
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. A. Wegmann, président du jury
Prof. M. Odersky, directeur de thèse

Prof. O. Lhoták, rapporteur
Prof. J. Hage, rapporteur

Prof. V. Kuncak, rapporteur

Decrypting Local Type Inference

THÈSE NO 6741 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 15 JANVIER 2016

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE MÉTHODES DE PROGRAMMATION 1

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2016

PAR

Hubert PLOCINICZAK

Only those who will risk going too far

can possibly find out how far one can go.

— T.S. Eliot

To my parents. I owe them everything.

Abstract

Statically typed languages verify programs at compile-time. As a result many programming

mistakes are detected at an early stage of development. A programmer does not have to

specify types for every single term manually, however. Many programming languages can

reconstruct a terms type using type inference algorithms. While helpful, programmers often

find it hard to comprehend the choice of typing decisions that led to the derived type for a

term. A particularly serious consequence is that the reporting of type errors yields cryptic

messages and misleading program locations.

In this thesis we propose a novel approach to explaining type checking decisions by exploring

fragments of type derivation trees. Our approach applies to programming languages that use

local type inference: typing decisions are made locally and the type information is only prop-

agated between the adjacent AST nodes. We design an algorithm that backtracks through

the nodes of type derivation trees in order to discover the typing decisions that introduce the

types for the first time during the type inference process. Our algorithm has two properties

• it is type-driven, meaning that we only visit the nodes and their respective typing deci-

sions if they participated in the inference of a type.

• it is autonomous, meaning that it does not require continues user-input in its opera-

tion.

These properties allow us to identify the complete and precise set of locations defining the

source of a type; previous work mostly focused on heuristics or used approximations for lo-

cating the cause of an error.

Our algorithm is not tied to a particular implementation of a type checker: our type deriva-

tion trees can be reconstructed from a pre-existing type checker without modifying its in-

ternal logic or affecting its regular compilation times. It therefore readily applies to existing

programs: we can not only provide improved feedback for them, we also expose limitations

of local type inference algorithms and their implementations, without artificially limiting the

language features.

We implement our type debugging algorithm on top of Scalas type checker. Our analysis ap-

plies to a range of erroneous scenarios. It provides better error locations than the standard

v

Abstract

type error reporter of the Scala compiler.

This type debugging analysis is just a starting point from which many interesting and useful

applications around type debugging can be built:

• we implement an interactive type debugger that guides the users through the decisions

of local type inference for erroneous and error-free programs alike.

• with precise and minimal source code locations we can also offer surgical-level code

modifications that fix for example the limitations of local type inference.

• we open the door for programmatically defined, application-specific error feedback or

corrections.

To the best of our knowledge this thesis is the first to address the problem of type errors

for programming languages that use local type inference. Current trends suggest that this

scheme is gaining in popularity with mainstream languages other than Scala.

Key words: type inference, type debugging, type errors, type checking

vi

Abstract

Les langages de programmation statiquement typés empêchent les programmeurs de faire

certains types derreur pendant le cycle de développement dun logiciel. Un vérificateur de

types, ou typeur, permet daccomplir cette tâche. Spécifier manuellement le type de chaque

terme peut devenir extrêmement verbose. Un algorithme dinférence de types permet de pal-

lier ce problème en reconstruisant automatiquement le type pour un certain terme. Il ar-

rive malheureusement que linférence de types influe négativement sur la compréhension du

typeur. Ceci se reflète sérieusement dans les messages derreurs liés au types: les messages

deviennent cryptiques, ou suggèrent des sources derreurs imprécises.

Dans cette thèse, nous étudions le problème qui consiste à correctement, et exhaustivement,

expliquer les décisions que prend un typeur pour arriver à un certain type pour un terme.

Notre approche consiste à explorer les arbres de dérivation de types, et sapplique aux lan-

gages qui utilisent linférence locale: dans ce contexte, les décisions de typage sont prises

de manière locale, et linformation concernant un type est propagée uniquement entre des

noeuds voisins. Notre algorithme remonte, à partir dun certain noeud donné, larbre de déri-

vation, afin de découvrir le lieu original où un type a été introduit. Notre algorithme a deux

propriétés:

• il est dirigé par les types: il visite seulement les noeuds qui participent à linférence dun

type donné.

• il est autonome: il ne requiert aucune aide externe pour fonctionner.

Ces deux propriétés permettent didentifier, de manière exhaustive et précise, lensemble des

sources de définition dun type; précédemment il était plus commun dutiliser des heuris-

tiques ou encore dapproximer le lieu dune erreur.

Notre algorithme nest pas lié à un typeur spécifique: les arbres de dérivation de types peuvent

être reconstruits à partir dun typeur pré-existent, sans devoir modifier ce dernier. Il est ainsi

possible de directement lappliquer à des programmes pré-existents: nous pouvons proposer

des messages derreurs plus précises, et aussi exposer certaines limitations des implémenta-

tions de linférenceur.

Nous proposons une implémentation de notre algorithme pour le typeur de Scala. Notre

analyse sapplique à une game derreurs qui arrivent fréquemment en pratique, et nous per-

met de proposer de meilleures sources derreurs que le rapporteur standard de Scala.

Lanalyse de déboggage de types nest quun point de départ à partir de laquelle il est possible

de développer beaucoup dapplications utiles et intéressantes:

• nous proposons un débogueur de types interactif, qui permet aux programmeurs dex-

plorer les décisions prises par le typeur, autant pour les programmes corrects quer-

ronnés.

• grâce aux sources précises derreur, il est même possible de proposer certaines modifi-

cations de code qui permettent de surmonter certaines lacunes de linférence locale de

types.

vii

Abstract

• il est possible de développer, par dessus le débogueur, des extensions qui permettent

de proposer des messages derreurs et corrections spécifiques à lapplication en ques-

tion.

Au meilleur de nos connaissances, cette thèse est la première à adresser le problème derreurs

de typage dans les langages a inférence locale. Les récents développements suggèrent que ce

type dinférence gagne en popularité et se propage à des langages autres que Scala.

Mots clefs: inférence de type, le type de débogage, les erreurs de type, la vérification de type

viii

Acknowledgements

During my time at EPFL I had a pleasure to meet and work with incredible people. I guess as

I start writing this last chapter in the thesis I realize that this is going to be a pretty long night

and I am going to omit someone. So I will keep it short.

First of all, I would like to thank my PhD thesis advisor Martin Odersky for letting me be part

of the LAMP team and trusting in my capabilities. It’s been a pleasure to be part of and con-

tribute to the Scala project.

I would also like to thank Viktor Kunak, Ondr̆ej Lhoták, and Jurriaan Hage for agreeing to be

on my thesis committee and for reviewing my thesis, as well as Alain Wegmann for agreeing

to be the thesis committee president.

I want to thank my colleagues at LAMP with whom I had a chance to spend time over the

years: Sandro Stucki, Lukas Rytz, Iulian Dragos, Aleksandar Prokopec, Miguel Garcia, Chris

Vogt, Adriaan Moors, Donna Malayer, Ingo Maier, Manohar Jonnalagedda, Vlad Ureche, Nada

Amin, Denys Shabalin, Eugene Burmako, Sébastien Doeraene, Vojin Jovanovic, Heather Miller,

Dmitry Petrashko, Philipp Haller, Tiark Rompf, Nicolai Stucki, Tobias Schlatter, Antonio Cunei.

I cannot forget Danielle Chamberlain, our lab secretary, for her incredible optimism and ad-

ministrative skills, and Fabien Salvi, for fixing my laptop so many times. Thank you so much.

Special thanks go to Philipp Haller and Heather Miller for giving me some shelter at your

place when I needed it the most. I owe you big time for this.

And as I passed by the office of Stefan Lienhard he said that I should thank him too. So here

it is, thanks mate for all the bouldering together.

A big thank goes to Vera Salvisberg for introducing me to blues dance. My life will never be

the same after that.

I would like to thank Halina Kotyk, Maciej Baranowski and Olga Biskup for being my first

math teachers. Those are the people with an enormous amount of patience that spend their

extra hours doing incredible work for the community in my hometown.

ix

Acknowledgements

I cannot forget about my high-school friends Jasiu Witajewski, Angelika Modelska, and Michal

Dziedziniewicz whom I could always call and ask for help.

I started my studies at Imperial with Anton Stefanek and he kept my spirits up ever since.

Thanks for all the chats about computer science and life in general. Thanks for giving me a

CD with Ubuntu. That was a game changer.

I would like to thank here to my previous supervisor at Imperial, Susan Eisenbach, for luring

me into the area of programming languages and encouraging me to stay in research after my

studies.

Also I would like to thank Gergely Huszka, Jefferson Elbert and Simon Marmet for being prob-

ably the best flatmates one could ever wish for. And for being so patient with my cats.

I would like to thank my extended family whom I have only managed to see maybe once a

year over the past couple of years. I especially would like to thank my uncle Wojciech Izy-

dorek for showing me the beauty of cycling. You will always be a role model for me.

Finally, I would like to thank my parents, Ewa and Stefan, my brother, Łukasz, his wife Gosia

and their little Emiś (well not so little anymore). It’s hard to express the amount of gratitude

I owe them, especially after all those months of my grumpiness. To be honest my journey

to this thesis did not start 5 years ago at EPFL. It started around 13 years ago when I made

a decision to leave my hometown, go, to a pretty unusual for those times, high-school with

the Internal Baccalaureate, and 3 years later landed in London where I did my studies. For

my parents, both retired teachers, this meant really high burden but they did everything they

could to provide me with the best education that was available (I should mention that teach-

ers in Poland don’t get paid well). Thank you for supporting me with all my crazy ideas and

letting me free so early. Thank you Łukasz and Gosia for tolerating my inner weirdness. I will

try to fulfill my duties now as the uncle to Emiś (and no longer be just known as the uncle

with cats).

As a side note, I would also like to thank Robin Williams (whom I never met personally). He is

no longer with us but his sense of humor kept me sane and happy when I needed it the most.

