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Abstract

In this paper we provide a mathematical framework for localized plasmon res-
onance of nanoparticles. Using layer potential techniques associated with the full
Maxwell equations, we derive small-volume expansions for the electromagnetic
fields, which are uniformly valid with respect to the nanoparticle’s bulk electron
relaxation rate. Then, we discuss the scattering and absorption enhancements by
plasmon resonant nanoparticles. We study both the cases of a single and multiple
nanoparticles.We present numerical simulations of the localized surface plasmonic
resonances associated to multiple particles in terms of their separation distance.

1. Introduction

Localized surface plasmons are charge density oscillations confined to metallic
nanoparticles. Excitation of localized surface plasmons by an electromagnetic field
at an incident wavelength where resonance occurs results in a strong light scattering
and an enhancement of the local electromagnetic fields. Recently, the localized sur-
face plasmon resonances of nanoparticles have received considerable attention for
their application in biomedicine. They have enabled applications including sens-
ing of cancer cells and their photothermal ablation. Plasmon resonant nanoparticles
such as gold nanoparticles offer, in addition to their enhanced scattering and absorp-
tion, biocompatibility making them not only suitable for use as a contrast agent but
also in therapeutic applications [40].

According to the quasi-static approximation for small particles, the surface
plasmon resonance peak occurs when the particle’s polarizability is maximized.
Recently, it has been shown that plasmon resonances in nanoparticles can be treated
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as an eigenvalue problem for the Neumann–Poincaré operator, which leads to direct
calculation of resonance values of permittivity and optimal design of nanopar-
ticles that resonate at specified frequencies [2,33,47]. Classically, the frequency-
dependent permittivity ofmetallic nanoparticles can be described by aDrudemodel
which determines the material’s dielectric and magnetic responses by considering
the motion of the free electrons against a background of positive ion cores.

In this paper, we provide a rigorous mathematical framework for localized sur-
face plasmon resonances. We consider the full Maxwell equations. Using layer
potential techniques, we derive the quasi-static limits of the electromagnetic fields
in the presence of nanoparticles. We prove that the quasi-static limits are uni-
formly valid with respect to the nanoparticle’s bulk electron relaxation rate. Note
that uniform validity with respect to the contrast was proved in [51] in the con-
text of small volume expansions for the conductivity problem. Then, we discuss
the scattering and absorption enhancements by plasmon resonant nanoparticles.
The nanoscale light concentration and near-field enhancement available to reso-
nant metallic nanoparticles have been a driving force in nanoplasmonics. We first
consider a single nanoparticle. Then we extend our approach to multiple nanopar-
ticles. We study the influence of local environment on the near-field behavior of
resonant nanoparticles. We simulate the localized surface plasmonic resonances
associated to multiple particles in terms of their separation distance.

The paper is organized as follows. In Section 2, we introduce localized plas-
monic resonances as the eigenvalues of the Neumann–Poincaré operator associated
with the nanoparticle. In Section 3 we describe a general model for the permittivity
and permeability of nanoparticles as functions of the frequency. In Section 4, we
recall useful results on layer potential techniques for Maxwell’s equations. Section
5 is devoted to the derivation of the uniform asymptotic expansions. We rigorously
justify the quasi-static approximation for surface plasmon resonances. Our main
results are stated in Theorems 5.9 and 5.10. In Section 6 we illustrate the validity
of our results by a variety of numerical simulations. The paper ends with a short
discussion.

2. Plasmonic Resonances

We first introduce the Neumann–Poincaré operator of an open connected
domain D with C1,η boundary in R

d (d = 2, 3) for some 0 < η < 1. Given
such a domain D, we consider the following Neumann problem,

�u = 0 in D; ∂u

∂ν
= g on ∂D,

∫
∂D

u dσ = 0, (2.1)

where g ∈ L2
0(∂D) with L2

0(∂D) being the set of functions in L2(∂D) with zero
mean-value. In (2.1), ∂/∂ν denotes the normal derivative.Wenote that theNeumann
problem (2.1) can be rewritten as a boundary integral equation with the help of
the single-layer potential. Given a density function ϕ ∈ L2(∂D), the single-layer
potential, SD[ϕ], can be defined as follows,

SD[ϕ](x) :=
∫

∂D
�(x − y)ϕ(y)dσ(y) (2.2)
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for x ∈ R
d , where � is the fundamental solution of the Laplacian in R

d :

�(x − y) =
{

1
2π log |x − y| if d = 2,

1
(2−d)ωd

|x − y|2−d if d > 2,
(2.3)

where ωd denotes the surface area of the unit sphere in R
d . It is well-known that

the single-layer potential satisfies the following jump condition on ∂D:

∂

∂ν
(SD[ϕ])± =

(
±1

2
I + K∗

D

)
[ϕ], (2.4)

where the superscripts± indicate the limits from outside and inside D respectively,
and K∗

D : L2(∂D) → L2(∂D) is the Neumann–Poincaré operator defined by

K∗
D[ϕ](x) := 1

ωd

∫
∂D

(x − y) · ν(x)

|x − y|d ϕ(y)dσ(y) (2.5)

with ν(x) being the outward normal at x ∈ ∂D. We note that K∗
D maps L2

0(∂D)

onto itself.
With these notions, the Neumann problem (2.1) can then be formulated as

g =
(

∂

∂ν
(SD[ϕ]

)−
=
(

−1

2
I + K∗

D

)
[ϕ]. (2.6)

Therefore, the solution to the Neumann problem (2.1) can be reformulated as a
solution to the boundary integral equation with the Neumann–Poincaré operator
K∗

D .
The operatorK∗

D arises not only in solving the Neumann problem for the Lapla-
cian but also for representing the solution to the transmission problem as described
below.

Consider an open connected domain D with C2 boundary in R
d . Given a har-

monic function u0 in R
d , we consider the following transmission problem in R

d :
{

∇ · (εD∇u) = 0 in R
d ,

u − u0 = O(|x |1−d) as |x | → ∞,
(2.7)

where εD = εcχ(D) + εmχ(Rd\D) with εc, εm being two positive constants, and
χ(
) is the characteristic function of the domain 
 = D or Rd\D. With the help
of the single-layer potential, we can rewrite the perturbation u − u0, which is due
to the inclusion D, as

u − u0 = SD[ϕ], (2.8)

where ϕ ∈ L2(∂D) is an unknown density, and SD[ϕ] is the refraction part of the
potential in the presence of the inclusion. The transmission problem (2.7) can be
rewritten as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�u = 0 in D
⋃

(Rd\D),

u+ = u− on ∂D,

εc
∂u+
∂ν

= εm
∂u−
∂ν

on ∂D,

u − u0 = O(|x |1−d) as |x | → ∞.

(2.9)
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With the help of the jump condition (2.4), solving the above system (2.9) can be
regarded as solving the density function ϕ ∈ L2(∂D) of the following integral
equation

∂u0
∂ν

=
(

εc + εm

2(εc − εm)
I − K∗

D

)
[ϕ]. (2.10)

With the harmonic property of u0, we can write

u0(x) =
∑
α∈Nd

1

α!∂
αu0(0)x

α (2.11)

with α = (α1, . . . , αd) ∈ N
d , ∂α = ∂

α1
1 . . . ∂

αd
d and α! = α1! . . . αd !.

Consider ϕα as the solution of the Neumann–Poincaré operator:

∂xα

∂ν
=
(

εc + εm

2(εc − εm)
I − K∗

D

)
[ϕα]. (2.12)

The invertibilities of the operator ( εc+εm
2(εc−εm )

I − K∗
D) from L2(∂D) onto L2(∂D)

and from L2
0(∂D) onto L2

0(∂D) are proved, for example, in [9,43], provided that
| εc+εm
2(εc−εm )

| > 1/2. We can substitute (2.11) and (2.12) back into (2.8) to get

u − u0 =
∑

|α|�1

1

α!∂
αu0(0)SD[ϕα] =

∑
|α|�1

1

α!∂
αu0(0)

∫
∂D

�(x − y)ϕα(y)dσ(y).

(2.13)
Using the Taylor expansion,

�(x − y) = �(x) − y · ∇�(x) + O

(
1

|x |d
)

, (2.14)

which holds for all x such that |x | → ∞ while y is bounded [9], we get the
following result by substituting (2.14) into (2.13) that

(u − u0)(x) = ∇u0(0) · M(λ, D)∇�(x) + O

(
1

|x |d
)

as |x | → ∞, (2.15)

where M = (mi j )
d
i, j=1 is the polarization tensor associated with the domain D and

the contrast λ defined by

mi j (λ, D) :=
∫

∂D
yi (λI − K∗

D)−1 [ν j
]
(y)dσ(y), (2.16)

with

λ := εc + εm

2(εc − εm)
(2.17)

and ν j being the j-th component of ν. Here we have used in (2.15) the fact that∫
∂D ν dσ = 0.

Typically the constants εc and εm are positive in order to make the system (2.9)
physical. This corresponds to the situation with |λ| > 1

2 .
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However, recent advances in nanotechnology make it possible to produce noble
metal nanoparticles with negative permittivities at optical frequencies [40,55].
Therefore, it is possible that for some frequencies, λ actually belongs to the spec-
trum of K∗

D .
If this happens, the following integral equation

0 = (λI − K∗
D

) [ϕ] on ∂D (2.18)

has non-trivial solutions ϕ ∈ L2(∂D) and the nanoparticle resonates at those fre-
quencies.

Therefore, we have to investigate the mapping properties of the Neumann-
Poincaré operator. Assume that ∂D is of class C1,η, 0 < η < 1. It is known
that the operator K∗

D : L2(∂D) → L2(∂D) is compact [43], and its spectrum is
discrete and accumulates at zero. All the eigenvalues are real and bounded by 1/2.
Moreover, 1/2 is always an eigenvalue and its associated eigenspace is of dimension
one, which is nothing else but the kernel of the single-layer potential SD . In two
dimensions, it can be proved that if λi �= 1/2 is an eigenvalue of K∗

D , then −λi
is an eigenvalue as well. This property is known as the twin spectrum property;
see [46]. The Fredholm eigenvalues are the eigenvalues of K∗

D . It is easy to see,
from the properties ofK∗

D , that they are invariant with respect to rigid motions and
scaling. They can be explicitly computed for ellipses and spheres. If a and b denote
the semi-axis lengths of an ellipse then it can be shown that ±((a − b)/(a + b))i

are its Fredholm eigenvalues [44]. For the sphere, they are given by 1/(2(2i + 1));
see [42]. It is worth noticing that the convergence to zero of Fredholm eigenvalues
is exponential for ellipses while it is algebraic for spheres.

Equation (2.18) corresponds to the case when plasmonic resonance occurs in
D; see [33]. Given negative values of εc, the problem of designing a shape with
prescribed plasmonic resonances is of great interest [2].

Finally,we briefly investigate the eigenvalue of theNeumann–Poincaré operator
of multiple particles. Let D1 and D2 be two smooth bounded domains such that the
distance dist(D1, D2) between D1 and D2 is positive. Let ν(1) and ν(2) denote the
outward normal vectors at ∂D1 and ∂D2, respectively.

The Neumann–Poincaré operatorK∗
D1∪D2

associated with D1 ∪ D2 is given by
[6]

K
∗
D1∪D2

:=
(

K∗
D1

∂

∂ν(1)SD2
∂

∂ν(2)SD1 K∗
D2

)
. (2.19)

In Section 6 we will be interested in how the eigenvalues ofK∗
D1∪D2

behave numer-
ically as dist(D1, D2) → 0.

3. Drude’s Model for the Electric Permittivity and Magnetic Permeability

Let D be a bounded domain in R
d with C1,η boundary for some 0 < η < 1,

and let (εm, μm) be the pair of electromagnetic parameters (electric permittivity



Habib Ammari, Youjun Deng & Pierre Millien

and magnetic permeability) ofRd\D and (εc, μc) be that of D. We assume that εm
and μm are real positive constants. We have

εD = εmχ(Rd\D) + εcχ(D) and μD = μmχ(Rd\D) + μcχ(D).

