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Structured Dimensionality Reduction for
Additive Model Regression

Alhussein Fawzi Jean-Baptiste Fiot Bei Chen Mathieu Sinn Pascal Frossard

Abstract—Additive models are regression methods which model the response variable as the sum of univariate transfer functions of
the input variables. Key benefits of additive models are their accuracy and interpretability on many real-world tasks. Additive models are
however not adapted to problems involving a large number (e.g., hundreds) of input variables, as they are prone to overfitting in addition
to losing interpretability. In this paper, we introduce a novel framework for applying additive models to a large number of input variables.
The key idea is to reduce the task dimensionality by deriving a small number of new covariates obtained by linear combinations of the
inputs, where the linear weights are estimated with regard to the regression problem at hand. The weights are moreover constrained to
prevent overfitting and facilitate the interpretation of the derived covariates. We establish identifiability of the proposed model under
mild assumptions and present an efficient approximate learning algorithm. Experiments on synthetic and real-world data demonstrate
that our approach compares favorably to baseline methods in terms of accuracy, while resulting in models of lower complexity and
yielding practical insights into high-dimensional real-world regression tasks. Our framework broadens the applicability of additive
models to high-dimensional problems while maintaining their interpretability and potential to provide practical insights.

Index Terms—Nonparametric regression, additive models, mixed integer programming, interpretability, projection pursuit regression.
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1 INTRODUCTION
With the ever increasing deployment of devices and systems
for data collection, transmission and storage, real-world
regression problems have become high-dimensional almost
by default. A key challenge in learning high-dimensional
regression models is to prevent overfitting and distinguish
informative from redundant input variables. Furthermore,
in many real-world applications it is paramount to learn
interpretable models that provide domain experts with prac-
tical, easy-to-grasp insights into which are the relevant
inputs, and how do they affect the outputs.

Additive models (Hastie and Tibshirani, 1990; Wood, 2006)
represent the response variable as the sum of unknown
transfer functions (also called ridge functions) fj : R → R of
the covariates: y =

∑p
j=1 fj(xj) + ε. Here, y is a real-valued

response variable, x = (x1, . . . , xp)
T is a p-dimensional

vector of covariates and ε is an error term. Additive models
have been shown to yield good predictive performance on
a number of real-world regression tasks, e.g., forecasting
of electric load (Ba et al., 2012), air pollution (Peng and
Welty, 2004), criminal incidents (Wang and Brown, 2011),
etc. At the same time, the additivity assumption simplifies
the structure of the models considerably and allows domain
experts to grasp relations between inputs and outputs by
inspecting the univariate transfer functions fj one-by-one.

For complex, high-dimensional regression problems that
involve hundreds or thousands of inputs, learning additive
models with one transfer function per input variable is
prone to overfitting the data and losing the model inter-
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pretability. To address these issues, feature selection and
dimensionality reduction methods have been extensively
studied in the literature (Su and Zhang, 2013; van der
Maaten et al., 2009; Zhu et al., 2012, 2014; Guyon and
Elisseeff, 2003; Zhu et al., 2013). In (Huang et al., 2010),
the authors use a spline approximation for the functions
fj and introduce a group-LASSO formulation on the spline
coefficients. Likewise, (Ravikumar et al., 2009) combines
backfitting and LASSO for nonparametric feature selection.
While these papers consider the problem of selecting the
most relevant covariates with regard to the regression task
at hand, we address in this paper the problem of deriving
a small number r of new covariates from the p “raw”
input variables (r � p). While conventional dimensionality
reduction methods such as (Sparse) Principal Component
Analysis (see e.g., (Jolliffe, 2005; Zou et al., 2006)) take into
account only the structure of the inputs, our approach esti-
mates the projections with regard to the regression problem
at hand, i.e., it also considers the output variables.

Prior work in this direction are additive index models and
projection pursuit regression (PPR) (Friedman and Stuetzle,
1981; Hastie et al., 2009) which aim at finding linear com-
binations of covariates as input for additive models. While
providing extra flexibility, those approaches are known to
suffer from their lack of interpretability (Morton, 1989) and
tendency to overfitting (Zhang et al., 2008). The authors
of (Zhang et al., 2008) attempt to address these issues by
considering a simple sparsity prior on the linear coefficients,
however, we believe that in general a more structured
model is needed in order to provide both accurate and
interpretable results. More recently, (Chen and Samworth,
2014) introduced shape constraints on the transfer functions,
however, without considering constraints on the linear co-
efficients of the raw inputs.

In this paper, we introduce Structured Dimensionality
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Reduction for Additive Models (SDRAM), a framework for de-
riving covariates of additive models from high-dimensional
inputs. We impose constraints which allow for the represen-
tation of structure in the input variables, prevent overfitting
and facilitate the interpretation of the derived covariates
and how they affect the dependent variable. In Sec. 2 we
introduce our model and extend the result in (Yuan, 2011) to
establish its identifiability. Sec. 3 formulates the learning al-
gorithm and presents an efficient approximate algorithm for
solving it; a key step in the derivation is the reformulation
into a mixed-integer program to handle complementarity
constraints (Jeroslow, 1978; Hu et al., 2008). Experiments
on synthetic data and on two real-world case studies –
modeling the shared bicycle system in the city of Dublin
and forecasting electric load in the state of Vermont – are
provided in Sec. 4. Special emphasis is put on comparing
the accuracy of our approach with baseline methods and
validating practical insights obtained from our model. Sec. 5
concludes the paper.

2 MODEL FORMULATION
2.1 PRELIMINARIES
We use boldface notations to denote vectors and matrices.
For any r ∈ N, we use [r] to denote the set {1, . . . , r}. For
any vector a = [a1, . . . , an]T ∈ Rn, we denote by supp(a)
the set {i : ai 6= 0}, and use the notation a|g to denote the
vector [ag1 , . . . , agm ]T , for any g = {g1, . . . , gm} ⊆ [n]. For
given [n] and g ⊆ [n], we let ḡ denote the complement of
g. We use ‖a‖p to denote the `p norm of a. For any matrix
A ∈ Rn1×n2 , we denote by vec(A) the vector of size n1n2
obtained by stacking the columns of A.

2.2 ADDITIVE INDEX MODELS
We consider the non-linear regression task

yi = g(xi) + ε ,

for i = 1, .., n. Here yi ∈ R denotes a real-valued response
variable, xi ∈ [−1, 1]p is a normalized p-dimensional vector
of covariates, g is an unknown function in Rp → R and εi is
a white noise error term. We adopt the following regression
model

g(x) = µ+
r∑
j=1

fj(v
T
j x) , (1)

where µ ∈ R is the intercept, fj : R→ R are transfer functions
such that fj(0) = 0, and vj ∈ Rp are unknown weight
vectors. Hence, the regression model has the form of an
additive model applied to the derived covariates vTj x rather
than to the “raw” input variables x. In the literature, this
class of models is known as additive index models. An efficient
way to solve it is via the projection pursuit regression (PPR)
algorithm (Friedman and Stuetzle, 1981), however, it has
been found that without further constraints on the weight
vectors vj , the model can be difficult to interpret (a student
of one of the inventors of PPR even devoted her PhD thesis
to this subject (Morton, 1989)) and tends to overfit the data
– even for moderate values of r – when there is redundancy
in the inputs (Zhang et al., 2008). To address these issues, we
introduce a novel set of constraints on the weight vectors.

2.3 STRUCTURED DIMENSIONALITY REDUCTION
Let us formally introduce constraints (C1), (C2) and (C3)
on the weight vectors {vj}rj=1 in our model. Our approach
features structured dimensionality reduction as it effectively
reduces the dimensionality of the space of input variables
(with regard to the regression problem at hand) while incor-
porating structural properties of the inputs.

