dhdx = /Wg(x)-oy dx. (11)
RN O RN

|.§'(—’C+8’3‘;)—X(X) |h>1

Without loss of generality, we assume that 0 = ey = (0, ..., 0, 1). Since g(x', ) € wlP(R) for
almost everywhere x’ € RMN—1 we can assume in addition that

xN+h 8
g(x +hey) —gx) = / —g(x’,s)ds,
3)CN

XN

for all (xy,h) € R x (0, +00) and for almost everywhere x’ € RN-L,
For K C R x [0, 400), let xx denote the characteristic function of the set K, i.e.,

1 if (xn,h) €K,

(x ,h)={
XKLIN 0 otherwise.

Set
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h>1},

g(x +8hen) — g(x)
Sh

h>1},

h>1}

A, 8)=1(xn,h); h>0and

ad
A@) =Gy, h); h>0and [—2-(x)
axN

B(x")=1{(xyn,h); h>0and MN(;X )(x)

Then

XAi,8) (XN, h) < xBuny(xn, h),

where My (f) is defined in (7); and

o0
1
f/WXB(x/)(xN»h)dhde dx/= ‘MN( )(X)
]R

RN 0O
On the other hand, we have (see (9))

’MN( )(x) p/|Vg(x)|pdx.

RN RN

Thus (10) is proved.
Consequently, (11) follows since

(}in%)xw,g)(xlv, h) = xawy@xn, h), forae. (x',xy,h) e RV x R x [0, +00).
We are ready to prove the lemma. By a change of variables,

o7 dxd i 1dhdd
[] oo | [ ] shoaess
RV R

RN SN-1 0
lg(x)—g()[>8 | SCtdhe) () |y

Thus, using (10), (11) and applying Lebesgue’s dominated convergence theorem, one finds

slgr(l) // Ty |N+pdxdy—hm /// pHdhdde

SN-IRN 0
|g(x) g(y)\>8 \g(x-%—éhar;) 8Wlpq

1
- / [|Vg(x)~0|pdxd0.
P

SN-1 RN
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Next we recall that (see [1])

|V-olPdo=KyplVI?, YVeRN vp>1,

SN—I
where
Kn.p= f le-o|Pdo, (12)
SN—I
for any e € SN~1.
Therefore,

. 57 1 )
511]}) // mdxdy:;KN,p/|Vg(x)| dx. O
RN

RN RN
lg(x)—g(y)|>4

Here is the fourth lemma. The method used in the proof of Lemma 4 was introduced by
J. Bourgain, H. Brezis, P. Mironescu, see [1].

Lemma 4. Assume that h € LP (RY) N C®RY) such that

C(h) //8|h(x)_h(y)|p+8d dy < + (13)
‘= sup xdy < +o0.
O<e<l1 lx — y|N+P
RN R

Then h € WP (RN) and

p . glh(x) — h(y)|P*e
KN,pf|Vh(x)| dxéh;gl(r)lf// P dxdy. (14)

RN RN RN
Proof. Rewriting (13) in polar coordinates, we obtain

1

_ pte
sup ///8|h(x+ro) 7] drdxdo < C(h),

O<e<l rptl
SN-1B4 0

where B4 denotes the ball centered at the origin of radius A > 0.
In this proof, C will denote a constant independent of x, r, o, and €. Since h € C OO(RN ),

|Dh(x)-ro| < |h(x +ro) —h(x)|+Cr?, ¥(o,x,r) €SV 1 x By x (0, 1).
In other words, since |h(x +ro) — h(x)| < Cr, for (o, x,r) € SN=1 x B4 x (0, 1),
(|h(x +ro)— h(x)| + Crz)p+€ < |h(x +ro)— h(x)|p+g + Crpretl

for all (o, x,r) e SN~ x By x (0, 1).
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Hence
|Dh(x) - ro |77 < |h(x +ro) — h(0) |77 + Crrtett, (15)

forall (o, x,r) € S¥ =1 x B4 x (0, 1).
Moreover,

rp+£+l
lil%//f drdxda_hm / //srgdrdxda_
&E—>

SN-1B4 0 §N 1By O

Thus it follows from (15) that

Dh pt+e
hmlnf/ //Sl W) ol dxdo
rp+l

SN-1B4 0
h —h pte
hmmf/ //£| (x—i—rol) &2l drdxdo.
rlt+p
SN=1B4 0

Consequently,

h —h p+e
KN,p/|Dh(x)}pdx<1imi(l)lf/ / elh(x) M dxdy.
e—>

|x — y|N+tp
Ba RN RN

Therefore, h € W1-P(RN) and

h —h p+e
KN,pf|Dh(x)|”dx<nmigf//8' ) = ROV Geay. o
£—>

|x — y|N+p

RN RN RN
2.2. Proof of Theorem 3

Step 1. Proof of assertion (a).
Let g € WhP(RVN). By Lemma 2,

P4
// mdxdy<czv,pf|vg(x)|”dx, V8> 0. (16)