Suppose that the electric permittivity εc and the magnetic permeability μc of
the nanoparticle are changing with respect to the operating angular frequency ω

while those of the surrounding medium, εm, μm , are independent of ω. Then we
can write

εc(ω) = ε′(ω) + iε′′(ω),

μc(ω) = μ′(ω) + iμ′′(ω). (3.1)

Because of causality, the real and imaginary parts of εc and μc obey the following
Kramer–Kronig relations:

ε′(ω) = − 1

π
p.v.
∫ +∞

−∞
1

ω − s
ε′′(s)ds,

ε′′(ω) = 1

π
p.v.
∫ +∞

−∞
1

ω − s
ε′(s)ds,

μ′′(ω) = − 1

π
p.v.
∫ +∞

−∞
1

ω − s
μ′(s)ds,

μ′(ω) = 1

π
p.v.
∫ +∞

−∞
1

ω − s
μ′′(s)ds,

(3.2)

where p.v. denotes the principle value.
In the sequel, we set kc = ω

√
εcμc and km = ω

√
εmμm and denote by

λε(ω) = εc(ω) + εm

2(εc(ω) − εm)
, λμ(ω) = μc(ω) + μm

2(μc(ω) − μm)
. (3.3)

We have

λε(ω) = (ε′(ω))2 − ε2m + (ε′′(ω))2

2((ε′(ω) − εm)2 + (ε′′(ω))2
− i

ε′(ω)ε′′(ω)

2((ε′(ω) − εm)2 + (ε′′(ω))2
.

A similar formula holds for λμ(ω).
The electric permittivity εc(ω) and the magnetic permeability μc(ω) can be

described by the Drude Model; see, for instance [55]. We have

εc(ω)=ε0

(
1− ω2

p

ω(ω + iτ−1)

)
and μc(ω)=μ0

(
1 − F

ω2

ω2−ω2
0 + iτ−1ω

)
,

or equivalently,

ε′(ω) = ε0
ω2 + τ−2 − ω2

p

ω2 + τ−2 , ε′′(ω) = ε0
ω2
pτ

−1

ω(ω2 + τ−2)
,

μ′(ω) = μ0(τ
−2ω2 + (ω2 − ω2

0)((1 − F)ω2 − ω2
0)

(ω2 − ω2
0)

2 + τ−2ω2
,

μ′′(ω) = μ0Fτ−1ω

(ω2−ω2
0)

2+τ−2ω2 ,
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where ωp is the plasma frequency of the bulk material, τ > 0 is the nanoparticle’s
bulk electron relaxation rate (τ−1 the damping coefficient), F is a filling factor, and
ω0 is a localized plasmon resonant frequency.

When

ω2 + τ−2 < ω2
p and (1 − F)(ω2 − ω2

0)
2 − Fω2

0(ω
2 − ω2

0) + τ−2ω2 < 0,

the real parts of ε(ω) and μ(ω) are negative. Typical values are

• τ = 10−14 s;
• ω = 1015 Hz;
• ε0 = 9 · 10−12 F m−1; εm = (1.33)2ε0;
• ωp = 2 · 1015s−1 for a gold nanoparticle;

It is interesting to have an idea on the size of �m(λε) (resp. �m(λμ)) since
it will be a lower bound for the distance dist(λε, σ (K∗

D)) (resp. dist(λμ, σ (K∗
D)))

between λε (resp. λμ) and the spectrum of the Neumann–Poincaré operator K∗
D .

Finally, we define dielectric and magnetic plasmonic resonances. We say that
ω is a dielectric plasmonic resonance if the real part of λε is an eigenvalue of
K∗

D . Analogously, we say that ω is a magnetic plasmonic resonance if the real
part of λμ is an eigenvalue of K∗

D . Note that if ω is a dielectric (resp. magnetic)
plasmonic resonance, then the polarization tensor M(λε(ω), D) defined by (2.16)
(resp. M(λμ(ω), D)) blows up.

In the case of two particles D1 and D2 with the same electromagnetic para-
meters, εc(ω) and μc(ω), we say that ω is a dielectric (resp. magnetic) plasmonic
resonance, if the real part of λε is an eigenvalue of K∗

D1∪D2
. Analogously, we say

that ω is a magnetic plasmonic resonance if the real part of λμ is an eigenvalue of
K

∗
D1∪D2

.

Let the polarization tensor M(λ, D1 ∪ D2) = (mi j )
d
i, j=1 be defined by

mi j (λ, D1 ∪ D2) :=
∫

∂D1

yi

[
(λI − K

∗
D)−1

[
ν

(1)
j

ν
(2)
j

]
(y)

]
1
dσ(y)

+
∫

∂D2

yi

[
(λI − K

∗
D)−1

[
ν

(1)
j

ν
(2)
j

]
(y)

]
2
dσ(y), (3.4)

where ν(l) = (ν
(l)
1 , . . . , ν

(l)
d ), l = 1, 2, and [ ]l ′ denotes the l ′th component. As for

single particles, M(λ(ω), D1 ∪ D2) = (mi j )
d
i, j=1 blows up for λ(ω) such that ω is

a dielectric or magnetic plasmonic resonance.

4. Boundary Integral Operators

We start by recalling somewell-known properties about boundary integral oper-
ators and proving a few technical lemmas that will be used in Section 5 for deriving
the asymptotic expansions of the electric and magnetic fields in the presence of
nanoparticles. As will be shown in Section 6, the plasmonic resonances for multi-
ple identical particles are shifted from those of the single particle as the separating
distance between the particles becomes comparable to their size.
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4.1. Definitions

We first review commonly used function spaces. Let ∇∂D· denote the surface
divergence. Denote by L2

T (∂D) := {φ ∈ L2(∂D)
3
, ν · φ = 0}. Let Hs(∂D) be the

usual Sobolev space of order s on ∂D. We also introduce the function spaces

TH(div, ∂D) :=
{
φ ∈ L2

T (∂D) : ∇∂D · φ ∈ L2(∂D)
}
,

TH(curl, ∂D) :=
{
φ ∈ L2

T (∂D) : ∇∂D · (φ × ν) ∈ L2(∂D)
}
,

equipped with the norms

‖φ‖TH(div,∂D) = ‖φ‖L2(∂D) + ‖∇∂D · φ‖L2(∂D),

‖φ‖TH(curl,∂D) = ‖φ‖L2(∂D) + ‖∇∂D · (φ × ν)‖L2(∂D).

We define the vectorial curl for ϕ ∈ H1(∂D) by curl∂Dϕ = −ν × ∇∂Dϕ.
The following result from [24] will be useful.

Proposition 4.1 The following Helmholtz decomposition holds:

L2
T (∂D) = ∇∂D(H1(∂D))

⊥⊕ curl∂D(H1(∂D)). (4.1)

Next, we recall that, for k > 0, the fundamental outgoing solution �k to the
Helmholtz operator (� + k2) in R3 is given by

�k(x) = − eik|x |

4π |x | . (4.2)

For a density φ ∈ TH(div, ∂D), we define the vectorial single layer potential
associated with the fundamental solution �k introduced in (4.2) by

Ak
D[φ](x) :=

∫
∂D

�k(x − y)φ(y)dσ(y), x ∈ R
3. (4.3)

For a scalar density ϕ ∈ L2(∂D), the single layer potential is defined similarly by

Sk
D[ϕ](x) :=

∫
∂D

�k(x − y)ϕ(y)dσ(y), x ∈ R
3. (4.4)

We will also need the following boundary operators:

Mk
D : L2

T (∂D) −→ L2
T (∂D)

φ �−→ Mk
D[φ] = ν(x) × ∇×

∫
∂D

�k(x, y)ν(y) × φ(y)dσ(y),

(4.5)

N k
D : TH(curl, ∂D) −→ TH(div, ∂D)

φ �−→ N k
D[φ] = 2ν(x) × ∇ × ∇

×
∫

∂D
�k(x, y)ν(y) × φ(y)dσ(y), (4.6)
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Lk
D : TH(div, ∂D) −→ TH(div, ∂D)

φ �−→ Lk
D[φ] = ν(x) × k2Ak

D[φ](x) + ∇Sk
D[∇∂D · φ](x).

(4.7)

In the following, we denote by AD , SD , MD , and ND the operators A0
D , S0

D ,
M0

D , and N 0
D corresponding to k = 0, respectively.

4.2. Boundary integral identities

Let KD be the L2-adjoint of K∗
D defined in (2.5). Since KD and

K∗
D : L2(∂D) → L2(∂D)

are compact and all the eigenvalues of K∗
D are real, we have σ(KD) = σ(K∗

D).
We start with stating the following jump formula. We refer the reader to

Appendix A for its proof.

Proposition 4.2 Let φ ∈ L2
T (∂D). Then Ak

D[φ] is continuous on R
3 and its curl

satisfies the following jump formula:

(
ν × ∇ × Ak

D[φ]
)± = ∓φ

2
+ Mk

D[φ] on ∂D, (4.8)

where

∀x ∈ ∂D,
(
ν(x) × ∇ × Ak

D[φ]
)±

(x) = lim
t→0+ ν(x) × ∇ × Ak

D[φ](x ± tν(x)).

Next, we prove the following integral identities.

Proposition 4.3 We have
M∗

D = rMDr, (4.9)

where r is defined by
r [φ] = ν × φ, ∀φ ∈ L2

T (∂D). (4.10)

Moreover,

∇ · Ak
D[φ] = Sk

D[∇∂D · φ] in R3, ∀φ ∈ T H (div, ∂D) . (4.11)

∇∂D · Mk
D[φ] = −k2ν · Ak

D[φ] −
(
Kk

D

)∗ [∇∂B · φ], ∀φ ∈ T H (div, ∂D) .

(4.12)

Furthermore,

∇∂D · MD[φ] = −K∗
D[∇∂D · φ], ∀φ ∈ T H (div, ∂D) , (4.13)

M∗
D[∇∂Dφ] = −∇∂DKD[φ], (4.14)

and
MD[curl∂Dφ] = curl∂DKD[φ], ∀φ ∈ T H(curl, ∂D). (4.15)
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Proof. The proof of (4.11) can be found in [28]. We give it here for the sake of
completeness. If φ ∈ T H (div, ∂D), then

∇ · Ak
D[φ](x) =

∫
∂D

∇x ·
(
�k(x, y)φ(y)

)
dσ(y), x ∈ R

3\∂D.

Using the fact that

∇x · (�k(x, y)φ(y)) = φ(y)∇x�
k(x, y) = −φ(y)∇y�

k(x, y),

and since

∇y�
k(x, y) = ∇∂D�k(x, y) + ∂�k

∂ν(y)
(x, y),

we get

∇ · Ak
D[φ](x) = −

∫
∂D

φ(y) · ∇∂D,y�
k(x, y)dσ(y), x ∈ R

3\∂D.

Using the fact that −∇∂D is the adjoint of ∇∂D · we obtain

∇ · Ak
D[φ](x) =

∫
∂D

�k(x, y)∇∂D · φ(y)dσ(y), x ∈ R
3\∂D.

Next, since Sk[∇∂Dφ] is continuous across ∂D, the above relation can be extended
to R3 and we get (4.11).

Now, in order to prove (4.12), we observe that, for any φ ∈ T H (div, ∂D),

∇ × ∇ × Ak
D[φ](x) = k2Ak

D[φ](x) + ∇Sk
D[∇∂D · φ](x), x ∈ R

3\∂D.

Using the jump relations on
∂Sk

D

∂ν
we obtain that

2
(
ν · ∇ × ∇ × Ak

D[φ]
)± = k2ν · Ak

D + (Kk
D)∗[∇∂D · φ] ∓ ∇∂D · φ on ∂D.

Recall from [28, p. 169] that if f ∈ C1(R3\D) ∩ C0(R3\D), then ∇∂D · (ν × f) =
−ν · (∇ × f). Using the jump formula for 2

(
ν × ∇ × Ak

D[φ])± = Mk
D[φ] ± φ,

we arrive at (4.12). Setting k = 0 in (4.12) gives (4.13).
Identity (4.14) can be deduced from (4.13) by duality.
Now, we prove (4.15). Define r [a] = ν × a for any smooth vector field a on

∂D. For φ ∈ H1(∂D), we have

M∗
D[∇∂Dφ] = −∇∂DKD[φ].

Since M∗
D = rMDr (see [34]) and curl∂D = r [∇∂D], it follows that

r (MD[curl∂Dφ]) = −∇∂DKD[φ].
Composing by r−1 = −r , we get

MD[curl∂Dφ] = curl∂DKD[φ],
which completes the proof. ��
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Lemma 4.4 The kernel of the operator ND in L2
T (∂D) is ∇∂D(H1(∂D)).