(C1) Groups. Let G = {g1, . . . , gL} be a set of L pairwise
disjoint subsets of {1, . . . , p}. Then,

∀j ∈ [r], ∃g ∈ G such that supp(vj) ⊆ g.

(C2) Convex combinations. The newly created variables
are obtained from a convex combination of the input
variables. That is,

∀j ∈ [r], ‖vj‖1 = 1, vj ≥ 0.

(C3) Disjoint supports. The input variables can take part in
at most one new variable. That is,

∀j, k ∈ [r], j 6= k, supp(vj) ∩ supp(vk) = ∅.

The constraint (C1) allows for partitioning the inputs
into different user-specified groups. Each group can consist,
for example, of variables of the same physical unit (e.g.,
degrees Celsius for temperature variables) or logical type.
The derived covariates are then constrained to combine
solely input variables from the same group, hence facili-
tating a meaningful interpretation. This constraint is crucial
for the interpretation of the model, as it permits to transfer
the physical meaning present in the input variables to
the derived covariates. Without constraint (C1), the model
would be allowed to combine variables of different physical
units (e.g., temperature and time), thereby creating new
derived covariates that are hardly interpretable by human
experts. Note that setting G = {g}, with g = {1, . . . , p}
corresponds to impose no groups, as (C1) is then satisfied
for any weight vector {vj}. We assume that the desired
number of derived variables rl for each group is given and
satisfies

∑L
l=1 rl = r. (C2) constrains the derived variables

to form a convex combination of the input variables. Thus,
the new variables can be seen as weighted (non-negative)
averages of the inputs. This facilitates the interpretation
compared to existing approaches which only impose a unit
`2 norm on the weight vectors. For example, in an electric
load forecasting problem with input variables representing
temperature measurements from different weather stations,
the constraint (C2) imposes derived covariates to be spatial
averages of weather stations putting more weight on regions
where demand is more sensitive to temperature. The dis-
joint support constraint (C3) prevents input variables from
contributing to more than one derived covariate, thereby
disentangling the different “causes” that generate the data.
By assigning each input variable to at most one derived
covariate (and hence one transfer function), the model be-
comes much easier to interpret, as the effect of the input
variable on the response variable can be understood from
the examination of the transfer function. Note that in models
that do not satisfy constraint (C3), it is very hard to track the
influence of the input variables on the final response vari-
able, as cancellations might systematically occur between
the different derived covariates.
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We denote by V the set of weight vectors that satisfy the
above constraints

V = {V = [v1| . . . |vr] such that {vj}rj=1 satisfy

(C1), (C2) and (C3)} .

We consider the regression model in Eq. (1), with the ad-
ditional constraint that the weight vectors {vj}rj=1 lie in
V . We call this regression model Structured Dimensionality
Reduction for Additive Models (SDRAM).

2.4 PRACTICAL CONSIDERATIONS
In this section, we further comment on the constraints
defined in the previous section from a modeling point of
view.

Choice of G. When using the SDRAM model, the set
of groups G is specified by the user. The set of groups is
typically chosen according to physical units of the input
variables. Indeed, as derived covariates are obtained as lin-
ear combinations of input variables, this allows to transfer
the physical interpretation of the input variables to the de-
rived covariates, and prevents combining two variables with
different units (e.g., a speed covariate (in meters per second)
and a temperature (in degrees)). In applications where G is
not known, one can set L = 1, and G = {{1, . . . , p}}, which
allows to combine all input variables together.

Constraint ‖vj‖1 = 1. From an implementation point
of view, enforcing ‖vj‖1 = 1, along with the normalization
of the input variables in [−1, 1] provides derived coordi-
nates that are also in [−1, 1], as |vTj x| =

∑p
k=1 |vjkxk| ≤

‖x‖∞‖vj‖1 ≤ 1. As the feature space is stable by the feature
extraction operation, the algorithm is easier to implement
and avoids extrapolation issues.

Non-negativity of the weights. The convex combina-
tion constraint (C2) allows an interpretation of the derived
covariates as average of input variables. Just like non-
negative matrix factorization (Lee and Seung, 1999) yields
models that are easier to inspect compared to traditional
matrix factorization, we also expect the non-negativity of the
weights to disallow cancellations among the input variables
and thus result in more interpretable models. It should be
noted moreover that the non-negativity assumption does not
prevent having input variables that having negative corre-
lation with the response variable, as the negative correlation
can be encoded in the transfer function. Note also that the
non-negativity is crucial for model identifiability, which we
will present in the next section.

In applications where non-negativity is not desired, the
constraint (C2) can be replaced by the linear constraint
‖v‖1 ≤ 1, and the algorithm we derive in the paper can still
be used after applying this straightforward modification.

2.5 MODEL IDENTIFIABILITY
In this section, we establish identifiability of the proposed
model under mild assumptions. This is an important result
both from a theoretical and practical perspective; in par-
ticular, models that lack identifiability exhibit redundancy
which makes it difficult to interpret them, since a model
with different parameters could describe exactly the same
relation between inputs and output. We first give a formal
definition:

Definition 2.1 (Identifiabilty). Assume that there exist
{(fj ,vj)}1≤j≤r and {(hj ,wj)}1≤j≤s such that

∀x ∈ Rp, µ+
r∑
j=1

fj(v
T
j x) = ν +

s∑
j=1

hj(w
T
j x) , (2)

where {vj}1≤j≤r and {wj}1≤j≤s satisfy the constraints (C1),
(C2) and (C3). Assume moreover that fj and hj are continuous
functions, and that fj(0) = hj(0) = 0 for all j. The model is
identifiable if

1) the intercepts agree, i.e. µ = ν,
2) the dimensions agree, i.e. r = s,
3) there exists a permutation π : [r]→ [r] such that

∀j ∈ [r],

{
fj = hπ(j)
vj = wπ(j)

. (3)

The following theorem establishes the identifiability of
SDRAM.

Theorem 2.2. Assume that there is at most one linear transfer
function, then SDRAM is identifiable.

Note that the condition of our theorem is weaker than
the one for (unconstrained) additive index models (Yuan,
2011). To prove Theorem 2.2, we first show that the theo-
rem holds whenever the transfer functions are quadratic.
We then use an approach similar to (Yuan, 2011) in order
to extend our result to general continuous functions. The
complete proof of Theorem 2.2, together with an argument
which establishes the necessity of the condition, can be
found in Appendix A.

3 LEARNING ALGORITHM
In this section, we formulate the learning problem for our
proposed model and derive an efficient algorithm for solv-
ing it.

3.1 FITTING PROBLEM
We consider the following learning problem

min
f1,...,fr∈F

V∈V

n∑
i=1

yi − r∑
j=1

fj(v
T
j xi)

2

+ Ω(f1, . . . , fr),

where F is a predefined functional space and Ω is a reg-
ularizer that operates on the transfer functions. To simplify
the exposition, we assume here and in the following that
the model intercept is zero. In the context of additive mod-
els, nonlinear transfer functions are commonly modeled as
smoothing splines (Wood, 2006; Hastie et al., 2009; Huang
et al., 2010; Ba et al., 2012), hence they take the form

∀j ∈ [r], fj(z) =
k∑
t=1

st(z)βjt

=
[
s1(z) . . . sk(z)

]
βj ,

where st : R → R denotes the t-th B-spline basis function,
βjt its associated coefficient, and k denotes the number
of spline basis functions. To simplify notation, we have
dropped an extra subscript j by assuming that the same
spline basis is used for all covariates. Using this represen-
tation, the B-spline coefficients βj fully specify the transfer
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functions. Rewriting the problem in matrix form, we obtain
the following constrained least-squares problem

min
β∈R(kr),V∈V

‖y − S(V)β‖22 + Ω(β) ,

with β = [βT1 , . . . ,β
T
r ]T , and S(V) =

[S1(v1)| . . . |Sr(vr)] ∈ Rn×(kr) where

Sj(vj) =


s1(vTj x1) . . . sk(vTj x1)
s1(vTj x2) . . . sk(vTj x2)

...
...