RN RN RN
lg(x)—g(¥)|>5

Hereafter Cy,, denotes a positive constant which can change from line to line but depends only
on N and p.
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As a consequence of (16),

// |N+p dxdy < CNP/‘Vg(x)|pdx

RN RN RN
lg(x)—g(y)|>1

This proves part of statement (a).
Next, multiplying (16) by £6°~!, 0 < & < 1, and integrating the expression obtained with
respect to § over (0, 1), one finds

gopte—l »
/// |N+pdxdyd3<CN,p/IVg(x)| dx.

0 RN RN RN
[g(x)—g()|>3

By Lemma 1,
elg(x) —gy)|P*e
// = NP dxdy + |N+pdxdy
RN RN RN RN
lg(x)—g(I<1 lg(x)—g()|>1

<Cw.p /|Vg(x>|”dx.
RN

Hence

_ +e
// elg(x) —gI” dxdych,p/Wg(x)}”dx.

lx — y|N+r
RN RN RN
lg(x)—gMI<]

The proof of assertion (a) of Theorem 3 is complete.

Step 2. Proof of assertion (c).
Assume that g € WLP(RV), 1 < p < 4+00. By Lemma 3,

. p
;g% // X —y |N+pdxdy —KNp/|Vg(x)| dx

RN RN
lg(x)—g(y)I>8

and

sP
/f mdxdy CNP/|V8(X)|pdx Vs > 0.

RN RN
lg(x)—g(y)|>d
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It follows that

1
5P
. -1 — p
SIE)I})/(P-FS),QSS // mdxdyda_KN,hWg(m dx.
0

RN RN RN
lg(x)—g()|>d

By Lemma 1, this implies

, elg(x) — g7+ // £
1 R —
gq,( [ i ey

RN RN RN RN
lg(x)—gILT l[g(x)—g()|>1

= KN,pf|Vg(x)|pdx.
RN

Consequently,

_ +e
lim // elg() —gI” dxdy:KN’pf|Vg(x)|pdx.

e—0 |x — y|N+p
RN RN RN
lg(x)—g(I<

Step 3. Proof of assertion (b).
We split the proof of Step 3 in two parts.

Case 1. Assume, in addition, that g € L% (RN). Then, since

elg(x) —gIP** 1
sup f/ N dxdy + mdxdy<+oo,

O<e<l
RN RV RN RN
lg(x)—g(MI< lg(x)—g()I>1

one has

glg(x) — g(y)|P*e
C(g):= su // dxdy < +o0.
(g 0<eEl |x - )’|N+‘" Y
RN R

699

We will use the method introduced by J. Bourgain, H. Brezis, P. Mironescu and the suggestion

of E. Stein (see [3]).
Let (y,) be an any sequence of smooth mollifiers.
Set

8r =8 *Vr.
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From the convexity of the function tP*¢ on the interval [0, 4-00),

elgr(x) — g (y)|P+e elg(x) — gy IP*e
// X — y|NtP dxdyg// oy A

RN RN RN RN

Applying Lemma 4, one has g, € W7 (R") and

Kn.p / Vg (x)|” dx < C(g).

RN
Therefore, g € WP (RY).
Case 2. The general case.
Define g4, for A > 0, as follows:
g(x) if [g(x)] < A,
galx) = . (17
Ag(x)/lg(x)| otherwise.

Then

lga(x) —ga(»)| < |g(x) —g(y)| forallx,yeR". (18)

It is clear that

// elga(x) —ga(y)|Pte dxdy

lx — y|NFP

RN RN
[ga(x)—ga (I

f/ elga(x) —ga()|P+e dxdy + f/ glga(x) —ga()|P+e dx dy.

-4 |x — y|N+r -4 |x — y|N+r
R¥R R¥R

lg(x)—gI<T lg(x)—g()I>1

lga(x)—ga(MI<1 lga(x)—ga(MI<1

Thus it follows from (18) that

/f elga(x) —gaMIP** dx dy

|x — y|N+P

RN RN
l[ga(x)—ga(MI<]

elg(x) — g(y)|Pte
// N f/ |N+ﬂ dxdy.