Proof. Take φ = curl∂DU with U ∈ H1(∂D). From (4.11), it follows that

ND[curl∂DU ](x) = 2ν(x) × ∇SD[∇∂D · curl∂DU ].
Since ∇∂D · curl∂DU = 0, we haveND[φ] = 0. Now, take φ ∈ L2

T (∂D) such that
ND[φ] = 0. Then, on ∂D, we have

2ν(x) × ∇SD[∇∂D · φ] = 2ν(x) ×
(

∇∂DSD[∇∂D · r [φ]] + ∂

∂ν
SD[∇∂D · (r [φ]]

)

= −2curl∂DSD[curl∂Dφ].
Since Ker(curl∂D) = R (see [24]), we obtain that S∂D[curl∂Dφ] = c ∈ R. Then,
curl∂Dφ = 0, which implies that φ ∈ ∇∂DH1(∂D) (see again [24]). ��
Proposition 4.5 We have the following Calderón type identity:

NDM∗
D = MDND . (4.16)

Proof. Let φ ∈ H1/2(∂D). We have

MDND[φ] = 2MD

[
r
(∇ × ∇ × AD

[
r [φ]]) ],

= 2MD

[
r
(∇SD

[∇∂D · r [φ]]) ].
Since

r
(
∇SD[∇∂D · r [φ]]

)
= ν × [∇∂DSD[∇∂D · r [φ]] + ∂

∂ν
SD[∇∂D · r [φ]]ν]

= −curl∂DSD[∇∂D · r [φ]],
we can deduce from (4.15) that

MDND[φ] = −2curl∂D
(
KDSD [∇∂D · r [φ]]

)
.

Now, using the fact that M∗
D = rMDr and that r−1 = −r , we also have

NDM∗
D[φ] = −2r

(∇ × ∇ × ADMD
[
r [φ]]) ,

= −2r
(
∇SD

[∇∂D · MD
[
r [φ]]] ).

Moreover, (4.13) yields

NDM∗
D[φ] = 2r

(
∇SD

[K∗
D

[∇∂D · r [φ]]] ).
Using Calderón’s identity SBK∗

B = KBSB and the fact that

r [∇KD] = r [∇∂DKD] = −curl∂DKD,

it follows that

NDM∗
D[φ] = −2curl∂D

(KDSD
[∇∂D · r [φ]]) ,

which completes the proof. ��
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4.3. Resolvent Estimates

As seen in the Section 2, we have to solve Fredholm type equations involving
the resolvent of KD . We will also need to control the resolvent of MD . For doing
so, the main difficulty is due to the fact that KD and MD are not self-adjoint.
However, we will make use of a symmetrization technique in order to estimate the
norms of the resolvents of KD and MD .

The following result holds.

Proposition 4.6 The operator KD : L2(∂D) −→ L2(∂D) satisfies the following
resolvent estimate

‖(λI − KD)−1‖L(L2(∂D),L2(∂D)) � C

dist(λ, σ (KD))
,

where dist(λ, σ (KD)) is the distance between λ and the spectrum σ(KD) ofKD, C
is a constant depending only on D, and L(L2(∂D), L2(∂D)) is the set of bounded
linear operators from L2(∂D) into L2(∂D).

Proof. We start from Calderón’s identity

∀φ ∈ L2(∂D), SDK∗
D[φ] = KDSD[φ].

Since −SD : H−1/2(∂D) −→ H1/2(∂D) is a self-adjoint positive definite
invertible operator in dimension three, we can define a new inner product on
H−1/2(∂D). We denote H the Hilbert space H−1/2(∂D) equipped with the fol-
lowing inner product

〈φ,ψ〉H = −〈SD[φ], ψ〉H1/2,H−1/2 ∀(φ,ψ) ∈
(
H−1/2(∂D)

)2

with 〈 , 〉H1/2,H−1/2 being the duality pairing between H1/2(∂D) and H−1/2(∂D).

Now,
√−SD

−1KD
√−SD is a self-adjoint compact operator on H and hence, we

can write [30]

‖(λI −√−SD
−1KD

√−SD)−1‖L(H,H) � C

dist(λ, σ (KD))

for some constant C . Since
√−SD : H−1/2(∂D) �→ L2(∂D) is continuous and

invertible, switching back to the original norm we get the desired result. ��
Proposition 4.7 We have σ(MD) = (− σ(K∗

D) ∪ σ(K∗
D)
)\{ 12 }.

Proof. First, we note that −1/2 is not an eigenvalue of MD; see [34,48]. Let
λ ∈ σ(MD). Take φ ∈ L2

T (∂D) such that

(λI − M) [φ] = 0 (4.17)

Using the Helmholtz decomposition (4.1), we write

φ = ∇∂DU + curl∂DV .
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Equation (4.17) becomes

(λI − MD)
[∇∂DU + curl∂DV

] = 0, (4.18)

which yields

curl∂D (λI − KD) [V ] = − (λI − MD) [∇∂DU ].
Taking the surface divergence we get

λ�∂DU − ∇∂D · MD[∇∂DU ] = 0,

and hence, by using (4.13),
(
λI + K∗

D

) [�∂DU ] = 0.

Therefore, either −λ ∈ σ(K∗
D) or �∂DU = 0, which implies that U is constant

and ∇∂D · φ = 0. In this case, we take the surface curl of (4.18) to get

−λ�∂DV − curl∂DMD [curl∂DV ] = 0.

Using (4.15), we obtain
�∂D (λI − KD) [V ] = 0.

Then, λV −KD[V ] = c for some constant c. By replacing V by V ′ = V + c
λ−1/2

and using the fact thatKD[1] = 1/2,we arrive atλV ′−KD[V ′] = 0. Ifλ /∈ σ(KD),
then φ would be constant, which would yield a contradiction.

Now, let λ ∈ σ(KD)\{1/2} and let ϕ be an eigenvector associated with λ. From

(λI − KD) [φ] = 0,

Taking the surface curl and using (4.15) gives

(λI − MD) [curl∂Dϕ] = 0.

Either λ ∈ σ(MD) or curl∂Dφ = 0, which means that φ is constant ([24]). Since
λ �= 1/2, ϕ cannot be constant. ��
Lemma 4.8 Let φ ∈ H := curl∂D

(
H1(∂D)

)
(H is the space of divergence free

vectors in L2
T ). The following resolvent estimate holds:

‖ (λI − MD)−1 [φ]‖H � c

dist (λ, σ (MD))
‖φ‖H . (4.19)

Proof. Weproceed exactly as in the proof of Proposition 4.6. If we denote by 〈., .〉H
the usual scalar product on H, then we introduce a new scalar product defined by

∀φ,ψ ∈ H × H, 〈φ,ψ〉N = 〈ND[φ], ψ〉H,

where ND
∣∣
H is the operator induced by ND given in (4.6) on H. Then, we first

prove that H is stable byND . If φ ∈ H, thenND[φ] ∈ TH(div, ∂D) (see [28]) and,
using the fact that for any f ∈ H(curl,
), ∇∂D · (ν × f) = ν · ∇ × f, we get

∇∂D · ND[φ] = ν · ∇ × ∇SD[∇∂D · (ν × φ)] = 0,
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which means thatND[φ] ∈ H. For the sake of simplicity we will denote byND the
induced operator on H. It is easy to see that this bilinear operator is well defined,
continuous and positive. Then,ND is self-adjoint [28]. The bilinear form is positive
since

〈N [φ], φ〉H =
∫

∂D
N [φ](x) · φ(x)dx,

=
∫

∂D
ν(x) × ∇SD [∇∂D · (ν × φ)] (x) · φ(x)dx,

=
∫

∂D
−curl∂DSD [curl∂Dφ] (x) · φ(x)dx,

= −
∫

∂D
SD [curl∂Dφ] (x)curl∂Dφ(x)dx,

= −〈SD [curl∂Dφ] , curl∂Dφ〉L2(∂D).

If we equip H with this new scalar product, then we can see similarly to Proposition
4.6 that MD is self-adjoint and therefore,

∀φ ∈ H, ‖ (λI − MD)−1 [φ]‖N � 1

dist (λ, σ (MD))
‖φ‖H.

Using the fact that ND is injective and continuous on H, we can go back to the
original norm to have

∀φ ∈ H, ‖ (λI − MD)−1 [φ]‖H � C

dist (λ, σ (MD))
‖φ‖H,

which completes the proof. ��
Proposition 4.9 Let λ ∈ C\[− 1

2 ,
1
2 ]. There exists a positive constant C such that

∀φ ∈ L2
T (∂D), ‖ (λI − MD)−1 [φ]‖L2

T (∂D) � C

dist(λ, σ (MD))
‖φ‖L2

T (∂D).

(4.20)

Proof. Let ψ, φ ∈ (L2
T (∂D)

)2
be such that

(λI − MD) [ψ] = φ. (4.21)

Using Helmholtz decomposition (4.1), we can write

ψ = ∇∂DU + curl∂DV,

with U ∈ H1(∂D) and V ∈ H1/2(∂D). Taking the surface divergence of (4.21),
together with using (4.13), (4.15), and the fact that ∇∂D · curl∂D f = 0, ∀ f, yields

(
λI − K∗

D

)
[�∂DU ] = ∇∂D · φ,

which can be written as

�∂DU = (λI − K∗
D

)−1
[∇∂Dφ] . (4.22)
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Nowwe deal with the curl part. If we applyND on (4.21) we get by using (4.16)
together with Lemma 4.4 that

(
λI − M∗

D

)ND[curl∂DV ] = ND[φ],
or equivalently,

ND[curl∂DV ] = (λI − M∗
D

)−1ND[φ]. (4.23)

From the Helmholtz decomposition of φ: φ = ∇∂Dφ1 + curl∂Dφ2, (4.23) becomes

ND[curl∂DV ] = (λI − M∗
D

)−1ND [curl∂Dφ2] . (4.24)

Now, we can work in the function space H = curl∂DH1/2(∂D). We denote by ÑD

the operator induced by ND on H and by R(ÑD) ⊂ H the range of the induced
operator. MD also induces an operator M̃D on H; see the proof of (4.16).

Next, we want to make sure that
(
λI − M̃∗

D

)−1 ÑD[curl∂DV ] belongs to
R(ÑD) so that we can apply ÑD’s left inverse (recall from Lemma 4.4 that ÑD is

injective). For doing so, we show that the range of ÑD is stable by
(
λI − M̃∗

D

)−1
.

Take f = ÑD[g] ∈ R(ÑD). Then,

(
λI − M̃∗

D

)−1 [ f ] ∈ R(ÑD) ⇔ ∃h ∈ H,
(
λI − M̃∗

D

)−1 ÑD[g] = ÑD[h]
⇔ ∃h ∈ H, ÑD[g] = (λI − M̃∗

D

) ÑD[h]
⇔ ∃h ∈ H, ÑD[g] = ÑD

(
λI − M̃D

) [h]
⇔ ∃h ∈ H, g = (λI − M̃D

) [h] (by injectivity of ÑD)

⇔ ∃h ∈ H,
(
λI − M̃D

)−1 [g] = h.

So we have the stability of R(ÑD) by M̃D and

Ñ−1
D

(
λI − M̃∗

D

)−1 ÑD = (λI − M̃D
)−1

. (4.25)

Applying this to (4.24) we get

curl∂DV = (λI − M̃D
)−1 [curl∂Dφ2].

Using Lemma 4.8 we get the desired result. ��
An important remark is on order. In view of Proposition 4.7, we may think that

both σ(K∗
D) and−σ(K∗

D) contribute to the plasmonic resonances at the quasi-static
regime.However, as it will be seen in the next section, onlyσ(K∗

D) contributes to the
resonances at the zero size limit. −σ(K∗

D) contributes to higher-order resonances
in terms of the particle size. Moreover, it is worth stating the following estimate
which follows immediately from the proof of Proposition 4.7:

‖ (λI − MD)−1 [curl∂Dφ]‖L2(∂D) � C

dist(λ, σ (K∗
D))

‖φ‖H1(∂D) (4.26)

for some constant C .
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5. Small Volume Expansion

The aim of this section is to prove Theorems 5.9 and 5.10.

5.1. Layer Potential Formulation

For a given plane wave solution (Ei , Hi ) to the Maxwell equations
{∇ × Ei = iωμmHi in R3,

∇ × Hi = −iωεmEi in R3,

let (E, H) be the solution to the following Maxwell equations:
⎧⎨
⎩

∇ × E = iωμH in R
3\∂D,

∇ × H = −iωεE in R
3\∂D,

[ν × E] = [ν × H ] = 0 on ∂D,

(5.1)

subject to the Silver–Müller radiation condition:

lim|x |→∞ |x |(√μ(H − Hi ) × x̂ − √
ε(E − Ei )) = 0,

where x̂ = x/|x |. Here, [ν × E] and [ν × H ] denote the jump of ν × E and ν × H
along ∂D, namely,

[ν × E] = (ν × E)+ − (ν × E)−, [ν × H ] = (ν × H)+ − (ν × H)−.