Lausanne, 29 Mai 2015

x

Contents

Abstract v

Acknowledgements ix

Table of Contents xiv

1 Introduction 1

1.1 Desired properties of the algorithm . 7

1.2 The target audience of the type debugger . 11

1.3 Terminology . 12

1.4 Overview . 14

1.5 Contributions . 15

2 Preliminaries 17

2.1 Colored Local Type Inference . 17

2.1.1 Grammar . 18

2.1.2 Internal language . 19

2.1.3 External Colored Type System . 19

2.1.4 Type inference rules . 23

2.1.5 Type constraints . 25

2.2 Type inference in Scala . 28

2.2.1 Inferred Type Instantiation for GJ . 29

3 Guided-analysis for type derivation trees 33

3.1 Using type derivation trees for type debugging . 34

3.1.1 Debugging simple function applications 34

3.1.2 Debugging foldRight application . 36

3.2 Introduction to the analysis of type derivation trees 41

3.3 Foundations of TypeFocus . 45

3.3.1 A type selection on type expressions . 46

3.3.2 The well-formedness property . 52

3.4 Foundations of Typing Slice . 54

3.4.1 Typing Slice . 55

3.4.2 Prototype Typing Slice . 55

xi

Contents

3.4.3 Type Variable Typing Slice . 57

3.4.4 Adaptation Typing Slice . 57

3.4.5 Type Signature Typing Slice . 57

3.5 TypeFocus-based analysis of type derivation trees 58

3.5.1 Algorithm for analyzing type inference decisions - a fragment 64

3.5.2 Algorithm for analyzing type inference decisions - a template 69

3.5.3 A complete algorithm . 71

3.6 On understanding the propagation of the expected type 76

3.6.1 Inference of a Propagation Root . 77

3.6.2 Analysis of a Propagation Root . 80

3.6.3 Source of the Prototype and Adaptation Typing Slices 84

3.7 On understanding the type variable instantiation 86

3.7.1 From a type constraint to a TypeFocus . 86

3.7.2 Relating type constraints to their source 92

3.7.3 Explaining function applications with elided type arguments 96

3.7.4 Explaining function applications with explicit type arguments 98

3.7.5 Discussion . 99

3.8 On understanding the Type Signature Typing Slice 109

3.9 Conclusions . 111

4 Foundations of type mismatch errors 113

4.1 Inference of a Propagation Root . 114

4.2 From a failed subtyping derivation to a TypeFocus 117

4.3 On explaining type mismatch errors . 121

4.4 Example: Explaining the type mismatch of the foldRight application 122

4.5 Final remarks . 126

5 Lightweight extraction of type checker decisions 127

5.1 Compiler instrumentation . 128

5.2 High-level representation . 131

5.3 Mapping between representations . 132

5.4 A translation from a low-level instrumentation to a high-level representation . 143

5.5 Discussion . 151

5.5.1 Decreasing the instrumentation footprint 152

5.5.2 Navigating the type checker decisions . 160

5.5.3 Guidelines on instrumenting the existing type checkers 161

5.5.4 Maintenance of the instrumentation . 164

5.6 Conclusions . 169

6 Type Debugger - the implementation details 171

6.1 Overview . 171

6.2 Compiler infrastructure . 174

6.3 The TypeFocus generation . 177

xii

Contents

6.3.1 The TypeFocus for Scala . 177

6.3.2 The inference of TypeFocus instances . 185

6.4 The TypeFocus-based analysis . 188

6.4.1 Typing Slices . 188

6.4.2 Inference of Typing Slices . 189

6.4.3 Exploration of type checking with Typing Slices 190

6.5 Debugging function applications with elided type arguments 191

6.5.1 Representing the type constraints . 192

6.6 Debugging implicit resolution . 196

6.6.1 The high-level representation . 196

6.6.2 Navigating the implicit resolution . 198

6.6.3 Example: Explaining the implicit resolution selection 199

6.6.4 Example: Implicit resolution and the limitations of local type inference . 203

6.7 Code modifications . 208

6.7.1 Typing Slices-related suggestions . 208

6.7.2 Example: Overcoming the limitations of local type inference 210

6.7.3 Example: Java Generics . 217

6.8 Conclusions . 218

7 Applications 221

7.1 Automatic explanation of the implicit resolution 222

7.1.1 The deterministic analysis of the implicit resolution 225

7.1.2 The heuristic-based analysis of the implicit resolution 230

7.2 Improved error feedback . 233

7.2.1 Examples . 233

7.2.2 Library-specific plugins . 244

7.2.3 Infrastructure for error plugins . 250

7.2.4 Limitations . 252

7.3 Interactive type debugging . 253

7.3.1 Visual exploration . 253

7.3.2 Guided type debugging with Typing Slices 257

7.4 Conclusions . 267

8 Conclusions 269

A Encoding of lists in Colored Local Type Inference 271

B Auxiliary functions used in the TypeFocus-driven algorithm 273

B.1 Definition of the free variables function . 275

B.2 Definition of the bound variables function . 275

C Proof of Theorem 1 on the prototype propagation 277

xiii

Contents

D Proofs for the TypeFocus properties 279

D.1 Proof of Lemma 3.4 on the well-formedness of TypeFocus with respect to the

prototype . 279

D.2 Proof of the distribution of well-formedness over head and tail of TypeFocus . 282

D.3 Proof of Lemma 3.8 on the well-formedness of TypeFocus over type substitution. 284

E Proofs on the translation of type constraints to type selectors 287

E.1 Proof of the well-formedness of the TypeFocus sequences inferred from the sub-

typing relation . 287

E.2 Proof of the soundess of the TypeFocus sequences inferred from the subtyping

relation . 290

E.3 Proof of the completeness of the TypeFocus sequences inferred from the subtyp-

ing relation . 296

E.4 Proof of the completeness of the �sub judgment 306

F Proofs on mapping between the low-level instrumentation data and its high-level

representation 309

Bibliography 320

Résumé 321

xiv

Chapter 1

Introduction

The craft of writing software is inherently associated with the choice of the technology, and

the choice of a programming language in particular. Irrespective of the preference of the

programmers writing software also means dealing with errors which manifest themselves

during the runtime execution of the program or during the compilation that statically verifies

the properties of the program.

The dynamically typed languages, such as Javascript or Ruby, are prime examples of lan-

guages associated with rapid application development; programmers do not have to deal

with additional type annotations and can debug their errors by inspecting the runtime val-

ues that failed to be covered by the logic of the program. On the other end we also have

statically typed languages, such as Java or Scala, which can detect many of the runtime errors

prior to the actual execution of the program. Static types provide additional guarantees for

the written code, allow for a number of important compile-time optimizations or type-driven

synthesis, among others. Types also provide a poor man’s equivalent of a documentation of

a program. The benefits of statically typed languages come at a cost: the source code can be

packed with type annotations and the restrictive type systems can limit the expressiveness of

the users in favor of the safety of the logic of the program.

Nowadays we experience a general tendency of the new programming languages to stay

away from the two extremes in order to provide the best of the two worlds. The dynami-

cally typed languages are being replaced with gradually typed languages, such as TypeScript1

or Hack2, that can verify the properties of the explicitly annotated fragments of the code. Al-

ternatively, the dynamically typed languages are equipped with static analyzers, such as flow

(http://flowtype.org/) or Phantm (Kneuss et al. [2010]), performing flow-analysis in order to

discover the non-trivial errors and thus providing additional guarantees for the correctness

of the code. The mainstream statically typed languages ease the adoption by allowing for the

1typescriptlang.org
2hacklang.org

1

Chapter 1. Introduction

type annotations to be elided either partially or fully, without potentially sacrificing the safety

guarantees of the language with respect to programs with explicit type annotations. The type

inference process can significantly improve the readability of the source code but the rules

that govern the process tend to be underspecified or unclear to the programmers (Vytiniotis

et al. [2011] gives one example where a more powerful type inference mechanism is not nec-

essarily good for the programmers); the inferred type values are different from the intended

ones, or they are not inferred at all, oftentimes leading to obscure type error messages that

omit the involvement of the decisions process of type inference.

The type errors are, after the type annotations, the second most complained feature that pro-

grammers have to deal with in every day programming. Not only are the messages too ab-

stract to many users, referring to the types of values, but are also rarely precise, reporting

locations that are far from the real source of the error or from the types that participate in the

conflict. With the elided type annotations the meaning of the error messages becomes even

more cryptic since the reported types only indirectly refer to the source code provided by the

programmer. Furthermore, with the type systems becoming more powerful and more expres-

sive, their types rarely become less complicated, making the eliding of type annotations more

unpredictable or even undecidable.

To illustrate how a complete confidence in the type inference process can lead to confusing

type errors, we consider a short code snippet from Scala involving a local variable and a con-

ditional expression:

1 var x = None
2 ...
3 x = (if (y > z) Some(y)
4 else Some(z))
5

6 // error: type mismatch;
7 // found: Some[Int]
8 // required: None.type
9 // (if (y > z) Some(y)

10 // ^

In the example the user assigns some option value to a variable ‘x’. In Scala, ‘None’ and

‘Some(y)’ for some value ‘y’, are both values of an Option type, where the former represents an

empty Option value and the latter the non-empty one with the value ‘y’. It may therefore be

surprising to discover that the subsequent conditional statement results in a type mismatch

involving the two subtypes of the Option[T] type. In situations like this programmers should

be directed to a real source of the error (the inferred type of the type variable is None.type

rather than the intended Option[Int]), or be explained the decision process of the type in-

ference employed by Scala, or, in the worst case, be able to investigate the problem on their

own, similarly to how one can use the runtime debuggers to analyze the execution of the pro-

2

gram in dynamically typed languages. In the aftermath of errors like this, programmers loose

confidence in the capabilities of type inference and start adding explicit type annotations in

more locations than necessary, making their source code unreadable.

In general we distinguish between two main approaches to the type inference process: the

global and the local type inference. Both come with their own sets of advantages and prob-

lems, that we will now briefly summarize.