...
s1(vTj xn) . . . sk(vTj xn)

 ∈ Rn×k .

We choose the regularization function

Ω(β) = Ωridge(β) + Ωsmooth(β)

where Ωridge(β) = ν‖β‖22, with the parameter ν > 0
determining the strength of the ridge regularizer, and

Ωsmooth(β) = λ

∫
f ′′(x)2dx = λβTCβ ,

with the matrix C = (
∫
s′′i (x)s′′j (x)dx)i,j and λ > 0. Note

that the ridge regularization term favors vectors β with
small magnitude, while the smoothing term favors trans-
fer functions with small second derivatives (i.e., functions
that are closer to linear ones). Putting the different terms
together, our learning problem is given by

(P): min
β∈R(kr),V∈V

‖y − S(V)β‖22 + λβTCβ + νβTβ .

3.2 LEARNING ALGORITHM

In this section we derive an algorithm for solving the
learning problem (P). From an optimization perspective, the
learning problem is challenging as the weight matrix V is
involved nonlinearly in the least-squares objective function.
Moreover, the constraint V ∈ V imposes new difficulties
compared to the unconstrained fitting problem. We propose
an alternating iterative method, where we estimate sequen-
tially the coefficient vector β and the weight matrix V. We
begin by noting that, for a fixed V, (P) reduces to a linear
least squares problem that can be solved efficiently. The
problem of finding V for a fixed coefficient vector β, how-
ever, is much more challenging. Following a Gauss-Newton
approach, we linearize the functions st(vTj xi) around the
current estimates v0

j as

st(v
T
j xi) ≈ st((v0

j )
Txi) + (vj − v0

j )
T∇v st(v

Txi)
∣∣∣
v=v0

j

.

By plugging this approximation into each entry of S(V), we
obtain

S(V) ≈ S(V0) + S̃(V) ,

where S̃(V) is a matrix that can be written as a linear func-
tion of the weight vectors. Therefore, for any fixed vector β,
there exist a matrix M and a vector b not depending on V
such that S̃(V)β = b + Mvec(V). The detailed derivations
can be found in Appendix B. Using this approximation, the

Algorithm 1 SDRAM learning algorithm
1. Initialize the entries of V randomly using iid draws
from a uniform distribution on [0, 1], and divide by the
sum of the weights to satisfy (C2).
2. For m = 1, . . . , N ,
2.1 Update β by solving(

S(V)TS(V) + λC + νI
)
β = S(V)Ty .

2.2 Update V by solving the mixed-integer program
(P’).

problem (P) for fixed β reduces to the constrained linear least
squares problem

min
V∈V

‖ỹ −Mvec(V)‖22 , (4)

where ỹ = y − S(V0)β − b. Clearly, the difficulty of
the above least squares problem comes from the constraint
V ∈ V . In order to handle condition (C1), note that for
any group g, the constraint supp(vj) ⊆ g is equivalent to
vj |g = 0. Therefore, as the number of derived covariates
rl belonging to group l is assumed to be known, (C2) is
handled by imposing the constraint vj |g = 0 for the rl
derived covariates that belong to group g. This constraint is
linear, and can be directly integrated into the optimization
procedure. Similarly, the simplex constraint (C2) is linear
in the weight vectors, thus it can be efficiently handled
in the optimization. Finding an efficient formulation of
the disjoint support constraint (C3) – known in optimiza-
tion as a complementarity constraint (Jeroslow, 1978; Hu
et al., 2008) – is however more challenging. We reformulate
the constraint by introducing a matrix with binary entries
D =

[
d1 . . . dr

]
, and obtain the following equivalent

mixed-integer program formulation of the problem in Eq. (4)

(P’): min
V∈Rp×r

D∈{0,1}p×r

‖ỹ −Mvec(V)‖22

subject to (C1), (C2) and

{∑r
j=1 dj ≤ 1 ,

∀j ∈ [r],vj ≤ dj ,

where 1 is a vector with all entries equal to one. The
introduced binary variable D encodes the supports of the
weight vectors. The constraint

∑r
j=1 dj ≤ 1 ensures that

there is at most one nonzero value in each line of V. Note
that, when djl = 0, the constraint vjl ≤ djl together with
the positivity of the weight vectors imposes vjl = 0. This
constraint becomes redundant, however, when djl = 1 as
the weights are upper bounded by 1 as a consequence of
the simplex constraint (C2).

The mixed-integer program (P’) is solved using the
branch-and-cut algorithm (Wolsey, 1998, Chapter 9.6),
which is now efficiently implemented in many optimization
toolboxes. Our learning algorithm is summarized in Algo-
rithm 1.

4 EXPERIMENTS
In this section, we evaluate our proposed algorithm quali-
tatively and quantitatively on a toy example and two real-
world forecasting problems.
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4.1 IMPLEMENTATION AND RUNTIME

We implemented SDRAM in MATLAB and Python envi-
ronments. To solve the mixed integer program, we used
the MOSEK toolbox1 in the MATLAB environment and the
IBM ILOG CPLEX in the Python environment. Alternative
open source toolboxes exist, e.g. GLPK2. On a laptop with
an Intel i7 CPU, the mixed-integer program takes less than
one minute to solve for all following experiments.

4.2 BASELINE METHODS AND PERFORMANCE MET-
RICS

We compare our model to the following baseline methods:
• Additive Models (AM), with the following variants:

AM1 where we fit one transfer function to each input
variable, and AMi for i = 2, 3, where we fit one transfer
function to variables selected or designed using a priori
knowledge of the specific problem. The regularization
parameters are set via a cross-validation procedure.

• Projection Pursuit Regression (PPR): We fit an uncon-
strained additive index model via the projection pursuit
regression algorithm (Friedman and Stuetzle, 1981). We
use the ppr function from the stats R-package3.

• Sparse Additive Models (SpAM) (Ravikumar et al.,
2009): We use the recent computationally efficient im-
plementation of (Zhao and Liu, 2012), and set the
sparsity parameter with a cross-validation procedure.

• PCA + Additive Model (PCA+AM): For this two-step
approach, PCA is first applied to reduce the dimension
of the problem to r variables. Then, we fit an additive
model on the derived variables.

• Sparse PCA + Additive Model (SPCA+AM): Similar to
PCA+AM, except that sparse PCA (Zou et al., 2006) is
used for the dimensionality reduction step. We used the
sparse PCA implementation in (Sjöstrand et al., 2012),
with a sparsity value that maximizes the performance
of this method.

Several metrics are used to compare the different methods:
• Forecasting accuracy: We compute the root mean

square error, defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 , (5)

where yi and ŷi, for i = 1, 2, . . . , n, denote the true and
predicted outputs.

• Weight matrix error: In the experiments on synthetic
data, where the true weight vectors are known, we
assess the consistency of our method by considering
the following metric

E(V,VGT ) =
1

pr

r∑
j=1

p∑
l=1

|vjl − vGTjl | , (6)

where V and VGT are respectively the estimated and
ground truth weight matrices.

1. http://www.mosek.com/products/mosek
2. https://www.gnu.org/software/glpk/
3. http://stat.ethz.ch/R-manual/R-devel/library/stats/html/ppr.
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Fig. 1. (a) to (c): Transfer functions estimated using our approach (solid
red line) and ground truth (dashed black line). The blue dots represent
noisy samples used to train the model (n = 100). (d) Weight matrix
error E(V,VGT) as function of the sample size n. (e) RMSE between
estimated signal and testing signal generated according to Eq. (7), for
the different approaches. The results of experiments (d) and (e) are
averaged over 300 trials.

Besides these performance measures, we also report the
“complexity” of the different methods, which is measured
by the number of learned functions. We finally report the
sparsity of the weight matrix V.