Using the layer potentials defined in Section 4, the solution to (5.1) can be
represented as

E(x) =
{
Ei (x) + μm∇ × Akm

D [φ](x) + ∇ × ∇ × Akm
D [ψ](x), x ∈ R

3\D,

μc∇ × Akc
D [φ](x) + ∇ × ∇ × Akc

D [ψ](x), x ∈ D,

(5.2)
and

H(x) = − i

ωμ

(∇ × E
)
(x), x ∈ R

3\∂D, (5.3)

where the pair (φ,ψ) ∈ T H(div, ∂D) × T H(div, ∂D) is the unique solution to
⎡
⎢⎣

μc + μm

2
I + μcMkc

D − μmMkm
D Lkc

D − Lkm
D

Lkc
D − Lkm

D

(
k2c
2μc

+ k2m
2μm

)
I + k2c

μc
Mkc

D − k2m
μm

Mkm
D

⎤
⎥⎦
[
φ

ψ

]

=
[

ν × Ei

iων × Hi

]∣∣∣∣
∂D

. (5.4)

The invertibility of the system of Equation (5.4) on T H(div, ∂D) × T H(div, ∂D)

was proved in [57]. Moreover, there exists a constant C = C(ε, μ, ω) such that

‖φ‖T H(div,∂D) +‖ψ‖T H(div,∂D) � C
(‖Ei × ν‖T H(div,∂D) +‖Hi × ν‖T H(div,∂D)

)
.

(5.5)
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5.2. Derivation of the Asymptotic Formula

We will need the following notation. For a multi-index α ∈ N
3, let xα =

xα1
1 xα2

2 xα3
3 , ∂α = ∂

α1
1 ∂

α2
2 ∂

α3
3 , with ∂ j = ∂/∂x j .

Let D = δB + z, where B is a C1,η (0 < η < 1) domain containing the origin.
For any y ∈ ∂D, let ỹ = y−z

δ
∈ ∂B. Denote by φ̃(ỹ) = φ(y) and ψ̃(ỹ) = ψ(y).

5.2.1. Asymptotics for the Operators We have the following expansions for
Mk

D and Lk
D .

Proposition 5.1 Let φ ∈ L2
T (∂D). As δ → 0, we have

Mk
D[φ](x) = MB[φ̃](̃x) + O(δ2). (5.6)

Proof. Let x ∈ ∂D, and write x̃ = x−z
δ
. We have

Mk
D[φ](δ x̃+z) = − 1

4πδ

∫
∂D

νD(δ x̃+z)×
(

∇x̃ ×
(

eik|δ x̃+z−y|

|δ x̃ + z − y|φ(y)

))
dσ(y).

Changing y by ỹ = y−z
δ

in the integral we get

Mk
D[φ](δ x̃ + z) = − 1

4πδ

∫
∂B

νD(δ x̃ + z) ×
(

∇x̃ ×
(
eikδ|̃x−ỹ|

δ|̃x − ỹ| φ̃(ỹ)

))
δ2dσ(ỹ).

Since ∀x ∈ ∂D, νD(x) = νB( x−z
δ

),

Mk
D[φ](x) = Mδk

B [φ̃](̃x).
For any x̃ ∈ δB, it follows that

Mδk
B [φ̃](̃x) = MB[φ̃](̃x) +

∫
∂B

νB (̃x) × (∇x̃ × (ikδ)) + O
(
δ2
)

,

which gives the result. ��
Proposition 5.2 Let φ ∈ T H(div, ∂D). For any y ∈ ∂D, we have

Lkm
D [φ](y) − Lkc

D [φ](y)
= δ(k2m − k2c )νB(ỹ) ×

(
AB[φ̃](ỹ) + 1

8π

∫
∂B

ỹ − ỹ′

|̃y − ỹ′|
(∇∂B · φ̃(ỹ′)

)
dσ(ỹ′)

)

+O
(
δ2
)

. (5.7)

Proof. Note that, for y ∈ ∂D,

Ak
D[φ](y) = δAδk

B [φ̃](ỹ)
and

∇∂DSk
D[∇∂B · φ](y) = 1

δ
∇∂BSδk

B [∇∂B · φ̃](ỹ).
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We can expand
Aδk

B [φ̃](ỹ) = AB[φ̃](ỹ) + O(δ).

We also have

∇∂BSδk
B [∇∂B · φ̃](ỹ) = − 1

4π

×∇∂B

∫
∂B

1

|̃y − ỹ′|
(
1 + kδ|̃y − ỹ′| − 1

2
k2δ2 |̃y − ỹ′|2

+O(δ3 |̃y − ỹ′|3)
)

∇∂B · φ̃(ỹ′)dσ(ỹ′)

and

∇∂BSδk
B [∇∂B · φ̃](ỹ) = − 1

4π
∇∂B

∫
∂B

1

|̃y − ỹ′|∇∂B · φ̃(ỹ′)dσ(ỹ′)

−1

2
∇∂B

∫
∂B

|̃y − ỹ′|∇∂B · φ̃(ỹ′) + O(δ3).

Now, since ∀ f ∈ L2(∂B), SB[ f ]∣∣B ∈ C1(B), SB[ f ]∣∣
R3\B ∈ C1(R3\B) and the

tangential component of the gradient of S[ f ] is continuous across ∂B, we can state
that

∀ỹ ∈ ∂B, νB(ỹ) × ∇∂BSB[ f ]∣∣
∂B(ỹ) = νD(ỹ) × ∇SB[ f ]∣∣

R3\B(ỹ)

= νD(ỹ) × ∇SB[ f ]∣∣B(ỹ).

Then we can write

∀ỹ ∈ ∂B, νB(ỹ) × ∇∂BSδk
B [∇∂B · φ̃](ỹ)

= − 1

4π
νB(ỹ) ×

[
∇∂B

∫
∂B

1

|̃y − ỹ′|∇∂B · φ̃(ỹ′)dσ(ỹ′)

−1

2

∫
∂B

ỹ − ỹ′

|̃y − ỹ′|∇∂B · φ̃(ỹ′)dσ(ỹ) + O(k3δ3)

]
.

The proof is then complete. ��

5.2.2. Far-Field Expansion Define φ̃β and ψ̃β for every β ∈ N
3 by

Wδ
B

[
φ̃β

ψ̃β

]
=
[

ν(ỹ) × (ỹβ∂βEi (z))
iων(ỹ) × (ỹβ∂βHi (z))

]
(5.8)

with

Wδ
B =
[

μm+μc
2 I + μcMδkc

B − μmMδkm
B Lkc

B,δ − Lkm
B,δ

Lkc
B,δ − Lkm

B,δ ω2
(

εm+εc
2 I + εcMδkc

B − εmMδkm
B

)
]

.

(5.9)
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Using (5.2) we have the following expansion for E(x) for x far away from z:

E(x) = Ei (x) +
∞∑

|α|=0

∞∑
|β|=0

δ2+|α|+|β| (−1)|α|

α!β!
(

μm∇∂α�km (x − z)

×
∫

∂B
ỹαφ̃β(ỹ)dσ(ỹ) + ∇ × ∇∂α�km (x − z) ×

∫
∂B

ỹαψ̃β(ỹ)dσ(ỹ)

)
.

(5.10)

For β ∈ N
3, define the tensors by

Me
α,β :=

∫
∂B

ỹαψ̃βdσ(ỹ) and Mh
α,β :=

∫
∂B

ỹαφ̃βdσ(ỹ). (5.11)

The following lemma holds.

Lemma 5.3 For x ∈ R
3\D, we have

E(x) = Ei (x) +
∞∑

|α|=0

∞∑
|β|=0

δ2+|α|+|β| (−1)|α|

α!β!
(
μm∇∂α�km (x − z) × Mh

α,β

+∇ × ∇∂α�km (x − z) × Me
α,β

)
. (5.12)

5.2.3. Asymptotics for the Potentials

Proposition 5.4 Let β ∈ N
3. We can write the following expansions for φ̃β and

ψ̃β :

φ̃β =
∞∑
n=0

δnφ̃β,n, ψ̃β =
∞∑
n=0

δnψ̃β,n .

Moreover, there exists a C � 0 depending on B, β, E , and H such that

∀n ∈ N, ‖φ̃β,n‖TH(div,∂B)

� C (n+1)
(

1

dist(λμ, σ (MB))

)�n/2� ( 1

dist(λε, σ (MB))

)�n/2+1�
,

∀n ∈ N, ‖ψ̃β,n‖TH(div,∂B)

� C (n+1)
(

1

dist(λε, σ (MB))

)�n/2� ( 1

dist(λμ, σ (MB))

)�n/2+1�
.

(5.13)

Proof. We proceed by induction. Using Propositions 5.1 and 5.2 we find that

φ̃β,0 = (μc − μm)−1(λμ I − MB)−1 [ν(ỹ) × (ỹβ∂βE(z)
]
,

ψ̃β,0 = iω−1(εc − εm)−1(λε I − MB)−1 [ν(ỹ) × (ỹβ∂βH(z)
]
.

(5.14)

Note that ∇∂B · φ̃β,0 = 0 for β = 0. Indeed,

∇∂B · φ̃ = (μc − μm)−1(λμ I − K∗
B)−1 [∇∂B · (ν(ỹ) × (ỹβ∂βE(z)

)]
,
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and
∇∂B · (ν(ỹ) × (ỹβ∂βE(z)

) = ν(ỹ) · (∇ × [̃yβE(z)])
= 0.

In the same way we have ∇∂B · ψ̃β,0 = 0 for β = 0. Using Proposition 4.9, we get
the result.

For the first-orders the equations satisfied by φ̃β,1 and ψ̃β,1 are

(μc − μm)(λμ I − MB)[φ̃β,1] + (k2c − k2m)ν(ỹ) × AB[ψ̃β,0] = 0,

ω2(εc − εm)(λε I − MB)[ψ̃β,1] + (k2c − k2m)ν(ỹ) × AB[φ̃β,0] = 0.
(5.15)

The fact that AB is bounded together with Proposition 4.9 gives the estimate of
‖φ̃β,1‖L2

T (∂B) and ‖φ̃β,1‖L2
T (∂B). If we take the surface divergence of (5.15), we get

(μc − μm)(λμ I − K∗
B)[∇∂B · φ̃β,1] + (k2c − k2m)∇∂B · (ν(ỹ) × AB[ψ̃β,0]

) = 0,

ω2(εc − εm)(λε I − K∗
B)[∇∂B · ψ̃β,1] + (k2c − k2m)∇∂B · (ν(ỹ) × AB[φ̃β,0]

) = 0.

Since∇∂B · (ν(ỹ) × AB[ψ̃β,0]
) = ν(ỹ) · (∇ × AB[φ̃β,0]

)
and f �→ ν ·∇ ×AB[ f ]

is bounded from L2
T (∂B) into L2(∂B) , we can estimate the L2 norm of ∇∂B · φ̃β,1

as follows ∥∥∥∥ 1

μc − μm

(
λμ − K∗

B

)−1 [
ν(ỹ) · (∇ × AB[φ̃β,0]

)]∥∥∥∥
L2(∂B)

� c

dist(λμ, σ (KB))
‖φ̃β,0‖L2

T
.

From Proposition 4.7 we get the result. The estimate for ‖∇∂B · ψ̃β,1‖L2 is obtained
in the same way.

Now, fix n ∈ N
∗ ; φ̃β,n+1 and ψ̃β,n+1 satisfy the following system:

(μc − μm)(λμ I − MB)[φ̃β,i+1] + (k2c − k2m)ν(ỹ) × (AB[ψ̃β,i ] + BB[ψ̃β,i ]
) = 0,

ω2(εc − εm)(λε I − MB)[ψ̃β,0] + (k2c − k2m)ν(ỹ) × (AB[φ̃β,i ] + BB[φ̃β,i ]
) = 0,

where the operator BB is defined by

TH(div, ∂B) −→ TH(div, ∂B)

f �−→ 1

8π

∫
∂B

ỹ − ỹ′

|̃y − ỹ′|
(∇∂B · f (ỹ′)

)
dσ(ỹ′).

The operatorBB is bounded, and we can get the norm estimates for φ̃β,n+1, ψ̃β,n+1,
∇∂B · φ̃β,n+1 and ∇∂B · ψ̃β,n+1, as before. ��

It is worth noticing that the following estimate follows immediately from (4.26).
We have

‖φ̃β,0‖TH(div,∂B) � C
1

dist(λε, σ (K∗
B))

,

‖ψ̃β,0‖TH(div,∂B) � C
1

dist(λμ, σ (K∗
B))

.