RN RN RN RN
lg(x)—g(»I<1] lg(x)—g(y)I>1

Also, from (18),



H.-M. Nguyen / Journal of Functional Analysis 237 (2006) 689-720 701

1 1
// e =y XAy s f/ =y X

RN RN RN RN
lga(x)—ga(»)|>1 [g(x)—g()|>1

Applying the previous case, one has g4 € W7 (RV).
As a consequence of Step 2,

KN,p/|VgA(x)|pdx

RN
: glg(x) — g(y)|P*e . j”f £
< lim dxdy + lim ———dxdy.
en0 / / X — yIVEP g e — y v
RN RN RN RN
lg(x)—g(I<I1 lg(x)—g(y)=1
Therefore,

» . elg(x) —gWI"**
KN,,,/|VgA(x)| dxéglg% // = |V dxdy.

RN RN RN
lg(x)—g(I<1

Since A > 0 is arbitrary, it follows that g € W12 (RN).
2.3. Proof of Theorem 2

Step 1. Proof of assertion (a).
This is the conclusion of Lemma 2.

Step 2. Proof of assertion (c).
This is the conclusion of Lemma 3.

Step 3. Proof of assertion (b).
Let g € L”(R") be such that

b4
X =Y

RN RN
lg(x)—g(y)>$

for some positive constant C. We will prove that g € W7 (RV).
Multiplying inequality (19) by 6°~!, 0 < & < 1, and integrating with respect to & over (0, 1),
by Lemma 1 one gets

_ p+e
/f 8“?_;;;?; dxdy <C(p+1).

RN RN
l[g(x)—gMI<
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On the other hand, (19) gives

// |N+dedy<+oo.

RN RN
lg(x)—g()I>1

Applying Theorem 3, one obtains g € W17 (RYN).

Remark 2. Using the theory of maximal function (see [6, Chapter 1]), one knows that

IMfllLrw) < C 'p 11/ lLr ), where M f denotes the maximal function of f and C is a uni-
versal constant. Therefore

C
Cn.p< —Nl Vpe(l,2), (20)
P

where Cy p is the constant in Theorems 2 and 3, and Cy is a constant depending only on N.
In fact, the bound for Cy,,, given in (20) is optimal for p near 1 in both Theorems 2 and 3.

Here is an example communicated to us by A. Ponce.
Let g, € W1LP(R) be defined as follows:

0 ifx<1-—rt,
la+r-1 ifl-t<x<l,

grx)=11 ifl<x<3-—r1,
1+ if3-r<x <3,
0 if x >3,

where T > 0 depending only on p will be chosen later on.
Then

1-7 2

1 1
// =yt 2 //|x—y|ﬁ+‘ dxdy.
R R 0 1

lgp(x)—gp(y)>1/2

A direct computation yields
f/ ;dxdy>¥(rl_” +217P — 1+ )P —1)
lx — y|p+! p(p—1)
R R
lgp(xX)—gp(M)|>1/2
Now let T = 3T-7. Then we have

// 1 1
- > :
lx =yt " p(p—1)
R R

lgp(x)—gp(»I>1/2
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and

/‘Vgp(x)|p=2‘rl_p=6.
R

This gives the optimality of bound Cy, in the proof of Theorem 2 (see (20)).
On the other hand,

lgp(x) — gp(W)|PH! 1
/] et > [ ey

lgp(x)—gp(MILL lgp(x)—gp(¥)I>1/2
S 1
T ortlp(p—1)

This implies the optimality of bound Cy, in the proof of Theorem 3 (see (20)).

Remark 3. A slightly stronger version of assertion (b) in Theorem 3 is true with the same proof:
if g € LP(RN) satisfies

enlg(x) — g(y)|Pten 1
sup / / dxdy+ ————dxdy < 400,
neN |x — y|N+p |x — y|N+P

RN RN RN RN
lg(x)—gMI<] lg(x)—g()|>1

for some sequence ¢, tending to 0, then g € W7 (RV).

A natural question in the same spirit is as follows. Let g € L” (RY), 1 < p < 400, and (8,))nen
be a sequence of positive numbers converging to O such that

sup / / dxdy < +o0.
neN |N+p
RN RN

[g(x)—g()]>6n

Does g belong to whr(@®RNY?

The answer is positive but the argument is completely different and much more delicate
(see [2]).