4.3 TOY EXAMPLE
In our first experiment, we generate n samples using the
following additive model

yi =f1(0.5xi,1 + 0.25xi,2 + 0.25xi,3) + f2(xi,4)

+ f3(0.5xi,5 + 0.5xi,6) + εi , (7)

where f1(x) = 2 exp(x), f2(x) = 2 sin(πx), f3(x) = 10x2,
the error terms εi are iid samples from a standard normal
distribution, and the covariates x1, . . . , x6 are iid samples
from a uniform distribution on [−1, 1]. For our method, G
is set as the trivial group {1, . . . , 6} (i.e. constraint (C1) is
not used here as we allow for any combination of the p = 6
features) and r = r1 = 3. We fix the number of iterations of
our method to N = 20.

Figure 1 (a-c) shows the estimated transfer functions
using our proposed method for a sample of size n = 100,
together with the true transfer functions. As can be seen,
our method yields good approximations of the true transfer
functions, despite the relatively small sample size. We then
evaluate the ability of the algorithm to estimate the true
weight matrix V. Figure 1(d) shows the metric E(V,VGT )
depending on the number of samples n. For low n, the
error is relatively high (about the same order as the entries
in VGT ). As the sample size increases, the error becomes
one order of magnitude lower than the entries of VGT .
Finally, we evaluate the RMSE on a test set of n = 100
samples generated according to Eq. (7). Figure 1(e) shows
that our approach yields a lower RMSE than AM (learned
with 6 transfer functions, one per covariate), PPR, SpAM, as
well as unsupervised dimensionality reduction techniques
(PCA+AM and SPCA+AM) with 3 derived covariates. Note

http://www.mosek.com/products/mosek
https://www.gnu.org/software/glpk/
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/ppr.html
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/ppr.html
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Fig. 2. Training and testing RMSE versus number of iterations N (left),
and number of restarts (right) for the example in Sec. 4.3. The results
are averaged over 50 trials.

that our approach yields a better performance than less con-
strained models (e.g., PPR) as the introduced constraints act
as a regularizer that prevents overfitting, and significantly
reduce the model complexity.

We now examine the influence of the number of itera-
tions N on the performance of SDRAM. Figure 2(a) shows
the training and testing RMSE with respect toN . After a few
iterations, the algorithm reaches a stable solution. Setting
N = 20 is therefore a conservative choice that we use
in all experiments. Moreover, similarly to any nonconvex
procedure, our algorithm is sensitive to initialization. To
further evaluate this point, we illustrate in Fig. 2(b) the
training and testing RMSE with respect to the number of
restarts of SDRAM (for each restart, SDRAM is initialized
randomly, and the instance yielding the lowest training
RMSE is selected). It can be seen that using multiple restarts
improves the performance of SDRAM on this example; we
set the number of restarts to 3 in the following experiments.

4.4 SHARED BICYCLE SYSTEM DATA

In our second experiment, we consider a real-world regres-
sion problem: predicting the number of available bikes in
the shared bicycle system of Dublin, Ireland. More specifi-
cally, the goal is to provide one-hour ahead forecasts of bike
availability for all 44 bicycle stations across the city, using
as inputs weather data, calendar information (e.g., weekday,
hour of the day) and the lagged number of available bikes
at all stations. A key challenge is to effectively capture
correlations of bike availability across different stations and
incorporate those into the predictions.

The dataset contains the number of available bikes for all
44 bike stations in the city of Dublin4, at a sampling rate of 5
minutes, over a time period of 351 days. We use the first 200
days for training and the remaining 151 days for testing. We
consider the input variables “Time of Day”, “Day of Week”
and “Temperature”, as well as the number of available bikes
at all 44 stations one hour before prediction, hence p = 47
in this experiment. We induce the following groups

G ={{“Time of Day”}, {“Temperature”},
{“Day of Week”}, {“Lagged availability”}} ,

and use our algorithm to derive two covariates from the
“Lagged availability” group (i.e., we set r1 = r2 = r3 = 1,

4. http://www.dublinbikes.ie

and r4 = 2). We set the smoothing and ridge regularization
parameters equal to λ = ν = 1. Using cross-validation to
optimize these parameter values is likely to improve the
accuracy, but comes at extra computational costs.

We denote by AM1 and AM2 two additive models
where AM1 uses all p = 47 input variables as covariates,
while AM2 only uses 4 covariates, namely “Time of Day,
“Temperature”, “Day of Week” and “Lagged availability
at the station to predict”. In other words, AM2 ignores
the number of available bikes at other stations. Table 1
provides a comparison of the different methods in terms
of performance and model complexity, measured by the
number of learned transfer functions. While PPR outper-
forms SDRAM on the training set, its performance is worse
on the testing set. Confirming the findings in Zhang et al.
(2008), this result suggests that, without imposing any con-
straints, PPR tends to overfit the data. Note that SDRAM
also outperforms AM1 and AM2 on the testing set. While
AM2 provides an average testing accuracy close to SDRAM,
it handles the stations independently and therefore does not
provide insights into correlations among different stations.
Moreover, our approach compares favorably to SpAM, even
if SDRAM learns much less functions. SDRAM also sig-
nificantly outperforms unsupervised dimensionality reduc-
tion approaches PCA+AM, and SPCA+AM5. The paired
Wilcoxon test shows that the improvement of SDRAM over
all these methods is statistically significant at a significance
level of 0.01. We also compared SDRAM with SDRAM-C2,
a variant of the proposed approach where only constraint
(C2) is active (i.e., we set L = 1 for (C1) and (C3) is
ignored). SDRAM-C2 can be seen as a variant of Sparse
PPR (Zhang et al., 2008), where the `1 norm of the weights
is used as a regularizer to achieve weight sparsity. Table
1 shows that SDRAM-C2 achieves comparable accuracy
with SDRAM6. Despite not having a direct impact on
the accuracy on this task, constraints (C1) and (C3) are
nevertheless crucial to obtain an interpretable model. To
illustrate this point, Figure 3 displays the weight matrices
obtained using SDRAM, PPR, PCA+AM and SDRAM-C2
for one particular bike station (Station 1). While competing
methods yield a dense and unstructured matrix, the solution
of SDRAM is structured and sparse. Quantitatively, SDRAM
yields for this station a weight matrix with 83% zero entries,
while the matrices obtained via PPR and PCA methods
are fully dense, and SDRAM-C2 provides a matrix with
20% zeros. More importantly, PPR, PCA and SDRAM-C2
provide unstructured weight matrices that combine inputs
of different physical types, e.g., temperature, time of day
and number of available bicycles; this makes it virtually
impossible to interpret the relations between inputs and
outputs in a meaningful way. Conversely, our method keeps
variables of different physical types separated. To highlight
the interpretability of the obtained solution, Fig. 4 shows
maps with the estimated weights given to the lagged input
variables for the two derived covariates, along with the

5. The results for SPCA+AM are not reported in the Table 1, as
the best accuracy for this experiment is reached when the sparsity
parameter is equal to p = 47, which is equivalent to PCA+AM.

6. The difference of testing average RMSE between SDRAM and
SDRAM-C2 in Table 1 is not statistically significant using the Wilcoxon
test.

http://www.dublinbikes.ie
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TABLE 1
Average RMSE on training and testing sets, average number of learned functions and average number of non-zero elements in V over 44 stations.

The symbol ∗ indicates testing RMSEs that are significantly higher than the ones obtained by SDRAM, at a significance level of 0.01.