(5.16)
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5.2.4. Derivation of the Leading-Order Potentials By Lemma 5.3, for x ∈
R
3\D,

E(x) = Ei (x) + δ2
(
μm∇�km (x − z) × Mh

0,0 + ∇ × ∇�km (x − z) × Me
0,0

)

+ δ3

⎛
⎝μm∇�km (x − z) ×

3∑
j=1

Mh
0, j + ∇ × ∇�km (x − z) ×

3∑
j=1

Me
0, j

⎞
⎠

− δ3

⎛
⎝μm

3∑
j=1

∇∂ j�
km (x − z) × Mh

j,0 + ∇ ×
3∑
j=1

∇∂ j�
km (x − z) × Me

j,0

⎞
⎠

+ O(δ4). (5.17)

We start by computing Mh
0,0:

Mh
0,0 =

∫
∂B

φ̃0(ỹ)dσ(ỹ),

=
∫

∂B
φ̃0(ỹ)∇ ỹdσ(ỹ),

=
∫

∂B
ỹ∇∂B · φ̃0(ỹ)dσ(ỹ).

Now, using the expansion of φ̃ given in Proposition 5.4 we have

Mh
0,0 =

∫
∂B

ỹ∇∂B · φ̃0,0(ỹ)dσ(ỹ) +
∫

∂B
ỹ∇∂B · φ̃0,1(ỹ)dσ(ỹ) + O(δ2).

Recall (5.14) for β = 0:

φ̃0,0 = (μc − μm)−1(λμ I − MB)−1
[
ν(ỹ) × Ei (z)

]

ψ̃0,0 = iω−1(εc − εm)−1(λε I − MB)−1
[
ν(ỹ) × Hi (z)

]
.

We can see, using (4.13) and the fact that

∇∂B ·
(
Ei (z) × ν(ỹ)

)
= ∇∂B ·

(
Hi (z) × ν(ỹ)

)
= 0,

that
∇∂B · φ̃0,0 = ∇∂B · ψ̃0,0 = 0.

Now, taking the surface divergence of (5.15) for β = 0, it follows that

(μc − μm)(λμ I−K∗
B)[∇∂B · φ̃0,1] + (k2c − k2m)∇∂B ·

(
ν(ỹ) × AB[ψ̃0,0]

)
= 0,

ω2(εc − εm)(λε I−K∗
B)[∇∂B · ψ̃0,1] + (k2c − k2m)∇∂B ·

(
ν(ỹ) × AB[φ̃0,0]

)
= 0.

(5.18)



Habib Ammari, Youjun Deng & Pierre Millien

Since ∇∂B · (ν×) = ν · (∇×) we need to study the quantities

ν · ∇ × AB[φ̃0,0]
and

ν · ∇ × AB[ψ̃0,0].
The following lemma holds.

Lemma 5.5 We have

∇ × AB[φ̃0,0]

=

⎧⎪⎪⎨
⎪⎪⎩

1

μc − μm
∇SB

(
λμ I − K∗

B

)−1 [ν · Ei (z)] in R
3\B,

1

μc
Ei (z) + μm

μ2
c − μmμc

∇SB
(
λμ I − K∗

B

)−1 [ν · Ei (z)] in B,

(5.19)

and

∇ × AB[ψ̃0,0]

=

⎧⎪⎨
⎪⎩

i
ω(εc−εm )

∇SB
(
λε I − K∗

B

)−1 [ν · Hi (z)] in R
3\B,

i

ωεc
Hi (z) + iεm

ω(ε2c − εmεc)
∇SB

(
λε I − K∗

B

)−1 [ν · Hi (z)] in B.

(5.20)

Proof. Weonly prove (5.19).We shall consider the solution to the following system
⎧⎪⎪⎨
⎪⎪⎩

�u = 0 in R
3,

(ν · ∇u)− = (ν · ∇u)+ on ∂B,

μc(ν × ∇u)− − μm(ν × ∇u)+ = ν × Ei (z) on ∂B,

u = O(|x |−1) |x | → ∞.

(5.21)

We can see that both the left-hand side and the right-hand side of (5.19) are
divergence free. We want to prove that they are both equal to the field ∇u in R

3.
First we check that they satisfy the jump relations. We already have the continuity
of the normal part of the curl of a vectorial single layer potential [29]. Recall that

φ̃0,0 = (μc − μm)−1(λμ I − MB)−1[ν(ỹ) × Ei (z)].
Then ,

(
ν × ∇ × AD[φ̃0,0]

)± = 1

μc − μm

(
∓ I

2
+ MB

)
(λI − MB)−1 [ν(ỹ)×Ei (z)],

so we have

μc
(
ν × ∇ × AD[φ̃0,0]

)− − μm
(
ν × ∇ × AD[φ̃0,0]

)+ = ν(ỹ) × Ei (z).
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The continuity of the tangential derivative of a scalar single layer potential gives

μc
(
ν ×
(

1

μc − μm
∇SB

(
λμ I − K∗

B

)−1 [ν · Ei (z)])−
)

= μm
(
ν ×
(

1

μc
Ei (z) + μm

μ2
c − μmμc

∇SB
(
λμ I − K∗

B

)−1 [ν · Ei (z)])+
)

,

and the jump of the normal derivative of a scalar single layer potential can bewritten
as follows

(
ν · ∇SB

(
λμ I − K∗

B

)−1 [ν · Ei (z)]
)± =

(
∓ I

2
+ K∗

B

) (
λμ I − K∗

B

)−1 [ν·Ei (z)],

which gives the correct jump relation for the normal derivative. ��
The only problem left is to prove the uniqueness of the system. Now let ũ be

the solution to (5.21) with the term ν × Ei (z) replaced by vector 0 on ∂B. Note
that μc(ν × ∇ũ)− = μm(ν × ∇ũ)+ is equivalent to

μc

(
∂ ũ

∂T

)−
= μm

(
∂ ũ

∂T

)+
,

where T is any tangential direction on ∂B. Then by choosing any test function in
H1(∂B) and integrating by parts we can get μc (̃u)− = μm (̃u)+ on ∂B. Thus,

0 �
∫
R3

μ|∇ũ|2dx = −
∫

∂B
μm

(
∂ ũ

∂ν

)+
(̃u)+ +

∫
∂B

μc

(
∂ ũ

∂ν

)−
(̃u)− = 0,

which proves ũ = 0 and completes the proof. ��
It is worth mentioning that it was proved in [34] that

∇ × AB

(
1

2
I + MB

)−1

[ν × Ei (z)] = Ei (z) in B,

which, by taking μm = 0 (or let μc = ∞), can be seen as the extreme case in
(5.19).

Now that we have a better understanding of ν ×∇ ×AD[φ̃0,0], by Lemma 5.5,
we can introduce the unique solutions ue, uh ∈ H1(B) up to constants such that
∇ue = ∇ × AB[φ̃0,0], ∇uh = ∇ × AB[ψ̃0,0] with ue, uh satisfying

{
�ue = 0 in B,

(ν · ∇ue)− = ν · (∇ × AB[φ̃0,0]) on ∂B,
(5.22)

and {
�uh = 0 in B,

(ν · ∇uh)− = ν · (∇ × AB[ψ̃0,0]) on ∂B.
(5.23)

The expressions of ∇ue and ∇uh are given by Lemma 5.5. Now, by using equation
(5.18), we can compute the surface divergence of φ̃0,1 and ψ̃0,1:
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∇∂B · φ̃0,1 = k2c − k2m
μc − μm

(λμ I − K∗
B)−1

[(
∂uh

∂ν

)−]
,

∇∂B · ψ̃0,1 = k2c − k2m
ω2(εc − εm)

(λε I − K∗
B)−1

[(
∂ue

∂ν

)−]
.

Then we have the following lemma.

Lemma 5.6 Let ve be the solution to
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�ve = 0 x ∈ R
3\∂B,

(ve)+ − (ve)− = 0 x ∈ ∂B,

εm

(
∂ve

∂ν

)+ − εc

(
∂ve

∂ν

)− = (εc − εm) (∇ue · ν)− x ∈ ∂B,

ve → 0 |x | → ∞,

(5.24)

and let vh be the solution to
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�vh = 0 x ∈ R
3\∂B,

(vh)+ − (vh)− = 0 x ∈ ∂B,

μm

(
∂vh

∂ν

)+ − μc

(
∂vh

∂ν

)− = (μc − μm)
(∇uh · ν

)−
x ∈ ∂B,

vh → 0 |x | → ∞.

(5.25)

Then the following asymptotic expansions hold:

Me
0,0 = δ

k2m − k2c
ω2εm

∫
B

∇(ue + ve) + O(δ2),

Mh
0,0 = δ

k2m − k2c
μm

∫
B

∇(uh + vh) + O(δ2).

Proof. By Proposition 5.4, we have

Mh
0,0 =

∫
∂B

φ̃0dσ(ỹ) = δ

∫
∂B

φ̃0,1dσ(ỹ) + O(δ2)

= −δ

∫
∂B

ỹ∇∂B · φ̃0,1dσ(ỹ) + O(δ2)

= δ
k2m − k2c
μc − μm

∫
∂B

ỹ(λμ I − K∗
B)−1

[(
∂uh

∂ν

)−]
dσ(ỹ) + O(δ2).

Using the fact that

λμ = 1

2
+ μm

μc − μm
,

we get that for f ∈ L2(∂B),

f = μc − μm

μm

[(
λμ I − K∗

B

) [ f ] +
(

− I

2
+ K∗

D

)
[ f ]
]

.
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Then,

Mh
0,0 = δ

k2m − k2c
μm

(∫
∂B

ỹ

(
∂uh

∂ν

)−
dσ(ỹ)

+
∫

∂B
ỹ

(
− I

2
+ K∗

B

)
(λμ I − K∗

B)−1

[(
∂uh

∂ν

)−]
dσ(ỹ)

)
+ O(δ2).

An integration by parts gives

∫
∂B

ỹ

(
∂uh

∂ν

)−
dσ(ỹ) =

∫
B

∇uhdx .

We now take a look at the transmission problem (5.25) solved by vh . Using the
jump relation of the normal derivative of the scalar single layer potential we find

that, writing vh = SB[ f ] with f being such that
(
λμ I − K∗) [ f ] = ∂uh

∂ν
gives

(
− I

2
+ K∗

B

)
[ f ] =

(
∂vh

∂ν

)−
,

and hence,
(

− I

2
+ K∗

B

)
(λμ I − K∗

B)−1

[(
∂uh

∂ν

)−]
=
(

∂vh

∂ν

)−
.

Integrating by parts we get

Mh
0,0 = δ

k2m − k2c
μm

(∫
B

∇uhdx +
∫
B

∇vhdx

)
+ O(δ2).

The evaluation for Me
0,0 can be done in exactly the same way. ��

5.2.5. Derivation of the Leading-Order Tensors

Lemma 5.7 We have

Me
α,β = i

ωεm

(∫
B

∇(xαxβ) × ∂βHi (z)

+ iω(εc − εm)

∫
B

∇ × (xα∇ × AB[ψ̃β,0])
)

+ O(δ), (5.26)

Mh
α,β = 1

μm

(∫
B

∇(xαxβ) × ∂βEi (z)

− (μc − μm)

∫
B

∇ × (xα∇ × AB[φ̃β,0])
)

+ O(δ). (5.27)

In particular, we have

Me
j,0 = i

ωεm
|B|e j × Hi (z) − εc − εm

εm
e j ×
∫
B

∇uh + O(δ), (5.28)
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Mh
j,0 = 1

μm
|B|e j × Ei (z) − μc − μm

μm
e j ×
∫
B

∇ue + O(δ), (5.29)

Me
0, j = i

ωεm
|B|e j × ∂ j H

i (z) − εc − εm

εm

∫
B

∇SB[∇∂B · ψ̃ j,0] + O(δ), (5.30)

Mh
0, j = 1

μm
|B|e j × ∂ j E

i (z) − μc − μm

μm

∫
B

∇SB[∇∂B · φ̃ j,0] + O(δ), (5.31)

where (e1, e2, e3) is an orthonormal basis of R
3.

Proof. We shall only consider Mh
α,β . M

e
α,β can be calculated in exactly the same

way. We have

Mh
α,β = (Mh

α,β)(0) + O(δ),

where (Mh
α,β)(0) is given by

(Mh
α,β)(0) =

∫
∂B

ỹαφ̃β,0dσ(ỹ).

Since λμ = 1

2
+ μm

μc − μm
we have that for any f ∈ L2

T (∂B),

(
λμ I − MB

) [ f ] −
(
I

2
+ MB

)
[ f ] = μm

μc − μm
f.

By applying Proposition 5.4, it follows that

(Mh
α,β)(0) = 1

μm

∫
∂B

ỹαν(ỹ) × (ỹβ∂βEi (z))dσ(ỹ)

− 1

μm

∫
∂B

ỹα

(
I

2
+MB

)
(λμ I−MB)−1[ν(ỹ)× ỹβ∂βEi (z)]dσ(ỹ).