On the other hand, there is a natural question related to I"-convergence. Let (g, ) be a sequence
in L?(R) with g, — g in LP(R), 1 < p < 4+00. Assume that

817
sup // 7dx dy < 400,
neN |x |p+1

R R

[gn (x)—8n (¥)|>8n

for some sequence 8, — 0.
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Then one can show (see [4]) that g € WP (R) and

cp/|Vg(x)|pdx hmmf // mdxdy,

|871(X) gn())‘>6

for some constant ¢, > 0 depending only on p. However, we have
Open question 1. Can one replace c, by ~Ki,pin(21)?
One can raise similar questions in dimension N > 2.
3. Some variants and generalizations
3.1. Analogues for bounded domains
We first give an analogue of Lemma 3 for smooth bounded domains.

Lemma 5. Let g € WP (2), 1 < p < +00, §2 be an open set of RN . We have

.. 8P 1 p
hgri)lélf /f mdxdy > ;KN,p/|Vg(x)| dx,
20 Q

lg(x)—g(y)|>$

where Ky _p, is defined by (12).
Moreover, if §2 is a smooth bounded domain then

) 8P 1 »
511_% ff mdxdy:;KN’pf|Vg(x)| dx.
2 Q Q
lg(x)—g(»[>8
Proof. Set, for r > 0 small,
2, ={x e 2; dist(x,082) > r}.
Applying the same method as in the proof of Lemma 3, one has

. p
(Sll_I)% // |h|N+pdhdx_ KN,,/|Vg(x)| dx.

2, By 2,
lg(x+h)—g(x)|>6

Consequently,

o 5P 1 )
2 2 2

lg(x)—g(y)>8

21

(22)
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Suppose now that £2 is a smooth bounded domain. Then there exists an extension § € W17 (RY)
of g,i.e.,

gx)=gkx), Vxef.
Set, for r > 0,

2, = {x € RN; dist(x, £2) < r}.

Applying the same method as in the proof of Lemma 3, one finds

. 8P 1 o
51% // mdxdy_;m,,,/wgg(xﬂ dx. (23)

18(x)—=&()I>8

Combining (22) and (23) yields

8P 1
li ————dxdy=—K Vo(o)|” dx.
520 // x — y|Np T N,p/} g(0)|"dx O
2 Q 5
l§(x)—g(»)1>3
We present an analogue of Theorem 3 for smooth bounded domains.

Theorem 4. Let | < p < +00 and 2 C RN be a smooth bounded domain. Then

(a) Forevery ge WP (£2),

sup // 8|g(x)—g(y)|p+8 f/ dx dy
0<e<l |x — Y|N+p |N+p
2 2
lg(x)—g(MIL] \g(X) g(y)|>1
C/|Vg(x)|pdx,
2

where C = Cy p 2 is a positive constant depending only on N, p and 2.
(b) If g € LP(£2) satisfies

elg(x) —gIP** 1
sup f/ |x—y|N+p dxdy+ mdxdy<+oo,
2 2 2 2

O<e<l

lg(x)—gI<T lg(x)—g()|>1

then g € WhP(£2).
(c) Moreover, for any g € WHP(£2),

_ pte
fim // elg(x) — gyl dxdy:KN,p/|Vg(x)|pdx,

e—0 Ix — y|N+p
2

lg(x)—g(MI<]

where Ky, is defined by (12).
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Proof.

Step 1. Proof of assertion (a).
Set

gx) =g(x) — ][g(y)dy, Vx € 2.
2

Since § € WP (£2) and £2 is a smooth bounded domain, there exists § € W7 (RY) such that
g(x)=g(x) forall x € 2, and

8llwrrryy < Calgllwir(g)-
Using Poincaré’s inequality, one has

18llwir2) < CallVEllLre) =CallVegliLra)-

Thus
&8llwrr@ryy < CallVellLr(2)- (24)
Clearly,
— pt+e ~ = p+e
// elg(x) —g(y)| dxdy < // elgx) — g(y)] dx dy
|x — y|N+P |x — y|Ntp
2 2 RN RN
lg(x)—gI<] [g(x)—gI<1
and
// 1 dxdy < // ! dxd
——dx ——dxdy.
=y S e — y v
2 2 RN RN
lg(x)—g(MI>1 [g(x)—g(y)I>1

On the other hand, from assertion (a) of Theorem 3 and (24),

st
// elg(x) — g’ dxdych,p,Q/]Vg(x)]”dx.

|x — y|N+P
RN RN 2
E0—-2(I<1

Hence

— pte
f f 8|gt§)— yﬁg’?,l dxdy <Cn.pe f [Ve(o|” dx. 25)
2 2 2

[g(x)—gI<1
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Applying the same method used to obtain (25), one finds

// |N+p dxdych,p,g/Wg(x)}pdx.