Method RMSE Complexity

Training Testing # functions V sparsity

SDRAM 3.21 3.21 5 79%

PPR 3.07 3.31∗ 5 0%

Additive models AM1 3.05 3.34∗ 47 NA
AM2 3.38 3.26∗ 4 NA

SpAM 3.25 3.28∗ 38.4 NA

PCA + AM 5.20 5.32∗ 5 0%

SDRAM-C2 3.02 3.16 5 20%

Fig. 3. Weight matrix V learned using SDRAM, PPR, PCA, and
SDRAM-C2. The x axis denotes the derived variable number, and the y
axis is the input variable number. The first three input variables are “Time
of Day”, “Temperature” and “Day of Week”. The remaining 44 variables
are the lagged variables.

associated transfer functions. In these maps, the station to
predict (Station 1) is denoted with a big dot. While the first
transfer function represents a positive correlation between
the number of available bikes at time t − 1h and at t,
the second transfer function shows a negative correlation.
Interestingly, one can see that the first derived variable
essentially corresponds to the lagged number of available
bikes at the station to predict (Station 1). On the other hand,
the second derived variable combines several stations that
are negatively correlated with the response variable. Note
that this intuitive separation of the covariates is essentially
due to the disjoint support constraint (C3) which allows to
disentangle positive and negatively correlated stations. To
further show this point, Fig. 5 shows the estimated maps
when constraint (C3) is not active. Unlike in Fig. 4, some
stations are active in both maps (e.g., see the station repre-
sented with a big dot that is maximally active in both cases).
This results in entangled positive and negative correlation
effects for each station, which leads to a very difficult inter-
pretation as cancellations systematically occur between the
different transfer functions. On the other hand the obtained
maps in Fig. 4 can be readily interpreted: the bike station for
which the predictions are computed lies in the commercial
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Fig. 5. Weights learned using our method without imposing constraint
C3. Note that some stations are active in both maps. For example, the
station where the prediction occurs (represented by a big dot) is the
maximally active station in both maps.

heart of the city and close to important transportation hubs.
The negative correlation is due to the mobility patterns
of Dublin commuters: the three top weighted stations are
Smithfield North, Pearse and Leinster Street. The first one
is located in a residential area and the latter two are on
a university campus. In mornings and evenings, people
commute by bike from their homes in the residential area to
their working places in the city center. In addition, students
pick up bikes at this tranportation hub to complete the last
mile of their journey to the university campus.

4.5 ELECTRIC LOAD FORECASTING

In our last experiment, we apply our algorithm to short-
term electric load forecasting. Note that additive models
have been quite successfully applied to this task previously,
with covariates including calendar information, weather
data as well as auto-regressive and lagged features (Fan and
Hyndman, 2012). A difficult problem is how to optimally
incorporate localized weather measurements, i.e., how to
weight the input from weather stations in different regions
in order to predict electric load at the state level. The
authors of (Goude et al., 2014) state this as an open problem
and explicitely mention the need for automatic covariate
selection methods. In (Ba et al., 2012), weather stations are
weighted according to the relative load in that particular
region. Similarly, one could consider socio-economic indica-
tors (population density, type of heating in different parts
of the state, etc), however this information is not always
available. Our solution is to simulateously learn the weights
and transfer functions from the data.

The dataset comes from two sources: hourly electric load
data for the state of Vermont, USA, from ISO New Eng-
land7 and temperature data from 40 weather stations from
MADIS8. The prediction task is to forecast electrical loads 24
hours ahead of time. The input variables in our model are
“Time of Year”, “Time of Day”, “Day of Week”, “Lag load”
and “T”, i.e., the temperatures from the 40 weather stations.
Similarly to the model in (Fan and Hyndman, 2012), we also
consider “Tlag24” (the temperatures from the 40 weather
stations lagged by 24 hours), “Tmean24”, “Tmin24”, “Tmax24”
(the mean, minimum and maximum over the past 24 hours

7. http://www.iso-ne.com/isoexpress/web/reports/
load-and-demand/-/tree/dmnd

8. http://madis.noaa.gov/
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Fig. 6. RMSE of the PPR method as a function of the number of derived
covariates.

for each station) and “Tmean7” (the mean over the past seven
days for each station). We enforce the following groups in
the derivation of the covariates

G ={{“Time of Year”}, {“Time of Day”},
{“Day of Week”}, {“Lag load”}, {T},
{Tlag24}, {Tmean24}, {Tmin24},
{Tmax24}, {Tmean7}},

and derive one variable per group in our method (i.e., we
set rl = 1 for l ∈ [10]). The dataset is split as follows:
omitting any time points for which we have missing load
or temperature values, we use 9013 observations between 4
January, 2011 and 31 December, 2012 for training, and 4149
observations between 1 January, 2013 and 31 January, 2014
for testing.

We denote by AM1-3 the three additive models defined
as follows. AM1 learns one transfer function for each of
the 244 input variables. AM2 and AM3 learn one transfer
function for each of the 10 groups, where AM2 uses the
average of the 40 temperature inputs as covariates, and AM3
selects the inputs from the city of Burlington, which is the
area with the highest population density in Vermont.

Table 2 shows that SDRAM provides the best perfor-
mance: it has the lowest testing RMSE, a limited number
of transfer functions, and provides a sparse dimensionality
reduction matrix. The second lowest testing RMSE is ob-
tained by SpAM. However, 1) SpAM learns approximately
8 times more functions than than SDRAM and 2) SpAM
acts as a feature selection algorithm, and does not derive
covariates out of existing input variables. Note also that
the proposed method compares favorably to SDRAM-C2,
which only considers constraint (C2). It should be noted
moreover that SDRAM-C2 systematically yields derived co-
variates that combine input variables with different physical
units, leading to a loss of interpretability. Moreover, input
variables take part in many derived covariates as (C3) is not
active, which makes it difficult to track the effect of input
variables on the response variable. AM1 and PPR methods
suffer from overfitting as they provide good training accu-
racy but do not generalize well on the test set. To further
study this behaviour, we evaluated the testing accuracy of
PPR as a function of the number of derived covariates (see
Fig. 6). We have observed that PPR strongly overfits the data
when r ≥ 3, leading to very poor testing accuracy. Hence,

http://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/dmnd
http://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/dmnd
http://madis.noaa.gov/
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TABLE 2
Model accuracy (RMSE) and complexity on the electric load forecasting problem.

Method RMSE Complexity

Training Testing # functions V sparsity

SDRAM 26.6 27.6 10 98%

PPR r = 1 35.8 45.8 1 0%
r = 2 31.9 44.2 2 0%

r = 10 16.7 72.5 10 0%

Additive models AM1 24.4 28.3 244 NA
AM2 28.1 28.8 10 NA
AM3 27.9 28.5 10 NA

SpAM 26.0 28.1 78 NA

PCA + AM r = 10 39.2 39.7 10 0%
r = 100 34.6 40.8 100 0%

SPCA + AM r = 10 28.7 31.2 10 96%
r = 100 27.1 29.6 100 96%

SDRAM-C2 26.3 28.3 10 9.1%

the constraints on V are crucial to avoid overfitting. As for
PCA + AM and SPCA + AM, it can be noted that these
unsupervised dimensionality reduction approaches provide
significantly lower accuracy than SDRAM.

To further study the interpretability of the obtained
solution, Fig. 7 shows the maps of the weights associated
with the different weather stations in the derivation of
the temperature-related covariates. Interestingly, for most
derived covariates, our algorithm selects stations in the
Burlington area, which has the highest population density in
Vermont. Moreover, there is also a representative selection
of stations in the Western/Eastern part of Vermont, which
have warmer/colder climate, respectively9.

5 CONCLUSION

We proposed a novel framework for learning additive mod-
els with a moderate number of covariates derived from a
potentially large set of input variables. Our approach allows
for the representation of structure in the input variables,
which helps to prevent overfitting and leads to models that
provide practical insights into relations between inputs and
output. We established identifiability of the proposed model
under mild assumptions on the transfer functions. We de-
rived an efficient learning algorithm that alternates between
a regularized least squares problem and a mixed-integer
problem. We conducted experiments on synthetic and real-
world data; the results showed that SDRAM outperforms
baseline methods and highlighted the importance of the
proposed contraints. Our work significantly broadens the
applicability of additive models to high-dimensional prob-
lems while maintaining their interpretability and potential
to provide practical insights.