Using the jump relations on MB and the fact that

φ̃β,0 = 1

μc − μm

(
λμ I − MB

)−1 [ν(ỹ) × ỹβ∂β ],

we can write

(Mh
α,β)(0) = 1

μm

∫
∂B

ỹαν(ỹ) × (ỹβ∂βEi (z))dσ(ỹ)

−μc − μm

μm

∫
∂B

ỹαν(ỹ) × ∇ × (SB[φ̃β,0]
)−dσ(ỹ).

The curl theorem yields

(Mh
α,β)(0) = 1

μm

∫
B

∇(xαxβ) × ∂βEi (z)dx − μc − μm

μm

∫
B

∇
×(xα∇ × SB[φ̃β,0])dx,

and thus (5.27) holds. By using the definition of ue and uh we get the case where
|α| = 1, |β| = 0. ��
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5.2.6. Derivation of the Polarization Tensor Denote by G(x, z) the matrix val-
ued function (Dyadic Green function)

G(x, z) = εm

(
�km (x − z)I + 1

k2m
D2
x�

km (x − z)

)
.

It can be seen that G(x, z) satisfies

∇x × 1

εm
∇x × G(x, z) − ω2μmG(x, z) = −δz I.

We can also easily check that

∇ × G(x, z) = εm∇ × (�km (x − z)I ) = εm∇�km (x − z) × I.

Theorem 5.8 Define the polarization tensors

Me :=
∫

∂B
ỹ(λε I −K∗

B)−1[ν]dσ(ỹ) and Mh :=
∫

∂B
ỹ(λμ I −K∗

B)−1[ν]dσ(ỹ).

(5.32)
Then the following far-field expansion holds:

E(x) − Ei (x) = −δ3ω2μmG(x, z)MeEi (z)

− δ3
iωμm

εm
∇ × G(x, z)MhHi (z) + O(δ4). (5.33)

Before we proceed, we stress that the polarization tensors Me, Mh defined
above are matrix with each entryme

i j andm
h
i j , i, j = 1, 2, 3, defined by (2.16) with

λ = λε and λ = λμ, respectively.
They are different from the vector valued tensors we defined in Equation (5.11).

Proof. We shall give the analysis term by term in (5.17). It is easy to check that

3∑
j=1

e j × ∂ j E
i (z) = iωμmH

i (z) and
3∑
j=1

e j × ∂ j H
i (z) = −iωεmE

i (z)

and

3∑
j=1

∇∂ j�
km (x − z) × e j × Ei (z) = ω2μmG(x, z)Ei (z).

Then by Lemma 5.7 it follows that

∇ ×
3∑
j=1

∇∂ j�
km (x − z) × Me

j,0

= ω2μm∇ × G(x, z)
( i

ωεm
|B|Hi (z) − εc − εm

εm

∫
B

∇uh
)

+ O(δ),
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and

μm

3∑
j=1

∇∂ j�
km (x − z) × Mh

j,0 =ω2μmG(x, z)
(
|B|Ei (z)−(μc − μm)

∫
B

∇ue
)

+O(δ).

Furthermore, we obtain from Proposition 5.4 that

3∑
j=1

∇∂B · φ̃ j,0 = 1

μc − μm

(
λμ I − K∗

B

)−1

⎡
⎣ 3∑

j=1

∇∂B ·
(
ν(ỹ) × (ỹ j∂ j E

i (z))
)⎤⎦ ,

3∑
j=1

∇∂B · φ̃ j,0 = 1

μc − μm

(
λμ I − K∗

B

)−1

⎡
⎣ 3∑

j=1

ν(ỹ) ·
(
∇ × (ỹ j∂ j E

i (z))
)⎤⎦ ,

which gives

3∑
j=1

∇∂B · φ̃ j,0 = − iωμm

μc − μm

(
λμ I − K∗

B

)−1 [ν · Hi (z)].

Similarly, we have

3∑
j=1

∇∂B · ψ̃ j,0 = − εm

εc − εm

(
λμ I − K∗

B

)−1 [ν · Ei (z)].

Recall from (5.30) that

Me
0, j = i

ωεm
|B|e j × ∂ j H

i (z) − εc − εm

εm

∫
B

∇SB[∇∂B · ψ̃ j,0] + O(δ).

Summing over j gives

∇ × ∇�km (x − z) ×
3∑
j=1

i

ωεm
|B|e j × ∂ j H

i (z)

= ∇ × ∇�km (x − z) ×
(

i

ωεm
|B|∇z × Hi (z)

)

= −∇ × ∇�km (x − z) × |B|Ei (z)

= −∇ × ∇ × G(x, z)|B|Ei (z)

= ω2μmG(x, z)|B|Ei (z).

Hence, we can deduce that

∇ × ∇�km (x − z)×
3∑
j=1

Me
0, j =ω2μmG(x, z)

(
|B|Ei (z)+

∫
B

∇SB[ν · Hi (z)]
)

+ O(δ).
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A similar computation yields

μm∇�km (x − z) ×
3∑
j=1

Mh
0, j

= iωμm∇�km (x − z) ×
(
|B|Hi (z)+

∫
B

∇SB(λμ I−K∗
B)−1[ν · Hi (z)]

)
+O(δ),

and therefore,

μm∇�km (x − z) ×
3∑
j=1

Mh
0, j

= iω
μm

εm
∇ × G(x − z)

(
|B|Hi (z) +

∫
B

∇SB(λμ I − K∗
B)−1[ν · Hi (z)]

)
+ O(δ).

Moreover, Lemma 5.6 gives

∇ × ∇�km (x − z) × Me
0,0 = δ

μm

εm
(k2m − k2c )G(x, z)

∫
B

∇(ue + ve) + O(δ2)

μm∇�km (x − z) × Mh
0,0 = δ

(k2m − k2c )

εm
∇ × G(x, z)

∫
B

∇(uh + vh) + O(δ2).

Combining the previous asymptotic expansions we arrive at

E(x) − Ei (x)

= δ3
1

εm
G(x, z)

(
μm(k2m − k2c )

∫
B

∇(ue + ve)

+ (μc − μm)k2m

∫
B

∇ue + k2m

∫
B

∇SB(λε I − K∗
B)−1[ν · Ei (z)]

)

+ δ3
1

εm
∇ × G(x, z)

(
(k2m − k2c )

∫
B

∇(uh + vh) + ω2μm(εc − εm)

∫
B

∇uh

+ iωμm

∫
B

∇SB(λμ I − K∗
B)−1[ν · Hi (z)]

)
+ O(δ4). (5.34)

The proof is then complete. ��
We shall analyze further (5.34). Recall that, from the proof of Lemma 5.6, we

have

∫
B

∇(ue + ve)dx = εm

εc − εm

∫
∂B

ỹ(λε I − K∗
B)−1

[(
∂ue

∂ν

)−]
dσ(x)

and

∫
B

∇(uh + vh)dx = μm

μc − μm

∫
∂B

ỹ(λμ I − K∗
B)−1

[(
∂uh

∂ν

)−]
dσ(x).
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Noticing that

μm(k2m − k2c ) = (μc − μm)k2m
μmεm − μcεc

(μc − μm)(εc − εm)
,

we get

μm(k2m − k2c )
∫
B

∇(ue + ve) + (μc − μm)k2m

∫
B

∇ue

= (μc − μm)k2m

(
μmεm − μcεc

(μc − μm)(εc − εm)

∫
∂B

ỹ(λε I − K∗
B)−1

[(
∂ue

∂ν

)−]

+
∫

∂B
ỹ

(
∂ue

∂ν

)−)
.

Moreover, for any f , we have

μmεm − μcεc

(μc − μm)(εc − εm)

(
λε I − K∗

B

)−1 [ f ] + f

= μmεm − μcεc

(μc − μm)(εc − εm)

(
λε I − K∗

B

)−1 [ f ] + (λε I − K∗) (λε I − K∗
B

)−1 [ f ],

so that

μmεm − μcεc

(μc − μm)(εc − εm)

(
λε I − K∗

B

)−1 [ f ] + f = (λμ I + K∗
B)(λε I − K∗

B)−1[ f ]

We can then write

μm(k2m − k2c )
∫
B

∇(ue + ve) + (μc − μm)k2m

∫
B

∇ue

= −(μc − μm)k2m

∫
∂B

ỹ(λμ I + K∗
B)(λε I − K∗

B)−1

[(
∂ue

∂ν

)−]
.

Recall that by definition,
(

∂ue

∂ν

)−
= ν · ∇ × AB[φ̃0,0].

Then, by using Lemma 5.5, we obtain

ν·∇×AB[φ̃0,0] = 1

μc
ν·Ei (z)+ μm

μ2
c − μmμc

(
ν·∇SB

(
λμ I − K∗

B

)−1 [ν·Ei (z)])−,

which together with the jump relations for the normal derivative of the scalar layer
potential yields

μm(k2m − k2c )
∫
B

∇(ue + ve) + (μc − μm)k2m

∫
B

∇ue

= −μc − μm

μc
k2m

∫
∂B

ỹ(λμ I + K∗
B)(λε I − K∗

B)−1[ν · Ei (z)]
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−μm

μc
k2m

∫
∂B

ỹ(λμ I + K∗
B)(λε I − K∗

B)−1

×
(

−1

2
I + K∗

B

)
(λμ I − K∗

B)−1[ν · Ei (z)].

If we set λε = −1

2
+ εc

εc − εm
, then we can write

−μm

μc

(
λε I − K∗

B

)−1
(

−1

2
I + K∗

B

)
[ν · Ei (z)]

= −μm

μc

(
λε I − K∗

B

)−1
(

λε − εc

εc − εm
I + K∗

B

)
[ν · Ei (z)],

or equivalently,

−μm

μc

(
λε I − K∗

B

)−1
(

−1

2
I + K∗

B

)
[ν · Ei (z)]

= −μm

μc
ν · Ei (z) + εcμm

μc(εc − εm)

(
λε I − K∗

B

)−1 [ν · Ei (z)].

Then, since

−μc − μm

μc

(
λμ I + K∗

B

) (
λε I − K∗

B

)−1 [ν · Ei (z)]

= μc − μm

μc
ν · Ei (z) − μc − μm

μc
(λμ − λε)

(
λε I − K∗

B

)−1 [ν · Ei (z)],

we can write

−μc − μm

μc

(
λμ I + K∗

B

) (
λε I − K∗

B

)−1 [ν · Ei (z)]

−μm

μc

(
λε I − K∗

B

)−1
(

−1

2
I + K∗

B

)
[ν · Ei (z)]

= ν · Ei (z) +
(

εcμm

μc(εc − εm)
− μc − μm

μc
(λμ − λε)

) (
λε I − K∗

B

)−1 [ν · Ei (z)].

A direct computation gives

εcμm

μc(εc − εm)
− μc − μm

μc
(λμ − λε) = 1

2
+ λε,

and therefore,

μm(k2m − k2c )
∫
B

∇(ue + ve) + (μc − μm)k2m

∫
B

∇ue

= k2m

∫
∂B

ỹν · Ei (z)dσ(ỹ) − k2m

(
1

2
+ λε

)

×
∫

∂B
ỹ
(
λε I − K∗

B

)−1 [ν · Ei (z)]dσ(ỹ).
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A similar computation yields

(k2m − k2c )
∫
B

∇(uh + vh) + ω2μm(εc − εm)

∫
B

∇uh

= iωμm

∫
∂B

ỹν · Hi (z)dσ(ỹ) − iωμm

(
1

2
+ λμ

)

×
∫

∂B
ỹ
(
λε I − K∗

B

)−1 [ν · Hi (z)]dσ(ỹ).

Now it remains to compute the last term in (5.34) which is

k2m

∫
B

∇SB(λε I − K∗
B)−1[ν · Ei (z)]d ỹ

= k2m

∫
∂B

ỹ
( ∂

∂ν
SB
)− (

λε I − K∗
B

)−1 [ν · Ei (z)]dσ(ỹ).

Writing that λε = 1

2
+ εm

εc + εm
together with the fact that

( ∂

∂ν
SB
)− =(

−1

2
I + K∗

B

)
, we obtain

∂

∂ν
SB
(
λε I − K∗

B

)−1 [ν ·Ei (z)] = −ν ·Ei (z)+ εm

εc + εm

(
λε I − K∗

B

)−1 [ν ·Ei (z)].

Hence,

k2m

∫
B

∇SB(λε I − K∗
B)−1[ν · Ei (z)]d ỹ

= −k2m

∫
∂B

ỹν · Ei (z)]dσ(ỹ) + k2m

(
λε − 1

2

)

×
∫

∂B
ỹ
(
λε I − K∗

B

)−1 [ν · Ei (z)]dσ(ỹ).

Similarly, we have

iωμm

∫
B

∇SB(λμ I − K∗
B)−1[ν · Hi (z)]

= iωμm

∫
∂B

ỹν · Hi (z)dσ(ỹ) + iωμm

(
λμ − 1

2

)

×
∫

∂B
ỹ
(
λε I − K∗

B

)−1 [ν · Hi (z)]dσ(ỹ).