Global type inference collects type constraints from the complete programs and only later

attempts to solve them, potentially using some type unification technique. This kind of type

inference, introduced for the first time in Hindley-Milner type inference algorithm (Damas

and Milner [1982]), has been implemented in some variations in languages such as Haskell

(Vytiniotis et al. [2011]) or OCaml (Russo and Vytiniotis [2009]). With the advent of advanced

type system features, such as type-classes (Hall et al. [1994]), GADTs (Schrijvers et al. [2009]),

type-families (Kiselyov et al. [2010]), it has become increasingly hard to provide a sound and

decidable process that at the same time infers types that are intuitive for users. HM(X) (Oder-

sky et al. [1999]) and OutsideIn(X)(Vytiniotis et al. [2011]) provide type inference algorithms

that abstract over the domain of constraints and with a small number of requirements can

still prove the inference of principal types. Unfortunately, global type inference has not been

the technique of choice for other mainstream languages due to its non-trivial implementa-

tion, notorious mislocation of the error messages (McAdam [2000]), and, most importantly,

the intractability and lack of principal types for nominal subtyping (Odersky et al. [1999] and

Odersky [2002]). Due to the above reasons local type inference has become a technique of

choice for eliding type annotations in many of the mainstream and recent programming lan-

guages, such as Scala, Rust3, Ceylon4, Typed Racket5, and, in a limited form, in Java or C#.

Local type inference (Pierce and Turner [2000]) refrains from solving the constraints that are

separated by a long distance by only propagating type information between the adjacent

nodes in the abstract syntax trees of the source code. Due to the locality of the approach

the integration of the core type system with additional type system features does not com-

promise the soundness of the type inference in general. On the other hand local type infer-

ence is not complete, meaning it will reject fully unannotated programs. Local type inference

improves significantly the localization of type errors with respect to global type inference ap-

proach but does not eliminate the problem.

The Scala example presented above illustrates the fact that types that are inferred locally may

lead to type errors for correctly defined programs, because they only take into account the

type checking decisions up to the point of the given AST node. Various constructs, such as

function applications with the elided type arguments, infer optimal approximations from

the locally collected type constraints. The locations of the type constraints, the semantics

of the approximation, and its effect on the inferred type are often hard to comprehend to

3rust-lang.org/
4ceylon-lang.org/
5docs.racket-lang.org/ts-reference

3

Chapter 1. Introduction

the programmers. To add to the confusion the implementations of local type inference may

introduce their own limitations which are not explained by either the specification of the

language nor the type error message, and have a tendency to linger in the language for years

to come. The limitations lead to puzzling type errors, such as the one shown in Figure 1.1

for an innocuous snippet of Scala code. In this example, we have a list of integers that we

want to increment using the foldRight method from the Scala standard library. A call to

‘foldRight’ method, applies a binary operator, a function which appends an incremented

elements, starting with the argument ‘NiL’, to each element of a list from right to left.

1 val xs = List(1, 2, 3)
2 xs.foldRight(Nil)((x, ys) => (x + 1) :: ys)
3

4 // error: type mismatch;
5 // found : List[Int]
6 // required: scala.collection.immutable.Nil
7 // xs.foldRight(Nil)((x, ys) => (x + 1) :: ys)
8 // ^

Figure 1.1: Incrementing a list of integers gone wrong.

The type error exposes one of the limitations of type inference for local type parameters –

type inference flows from left to right and only from parameter list to parameter list. Without

a prior knowledge of the type inference algorithm users are unable to make a distant connec-

tion between the location of the error in ‘::’ and the value ‘Nil’.

The improvements to the error reporting infrastructure have largely ignored the presence of

programming languages using local type inference. With the advent of generic programming,

available through the introduction of parametric polymorphism (or generics), and such fea-

tures as subtyping polymorphism, implicit resolution (Oliveira et al. [2010]), path-dependent

types (Odersky et al. [2003]) or mixin composition (Odersky et al. [2006]) languages like Scala

are being increasingly criticized for the incomprehensible decisions of the type checking pro-

cess. On the other hand languages like Java or C# chose to support only a limited form of

local type inference, and refrained from adding more advanced type system features, in favor

of a more predictable behavior (Cimadamore [2015]) and a simpler implementation. We be-

lieve that such compromise is both unnecessary and undesirable. Instead, the programming

languages should provide enough of a type checking context information in order to build

separate tools that explain at least some of the type errors and guide the user in understand-

ing the sometimes necessary details of the type checking process.

The locality property and the fact that local type inference process is defined in an incremen-

tal manner not only helps with the implementation, but also offers important debugging

opportunities that have not been taken into account in any of the related work: the analy-

sis of the source of any type essentially resolves to traverse backwards through the already

committed decisions of the type checking process. The insight does not apply to global type

4

inference approach where the inferred types are a result of constraints collected and solved

from the complete programs separately.

By traversing the type checking decisions backwards we aim to identify precisely the minimal

source code locations, such as the explicit type annotations, constants, identifiers or type

parameter instantiations, that introduce the type or, more importantly, a part of it for the

first time. Due to a range of possible type checking decisions and their number for each of the

AST nodes, that may introduce the type for the first time, the process itself must not employ

any of the brute-force techniques that simply scan all type checking decisions. Furthermore,

with the inferred types being a result of type constraints approximations, the process has to

be well-defined for the possible semantics of the least upper bound and the greatest lower

bounds decisions as well, meaning that in order to identify the minimal sources of types we

have to go beyond just the identification of the existence of type constraints (El Boustani and

Hage [2010]) and analyze their source as well.

The problem of incomprehensible type errors is not new and has induced a number of re-

search projects which have focused on the two areas - finding the minimal source code lo-

cations representing the type errors and the improvements in the quality of their messages.

Surprisingly, almost all of the work (the Java heuristics in El Boustani and Hage [2010] being

an exception) ignored the mainstream, statically typed languages that are using some form

of local type inference.

None of the mainstream implementations of type checkers for statically typed languages

were built with the intention of representing the decision process. That is why any attempts

to improving the error feedback resolve either to a definition of a new type system or type

inference calculus that carries the lost information (Stuckey and Sulzmann [2005], Heeren

et al. [2003a]) or infers better localized type error messages (Lerner et al. [2007]), or creating a

separate, post-type checking phase that extracts the essential details of the process (El Bous-

tani and Hage [2010]). In practice, the separate implementation supports only a subset of

the existing language and its implementation, which significantly reduces its target audience

and the chances of its widespread adoption in the future. With the ongoing development

of the languages it is also likely that the separate debugging-oriented implementation will

drag behind or diverge from the original implementation and result in different kinds of type

errors.

With a new model of the type checking process, the improved error feedback is achieved by

employing more elaborate constraint solving techniques (Pavlinovic et al. [2014], Stuckey and

Sulzmann [2005]), that infer their unsatisfiable subsets of the collected constraints and lead

to the minimal number of program locations that characterize the type error message (Haack

and Wells [2004]).

An orthogonal approach to improving error reporting is aimed at developing techniques that

automatically resolve the errors. These heuristics, defined by the language architects, approx-

imate the type errors to one of possible templates in an effort to provide source code modi-

5

Chapter 1. Introduction

fications that fix the error (Gvero and Kuncak [2015], Chitil [2001], Chen and Erwig [2014b])

or simply generate more informative type error messages (Hage and Heeren [2007], Weijers

et al. [2013]). In addition, one can employ statistical models from the specially inferred con-

straints sets (Zhang et al. [2015]) and find the most likely sources of errors with a high-level of

confidence.

The approximated models of type checking are perfectly suitable for educational purposes

where a subset of the original language is likely to help with explaining the type checking pro-

cess in general (Heeren et al. [2003c]). However, with local type inference approach we want

to avoid the risk of reporting false positives (when compared with the reference language),

or defining heuristics on the already approximated models of the type checking or sacrific-

ing on the features of the underlying language in general. This way we want to focus on the

understanding of the type checking of the existing implementation and all the limitations

that come with it. To the best of the author’s knowledge we are the first to propose the type

debugging of the complete existing implementation. The previous attempts have either only

allowed a limited subset of the OCaml language (Tsushima and Asai [2013]) or considered

only the toy language implementation (Duggan and Bent [1996]), both of which are unsatis-

factory for our purposes. The extraction of the decisions of the type checker is a non-trivial

task in itself because one has to operate within the strict limitations of the existing compiler

which logic must not be changed. Furthermore, with the straightforward logging of the type

checking process we are more than likely to affect the performance of the regular compila-

tions, which is unacceptable.

The compilers of the mainstream programming languages are programs themselves. Intu-

itively, this means that we should be able to provide runtime debuggers or trace analyzers

with an automatic or a manual instrumentation of its implementation, done by the language

architects. For the purposes of backtracking and navigation capabilities, in general, over the

type checking decision process, we require a much richer representation than what is likely

to be generated from plain bytecode instrumentation points (Kiczales et al. [2001]).

The two insights, the precise representation of the type checking process, and its analysis in

search for the minimal sources of types do not cancel the contributions of the related work.

In fact with the precise locations of the origin of the conflicting types we offer solid founda-

tions for developing our own family of heuristics and interactive type debuggers, specifically

tailored to the needs of local type inference and mainstream languages.

In this thesis we address the following problems:

• Can we extract the details of the existing type checker in a non-intrusive way that does

not modify its internal logic?

• What are the good high-level data structures for representing and navigating the deci-

sion process of local type inference and how can we infer them from the existing imple-

mentation?

6

1.1. Desired properties of the algorithm

• How can we infer the minimal fragments of the source code that are responsible for

the introduction of types, or their fragments, for the first time in local type inference

algorithm?

• How can we explain and correct the limitations of local type inference algorithm and

its implementations?

• How can we improve the localization and the explanation of the type errors for pro-

gramming languages using local type inference?

• What are the necessary abstractions to define an interactive type debugger tool for the

programming languages using local type inference, an equivalent of a runtime debug-

ger, that applies to both invalid and valid programs? How can programmers control the

exploration of its decision process in an intuitive way without prior deep understand-

ing of its theoretical foundations?