9. http://www.nws.noaa.gov/climate/local data.php?wfo=BTV,
see Vermont Annual Mean High/Low Temperature
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APPENDIX A
PROOF OF THEOREM 2.2
A.1 Preliminary results
Our proof relies on a number of results that we give in this sec-
tion. To start with, the following result establishes identifiability
when we have only one ridge function.

Proposition A.1. Suppose that f and h are functions (not identically
zero) such that f(0) = h(0) = 0. Assume that

∀x ∈ Rp, f(vTx) = h(wTx) , (8)

with v and w non-negative vectors with unit `1 norm. Then v = w,
and f = h.

Proof. We proceed by contradiction, and assume that v and
w are not collinear. In other words, assume that span(v) 6=
span(w), which is equivalent to span(v)⊥ 6= span(w)⊥. More-
over, span(v)⊥ is not strictly included in span(w)⊥, as both
subspaces have the same dimension. Therefore, there exists
x0 such that x0 ⊥ v and x0 /∈ span(w)⊥. In other words,
vTx0 = 0, and wTx0 6= 0. For any µ ∈ R, we therefore have

f(vT (µx0)) = f(µvTx0) = f(0) = 0 = h(wT (µx0))

= h(µwTx0︸ ︷︷ ︸
6=0

) . (9)

We therefore obtain h(z) = 0 for all z, which contradicts our
assumption. Hence, we conclude that v = λw for some non-
negative real value λ. Since ‖v‖1 = ‖w‖1, we therefore get
λ = 1, and v = w. Hence, f = h.

Using this result, we establish identifiability when ridge
functions are quadratic

http://www.nws.noaa.gov/climate/local_data.php?wfo=BTV
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Fig. 7. Electric load forecasting: weights learned by SDRAM for the various temperature-based covariates, shown on a map of Vermont with the 40
temperature stations.

Proposition A.2. Let {vj}rj=1 and {wj}sj=1 be weight vectors that
satisfy constraints (C1), (C2) and (C3). Suppose that

∀x ∈ Rp,
r∑
j=1

fj(v
T
j x) =

s∑
j=1

hj(w
T
j x) , (10)

where {fj}rj=1 and {hj}sj=1 are quadratic functions with at most
one linear function. We assume moreover that the functions are not
identically zero and satisfy fj(0) = hj(0) = 0. Then, r = s and
there exists a permutation π such that, for all j ∈ [r]

vj = wπ(j), fj = hπ(j) . (11)

Proof. Notice first that in order to prove identifiability in this
case, it is sufficient to prove the following statement

∀j ∈ [r], ∃π(j) such that supp(vj) = supp(wπ(j)) . (12)

Indeed, if Eq. (12) holds, then by evaluating Eq. (10) at x such
that supp(x) = supp(vj), we get

fj(v
T
j x) = hπ(j)(w

T
π(j)x) ,

where we used the disjoint supports assumption and the fact
that fj(0) = hk(0) = 0 for all j, k. The above equality general-
izes to any x in Rp as vj and wπ(j) have zero entries outside of
supp(vj)

∀x ∈ Rp, fj(v
T
j x) = hπ(j)(w

T
π(j)x) . (13)

We therefore obtain from Proposition A.1 that vj = wπ(j) and
fj = hπ(j). Note moreover that π is one-to-one as π(j1) = π(j2)
would imply supp(vj1) = supp(vj2) which contradicts the
disjoint support assumption. We therefore get r = s.

We now focus on proving Eq. (12). To do that, assuming
the functions are quadratic, the main idea is to look at the
monomials of degree 2 (i.e., of the form xaxb) in Eq. (10). The
equality of the monomials in Eq. (10) imposes

⋃
j supp(vj) ×

supp(vj) =
⋃
j supp(wj) × supp(wj), from which we can see

that the supports of vj and wj have to be the same (up to
a permutation), due to the disjoint support constraint. More
formally, let us proceed by contradiction and assume that Eq.
(12) does not hold. There exists j0 for which

∀j ∈ [s], supp(vj0) 6= supp(wj) . (14)

Then,

∀x ∈ Rp

supp(x) = supp(vj0)

}
, fj0(v

T
j0x) =

s∑
j=1

hj(w
T
j x) . (15)

We first examine the case where fj0 is linear. If this holds,
then the right hand side of Eq. (15) also has to be linear.
Since there is at most one linear function, the above equality
becomes avTj0x = bwT

j1x for all x with the same support as vj0 ,
for some a, b, and index j1. If supp(vj0) 6⊂ supp(wj1), then
there exists k such that vj0k 6= 0 and wj1k = 0. By setting
x = ek, we get avj0k = 0, and therefore a = 0. Since the
functions are not identically zero, this cannot hold and we have
supp(vj0) ⊂ supp(wj1). In that case, we have bwT

j1x = avTj0x
for all x such that supp(x) = supp(wj1), and we obtain b = 0
for the same reasons above. Therefore, fj0 cannot be linear.

Let us now examine the case where fj0 is a quadratic (non-
linear) function. Assume first that supp(vj0) 6⊂ supp(wj) for
all j. If Eq. (15) is to hold, there exists at least one j such that
supp(vj0) ∩ supp(wj) 6= ∅, and let j1 be such an index. Denote
by k an element in supp(vj0) ∩ supp(wj1). Since supp(vj0) 6⊂
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supp(wj1) there exists an element l ∈ supp(vj0) and not in
supp(wj1). Therefore, the cross-term xkxl belongs to the left
hand side of Eq. (15), but not to the right hand side. This cannot
hold, and we conclude that there exists an element j1 such
that supp(vj0) ⊂ supp(wj1). Note that we have hj1(w

T
j1x) =∑

j fj(v
T
j x) for all x such that supp(x) = supp(wj1). As

before, there exists an element k ∈ supp(vj0) ∩ supp(wj1),
and l ∈ supp(wj1), but l /∈ supp(vj0). Therefore, the previous
equality has the cross-term xkxl on the left hand side, but
not on the right hand side. This concludes the proof of the
proposition.

In order to extend our proof from quadratic ridge functions
to general continuous functions in Section A.2, we rely on the
following result from Khatri and Rao (1968).

Lemma A.3. Consider the functional equation

φ1(α
T
1 t) + · · ·+ φr(α

T
r t) = ξ1(t1) + · · ·+ ξp(tp)

defined for |ti| ≤ δ, i = 1, . . . , p, where δ > 0, t represents the
column vector of variables t1, . . . tp, and α1, . . . ,αr are the column
vectors of a p × r matrix A. Let A be of full column rank such that
each column has at least two non-zero entries. Then, φ1, . . . , φr and
ξ1, . . . , ξp are all quadratic functions.

A.2 Proof of Theorem 2.2
Let us note F , {f : R → R ; f continuous, f(0) =
0 and f is not identically zero}. Let us assume {(fj ,vj) ∈ F ×
Rp}1≤j≤r and {(hj ,wj) ∈ F × Rp}1≤j≤s are such that

(Hr) :



r, s ≤ p ,
∀x ∈ Rp, µ+

∑r
j=1 fj(v

T
j x) = ν +

∑s
j=1 hj(w

T
j x) ,

{vj}1≤j≤r satisfy the constraints (C1), (C2) and (C3) ,
{wj}1≤j≤s satisfy the constraints (C1), (C2) and (C3) ,
At most one fj (and one hj) is linear .