Finally, we arrive at

E(x) − Ei (x) = −δ3ω2μmG(x, z)
∫

∂B
ỹ(λε I − K∗

B)−1[ν · Ei (z)]

−δ3
iωμm

εm
∇ × G(x, z)

∫
∂B

ỹ(λμ I−K∗
B)−1[ν · Hi (z)]+O(δ4).
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When a plasmonic resonance occurs, the term λε = εc+εm
2(εc−εm )

can have a real

part that is lower than 1
2 , and become close to an eigenvalue of the operator K∗

B .

Let dσ be the minimum of the distances of λε and λμ to the spectrum σ(K∗
B).

Using Proposition 5.4 and (5.16) we can easily see that, as dσ goes to zero, each
of the potentials φβ,n and ψβ,n are controlled in norm by powers of 1

dσ
. So the

asymptotic development given by Theorem 5.8 is valid when δ/dσ << 1, which
ensures that the reminder of the asymptotic expansion is still small compared to
the first-order term.

The following results are our main results in this paper.

Theorem 5.9 Let dσ := min{dist(λε, σ (K∗
B)), dist(λμ, σ (K∗

B))}. As dσ → 0, the
following uniform far-field expansion holds:

Fig. 1. Values of the parameter ε(ω)
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Fig. 2. Values of the parameter λε(ω)

E(x) − Ei (x) = −δ3ω2μmG(x, z)MeEi (z) − δ3
iωμm

εm
∇ × G(x, z)MhHi (z)

+ O

(
δ4

dσ

)
,

where Me and Mh are defined by (5.32).

The above theorem can be generalized to the case of multiple particles.

Theorem 5.10 Let Me and Mh be the polarization tensors associatedwith D1∪D2
and λε and λμ, respectively. Let dσ := min{dist(λε, σ (K∗

B)), dist(λμ, σ (K∗
B))}.
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Fig. 3. Norm of the polarization tensor for a circular inclusion

Then as dσ → 0, the following uniform far-field expansion holds:

E(x) − Ei (x) = −δ3ω2μmG(x, z)MeEi (z)

− δ3
iωμm

εm
∇ × G(x, z)MhHi (z) + O

(
δ4

dσ

)
,

where Me and Mh are defined by (3.4) with λ = λε and λ = λμ, respectively.

Theorems 5.9 and 5.10 show the uniform validity with respect to the nanoparti-
cle’s bulk electron relaxation rate of the quasi-static approximation of theMaxwell’s
equations.

Finally, two more remarks are in order. First, in view of Theorems 5.9 and 5.10
and the blow up of the polarization tensors, it is clear that at plasmonic resonances
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Fig. 4. Norm of the polarization tensor for an elliptic inclusion

the scattered electric field is enhanced. Secondly, from the representation formula
(5.2) for the electric field in D and the estimates of the densities, it can be seen that
the electric field inside the particle is enhanced as well and therefore, the absorbed
energy, given by ε′′ ∫

D |E |2(y) dy, is enhanced at dielectric plasmonic resonances
[13]. Note that the scattering enhancement when the particles are illuminated at
their plasmonic resonances can be used for nano-resolved imaging from the far-
field data while the absorption enhancement for thermotherapy applications as well
as for photoacoustic imaging to remotely measure and control the local temperature
within a medium [59].

6. Numerical Illustrations

We illustrate the plasmon phenomenon numerically by computing the polar-
ization tensor Me for some different two-dimensional shapes. We use the values
for the parameters given in Section 6. The wavelength of the incoming plane wave
c/ω, where c = 3 · 108 is the speed of light, belongs to [80, 1100] · 10−9 m.
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Fig. 5. Norm of the polarization tensor for a flower-shaped inclusion

Figs. 1 and 2 show respectively the values of real and imaginary parts of εc and λε

as a function of the wavelength.

Then we compute the matrix Me defined by (2.16) with λ = λε. We plot the
value of its norm with respect to the incoming wavelength. Fig. 3 shows that if the
shape B is a disk, then one has a resonant peak. This peak corresponds to λε = 0.
Fig. 4 shows that for an ellipse, one can observe two resonant frequencies, one
corresponding to each axis. This was experimentally observed in [23] for elongated
particles. The two peaks correspond to λε = (a − b)/(a + b) ≈ 0.33 and λε =
((a − b)/(a + b))2 ≈ 0.11, where a = 1, b = 1/2 are the semi-axis lengths of the
ellipse. Fig. 5 gives the norm of the polarization tensor for a star-shaped particle.
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Fig. 6. Different couplings between two disks

One can observe that there are many resonant frequencies. This observation is also
in agreement with the experimental results published in [36].

Finally, it is shown in Fig. 7 that when two disks are close to each other, a strong
interaction occurs and the plasmonic resonance frequencies are close to those of an
equivalent ellipse.

7. Concluding Remarks

In this paper,wehaveprovided amathematical framework for localizedplasmon
resonance of nanoparticles. We have derived a uniform small volume expansion for
the solution toMaxwell’s equations in the presence of nanoparticles excited at their
plasmonic resonances.We have presented a variety of numerical results to illustrate
our main findings. As the particle size increases and moves away from the quasi-
static approximation, high-order polarization tensors [9] should be included in order
to compute the plasmonic resonances, which become size-dependent. This would
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Fig. 7. Norm of the polarization tensor for multiple disks for various separating distances

be the subject of a forthcoming work. The scalar case was recently considered in
[13]. Our approach in this paper, combined with the ones in [7,8], opens also a door
for a numerical and mathematical framework for optimal shape design of resonant
nanoparticles and their superresolved imaging.

Appendix A. Jump Formula

We want to prove the jump formula (4.8) for ν × ∇ × AD . The continuity of
Ak

D[φ] is a consequence of the continuity of single layer potentials. Assume that
φ is a continuous tangential field. We first prove the jump relation for k = 0. For
z ∈ R

3\∂D,

∇ × AD[φ](z) =
∫

∂D
∇z × (φ(y)�(z, y)) dσ(y).

So if x ∈ ∂D and z = x + hν(x), then by using vector calculus we have:

ν(x) × ∇ × AD[φ](z)
=
∫

∂D

[
(φ(y) · ν(x)) ∇z�(z, y) − (∇z�(z, y) · ν(x)) φ(y)

]
dσ(y).

Since φ is tangential, we have ∀y ∈ ∂D, ν(y) · φ(y) = 0, so we can write

ν(x) × ∇ × AD[φ](z) =
∫

∂D

[
(φ(y) · [ν(x) − ν(y)]) ∇z�(z, y)

− (∇z�(z, y) · ν(x)) φ(y)
]
dσ(y).

Here, following the same idea as the one in the proof of the jump of the double
layer potential in [29], we introduce
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DD[1](z) =
∫

∂D

∂�

∂ν(y)
(z, y)dσ(y), z ∈ R

3\∂D,

which takes the following values ([29, p. 48]):

DD[1](z) =
⎧⎨
⎩

0 if z ∈ R
3\D,

− 1
2 if z ∈ ∂D,

−1 if z ∈ D.

(A.1)

We write

ν(x) × ∇ × AD[φ](z) = φ(x)DD[1](z) + f (z)

with

f (z) =
∫

∂D

[
(φ(y) · [ν(x) − ν(y)]) ∇z�(z, y)

− (∇z�(z, y) · [ν(x) − ν(y)]) φ(y) − (∇z�(z, y) · ν(y)) φ(y)

− ∂�

∂ν(y)
(z, y)φ(x)

]
dσ(y).

Using the fact that ∇z�(z, y) = −∇y�(z, y) we get

f (z) =
∫

∂D

[
(φ(y) · [ν(x) − ν(y)]) ∇z�(z, y)

− (∇z�(z, y) · [ν(x)−ν(y)]) φ(y)+ ∂�

∂ν(y)
(z, y) (φ(y) − φ(x))

]
dσ(y).

(A.2)

Now, we have only to prove that f is continuous across ∂D, that is, when t → 0,
f (z) = f (x + tν(x)) −→ f (x). If we assume that it is true, then we can write for
z ∈ R

3\D,

ν(x) × ∇ × AD[φ](z) = [φ(x)DD[1](z) − φ(x)DD[1](x) + f (z)] − φ

2
(x),

since DD[1](x) = −1/2. So, when t → 0+, we get

(ν(x) × ∇ × AD[φ](x))+ = [−φ(x)DD[1](x) + f (x)] − φ

2
(x).

Now we see that since φ(y) · ν(y) = 0, ∀y ∈ ∂D

−φ(x)DD[1](x) + f (x)

= −
∫

∂D

∂�

∂ν(y)
(x, y)φ(x)dσ(y)

+
∫

∂D

[
(φ(y) · ν(x)) ∇x�(x, y) − (∇x�(x, y) · ν(x))

+ ∂�

∂ν(y)
(x, y)φ(x)

]
dσ(y),



Surface Plasmon Resonance of Nanoparticles

which is exactly

−φ(x)DD[1](x) + f (x) =
∫

∂D
ν(x) × ∇x × [�(x, y)φ(y)] dσ(y).

So the limit can be expressed as

(
ν(x) × ∇ × AD[φ](x))+ =

∫
∂D

ν(x) × ∇x × [�(x, y)φ(y)] dσ(y) − φ

2
(x).

The limit when t → 0− is computed similarly and we find (4.8) for k = 0. The
extension to k > 0 can be done because the difference between the double layer
potential with kernel �k and � is continuous; see, for instance [29, p. 47].

Now, we go back to the continuity of f defined by (A.2). We apply several
results from [29] to get the continuity. The following lemma, which we state here
for the sake of completeness, can be found in [29].

Lemma A.1 Assume that the kernel K is continuous for all x in a neighborhood
Dh of ∂D, y ∈ ∂D and x �= y. Assume that there exists M > 0 such that

|K (x, y)| � M |x − y|−2

and assume that there exists m ∈ N such that

|K (x1, y) − K (x2, y)| � M
m∑
j=1

|x1 − y|−2− j |x1 − x2| j

for all x1, x2 ∈ Dh, y ∈ ∂D with 2|x1 − x2| � |x1 − y| and that∣∣∣∣∣
∫

∂D\Sx,r
K (z, y)dσ(y)

∣∣∣∣∣ � M

for all x ∈ ∂D and z = x + hν(x) ∈ Dh and all 0 < r < R. Then,

u(z) =
∫

∂D
K (z, y)[φ(y) − φ(x)]dσ(y)

belongs to C0,α(Dh) if φ ∈ C0,α(∂D).

It can be shown that ∣∣∣∣∂�(x, y)

∂ν(y)
− ∂�(z, y)

∂ν(y)

∣∣∣∣ � C
|x − z|
|z − y|3 .

Using the above lemma withm = 1 and the kernel associated with the double layer
potential gives ∫

∂D

∂�

∂ν(y)
(z, y) [φ(y) − φ(x)] dσ(y)

−→
∫

∂D

∂�

∂ν(y)
(x, y) [φ(y) − φ(x)] dσ(y)

as z → x ∈ ∂D.
We now make use of the following lemma from [29].
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Lemma A.2 Assume that the kernel K (x, y) is continuous for all x in a closed
domain 
 containing ∂D in its interior, y ∈ ∂D and x �= y. Assume that there
exists M > 0 and α ∈]0, 2] such that

|K (x, y)| � M |x − y|α−2

and assume that there exists m ∈ N such that

|K (x1, y) − K (x2, y)| � M
m∑
j=1

|x1 − y|α−2− j |x1 − x2| j

for all x1, x2 ∈ Dh, y ∈ ∂D with 2|x1 − x2| � |x1 − y|. Then

u(x) =
∫

∂D
K (x, y)φ(y)dσ(y), x ∈ 


belongs to C0,β(
) if φ ∈ C0,α(∂D). β ∈]0, α] if α ∈]0, 1[, β ∈]0, 1[ if α = 1 and
β ∈]0, 1] if α ∈]1, 2[.

Using the fact that ∂D is of class C2, we have
|ν(x) − ν(y)| � |x − y|, ∀x, y ∈ ∂D.

We can apply Lemma A.2 with α = 1 and m = 1 to the second and third terms of
f and get the continuity of
∫

∂D

[
(φ(y) · [ν(x) − ν(y)]) ∇z�(z, y) − (∇z�(z, y) · [ν(x) − ν(y)]) φ(y)

]
dσ(y)

(A.3)

when z → x ∈ ∂D, which conclude the proof for a continuous tangential field φ.
The formula can be extended to L2

T by a density argument.