2
\g(X) g(y)|>1

Step 2. Proof of assertion (c).
Applying the same method as in the proof of Theorem 3, Step 2, the conclusion of Step 2
follows from Lemma 5.

Step 3. Proof of assertion (b).

Case 1. Assume, in addition, that g € L*°(£2).
Since g € L*°(£2) and

elg(x) —gIP** 1
sup /f P dxdy + mdxdy<+oo,
Q20 Q2 Q

O<e<l
lg(x)—g(MI<1 lg(x)—g(y)I>1
one has
glg(x) — g(y)|P*e
C(g) = sup /[ dxdy < 4o00.
O<e<l |.X —,V|N+1’
Set

2; ={x € 2; dist(x,92) > }.

Let (y,) be an any sequence of radial mollifiers such that suppy, C B,, where B, denotes the
ball with center at 0 and radius r.
For any 0 <7 < t/2, set

gr(x)=gx*y-(x), forallxe 2.

From the convexity of function t7+¢,

_ p+e _ p+e
/ / lgr(x) — gr(¥)I dxdy</ lg(x) — gl dx dy.
2 2

|x — y|N+p |x — y|N+p

$2:2 8202

It follows that

_ +e
/ / elgr(x +h) gr(x)lp dhdx < C(g).

|h|N+p
2 1/2
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Using the same method as in the proof of Lemma 4, one has

Kn.p / Vg (x)|” dx < C(g).
2

Let r tend to 0, one deduces that g € W7 (£2,) and

KMhﬂvy@Vw<cgy vt > 0.
2

Consequently, g € W1-P(2).

Case 2. The general case.
For each A > 0, define g4 as in (17). By the same method as in the proof of Theorem 3 (see
Case 2 of Step 3), one has g4 € wlr(£2) and

// elga(x) —gaMIP** dx dy

lx — y|N+P

[ga(x)—ga(MIL]

elg) =g
// x — y|V+p // |N+p dxdy.
2 2

lg(x)—g()I<1 Ig(X) g())|>1

Using the result of Step 2, one has

— pte
KN,p/‘ng(X)’pdx glimi(r)lf // £lg) = 80| dxdy < C(g).
£—>

lx — y|N+P
2

lg(x)—gNIK1
Since A > 0 is arbitrary, one has g € whr(2). o
We now establish an analogue of Theorem 2 for smooth bounded domains.

Theorem 5. Let g € LP(£2), 1 < p <400, and 2 C RY be a smooth bounded domain. We have:

(a) If g € WHP(2), then there exists a constant C = CN.p, 2, independent of g, such that

/:/ |N+dedy<‘?/WVg@0de, V8 > 0.

2
Ig(X) g(})\>8
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(b) If

§P
sup f/ ———dxdy < +o0,
0<é<1 |x —Y|N+P
2 Q
[g(x)—g(y)|>8

then g € WhP(£2).
(c) Moreover, for all g € WP (),

, 5P 1 »
(slgl’%) // mdxdy:;KN,p/|Vg(x)i d)C,
2 2 2

lg(x)—g(¥)I>3d

where Ky p is defined in (12).

Proof.

Step 1. Proof of assertion (a).
Applying the same approach as in the proof of Theorem 4, Step 1, the conclusion of asser-
tion (a) follows from Theorem 2.

Step 2. Proof of assertion (b).
By the same method as in the proof Theorem 2, Step 2, the conclusion of assertion (b) is a
consequence of Theorem 4.

Step 3. Proof of assertion (c).
This is the conclusion of Lemma 5. O

3.2. A generalized version of Theorem 2
We present here a generalized form of Theorem 2.

Theorem 6. Let g € L”(RN), 1 < p <400, D be a countable closed subset of (0, +00), and
@ : [0, +00) — [0, +00) be such that ¢ is continuous on [0, +00) \ D and

/go(t)t_(P'H)dt: 1. (26)
0
Set
0s(t) =8P(t/8), V¥8>0. (27)
We have
(a) If

//tps(lg(X) es(lgt) — gD dy < +00 (28)
0<8<1

|x — y|N+p
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and

1
RN RN
l§(x)—g(»)|>$

then g € WHP(RN) and

KNP/|Vg(x)|pdx 11m1nf//%(|g(x) 182l) dxdy. (30)

= yINF?
RN RN

(b) Ifg e WHP(RN) and ¢, defined by

@)= sup @(s),

0<s <t
satisfies [° @)t~ P+D dt < +o00, then
(0.¢]
// ()08(|g(-x) g()’)D dx d < CNpf(z)(t)t_(p+l)dt/|Vg(x)|pdx, %) >0’
e = yINFP

RN RN RN
N s (lg(x) — g(y)l) _ P
(ii) 890/ / P dxdy=Ky,p | |Vex)|"dx, 31)

RN
where Ky p is deﬁned by (12) and Cy,) is a positive constant depending only on N

and p.
Proof.