First, using x = 0 gives µ = ν.
Without loss of generality, we also assume r ≤ s. We

proceed by induction on r to show that the following property

(Pr) : (Hr) implies identifiability

holds for all r.
A.2.0.1 Initialization (r = 1): First we complete the

set of orthogonal vectors {wj}1≤j≤s in an orthogonal basis of
Rp and note W , (w1, . . . ,wp). We also define uj , W−1vj
for 1 ≤ j ≤ r. We have

∀x ∈ Rp, f1(v
T
1 x) =

s∑
j=1

hj(w
T
j x) , (16)

∀x ∈ Rp, f1(u
T
1 W

Tx) =

s∑
j=1

hj(e
T
j W

Tx) , (17)

where ej is the vector with all zero elements, except the jth
element is equal to one.

Now we do the change of variable z = WTx and obtain

∀z ∈ Rp, f1(u
T
1 z) =

s∑
j=1

hj(zj) . (18)

Setting z = zkek, we get

For 1 ≤ k ≤ s : ∀zk ∈ R, f1(u1kzk) = hk(zk) , (19)
For s < k ≤ p : ∀zk ∈ R, f1(u1kzk) = 0 . (20)

Note that if u1k = 0 for some 1 ≤ k ≤ s, then using equation
(19) would imply that hk = 0, which is impossible since hk ∈ F .
Also, if u1k 6= 0 for some s < k ≤ p, then using equation
(20) would imply f1 = 0, which is impossible since f1 ∈ F .

So we have u1 = (u11, ..., u1s, 0, . . . , 0) with u11, . . . , u1s 6= 0.
Assuming s > 1, we take z = (z1, z2, 0, . . . , 0) and using (18)
and (19) we get

∀z1, z2 ∈ R, f1(u11z1 + u12z2) = h1(z1) + h2(z2)

= f1(u11z1) + f1(u12z2) .
(21)

Therefore f1 satisfies Cauchy’s functional equation, so it is Q-
linear. Since it is also continuous, f1 is (R-)linear, and by (19) so
are h1 and h2. This is impossible, so s = 1 = r. Therefore we
have u1 = λe1 and (18) becomes

∀z1 ∈ R, f1(λz1) = h1(z1) . (22)

We also get v1 = Wu1 = λWe1 = λw1. Since ‖v1‖1 =
‖w1‖1 = 1, we get λ = ±1. The positivity of v1 and w1 gives
λ = 1, and thus v1 = w1 and f1 = h1.

A.2.0.2 Induction: Now let us assume the hypotheses
(Hr+1) and (Pr) hold. The strategy is to show that fr+1 = hs
and vr+1 = ws (up to a permutation of the terms), and (Hr)
holds. Calling (Pr) would then terminate the proof of (Pr+1).

The same change of variable as in the initialization gives

∀z ∈ Rp,
r+1∑
j=1

fj(u
T
j z) =

s∑
j=1

hj(zj) . (23)

First case: all {uj}1≤j≤r+1 have at least two non-zero en-
tries. Then, using Lemma A.3, all ridge functions are quadratic.
If the ridge functions contain at most one linear function, our
model is identifiable according to Proposition A.2. Otherwise,
the assumption is not satisfied.

Second case: there exists one uj with one non-zero entry.
Without loss of generality, let us say this uj is ur+1, and with
a permutation of coordinates take ur+1 = λes, for some λ.
Using the equality vr+1 = Wur+1 = λws and the unit norm
constraints on vr+1,ws we get λ = 1. We therefore have ur+1 =
es, and vr+1 = ws. Note also that

∀j ∈ [r], vTj vr+1 = vTj ws = (Wuj)
Tws

= uTj es‖ws‖22
= ujs‖ws‖22 , (24)

where we have used the fact that the columns of W are
orthogonal. Since the vjs are orthogonal to each other, we have
vTj vr+1 = 0, and therefore ujs = 0 for all j ∈ [r] as ws is a
nonzero vector. By rewriting Eq. (23) and setting zs = 0, we
have

∀z ∈ Rp

zs = 0

}
,

r∑
j=1

fj(u
T
j z) =

s−1∑
j=1

hj(zj) , (25)

Moreover, since ujs = 0 for all j ∈ [r], the above equality is
valid for all z ∈ Rp, and we have

∀z ∈ Rp,
r∑
j=1

fj(u
T
j z) =

s−1∑
j=1

hj(zj) . (26)

Using the change of variables, we therefore get

∀x ∈ Rp,
r∑
j=1

fj
(
vTj x

)
=

s−1∑
j=1

hj(w
T
j x) . (27)

which corresponds to (Hr). By calling (Pr), we have r = s − 1
and there exists a permutation π : [r]→ [r] such that

∀j ∈ [r], fj = hπ(j), vj = wπ(j) . (28)

We therefore have fr+1(v
T
r+1x) = hs(w

T
s x), and using the

equality vr+1 = ws, we conclude that fr+1 = hs. (Pr+1)
therefore holds.
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A.3 Tightness of the condition in Theorem 2.2
We give the following counter-example to show that the as-
sumption requiring at most one linear transfer function is
necessary

∀x ∈ R3,
1

2

([
1 0 0

]
x
)
+
([
0 1

2
1
2

]
x
)

=
([

1
2

1
2

0
]
x
)
+

1

2

([
0 0 1

]
x
)
. (29)

The above model is unidentifiable as the left-hand side and
right hand side models are equal for all x ∈ R3, yet the model
parameters are different. Note also that the weight vectors in
the above example are admissible as they satisfy the constraints
of our model.

We finally highlight the fact that, unlike the general (un-
constrained) PPR model where identifiability does not hold
for quadratic transfer functions Yuan (2011), the proposed
(constrained) model is identifiable in that case.

APPENDIX B
DERIVATION OF THE OBJECTIVE FUNCTION LIN-
EARIZATION

In this section, we give the derivations used in our optimization
algorithm in detail. Recall that our regression problem is given
as follows

(P): min
β∈R(kr),V∈V

‖y − S(V)β‖22 + λβTCβ + νβTβ .

We focus on solving (P) for V with a fixed β. We linearize the
functions st(vTj xi) around v0

j

st(v
T
j xi) ≈ st((v0

j )
Txi) + (vj − v0

j )
T∇v st(v

Txi)
∣∣∣
v=v0

j

= st((v
0
j )
Txi) + (vj − v0

j )
Txis

′
t((v

0
j )
Txi) .

Plugging this approximation in Sj(vj), we get

Sj(vj) =


s1(v

T
j x1) . . . sk(v

T
j x1)

s1(v
T
j x2) . . . sk(v

T
j x2)

...
...

...
s1(v

T
j xn) . . . sk(v

T
j xn)


≈ Sj(v

0
j )

+

(vj − v0
j )
Tx1s

′
1((v

0
j )
Tx1) . . . (vj − v0

j )
Tx1s

′
k((v

0
j )
Tx1)

...
...

...
(vj − v0

j )
Txns

′
1((v

0
j )
Txn) . . . (vj − v0

j )
Txns

′
k((v

0
j )
Txn)


= Sj(v

0
j ) + S′j(v

0
j )� ((X(vj − v0

j ))11×k)

, Sj(v
0
j ) + S̃j(vj) ,

where � denotes the point wise matrix operation, the data
matrix X =

[
x1 x2 · · · xn

]T ∈ Rn×p, and

S′j(v
0
j ) =

s
′
1((v

0
j )
Tx1) . . . s′k((v

0
j )
Tx1)

...
...

...
s′1((v

0
j )
Txn) . . . s′k((v

0
j )
Txn)

 ∈ Rn×k .

We therefore obtain

S(V) ≈ S(V0) + S̃(V) ,

where S̃(V) is obtained by concatenating the different S̃j(vj).
Then, we have S(V)β ≈ S(V0)β +

∑r
j=1 S̃j(vj)βj , where

βj denotes the vector of length k whose entries represent the

coefficients of the jth transfer function. Note that for any j, we
have

S̃j(vj)βj =
[
βj1In×n · · · βjkIn×n

]
vec(S̃j(vj))

=
[
βj1In×n · · · βjkIn×n

]
·((

vec(S′j(v
0
j ))11×p

)
� (1k×1 ⊗X)

)
(vj − v0

j )

, Mj(vj − v0
j ),

with ⊗ denoting the Kronecker product. Therefore, setting M
to be equal to [M1| . . . |Mr], we get

r∑
j=1

S̃j(vj)βj = −
r∑
j=1

Mjv
0
j +

r∑
j=1

Mjvj

= −Mvec(V0) +Mvec(V)

, b+Mvec(V).