References

1. Agarwal, A.,Huang, S.W.,ODonnell, M.,Day, K.C.,Day, M.,Kotov, N.,Ashke-
nazi S.: Targeted gold nanorod contrast agent for prostate cancer detection by photoa-
coustic imaging. J. Appl. Phys. 102, 064701 (2007)

2. Ammari, H., Chow, Y.T., Liu, K., Zou, J.: Optimal shape design by partial spectral
data. arXiv:1310.6098

3. Ammari, H., Ciraolo, G., Kang, H., Lee, H., Milton, G.W.: Spectral theory of a
Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized
resonance. Arch. Ration. Mech. Anal. 208, 667–692 (2013)

4. Ammari, H., Ciraolo, G., Kang, H., Lee, H. Milton, G.W.: Anomalous localized
resonance using a folded geometry in three dimensions. Proc. R. Soc. A 469, 20130048
(2013)

http://arxiv.org/abs/1310.6098


Surface Plasmon Resonance of Nanoparticles

5. Ammari, H., Ciraolo, G., Kang, H., Lee, H. Milton, G.W.: Spectral theory of a
Neumann–Poincaré-type operator and analysis of anomalous localized resonance II.
Contemp. Math. 615, 1–14 (2014)

6. Ammari, H., Ciraolo, G., Kang, H., Lee, H. Yun, K.: Spectral analysis of the
Neumann–Poincaré operator and characterization of the stress concentration in anti-
plane elasticity. Arch. Ration. Mech. Anal. 208, 275–304 (2013)

7. Ammari, H.,Garnier, J.,Millien, P.: Backpropagation imaging in nonlinear harmonic
holography in the presence of measurement and medium noises. SIAM J. Imaging Sci.
7, 239–276 (2014)

8. Ammari, H., Iakovleva, E., Lesselier, D., Perrusson, G.: MUSIC-type electromagnetic
imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput. 29,
674–709 (2007)

9. Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse
Problems and Effective Medium Theory. Applied Mathematical Sciences, Vol. 162,
Springer-Verlag, New York, 2007

10. Ammari, H.,Kang, H.,Lee, H.: Layer Potential Techniques in Spectral Analysis. Math-
ematical Surveys and Monographs series, Vol. 153, Amer. Math. Soc., 2009

11. Ammari, H., Kang, H., Lee, H., Lim, M., Yu, S.: Enhancement of near cloaking for
the full Maxwell equations. SIAM J. Appl. Math. 73, 2055–2076 (2013)

12. Ammari, H., Khelifi, A.: Electromagnetic scattering by small dielectric inhomo-
geneities. J. Math. Pures Appl. 82, 749–842 (2003)

13. Ammari, H., Millien, P., Ruiz, M., Zhang, H.: Mathematical analysis of plasmonic
nanoparticles: the scalar case. arxiv:1506.00866

14. Ammari, H., Vogelius, M., Volkov, D.: Asymptotic formulas for perturbations in the
electromagnetic fields due to the presence of inhomogeneities of small diameter II. The
full Maxwell equations. J. Math. Pures Appl. 80, 769–814 (2001)

15. Anker, J.N., Paigre Hall, W., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne,
R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

16. Archambault, A., Teperik, T.V., Marquier, F., Greffet, J.J.: Surface plasmon
Fourier optics. Phys. Rev. B 79, 195414 (2009)

17. Baffou, G., Girard, C., Quidant, R.: Mapping heat origin in plasmonic structures.
Phys. Rev. Lett. 104, 136805 (2010)

18. Baffou, G.,Quidant, R.: Thermo-plasmonics: using metallic nanostructures as nano-
sources of heat. Laser Photonics Rev. 7, 171–187 (2013)

19. Baffou, G., Quidant, R., Girard, C.: Heat generation in plasmonic nanostructures:
influence of morphology. Appl. Phys. Lett. 94, 153109 (2009)

20. Baffou, G.,Rigneault, H.: Femtosecond-pulsed optical heating of gold nanoparticles.
Phys. Rev. B 84, 035415 (2011)

21. Bonnetier, E., Triki, F.: Pointwise bounds on the gradient and the spectrum of the
Neumann–Poincaré operator: the case of 2 discs. Multi-scale and high-contrast PDE:
from modelling, to mathematical analysis, to inversion, 81–91, Contemp. Math. Vol.
577, Amer. Math. Soc., Providence, RI, 2012

22. Bonnetier, E., Triki, F.: On the spectrum of the Poincaré variational problem for two
close-to-touching inclusions in 2D. Arch. Ration. Mech. Anal. 209, 541–567 (2013)

23. El-Brolossy, T.,Abdallah, T.,Mohamed, M.B.,Abdallah, S., Easawi, K.,Negm,
S., Talaat, H.: Shape and size dependence of the surface plasmon resonance of gold
nanoparticles studied by photoacoustic technique. Euro. Phys. J. 153, 361–364 (2008)

24. Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl, 
) in lipschitz domains.
J. Math. Anal. Appl. 276, 845–867 (2002)

25. Chapuis, P.O., Laroche, M., Volz, S., Greffet, J.J.: Naer-field induction heating of
metallic nanoparticles due to infrared magnetic dipole contribution. Phys. Rev. B 77,
125402 (2008)

26. Chen, H., Shao, L.,Ming, T., Sun, Z., Zhao, C., Yang, B.,Wang, J.: Understanding
the photothermal conversion efficiency of gold nanocrystals. Small 6, 2272–2280 (2010)

http://arxiv.org/abs/1506.00866


Habib Ammari, Youjun Deng & Pierre Millien

27. Colas des Francs, G., Derom, S., Vincent, R., Bouhelier, A., Dereux, A.: Mie
plasmons: modes volumes, quality factors, and coupling strengths (purcell factor) to a
dipolar emitter. Int. J. Opt. 2012, 175162 (2012)

28. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory,
Vol. 93. Springer, Berlin, 2012

29. Colton, D.,Kress, R.: Integral EquationMethods in Scattering Theory, Vol. 72. SIAM,
Philadelphia, 2013

30. Gil, M.I.:NormEstimations for Operator Valued Functions and Applications, Vol. 192.
CRC Press, Boca Raton, 1995

31. Govorov, A.O., Richardson, H.: Generating heat with metal nanoparticles. NanoTo-
day (1) 2, 20–39 (2007)

32. Govorov, A.O., Zhang, W., Skeini, T., Richardson, H., Lee, J., Kotov, N.A.: Gold
nanoparticle ensembes as heaters and actuators: melting and collective plasmon reso-
nances. Nanoscale Res. Lett. 1, 84–90 (2006)

33. Grieser, D.: The plasmonic eigenvalue problem. Rev. Math. Phys. 26, 1450005 (2014)
34. Griesmaier, R.: An asymptotic factorization method for inverse electromagnetic scat-

tering in layered media. SIAM J. Appl. Math. 68, 1378–1403 (2008)
35. Grua, P., Morreeuw, J.P., Bercegol, H., Jonusauskas, G., Vallée, F.: Electron

kinetics and emission for metal nanoparticles exposed to intense laser pulses. Phys.
Rev. B 68, 035424 (2003)

36. Hao, F., Nehl, C.L., Hafner, J.H., Nordlander, P.: Plasmon resonances of a gold
nanostar. Nano Lett. 7, 729–732 (2007)

37. Helsing, J., Perfekt, K.M.: On the polarizability and capacitance of the cube. Appl.
Comput. Harmon. Anal. 34, 445–468 (2013)

38. Homola, J.: Electromagnetic theory of surface plasmons. Springer Ser. Chem. Sens.
Biosens. 4, 3–44 (2006)

39. Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv.
Mater. 16, 1685–1706 (2004)

40. Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and
scattering properties of gold nanoparticles of different size, shape, and composition:
applications in biomedical imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248
(2006)

41. Jain, P.K.,El-Sayed, I.H.,El-Sayed,M.A.:Au nanoparticles target cancer.Nanotoday
2, 18-29 (2007)

42. Kang, H., Seo, J.K.: Inverse conductivity problem with one measurement: uniqueness
of balls in R3. SIAM J. Appl. Math. 59, 851–867 (1999)

43. Kellogg, O.D.: Foundations of Potential Theory. Reprint from the first edition of
1929. Die Grundlehren der MathematischenWissenschaften, Band 31 Springer-Verlag,
Berlin-New York, 1967

44. Khavinson, D., Putinar, M., Shapiro, H.S.: Poincaré’s variational problem in poten-
tial theory. Arch. Ration. Mech. Anal. 185, 143–184 (2007)

45. Link, S., Burda, C.,Nikoobakht, B., El-Sayed, M.A.: Laser-induced shape changes
of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys.
Chem. B 104, 6152–6163 (2000)

46. Mayergoyz, I.D., Fredkin, D.R., Zhang, Z.: Electrostatic (plasmon) resonances in
nanoparticles. Phys. Rev. B 72, 155412 (2005)

47. Mayergoyz, I.D., Zhang, Z.: Numerical analysis of plasmon resonances in nanopar-
ticules. IEEE Trans. Mag. 42, 759–762 (2006)

48. Mitrea, D., Mitrea, M., Pipher, J.: Vector potential theory on nonsmooth domains
in R3 and applications to electromagnetic scattering. J. Fourier Anal. Appl. 3, 131–192
(1996)

49. Nédélec, J.C.: Acoustic and Electromagnetic Equations: Integral Representat ions for
Harmonic Problems, Springer-Verlag, New York, 2001



Surface Plasmon Resonance of Nanoparticles

50. Nelayah, J.,Kociak, M., Stéphan, O.,García DeAbajo, F.J.,Tencé, M.,Henrard,
L., Taverna, D., Pastoriza-Santos, I., Liz-Marzán, L.M., Colliex, C.: Mapping surface
plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007)

51. Nguyen, H.M.,Vogelius, M.S.: A representation formula for the voltage perturbations
caused by diametrically small conductivity inhomogeneities. Proof of uniform validity.
Ann. Inst. H. Poincar Anal. Non Linéaire 26, 2283–2315 (2009)

52. Oldenburg, S.J., Averitt, R.D., Westcott, S.L., Halas, N.J.: Nanoengineering of
optical resonances. Chem. Phys. Lett. 288, 243–247 (1998)

53. Pendry, J.B.: Radiative exchange of heat between nanostructures. J. Phys.: Condens.
Matter 11, 6621-33 (1999)

54. Rethfeld, B.,Kaiser, A.,Vicanek, M., Simon, G.: Ultrafast dynamics of nonequilib-
rium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303
(2002)

55. Sarid,D.,Challener,W.A.:Modern Introduction to SurfacePlasmons:Theory,Math-
ematica Modeling, and Applications. Cambridge University Press, New York, 2010

56. Scholl, J.A., Koh, A.L., Dionne, J.A.: Quantum plasmon resonances of individual
metallic nanoparticles. Nature 483, 421–428 (2012)

57. Torres, R.H.: Maxwell’s equations and dielectric obstacles with Lipschitz boundaries.
J. Lond. Math. Soc. (2) 57, 157–169 (1998)

58. Volkov, A.N., Sevilla, C., Zhigilei, L.V.: Numerical modeling of short pulse laser
interaction with Au nanoparticle surrounded by water. Appl. Surf. Sci. 253, 6394–6399
(2007)

59. Vu, X.H., Levy, M., Barroca, T., Tran, H.N., Fort, E.: Gold nanocrescents for
remotely measuring and controlling local temperature. Nanotechnology 24, 325501
(2013)

Department of Mathematics and Applications,
Ecole Normale Supérieure,

45 Rue d’Ulm,
75005 Paris, France.

e-mail: habib.ammari@ens.fr
e-mail: deng@dma.ens.fr

e-mail: pierre.millien@ens.fr

(Received December 19, 2014 / Accepted September 5, 2015)
© Springer-Verlag Berlin Heidelberg (2015)


	Surface Plasmon Resonance of Nanoparticles and Applications in Imaging
	Abstract
	1 Introduction
	2 Plasmonic Resonances
	3 Drude's Model for the Electric Permittivity and Magnetic Permeability
	4 Boundary Integral Operators
	4.1 Definitions
	4.2 Boundary integral identities
	4.3 Resolvent Estimates

	5 Small Volume Expansion
	5.1 Layer Potential Formulation
	5.2 Derivation of the Asymptotic Formula
	5.2.1 Asymptotics for the Operators
	5.2.2 Far-Field Expansion
	5.2.3 Asymptotics for the Potentials
	5.2.4 Derivation of the Leading-Order Potentials
	5.2.5 Derivation of the Leading-Order Tensors
	5.2.6 Derivation of the Polarization Tensor


	6 Numerical Illustrations
	7 Concluding Remarks
	Appendix A. Jump Formula
	References