Step 1. Proof of assertion (a).
We first prove that g € WP (RY).
Since ¢ is nonnegative and

e ¢]

/(p(t)z‘(P+1)dz =1,

0

we claim that there exist four positive constants m, M, A, and o, m < M, such that
meas{t € [m, M]; ¢(t) > 1} > 0. (32)

In fact, since

e ¢]

/<p(t)z—<f’+1>dz =1,

0
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there exist two positive constants m, M, m < M, such that
M

1

/(p(t)t_(p+1)dt P

m

[\

Thus
meas{t € [m, M]; ¢(t) >0} > 0.
Hence there exist two positive numbers A and o such that
meas{t € [m, M]; ¢(t) > 1} >o0.

Therefore, (32) is proved.
Since ¢ is continuous on [0, +00) \ D and D is a countable closed subset of (0, +00), there
exists an interval A # () such that

Ac{telm, M]; ¢@t) > A}.
Let x4 denote the characteristic function of the set A, i.e.,

1 ifreA,

0 otherwise.

XA(I)={

Then, from (28),

8P — )
sup // xa(lg(x) Ng(y)l/ )dxdy<+oo.
0<8<1 |x — y|N+p

RN RN

This implies

1
pte—1 _
sup ///88 xa(lg(x) —gMI/d) dxdyds < +00,

O<e<l |x —y|N+”
0 RN RN

By Fubini’s theorem, it follows that

1
1 -1
sup // m/&“’“ xa(|g(0) — g()|/8) dsdx dy < +oc.
R¥YR 0

O<e<l

lg(x)—g()I<m

Noting that 87761 > M—P=¢+1|g(x) — g(y)|PT¢~! whenever M > |g(x) — g(y)|/8, we infer

1
— pte—1
sup ff elg(x) — g(y)| fXA(|g(x)—g(y)|/8)d8dxdy<+oo.
0

O<e<l1 |x _)7|N+p
RN RN

[g(x)—gI<m
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However, since A C [m, M],

1 00 00
/XA(t/B)d5=/XA(t/fS)dr?=t/XA(1/8)d5=C(A)t, vVt <m,
0 0 0
where
C(A) :=/XA(1/5)d8>0.
0

Combining the latter two estimates yields

e x) — pte
sup / / l8(x) g]f]};_)[[ dxdy < 4o00.
O<e<l1 |x — yl
RN RN
lg(x)—g(MI<m

On the other hand, it follows from (29) that

// |N+pdxdy<+oo.

RN RN
[g(x)—g(V)>m

Thus g, defined by g,,(x) = g(x)/m for all x € RV verifies the hypotheses of part (b) of Theo-

rem 3. Hence g, € W7 (RY). Consequently, g € WP (RY),
It remains to prove (30). From the change of variables formula and the definition of ¢;,

//%(Ig(X) ps(le) — gD dy = / //5”<p(|g(x+h0) 8N/ 1 1o

|x_ |N+p p+1
RN RN SN-1RN 0
On the other hand,
008” h 1)
f // p(lg(x +ho) —g(x)|/ )dhdxda
hpt1
SN-IRN 0
r Sh 1)
_ / //fp(lg(X+ o) —gW)l/ )dhdxda.
hr+l
SN-IRN 0
Thus

f/(p5(|g(x)—g(y)|)d dy = / f/w(lg(XvL(ShU)—g(X)l/fS) dhdxdo. (33)

|x_y|N+p hpt1
RN RN SN-1RN 0
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Therefore, (30) follows from (33), the continuity of ¢ on [0, +00) \ D, and Fatou’s lemma.

Step 2. Proof of assertion (b).
We claim that

hp+1
RN 0 RN

and

RN O 0 RN

where C), is a positive constant depending only on p.