Finally, we solve the following approximate problem, when β
is fixed,

min
V∈V

‖ỹ −Mvec(V)‖22,

where ỹ = y − S(V0)β − b.
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Sjöstrand, K., Clemmensen, L. H., Larsen, R., and Ersbøll,
B. (2012). Spasm: A matlab toolbox for sparse statistical
modeling. Journal of Statistical Software Accepted for publication.

Su, L. and Zhang, Y. (2013). Variable selection in nonparametric
and semiparametric regression models. In Handbook in Ap-
plied Nonparametric and Semi-Nonparametric Econometrics and
Statistics. Oxford University Press.

van der Maaten, L. J., Postma, E. O., and van den Herik, H. J.
(2009). Dimensionality reduction: A comparative review.
Journal of Machine Learning Research, 10(1-41):66–71.

Wang, X. and Brown, D. (2011). The spatio-temporal gen-
eralized additive model for criminal incidents. In IEEE
International Conference on Intelligence and Security Informatics
(ISI), pages 42–47.

Wolsey, L. (1998). Integer Programming. Wiley Series in Discrete
Mathematics and Optimization. Wiley.

Wood, S. (2006). Generalized additive models: an introduction with
R. CRC press.

Yuan, M. (2011). On the identifiability of additive index models.
Statistica Sinica, 21(4):1901.

Zhang, X., Liang, L., Tang, X., and Shum, H.-Y. (2008). L1
regularized projection pursuit for additive model learning.
In IEEE conference on computer vision and pattern recognition
(CVPR), pages 1–8.

Zhao, T. and Liu, H. (2012). Sparse additive machine. In
International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 1435–1443.

Zhu, X., Huang, Z., Shen, H. T., Cheng, J., and Xu, C. (2012).
Dimensionality reduction by mixed kernel canonical correla-
tion analysis. Pattern Recognition, 45(8):3003–3016.

Zhu, X., Huang, Z., Yang, Y., Shen, H. T., Xu, C., and Luo, J.
(2013). Self-taught dimensionality reduction on the high-
dimensional small-sized data. Pattern Recognition, 46(1):215–
229.

Zhu, X., Suk, H.-I., and Shen, D. (2014). Matrix-similarity based
loss function and feature selection for alzheimer’s disease
diagnosis. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3089–3096. IEEE.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal
component analysis. Journal of computational and graphical
statistics, 15(2):265–286.

Alhussein Fawzi received the M.Sc. degree in
electrical and electronics engineering from the
Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland in 2012. He is currently
pursuing the PhD degree with the Signal Pro-
cessing Laboratory (LTS4) at EPFL. His re-
search interests include sparse signal and image
processing, data mining and machine learning.
He received twice the IBM PhD fellowship, in
2013 and 2015.

Jean-Baptiste Fiot is a Research Scientist at
IBM Research - Ireland since December 2013.
He received a Ph.D. degree in Applied Mathe-
matics in 2013 from Paris Dauphine University
in France, a Master degree in Applied Mathe-
matics in 2009 from Ecole Nationale Superieure
de Cachan in France, and a Master degree in
Engineering in 2009 from Ecole Centrale Paris
in France. Before joining IBM, he held Research
positions in Paris Dauphine University in France,
in Samsung Advanced Institute of Technology

(SAIT) in South Korea, and in CSIRO - Australian e-Health Research
Centre (AeHRC) in Australia. He was awarded the Best Student Paper
Award in the VIPIMAGE 2011 conference, and the Thesis Prize 2014
of the Dauphine Foundation. His research interests include machine
learning, signal and image processing, and optimization.

Bei Chen is a Research Staff Member in the
Big Data Analytics & Systems department. She
received her Ph.D. in Statistics from the Univer-
sity of Waterloo. Her current research interests
include time series analysis, forecasting, resam-
pling methods for dependent data and financial
econometrics. Dr. Chen has more than 20 ref-
ereed publications in journals and international
conferences.

Mathieu Sinn is a Research Staff Member and
Manager in the Big Data Analytics & Systems
department at the IBM Research laboratory in
Dublin, Ireland. He received a Diploma in com-
puter science in 2006, and a Ph.D. degree in
mathematics in 2009, both from the University of
Lbeck, Germany. Subsequently he was a Post-
doctoral Research Fellow at the University of
Waterloo, Canada, before joining IBM Research
in 2011. His research interests lie at the inter-
section of statistics, machine learning and the

analysis of real-world time series data. Dr. Sinn is the author or coauthor
of 4 patents and more than 40 technical papers.



14

Pascal Frossard (S96,M01,SM04) received the
M.S. and Ph.D. degrees, both in electrical en-
gineering, from the Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland, in
1997 and 2000, respectively. Between 2001 and
2003, he was a member of the research staff at
the IBM T. J. Watson Research Center, Yorktown
Heights, NY, where he worked on media coding
and streaming technologies. Since 2003, he has
been a faculty at EPFL, where he heads the Sig-
nal Processing Laboratory (LTS4). His research

interests include graph signal processing, image representation and
coding, visual information analysis, and distributed signal processing
and communications.

Dr. Frossard has been the General Chair of IEEE ICME 2002 and
Packet Video 2007. He has been the Technical Program Chair of
IEEE ICIP 2014 and EUSIPCO 2008, and a member of the organizing
or technical program committees of numerous conferences. He has
been an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL
PROCESSING (2015-), IEEE TRANSACTIONS ON BIG DATA (2015-
), IEEE TRANSACTIONS ON IMAGE PROCESSING (2010-2013), the
IEEE TRANSACTIONS ON MULTIMEDIA (2004-2012), and the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECH-
NOLOGY (2006-2011). He is the Chair of the IEEE Image, Video and
Multidimensional Signal Processing Technical Committee (2014-2015),
and an elected member of the IEEE Visual Signal Processing and Com-
munications Technical Committee (2006-) and of the IEEE Multimedia
Systems and Applications Technical Committee (2005-). He has served
as Steering Committee Chair (2012-2014) and Vice-Chair (2004-2006)
of the IEEE Multimedia Communications Technical Committee and as a
member of the IEEE Multimedia Signal Processing Technical Committee
(2004-2007). He received the Swiss NSF Professorship Award in 2003,
the IBM Faculty Award in 2005, the IBM Exploratory Stream Analytics
Innovation Award in 2008 and the IEEE Transactions on Multimedia Best
Paper Award in 2011.


	INTRODUCTION
	MODEL FORMULATION
	PRELIMINARIES
	ADDITIVE INDEX MODELS
	STRUCTURED DIMENSIONALITY REDUCTION
	PRACTICAL CONSIDERATIONS
	MODEL IDENTIFIABILITY

	LEARNING ALGORITHM
	FITTING PROBLEM
	LEARNING ALGORITHM

	EXPERIMENTS
	IMPLEMENTATION AND RUNTIME
	BASELINE METHODS AND PERFORMANCE METRICS
	TOY EXAMPLE
	SHARED BICYCLE SYSTEM DATA
	ELECTRIC LOAD FORECASTING

	CONCLUSION
	Appendix A: Proof of Theorem 2.2
	Preliminary results
	Proof of Theorem 2.2
	Tightness of the condition in Theorem 2.2

	Appendix B: Derivation of the objective function linearization
	Biographies
	Alhussein Fawzi
	Jean-Baptiste Fiot
	Bei Chen
	Mathieu Sinn
	Pascal Frossard