1.1 Desired properties of the algorithm

The idea of an algorithm that traces backwards through the already committed decision pro-

cess of local type inference is different from the existing approaches; related work mostly

manipulates some of the specially inferred constraints, collected either globally or locally. As

the algorithm is a foundation of any type debugging technique proposed in this thesis, we

briefly describe three of its properties that have to be satisfied in order to be useful in our

desired applications.

White box

Local type inference propagates types or synthesizes types in an incremental manner, from

one AST node to another. The process of type inference is AST-specific and, due to its com-

plexity, oftentimes not obvious to the user. The primary purpose of the algorithm developed

in this thesis is to find some minimal source locations that explain the inference of a given

type. In other words we reduce the problem of type debugging to a small set of program frag-

ments that should explain the type inference. In practice however, we also want to be able to

inspect the intermediate decisions that led to such results in order to provide custom error

feedback, define program-specific heuristics or allow for a more interactive approach to type

debugging.

In the black box approach we only take an invalid program and return some improved error

feedback. The approach is desirable but insufficient for our applications, hence the name of

the property coined for our technique.

To illustrate, we consider a simple example of a generic case class in Scala:

7

Chapter 1. Introduction

1 def id(x: Int): Int = x
2 case class Either[A, B](left: A, right: B)
3

4 val v = Either(id(y), id(z))
5 ...
6 val x1: Boolean = v.left
7 // error: type mismatch;
8 // found: Int
9 // required: Boolean

10 // val x1: Boolean = v.left
11 // ^
12

13 val x2: Boolean = v.right
14 // error: type mismatch;
15 // found: Int
16 // required: Boolean
17 // val x2: Boolean = v.right
18 // ^

In the example, we define a local identity method id which takes an integer value and returns

the same value. The Either class defines two values, left and right of some generic type.

With the assignment in line 4, the inferred type of the local value v is intuitively Either[Int,

Int], based on the return type of the identity function. The assignment to the similarly look-

ing local values x1 and x2 leads to a type mismatch error because of the conflict with the

explicit type annotation expecting a boolean value.

The type error messages generated by the Scala compiler are clear in a sense that they pre-

cisely describe the conflicting types. However, lacking any type debugging method, they do

not explain the origin of the individual types. While in the above example, tracing back the

origin of types Int and Boolean is trivial, in real-life situations, and especially for the generic

libraries, this is hardly the case.

Furthermore, a black box type debugging algorithm that only finds the minimal source lo-

cations that led to the inferred type, and hides any intermediate decisions, would (correctly

return the following location for both of the cases:

def id(x: Int): Int = // ...
~~~

In practice, we always want to remain in control of the algorithm and its decision process,

meaning that we still want to get a high-level overview of how types were inferred. For ex-

ample, a white box algorithm gives us access to the intermediate decision points of the type

checking process, meaning that we should be able to provide their corresponding locations

and generate a more comprehensive type error report (for the synthesized type):

8



1.1. Desired properties of the algorithm

Type Int has been inferred in location(s):
val x1: Boolean = v.left

~
val v = Either.cond(cond, id(y), id(z))

~~~~~
def id(x: Int): Int = // ...

~~~

Type Int has been inferred in location(s):
val x2: Boolean = v.right

~
val v = Either.cond(cond, id(y), id(z))

~~~~~
def id(x: Int): Int = // ...

~~~

The access to the intermediate decisions that led to the inference of types is particularly im-

portant for libraries or programs that are generic - programmers typically find it hard to track

the instantiations of multiple type parameters (Jun et al. [2002]). With the analysis of the

intermediate decisions of the type checking process we also improve its applicability to the

advanced type system features. The latter may exhibit some non-standard decision process,

and therefore should be considered separately without affecting the integrity of the complete

algorithm.

Precision

In order to find the minimal locations that determine the source of the type, it is important

that the algorithm remains precise while crossing the boundaries of the adjacent AST nodes.

The property also implies that the intermediate decisions reported by the algorithm also pre-

serve the precision of the type that is being analyzed.

To illustrate, we consider a simple hierarchy of three classes and a conditional expressions

that involves their instances:

1 class A; class B extends A; class C extends A
2 val b: B = // ...
3 val c: C = // ...
4 def single[T](x: T): List[T] = // ...
5 val cond: Boolean = // ...
6

7 val x = if (cond) single(b)
8 else single(c)
9 ...

10 val y: List[Int] = x
11 // error: type mismatch;
12 // found: List[A]
13 // required: List[Int]
14 // val y: List[Int] = x
15 // ^

In the example, the inferred type of of the local value ‘x’, List[A], implies that the type in-

ference has approximated the types of its two branches, List[B] and List[C], by calculating

their least upper bound. The inferred type later conflicts with the user expectation of type

9



Chapter 1. Introduction

List[Int], as indicated in the type error message generated by the Scala compiler.

A precise algorithm, that traces back through the decisions of local type inference, can take

into account the failed subtyping check between the two conflicting list values. In particular,

for the above example we would have to be able to analyze the source of the type element A

and type element Int from the synthesized type List[A] and the expected type List[Int],

respectively, since the real source of the error lies in their type arguments.

Furthermore, a precise algorithm has to analyze only those types that participate in the type

approximations that directly contribute to the inference of the initial type, or its fragment.

The latter is particularly important for polymorphic function calls that involve the inference

of type parameter instantiations using the type information from a number of local type

checking decisions.

In the above example, the precision translates to the ability to find the minimal locations

representing the source of the type element A in a type mismatch conflict. This means that

the algorithm can return locations

Location (1):
val b: B = // ...

~
val x = if (cond) single(b)

~

and

Location (2):
val c: C = // ...

~
else single(c)

~

rather than only some non-minimal solution that cannot cross the boundaries of function

applications with the elided type arguments in

Location (1):
val x = if (cond) single(b)

~~~~~~~~~
and

Location (2):
else single(c)

~~~~~~~~~

or worse, cannot handle the least upper bound approximations of the conditionals by report-

ing location

Location (1):
val x = if (cond) single(b)