From g € WLP(RY) we have g(x/,-) € WLP(R), for almost everywhere x' =
(X1, ..., xy—1) e RN 7L,

Fix x’ € RVN~! such that g(x’, -) € W17 (RR). Without loss of generality, suppose that

xN+h
d
g(x +hey) — g(x) = / a—g(x’,s)ds, V(xy, h) € R x (0, +00).
X
XN N
Then
, I , xXN+8h
) 8 - 5 . a 3
limg(x Xy +oh) — glx xN):hmh ][ 8 (¥ s)ds =h=5_(x", xp),
§—0 b 5—0 oxy dxN
XN

for almost everywhere xy € R.
Consequently,

. g
lim (| (' xy +8) — g xw) | /8) = so(h’m(x’,xm

)(X’, XN), (36)

for almost everywhere (xy, h) € R x (0, +00).
Here the continuity of ¢ on [0, +00) \ D and D C (0, +00) is used.
Note that

, sh , xy+6h 3
lg(x", xn +8h) — g(x", xn)| <h ][ ' g
XN

5 /
5 oy &)

0
ds < hMN(—g)(x’,xN),
8)61\/

where My (f) is defined in (7).
Then one deduces from the definition of ¢ that
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o(|lg xn +8h) — g, xn)| /8) < §(|g (', xn + 8h) — g(x', xn)| /8)

< @(hMN (8—g)(xc xN>>. (37)
8xN
// (hMN( )(x x ))h P+ gh dx

On the other hand,

d P r
- /‘MN(—g)(x’,xN) dx/¢(t)t—<P+U dr. (38)
axN
RN 0
Moreover, one has (see (9))
3 P
MN (x) dx c,, \Vg(x)\ dx. (39)
RN
Since
o0
/(Z)(t)t_(”+1)dt < 400,
0

combining (36)—(39), after applying Lebesgue’s dominated convergence theorem, one obtains
(34) and (35) with o = ey .
As a consequence of (34), (35) and Lebesgue’s dominated convergence theorem,

lim / //‘”(|g(x+5:;+)1_g(x)|/5)dhdxda: / /\Vg(x).a}"dxda. (40)

§—0
SN-IRN 0 SN—-1 RN

We recall that (see [1]) that

|V-olPdo=Kn,lVIP.

SN-1

Therefore, from (33) and (40),

8_)0//<ﬂa(lg(x) esg) —eWD dy:KN,p/\Vg(x)V’dx.

|x — y|N+P
RN RN RN

Thus 44(ii) is proved.
On the other hand, the estimate 31(i) follows from (33) and (35).
The proof of Theorem 6 is complete. O
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Example 1. Assume that g € L”(RV), 1 < p < 400, satisfies

8P 1
sup // ———dxdy + // ————dxdy < +o0.
0<d<1 |x — y|N+p [x — y|N+p
RN RN RN RN

I<|g(x)—g(y)|<28 lg(x)—g(y)I>1

Then g € WP (RY) and

li // 48 dxd ——IK /|V ( )| d
m X = X X,
550 | le ) y o N,p 8

RN RN RN
d<lg(x)—g(y)<28

where Ky, is defined by (12).

Proof. We verify the hypotheses of Theorem 6 with

p2?

(p(t):{m 1f1<t<2,
0 otherwise.
A direct computation gives
o0
/(p(t)t_(p+l)dt =1.
0
Moreover,
[;217 .
@(t) = sup @(s) = { w1 ifr>1
0<s <t 0 otherwise.
Thus
o0 o p
= —(p+D) _ D
/go(t)t 2p — / 71 < 400. O
0 1

Remark 4. If the assumption of ¢ in Theorem 6 fails, i.e.,

e¢]

/@(r)t_(/’“) dt =400

0

then the conclusion in part (b) of Theorem 6 may fail.
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Here is an example. Let (#,),>1, (€x)n>1 be two sequences of positive numbers to be defined
later. Consider ¢ : [0, +00) — [0, +00) and g € W7 (R) are defined as follows:

) = th if|h—.n| < ¢, forsomen € Z,, @1
0 otherwise,
and
0 ifx <Oorx >3,
X if x € (0, 1],
= 42
8D =1, ifxe(1,2], (42)
3 if x € (2, 3].

Proposition 2. Let ¢, g be the functions defined by (41), (42), and ¢s be a function defined
by (27), forall 0 < § < 1.

(a) Let t, = an?, &, = n~PtD for all n > 1 where a is a positive constant such that
p
fooo @(h)h=P*D dh = 1. Then ¢ and g verify the hypotheses of assertion (a) of Theorem 6.
However,

lx — y|p+!

Kl,p/IVg(x)!”dx<1Lng£%f//¢1/n(lg<x)—g<y)|>dxdy'
R R R

(b) Let t, = bnPt, &, = n= P for all n > 1 where b is a positive constant such that
I @()h=P*D dh = 1. Then

limsup//%(lg(x) eslgtr) — gD dy = +0o. 43)

§—0 |x —-y|p+1

Proof.

Step 1. Proof of assertion (a).
A direct computation gives

//fﬂa(lg(x) g(y)l)d dy < +00.
0<8<1

|x — y[pF!
On the other hand,
0
o(lg(x +8h) — g(x)|/8) / 1
dhdx >8P¢(1/8 ————dhdx. 44
/f nrs *2OWAD) | e e 9
—00 0 —00
l<x+68h<?2

Thus the conclusion of assertion (a) is a consequence of (44), Fatou’s lemma and the fact that

0

/ |g'(x)|” dx = 0.

—00
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Step 2. Proof of assertion (b).
Take § = 1/n in inequality (44); (43) follows from the choice of ¢, (#, = bnPth. O

The following result, whose proof is given in [4], is a natural generalization of Theorems 2
and 3.

Theorem 7. Let 1 < p < +o00 and (Fs)o<s<1 be afamily of functions from [0, +00) into [0, +00)
such that:

(1) Fs(t) is non-decreasing function with respect to t on [0, +00), forall 0 < § < 1.
(i) fy Fs)i= PtV dr =1, forall 0 <8 < 1.
(iii) F3s(t) converges uniformly to 0 on every compact subset of (0, +00) when § goes to 0; and

o0
sup /Fg(t)t_(”+l)dt<+oo.
0<d<l1
0
Then
(@) If g € WHP(RN), then
o0
F —
sup // s(18(x) Ni(y)DdxdySCN,p sup /F,g(t)t_([’+1)dt/‘Vg(x)‘pdx,
0<5<1 [x — y|¥+P 0<d<1
RN R 0 RN

where Cy ), is a positive constant depending only on N and p.
(b) If g € LP(RN) satisfies

F —
sup // 5(18(x) Ni(py)l) dxdy < +oo.
0<é<1 lx — yl

RY R

then g € WP (RN).
(c) Moreover, for any g € wbhp(RN),

tim [ [ B0 gy, (900

|x — y|N+p
RN RN RN
lk—yl<1

where Ky p is defined by (12).
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4. The case p=1
We emphasize that in Theorem 2 we assumed that 1 < p < +o0. If (2) holds with p = 1, then

one can still conclude that g € BV(RY) (see Theorem 8). However, (1) and (3) are no longer
true. In fact, there exists a function g € WLH(R) such that (see Proposition 3)

lim /f dx dy = +o0.
§—0

Ig(x) g(>)|>8

The following property is obtained by the same method as in the proof of Theorem 2.

Theorem 8. Let g € L' (RN) be such that

sup / / dxdy < +o0.
0<d<1 |N+1

Ig(X) g(y)\>5

Then g € BV(RN) and

KN1||Vg||<11msup // |N+1 dxdy,
\g(X) g(y)|>5

where Ky 1 is defined by (12) with p =1 and ||V g|| denotes the total mass of Vg.

Remark 5. Under the assumption of Theorem 8 we also have, when N =1,

8
Vgl < liminf ——dxdy, 45
clVell < limin f/ xR ey (45)
R

lg(x)—g(y)>$

for some universal constant ¢ > O (the proof uses the ideas introduced in [2]). However, we have
Open question 2. Can one replace ¢ by K11 in (45)?

One can also ask similar questions for N > 2.
The following proposition is due to A. Ponce (personal communication).

Proposition 3. There exists a function g € WY1 (R) such that

1)
sup // 5 dxdy =+00.
0<s<1 lx — yl
R R

lg(x)—g(y)|>d
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Proof. It suffices to construct a function g € w10, 1) such that

1 1
5
li dx dy = +o00.
550 .// —y o
00

lg(x)—g () =6

Leta,b € R, a < b, and ¢ be the middle point of the interval [a, b], c = w . Let (¢y)nen be a
sequence of positive numbers converging to 0.

Then
. 1
lim / / ——dxdy =+o0. (46)
n—00 |x — y|2
a c+ep
Set
5 = 1 _ Oy + 3n+1
n — 2_’19 my = 2 .

In view of (46), it is possible to chose ¢, such that

mp—¢&n O

f 8n dxd
g ez

Spt1 Mnten

The desired function g : [0, 1] — R will be defined as follows:

Sn if x € [my, + &5, 8,1,
gx) =

Snt1 i x €841, my — &4,
and g is linear on [m,, — &,,m,, +¢&,]. O

Open question 3. Characterize the functions g € L' (RN) such that

sup / / dxdy < 4o00.
0<b<I |N+1
RN RV

lg(x)—g(y)[>d
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