~~~~~~~~~~~~~~~~~~~
else single(c)
~~~~~~~~~~~~~~~~~~~

10



1.2. The target audience of the type debugger

Autonomous

The algorithm analyzing the decisions of local type inference has to be autonomous. The

latter means that the information about which type we want the algorithm to analyze must

be sufficient for its execution.

An algorithm that is not autonomous, meaning that it requires continues feedback from pro-

grammers in order to guide the analysis of the type checking decisions, would have two im-

portant drawbacks:

1. The analysis of the intermediate results of the analysis, and the type checking decisions

in general, by the users can be a time consuming process.

2. Users would have to have extensive prior knowledge of the type system, type inference,

and its implementation in the programming language.

While some of the related work, such as Chen and Erwig [2014a] and Sulzmann [2002], im-

prove their type debugging results by requiring user input, in our algorithm such input can

only be optional.

1.2 The target audience of the type debugger

The algorithm that finds the minimal locations that determine the source of a type, solves

only half of the problem of decrypting local type inference. The other half involves its appli-

cability to the advanced type system features, and its presentation to the users in an intuitive

form. Due to the range of the possible type system features, and their varying complexity, it

is not always satisfactory to explain the type error through a simple type error message.

Another complication for generating improved feedback lies in the target audience. Users

come with a varying level of expertise and it is unfeasible to provide a single solution that fits

everybody’s expectations. Both aspects, which are accounted for in the thesis, are now briefly

discussed.

Beginner users

Lack of experience makes beginner users particular vulnerable to the confusing type error

messages. In general, with time, users tend to recognize the patterns in the type error mes-

sages and get better with scanning programs for the source of the conflicting types.

In order to improve the language experience, we generate error messages that provide more

type checking context information, especially in case of known implementation limitations.

11



Chapter 1. Introduction

Moreover beginner users tend to rely less on the advanced features, making it easier to define

heuristics that workaround the typing problems. That is why in our thesis we explore the pos-

sibility of suggesting local code modifications that correct invalid program fragments. The

corrections discussed in this thesis have drawn inspiration from the questions asked on the

mailing lists and language forums, that are typically used by the beginner users.

Intermediate users

With the increased confidence in the language, grows also the complexity of the type errors

that we have to tackle in the type debugger. Many of the examples presented in this thesis

will be synthetically constructed but they will always exhibit properties of errors that have

been encountered in real life applications, only with the hundreds of lines of code involved.

Such errors are typically encountered by the intermediate and the advanced users who less

often need more feedback, but when they do it usually has to be quite detailed and precise.

By providing a number of examples that combine multiple type system features, we aim to

show that our techniques can apply to non-trivial problems that are typically encountered by

the intermediate users.

Library designers and compiler hackers

The library designers and the compiler hackers typically have a very good understanding of

the limitations of the underlying language and can push the limits of the type system and

the type inference. Since in such situations it is hard to predict the kind of errors that can

be encountered, we want to make sure that our tool can provide the necessary freedom of

exploration. In particular, we explore the possibility of supporting interactive, user-driven

analysis of the type checking decisions.

Our type debugging framework exposes the data structures representing the decisions of the

type checking process. Together with a set of specialized functions that analyze the interme-

diate results of the core algorithm, it allows us to explore the possibility of customized error

feedback. The customization of the DSL and library error messages has received relatively

little attention (Heeren et al. [2003b] and Sackman and Eisenbach [2008] being exceptions),

which is surprising because those kinds of errors are very often highly specific and should be

easily identifiable.

1.3 Terminology

Before we begin discussing the details of the algorithm that analyzes the decisions of local

type inference and its applications, we need to agree on terminology. We give an overview of

12



1.3. Terminology

the terms that will be used in the rest of the thesis.

The terms type inference and type checking are used interchangeably and refer to the process

of assigning types to terms and verifying their correctness with respect to the underlying type

system. The term type inference is also known in the literature as type reconstruction.

Local type inference, and its variant Colored Local Type Inference in particular, are realized

using the type inference rules. The type inference rules realize the inference judgment that

essentially assigns types to terms given some type checking context and some environment.

The inference judgment does not provide information about the type inference rule used in

the term, unless explicitly stated. The instantiations of type inference rules form derivations,

with terms and types replaced with the concrete values. In the thesis we also employ the term

type derivation trees which underlines the shape of a structure created by a repeated applica-

tion of the type inference rules to the expression. Unless otherwise specified, the derivation

refers to a fragment (or a node) of the type derivation tree.

We distinguish between the different kinds of types, based on the fact of how they are in-

volved in the process of local type inference and during the debugging of its decisions. The

inferred type refers to the final type assigned to the term, as a result of a type checking process.

The types in the type inference process can be either synthesized or inherited, meaning that

the type either comes from the term or from the expected type checking context. The types

can be also partially synthesized and partially inherited, which refers to some of the individ-

ual type elements of the type. In the case of a type mismatch, the conflicting types refer to

types that participate in a type mismatch where the type of the term fails to conform to the

expected inherited type.

The algorithm analyzing the decisions of local type inference attempts to find the of the type

that is provided as input. To avoid ambiguous notation we always refer to this type as the

target type.

The formal approach to type debugging, as well as the theoretical foundations of type infer-

ence use the term type variable for the parametric polymorphism, while the implementation

sections and the Scala examples use the term type parameter. Both are equivalent. In ad-

dition, we also divide type parameters into local and non-local ones, depending if they are

defined as part of the method type signature or if they are defined as part of the class or trait

type signature, respectively.

The instrumentation refers to the process of inserting the low-level side-effecting function

applications that do not modify the execution of a program and only collect its runtime val-

ues with a minimal runtime overhead. The instrumentation can be either added explicitly by

the programmer (or manually) in the source code, or in a semi-autonomous way through a

third-party framework and its instrumentation rules.

Throughout the thesis we will interchangeably use terms type selection and type extraction.

13



Chapter 1. Introduction

Both of them refer to the process of taking a type element from a type, where the identity of

the element is determined by the particular semantics of type selection at a given point.

1.4 Overview

Before we delve into the details of the type debugging technique, in Chapter 2 we briefly

introduce the formalization of Colored Local Type Inference (Odersky et al. [2001]), a variant

of Local Type Inference which strictly supersedes it in terms of the capabilities. The formal

language and its type inference rules will serve as a basis for our formal definition of the type

debugging technique.

The algorithm that defines the analysis of the decisions of local type inference has been de-

scribed in the Chapter 3. The chapter starts with an informal explanation of the encodings of

two invalid programs using the visual interpretation of type derivation trees. Later we provide

an informal overview of the algorithm that realizes such analysis. The description provides

an overview of the algorithm, including its possible input and output values, as well as the

reasoning behind returning values that can undergo further analysis.

With the intuition in place, in Section 3.3 we introduce formally an abstraction that controls

the traversing of the nodes of the type derivation trees, later known as TypeFocus. Later we

formally introduce the analysis of type checking decisions through a series of examples and

explanations of the individual type inference rules (Section 3.5.2) only to provide a complete

algorithm in Section 3.5.3. The second part of the chapter discusses in detail possible inter-

mediate results of the algorithm, how they can be further analyzed and how do they translate

to program locations.

With the analysis algorithm being defined only for the valid derivations, it is necessary to

explain . In particular, we take a formal stand at explaining type mismatch errors and show

how can we extract from it the information necessary to trigger the type debugging algorithm

(Chapter 4).

Chapter 5 introduces the instrumentation technique used to extract the internal details of

the type checking process. We provide the details of the data structure representing the high-

level decisions process (Section 5.2) and its translation from the low-level instrumentation

data (Section 5.3). The chapter concludes with a discussion on the practical challenges of

instrumenting an existing type checker and our solutions for the Scala implementation (Sec-

tion 5.5).

We describe the elements of the implementation of the type debugging tool in Chapter 6,

including the necessary minimal support in the compiler infrastructure. In particular, we

describe the examples of implementing an improved error feedback using the data structures

and the analysis algorithm described in the previous chapters. In Section 6.7 we present our

14



1.5. Contributions

technique to providing surgical-level code modifications that can for example workaround

the limitations of local type inference.

We conclude our thesis with a description of a number of applications that are possible with

our type debugging tool, including the improved feedback for the non-trivial language con-

structs and library-specific plugins (Section 7.2) and the interactive type debugging tech-

niques (Section 7.3). We also describe the main properties of the analysis of the type-driven

implicit resolution, which turned out to be a special case of our core analysis algorithm (Sec-

tion 7.1).

1.5 Contributions

This thesis makes the following contributions:

• A novel approach to exploring decisions of local type inference exposed through type

derivation trees. We define a complete algorithm that traverses the decisions of type

derivation trees in a controlled fashion. In order to enable the deterministic navigation

we define a new abstraction, named TypeFocus, that encapsulates information about

type propagation as we walk the nodes of derivations.

• A formal reduction of type mismatch conflicts to an application of the TypeFocus-driven

algorithm.

• A lightweight instrumentation framework for extracting the low-level data from the ex-

isting type checker implementations for programming languages that use local type in-

ference. We provide an automatic method to infer the high-level type derivation trees

from the extracted low-level instrumentation.

• A technique, based on the results of the TypeFocus-based analysis for defining surgical-

level code modifications that correct the type errors. In particular, the mechanism al-

lows for generating precise error feedback that workarounds the limitations of local

type inference.

• A specialization of the TypeFocus-based algorithm to analyzing the decisions of implicit

resolution.

• A real world validation of these techniques; we integrate our tool into the full-fledged

Scala compiler, and show a detailed analysis of a number of type problems that could

not have been tackled before.

• An interactive type debugger that allows for a guided exploration of the typing deci-

sions of the valid and invalid Scala programs. The interactive mode is an extension of

the TypeFocus-based algorithm that can analyze the typing scenarios autonomously as

well as using the user-provided type input.

15





Chapter 2

Preliminaries

The formalism presented in this dissertation builds on top of the existing formalisms for Lo-

cal Type Inference defined in Pierce and Turner [2000]. In contrast to global type inference,

local type inference has proved to be a suitable choice for languages supporting nominal sub-

typing and parametric polymorphism, such as System F≤, where a complete type inference

for full programs is known to be undecidable (Wells [1999]).

In Section 2.1 we introduce the formalism of Colored Local Type Inference by Odersky et al.

[2001]. Colored Local Type Inference refines, and essentially subsumes, the simple Local Type

Inference by means of coloring individual types to indicate the propagation of partial type

information. Thus it allows for omission of a larger number of type annotations in situations

that are typically expected by the users. The formalism uses a more succinct representation,

which in turn allowed us to define a clearer debugging formalism on top of it.

In Section 2.2 we outline the most significant differences between the Colored Local Type in-

ference formalism and its implementation in the Scala language. Type inference in Scala is

defined only in terms of the informal discussions (Odersky [2002]), or semi-formal language

specification (Odersky [2015]), neither does it provide formalization of its advanced type sys-

tem features, such as higher-kinded types (Moors et al. [2008]) or implicit inference (Oliveira

et al. [2010]).

2.1 Colored Local Type Inference

The correctness of type inference is typically expressed in relation to the underlying type sys-

tem for which it elides some type annotations. Therefore formalizations that we summarize

in this section is expressed in terms of three individual parts:

17



Chapter 2. Preliminaries

• internal language - the fully typed language which provides all type annotations. In the

case of discussed formalizations we mean some variant of System F≤.

• external language - a superset of the internal language, where some of the type argu-

ments and the types of the parameters of anonymous functions can be omitted. The

external language is visible to the end users. The external language does not specify

how the missing type annotations are inferred but only defines the constraints that the

guessed solution has to satisfy in order to be correct and classified as the optimal one.

• type inference - a formal relation between the external language and the internal one

that describes how type annotations are inferred.

The formalism and type system described in Colored Local Type Inference by Odersky et al.

combines type checking and type synthesis rules of simple Local Type Inference into one co-

herent system. In Section 2.1.1 we present the grammar for the core language used in the

formalization. For clarity we use the same core language for our formal treatment of debug-

ging techniques, presented later in the thesis. In Sections 2.1.2 and 2.1.3 we briefly introduce

a selection of the core type assignment rules for the internal and the external language of

Colored Local Type Inference. Subsequently, we can define a formal connection between the

two languages with the detailed description of the type inference rules (Section 2.1.4). The

debugging of type inference decisions requires a good understanding of the collection and

solving of local type constraints which, due to its complexity, deserve a separate discussion

in Section 2.1.5.

2.1.1 Grammar

Definition 1 shows the syntax of the external language of the Colored Type System, which

itself is based on System F≤ extended with records, as per Odersky et al. [2001]. The grammar

gives terms, types and environments of the language.

A term can be a variable x, a record constructor {x1 = E1, ..., xn = En} or a record selection

E .x. It also has two versions of function application and abstraction: ones with explicit type

parameters and type arguments (F
[
T
]
(E) and fun

[
a
]
(x : T)E) and those that elide them, if

possible, by conveniently inferring them from the context (F(E) and fun(x)E), respectively.

The overbar in a means a finite sequence of local type parameters, equivalent to a1, ..., an

for some n. The empty sequence is represented using the ε symbol. The examples used

in the thesis often use multi-parameter functions, that can be always encoded using record

constructors.

A type is a either a type variable a, the top � or the bottom type ⊥ in the type hierarchy1, a

potentially polymorphic function type ∀a.T → S (the universal quantifier extends over the

1In the Scala type hierarchy the top and the bottom types are equivalent to Any and Nothing, respectively. Java
has no bottom type and the top is equivalent to Object.

18



2.1. Colored Local Type Inference

Definition 1 Core language syntax, from [Odersky et al., 2001, pg 3].
Terms E ,F = x | E .x | fun[a](x : T )E | fun(x)E | F

[
T
]
(E)

| F(E) | {x1 = E1, ..., xn = En}

Types T,S,R = a | � | ⊥ | ∀a.T → S | {x1 : T1, ..., xn : Tn}
Environments Γ = x : T | ε | a | Γ,Γ′

whole function type), or a record type. In contrast to the source formalization, which uses a

T
a−→ S notation for polymorphic function types (with type variables written over the arrow),

we chose an equivalent notation that is more common in the literature.

2.1.2 Internal language

The internal language is based on the established formalization of System F≤, and does not

allow for the elided versions of function applications and anonymous functions. For com-

pleteness, Figure 2.1 includes a complete set of type assignment rules for the internal lan-

guage, as well as the subtyping rules of the internal Colored Type System.

The subtyping rules assume the standard semantics, where the⊥ and� types are the subtype

(the (BOT) rule) and the supertype (the (TOP) rule) of every type, respectively, and every type

variable is a subtype of itself (the (VAR) rule). Since the polymorphic function types are con-

travariant in the parameters and covariant in the result type, the order of types in the former

is reversed for the subtype derivation to be established (the (FUN) rule). Similarly, the two

record types are subtypes (the (REC) rule) if and only if their corresponding type elements

are subtypes as well.

2.1.3 External Colored Type System

The external language of the Colored Type System allows for partial erasure of terms; types

of parameters in the abstractions and type arguments of the function applications can be

elided. To allow for type assignment for terms with elided type information Odersky et al.

[2001] introduced colored types which carry information about the direction in which type

information can be propagated. The formalization uses the ∨T superscript and the ∧T sub-

script annotations to indicate if the type information has been inherited from the type check-

ing context or synthesized directly from the term, respectively.

For example, type ∨(∀b.b →∧{x : T, y : S}) implies that the function type has been enforced

by the type checking context, along with the type of the parameter b, but the result type of

the function type involving a record type has been synthesized from some record term. Lack

of color next to the type implies that the type could be either synthesized or inherited. To

19



Chapter 2. Preliminaries

( VAR) Γ� x : Γ(x)

(ABS)
Γ, a, x : T � E : S

Γ� fun
[
a
]

(x : T )E : ∀a.T → S

(APP)
Γ� F : ∀a.S → T Γ� E : S′ S′ <: [R/a]S

Γ� F
[
R
]
(E) : [R/a]T

(APP⊥)
Γ� F : ⊥ Γ� E : R

Γ� F
[
R
]
(E) : ⊥

(SEL)
Γ� F : {x1 : T1, ...., xn : Tn}

Γ� F.xi : Ti
(SEL⊥)

Γ� F : ⊥
Γ� F.xi : ⊥

(REC)
Γ� F1 : T1 ... Γ� Fn : Tn

Γ� {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xn : Tn}

(BOT) ⊥ <: T

( TOP) T <:�
( VAR) a <: a

(REC)
T1 <: T ′

1 ... Tm <: T ′
m

{x1 : T1, ..., xm : Tm , ..., xn : Tn} <: {x1 : T ′
1, ..., xm : T ′

m}

(FUN)
T ′

1 <: T1 T2 <: T ′
2

∀a.T1 → T2 <: ∀a.T ′
1 → T ′

2

Figure 2.1: A Colored Type System Γ � E : T for the internal language and the subtyping
relation S <: T (as presented in [Odersky et al., 2001, pg. 4]).

Definition 2 Syntax for the types of the external Colored Type System, from [Odersky
et al., 2001, pg 4].

Synthesized Types ∧T, ∧S, ∧R = ∧a | ∧� | ∧⊥ | ∧(∀a.∧T →∧S) | {x1 :∧T1, ..., xn :∧Tn}

Inherited Types ∨T, ∨S, ∨R = ∨a | ∨� | ∨⊥ | ∨(∀a.∨T →∨S) | {x1 :∨T1, ..., xn :∨Tn}

Environments Γ = x :∧T | ε | ∧a | Γ,Γ′

avoid an excessive use of colors, a type that lacks it always assumes the color of the closest

enclosing type constructor it is part of. The diamond notation next to the type annotation,

�T , implies that the type can be either synthesized or inherited from the context.

A fragment of the subtyping relation ≤ for the colored types is shown in Figure 2.2. The con-

struction of the rules ensures that when going from a subtype to a supertype in a subtyping

relation the change is only allowed from the synthesized subtype to the inherited supertype.

This way the complete formalization ensures that synthesized types, in particular type con-

structors, cannot be guessed using the subsumption rule, i.e., if the type is synthesized, then

it has really been synthesized from the term at some point in the type derivation tree.

For example, ∧(∀a.Int → Int ) ≤ ∧(∀a.∨⊥→∨�) ≤ ∨� but ∧(∀a.Int → Int ) �≤ ∧�.

The subtyping relation for colored types is safe with respect to color-less types, as stated

20



2.1. Colored Local Type Inference

T ≤ T
T1 ≤ T2 T2 ≤ T3

T1 ≤ T3

T ′
1 < T1 T2 ≤ T ′

2

∀a.T1 → T2 ≤∀a.T ′
1 → T ′

2

∧a ≤ ∨a ∧⊥ ≤ ∨(∀a.∧�→∧⊥) ∧(∀a.∨⊥→∨�) ≤ ∨�
∧⊥ ≤ ∨⊥ ∧⊥ ≤ ∨� ∧⊥ ≤ ∨a ∧a ≤ ∨�

Figure 2.2: A fragment of the subtyping relation for colored types, S ≤ T (as presented in
[Odersky et al., 2001, pg. 6]). The S < T is equivalent to S ≤ T but with the inverted colors.

( VAR)
Γ(x)=∧T

Γ �c x : ∧T
(SUB)

Γ �c E : T T ≤ T ′

Γ �c E : T ′

(ABS)
Γ,∧a, x :∧T �c E : S a �∈ tv(E)

Γ �c fun(x)E : ∨(∀a.T →�S)
(ABSt p )

Γ,∧a, x :∧T �c E : S

Γ �c fun
[
a
]
(x : T )E : ∧(∀a.T →�S)

(APPt p )
Γ �c F : ∨(∀a.∧S →∧T ) Γ �c E : [R/a]∨S

Γ �c F
[
R
]
(E) : [R/a]∧T

(SEL)
Γ �c E : ∨{x : �T }

Γ �c E .x : T

(APP)

Γ �c F : ∨(∀a.∧S →∧T ) Γ �c E : S′ S′�a
∨S

S′ ≤ [R/a]∨S [R/a]∧T ≤ T ′

∀R
′
,T ′′. (S′ ≤ [R

′/a]∨S ∧ [R/a]∧T ≤ T ′′ ∼ T ′ =⇒ [R/a]∧T ≤ [R
′/a]∨T )

Γ� F (E) : T ′

Figure 2.3: A fragment of the Colored Type System Γ �c E : T for the external language
(as presented in [Odersky et al., 2001, pg. 6]).

through the two properties ([Odersky et al., 2001, Lemma 5.1]):

• T ≤ S implies T <: S , i.e., the ≤ is a restriction of <: in a sense that any two colored

types that are subtypes in the external language are always subtypes in the internal

language.

• T <: S implies ∧T ≤ ∨S, guarantees that a term of type ∧T will be a subtype of any

supertype of T that is given from the outside.

We present a fragment of the Colored Type System for the external language in Figure 2.3.

The type assignment is defined using the Γ �c E : T judgment. The type system is realized

through a set of declarative rules that includes the subsumption rule (SUB). We give only a

brief overview of the essential elements of the rules, to provide a basis for further discussion

on the type inference in the next section; for the complete description we refer the reader to

the formalization of Odersky et al. [2001].

The (VAR) rule synthesizes the type of the variable from the environment; the resulting type

21



Chapter 2. Preliminaries

∧T and its color clearly relates the source of the assigned type with the term.

The type system gives separate rules for the two kinds of abstraction, one with elided type

information and one with a complete type signature, (ABS) and (ABSt p) respectively. The

crucial difference is visible in the color of the type assigned to the term; the type constructor

as well as the parameter type of the function type in the (ABS) rule has to be inherited from

the context, while in the (ABSt p) rule it is synthesized from the term; the syntax of the term

provides sufficient type information for the synthesis to take place. The rules also highlight

the difference with respect to the type system of Local Type Inference formalization; the latter

can either synthesize the complete function type, i.e., ∧(∀a.S → T ), or inherit the complete

function type, i.e., ∨(∀a.S → T ), but it cannot assign a type that has been partially inherited,

as it is the case for the (ABS) rule.

Similarly, the record selection rule, (SEL), requires that the type of record term itself be in-

herited while the type of the record member itself can be either synthesized or inherited;

the requirement is propagated to the premise of the rule given the known shape of the term.

Similarly as in the case of the abstraction, such partial type information propagation is not

possible in the Local Type Inference formalization.

Not surprisingly, the rule for assigning the type to a function application, (APP), is the most

complicated one. The first premise of the rule restricts the type that can be assigned to a

function term - the propagated function type requirement is expressed through the inherited

color in ∨(∀a.∧S →∧T ). Then, through the S′ �a
∨S premise, the rule ensures that the type

assigned to the argument of the function, Γ �c E : S′, coincides with the parameter part of

the function type, modulo the occurrences of the a type variables. The latter condition does

not impose any restrictions on the instances of type variables; the selection of the optimal a

type variables is expressed by the remaining premises.

The guessed type arguments R have to satisfy a number of conditions in order to assign a

sound type to the function application:

• S′ ≤ [R/a]∨S:

The type of the parameter of the function type with the guessed type arguments has to

be a supertype of the type of the argument.

• [R/a]∧T ≤ T ′:
The type of the result of the function type with the guessed type arguments has to be a

subtype of some minimal, guessed type T ′.

• The specification of the minimal, guessed type T ′, that will be assigned to the function

application term, is determined in the last implication. The condition ensures that any

other choice of type arguments, i.e., R
′
, and the final type which coincides with type

T ′ on the type elements that have been inherited, i.e., T ′′, will always yield a type that

is larger, with respect to the subtyping ordering.

22



2.1. Colored Local Type Inference

The described Colored Type System has been shown to be sound with respect to the colorless

type system.

2.1.4 Type inference rules

The inference judgment, (P, Γ�w E : T ), consists of the term to be typed, E , that eventually

is assigned type T in a type environment Γ, and a prototype P representing parts of the type

of E that are inherited from the context. P can be treated as a regular type, potentially having

type holes, ?, representing the unknown parts. The prototype fully encapsulates the concept

of colored types and their partial type information propagation.

Figure 2.4 presents a selection of the most interesting inference rules for Colored Type Infer-

ence, which follow naturally from the formalization of the external language. While simple

Local Type Inference distinguished synthesis and type checking of type annotations through

separate rules, the concept of a prototype and holes in it combines it. Moreover, Colored Lo-

cal Type Inference allows for propagating strictly more type information between the nodes

of the terms; in the simple Local Type Inference only ? or fully defined types, e.g., Int → Int ,

would be allowed as prototypes, but no partial ones, e.g., Int → ?.

For example, for some function g of type ∀a.((Int → a)→ a) applied to an anonymous func-

tion (fun ( x ) x) in ‘g (fun ( x ) x)′, the Colored Type Inference is capable of inferring the de-

sired type of the application in the derivable judgment (Int → ?, ε �w g (fun ( x ) x) : Int ).

The type of the parameter of x in the anonymous function fun ( x ) x is inherited from the

context, and the result type is synthesized from the body of the function. On the other hand,

when some function h of type ∀a.((a → a)→ a) is applied to the same anonymous function

in h (fun ( x ) x), the inference fails to come up with the right type of the parameter, as repre-

sented by a non-derivable (?→ ?, ε�w fun ( x ) x : T ) fragment of the type derivation tree (T

is unknown). Such type inference, or lack thereof, follows the expectation of the user, since

the context of the function application has to provide enough type information for the type

annotation not to be guessed.

To avoid soundness problems, any type assigned to the term has to conform to the type ex-

pected by the type checking context (whether the latter contributed to the inference of the

type or not). Matching between the expected inherited type and the synthesized type is ex-

pressed through a ↗ operator. The T ↗ P notation means that either T is structurally equal

to P , with ? filled by some arbitrary types, or we can find the smallest supertype of T which is

structurally equal to P . The operation T ↘ P is the dual of T ↗ P , where the greatest subtype

of T is structurally equal to P .

For brevity, we now only discuss a selection of the type inference rules that will be analyzed

in our type debugging formalization, i.e., (abs), (abst p) and (app), and refer the reader to

Odersky et al. [2001] for a complete description of the rest of the rules.

23



Chapter 2. Preliminaries

( VAR) P, Γ�w x : Γ(x)↗ P (sel)
{x : P }, Γ�w F : {x : T }

P, Γ�w F.x : T

(abs)
P, Γ, a, x : T �w E : S

∀a.T → P, Γ�w fun(x)E : ∀a.T → S
(abst p,?)

?, Γ, a, x : T �w E : S

?, Γ�w fun
[
a
]

(x : T )E : ∀a.T → S

(abst p )
P ′, Γ, a, x : T �w E : S

∀a.P → P ′, Γ�w fun
[
a
]
(x : T )E : ∀a.T → S ↗∀a.P → P ′

(appt p )
?, Γ�w F : ∀a.S → T [R/a]S, Γ�w E : [R/a]S

P, Γ�w F
[
R
]
(E) : [R/a]T ↗ P

(app)

?, Γ�w F : ∀a.S → T
[?/a]S, Γ�w E : S′

�a S′ <: S ⇒ C1

�a T <:�↘ P ⇒ C2

P, Γ�w F ( E ) : σC1∪C2,T T ↗ P

(rec)
(P1, Γ�w F1 : T1) ... (Pm , Γ�w Fm : Tm) (�, Γ�w Fm+1 : Tm+1) ... (�, Γ�w Fn : Tn)

{x1 : P1, ..., xm : Pm}, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xm : Tm}

Figure 2.4: A fragment of the type inference rules that realize the (P, Γ�w E : T ) inference
judgment (from [Odersky et al., 2001, pg. 11])

The ability to infer the type of the parameter of the abstraction in the ‘g (fun ( x ) x)′ example

is formally defined in the rule (abs); the rule requires a ?-free type T in the propagated pa-

rameter part of the prototype,∀a.T → P . The result type of the prototype, P , does not directly

influence the inferred of the type of the function. Indirectly, however, the P part is used in

inferring the type of the body of the function, as expressed by an assignment of P as input to

the rule’s only premise. This agrees with the intuition of the Colored Type System; the result

type of the inherited function type can only impose a requirement on the type of the body of

the abstraction and that information is only passed around between the adjacent nodes of

the type derivation tree.

The (abst p) and (abst p,?) rules apply to the abstraction term with the explicit type of the

parameter, fun
[
a
]
(x : T )E . The shape of the propagated type information (∀a.P → P ′ and

?, respectively) allows to disambiguate the application of the rules to the abstraction term.

Thus, together both of the rules correspond to the (ABSt p) rule of the Colored Type System in

Figure 2.3, where the assigned type could be both, synthesized and inherited (we recall from

the subtyping rules of the Colored Type System that ∧(∀a.�T →�S) ≤ ∨(∀a.�T →�S)).

Similarly as in the Colored Type System, the most complicated type inference rule, (app), in-

fers the type of function application with elided type arguments. The first premise, (?, Γ �w

F : ∀a.S → T ), requires that the synthesized type of the function is a function type. The in-

ferred type of the function directly corresponds to the type assigned to the function in the

(APP) rule of the Colored Type System, i.e., Γ �c F : ∀a.∨(∧S →∧T ); in both cases the func-

tion type constructor is enforced by the context of the function application.

The synthesized type elements of the function provide partial type information for inferring

24



2.1. Colored Local Type Inference

(CG-Top) V �X T <:�⇒� (CG-Bot) V �X ⊥<: T ⇒�

(CG-Upper)
Y ∈ X S ⇓V T fv(S)∩X =�
V �X Y <: S ⇒ {⊥ <: Y <: T }

(CG-Lower)
Y ∈ X S ⇑V T fv(S)∩X =�
V �X S <: Y ⇒ {T <: Y <:�}

(CG-Refl)
Y �∈ X

V �X Y <: Y ⇒�

(CG-Fun)

V ∪a �X T <: R ⇒C ′ V ∪a �X S <: U ⇒C ′′

a∩ (V ∪X )

V �X ∀a.R → S <:∀a.T →U ⇒C ′ ∧C ′′

Figure 2.5: A complete constraint generation algorithm as defined by the rules of the
V �a S <: T ⇒C judgment in [Pierce and Turner, 2000, pg. 12].

the type of the other term elements in the function application. The type of the argument E

can therefore be inferred with the help of the prototype involving the parameter of the func-

tion type, with all the unknown type variables substituted by wildcard constants, i.e., [?/a]S;

the substitution directly corresponds to the structural equality S′�a
∨S premise, modulo the

uninstantiated type variables, in the (APP) rule of the Colored Type System.

In order to infer concrete instantiations for type variables, the rule collects local type con-

straints using the �a S <: T ⇒C judgment. The constraints originate from the two subtyping

relations and correspond directly to the subtyping relations in the (APP) rule that specify the

conditions for guessing the minimal set of type argument values. The next section describes

in detail the process of collecting and solving of type constraints that leads to optimal type

arguments.

2.1.5 Type constraints

Colored Local Type Inference infers locally optimal instantiations for all type variables that

appear in the inferred polymorphic function types. The inference is a two-stage process - first

the inference collects type constraints from subtyping relations, and later it solves them in an

attempt to come up with an optimal solution with respect to the result type of the function.

The constraint generation technique used in Colored Local Type Inference is a direct trans-

lation of the one used in the simple Local Type Inference, as described in Pierce and Turner

[2000].

To represent the collected type constraints, Local Type Inference uses so called a-constraint

sets. The a-constraint set C is defined by Pierce and Turner [2000] as a set of inequalities

{Si <: ai <: Ti} for each of the type variables ai ∈ a. Since the inequalities are essentially the

lower and upper type bounds of the type variable, we will use the latter terminology in our

discussion.

25



Chapter 2. Preliminaries

Individual type constraints collected from the subtyping relation<: are in a form of either up-

per {a <: R}, or lower {R <: a} type bounds, for some type variable a and type R. The corre-

sponding lower ⊥ and upper � type bounds are added implicitly, respectively. For reference,

Figure 2.5 provides a complete set of rules that realize the constraint generation judgment,

and that need to be analyzed by any type debugging mechanism if one needs to explain the

inferred type bounds.

The constraint generation algorithm for Local Type Inference assumes that (fv(Si )∪fv(Ti ))∩
a =�, where fv returns a set of free variables from a type. The condition ensures that the sub-

sequent inference of the type substitution is a matching-modulo-subtyping problem rather

than a unification-modulo-subtyping problem which would prevent as from guaranteeing

the principality of the inferred types.

For illustration purposes, we present the inference of constraints sets for four subtyping rela-

tions:

(1) �a Int → Int <: a ⇒ {Int → Int <: a <:�}
(2) �a Int → Int <: a → a ⇒ {Int <: a <: Int}

(3) �a,b a → b <: (⊥→⊥)→ Int ⇒ {⊥→⊥ <: a <:�,⊥ <: b <: Int}

(4) �a a → Int <:∀b.b → Int ⇒ {� <: a <:�}

Type constraints for the same type variable are combined using the meet operation. For con-

straint sets C and D , their meet, C∧D , calculates least upper bound,∨, of their lower bounds,

and greatest lower bound, ∧, of their upper bounds:

{ Si ∨Ui <: ai <: Ti ∧Vi | Si <: ai <: Ti ∈C and Ui <: ai <: Vi ∈D }

For example, for {Int → Int <: a <: �} ⊆ C and {(⊥ → ⊥) <: a <: �,⊥ <: b <: Int} ⊆ D ,

E = C ∧D is equivalent to {⊥→ Int <: a <: �, ⊥ <: b <: Int}. Similarly, the second con-

straint set in the above examples results from the approximation of the {Int <: a <: �} and

{⊥ <: a <: Int} constraints.

The last generated a-constraint set in the above examples provides a surprising lower type

bound for the type variable a, {� <: a}, rather than {b <: a}. The former is a result of a

variable-elimination-by-promotion/demotion operation which eliminates the occurrences of

out-of-scope type variables by substituting them with either the supertypes (promotion, de-

noted as ⇑) or subtypes (demotion, denoted as ⇓) of the types that are type variable-free, a

process that has been formally described in [Pierce and Turner, 2000, Section 3.2].

For example,

• variable-elimination-by-promotion: b ⇑{ b } � and b →⊥ ⇑{ b } ⊥→⊥.

26



2.1. Colored Local Type Inference

• variable-elimination-by-demotion: b ⇓{ b } ⊥ and b →⊥ ⇓{ b } �→⊥.

The point of using variable elimination is to avoid generating a-constraint sets that have vari-

ables in the type bounds that are outside of their scopes.

In practice, such variable-elimination operations do not pose any problems in our debugging

techniques; the variable-elimination of the individual type bounds can be delayed based on

the position of the out-of-scope type variable until the instance of the type variable is approx-

imated or used in some type operation.

An a-type substitution σC ,R represents an instantiation of type variables inferred from the

a-constraint set C with respect to some type R. Formally, the σC ,R type substitution is a fi-

nite map, with a domain that ranges over the set of type variables, i.e., dom(σC ,R )= a. The

domain dom(σC ,R ) of a substitution σC ,R is the set of type variables which do not map to

themselves by the type substitution. The inferred map has to satisfy the individual approxi-

mated type bounds for each of the type variables

∀ai . ai ∈ a ∧ {Si <: ai <: Ti}⊆C =⇒ Si <: σC ,R (ai ) ∧ σC ,R (ai ) <: Ti

and make the subtyping relation from which the constraints are collected from (i.e., S <: T )

satisfiable

σC ,R S <: σC ,R T

The optimality of the inferred σC ,R substitution is determined in terms of the position of each

of the individual type variables from the a-constraint set with respect to some type R. Pierce

and Turner [2000] provides a formal specification of each of the potential positions; we only

briefly recall that any type R can be either constant, covariant, contravariant or invariant in

some type variable a, where a ∈ a. In general the type can be determined to be covariant or

contravariant in a type variable by examining whether a type variable occurs to the right or

left of an arrow; in the case of function types taking other functions as arguments the rule can

be applied recursively.

Since for any a-constraint set there can be many different possible type substitutions satis-

fying the above subtyping requirements, the algorithm aims to find a minimal substitution

σC ,R . Pierce and Turner [2000] defines the minimal substitution σC ,R as follows:

27



Chapter 2. Preliminaries

For each Si <: ai <: Ti ∈C :

• If R is constant or covariant in ai , then σC ,R (ai )= Si

• Else if R is contravariant in ai , then σC ,R (ai )= Ti

• Else if R is invariant in ai and Si = Ti , then σC ,R (ai )= Si

• Else σC ,R is undefined.

The information from the constraint sets is sufficient to infer optimal solutions. For example,

given the { a,b }-constraint set E , such that {⊥ → Int <: a <: �, ⊥ <: b <: Int} ⊆ E , the

minimal substitution from the constraint set E with respect to some type T , such that T =
{x : a, y : b → Int }, would be inferred as σE ,T = [a ⇒ ⊥→ Int , b ⇒ Int ].

The simple examples that inferred the instantiations for the type variables a or b highlights

an important challenge in understanding local type inference: any debugging technique that

analyzes the typing decisions of local type inference has to be aware not only of the final

instantiations of type variables, but also the specification that determines the minimal sub-

stitution, any least upper bound or greatest lower bound approximations of the involved type

constraints, and the types of type constraints themselves.

2.2 Type inference in Scala

The type system implemented by the Scala language is largely based on the combination of

the Colored Type System, described in the previous section, and the type system for path-

dependent types formalized in Odersky et al. [2003]. The language has adopted a less re-

strictive variant of Colored Local Type Inference. The modifications improve the support for

some of the common type system features, such as the implicit resolution, lower and upper

type bounds, or higher-kinded types, by inferring type arguments in common scenarios. As

a result, the implementation is closer to the type system proposed for Generic Java (GJ) in

Bracha et al. [1998]. Unfortunately, apart from an informal description of type inference pro-

vided in the specification of the language in Odersky [2015], and a semi-formal note sent to

the types mailing list in Odersky [2002], there exists no complete formalization of the imple-

mented type inference algorithm. The debugging techniques in this thesis are fully based on

the sound formalization of Colored Local Type Inference, but we will also show how our tech-

niques apply to its more realistic variant based on the implementation in the Scala language.

28



2.2. Type inference in Scala

(INST-APP)

Γ � F : ∀a.T ′ → T ′′ �→ F ′ Γ � E : U �→ E ′

{a}, T ′;Γ� E ′ : U inst E ′′ : TE

σ min a solution in Γ� TE ≤ T ′ a′ = a \ dom(σ)

Γ � F (E) : ∀a′.σT ′′ �→Λa′. F ′〈σa〉(E ′′)

Figure 2.6: A typing rule that assigns type to the function application term in the [Oder-
sky, 2002, pg. 8] proposal. The rule is part of the (Γ � E : U �→ E ′) typing judgment.

2.2.1 Inferred Type Instantiation for GJ

The semi-formal type system for Generic Java proposed in Odersky [2002] addresses the

soundness problems identified in the preliminary version of the language (Jeffrey [2001]),

and infers type arguments for many of the problematic scenarios of Local Type Inference

that have been identified in Hosoya and Pierce [1999]. While informal and incomplete, it

provides important insights into the type system and the type inference specification that is

implemented in the Scala language. In this section we outline only the crucial differences

between the proposed type system and the Colored Type System.

The formalization divides the type hierarchy into two categories:

Type scheme U ::= ∀a.T

Non-polymorhphic type T ::= T → T | {x1 : T1, ..., xn : Tn} | � | ⊥

The type scheme encapsulates type variables that need to be instantiated in the context of

function application, while the non-polymorphic type, as the name suggests, cannot intro-

duce any new type variables.

The typing judgment used in the proposed formalism is of a (Γ � E : U �→ E ′) form. It assigns

a type scheme U to the term E under the environment Γ and transforms it to some other term

E ′, if necessary.

Type assignment for function applications

Figure 2.6 recalls a typing rule (INST-APP)2 that assigns a type to a function application with

elided type arguments. In comparison to the Colored Type System, the type assigned to the

argument of the function can be polymorphic; together with the subtyping relation between

the type of the argument and the parameter of the function, it allows for propagating more

type information along the adjacent nodes of the type derivation tree.

2The type system presented in Odersky [2002] used the name (APP) that conflicts with the previously described
formalization.

29



Chapter 2. Preliminaries

The type schemes are eliminated by an instantiation judgment of a form

a, R;Γ� e : U inst e’ : T

The instantiation judgment states that a term e of type scheme U is instantiated to an expres-

sion e’ of type T , given the environment Γ and the required context type R. The set of type

variables a, such that a ⊆ fv(R), represents the unknown type variables information in the ex-

pected type that can potentially be replaced by the don’t care, wildcard types. The judgment

instantiates the polymorphic type by inferring a maximal type substitution σR with respect

to the type R such that σRU <: T .

The (INST-APP) rule instantiates the inferred type scheme of the argument to a regular, non-

polymorphic type TE in a separate type checking operation. The instantiation of the poly-

morphic type is crucial for inferring single best solution for the elided type arguments; a type

system that allows for uninstantiated type variables on both sides of the subtyping relation

does not guarantee finding principal types.

The function application rule only infers instantiations for type parameters that could be

constrained with lower, non-implicit type bounds. Uninstantiated type parameters of the

function application are further propagated down the type derivation tree using the ∀a′.T ′′

type scheme that is assigned to the term.

The proposed type system uses a more relaxed specification of the minimal and maximal

type substitution; the modification is particularly important for inferring types that are in-

variant in some type variable, e.g., the minimal type substitution σC ,R would be derivable

in the proposed type system for some constraint set C , such that {⊥ <: a <:�}⊆C and type

R, such that R is invariant in the type variable a. The changes to the specifications will be

discussed in detail in Section 3.7.5.

Similarly as in the Colored Type System, the proposed type system uses type constraints from

the subtyping relation to guess the minimal and the maximal type substitution. While the

authors of Odersky [2002] do not provide the necessary changes to the constraint generation

rules, based on the proposed type system and the detailed examples, we adapted the CG rules

from the constraint generation algorithm from Section 2.1.5. A summary of the changes to

the CG rules is provided in Figure 2.7.

The modified constraint generation judgment, (W, V �X S <: T ⇒C ), includes the additional

W set, that carries information about the so called constant type variables. The constant

type variables differ from the out-of-scope type variables (represented as V in the judgment),

in a sense that they refer to the type variables of the application context, and must not be

promoted or demoted by the constraint generation rules. The change is highlighted in the

rules (CG-Upper) and (CG-Lower). Lack of variable-elimination for constant type variables

implies that such type variables may appear in the type bounds of some constraints sets. We

notice that the modest extension is still sound and complete with respect to the colorless

30



2.2. Type inference in Scala

(CG-Upper)
Y ∈ X S ⇓V \W T (fv(S) \W )∩X =�

W, V �X Y <: S ⇒ {⊥ <: Y <: T }

(CG-Lower)
Y ∈ X S ⇑V \W T (fv(S) \W )∩X =�

W, V �X S <: Y ⇒ {T <: Y <:�}

(CG-Var-Refl)
a ∈ X

W, V �X a <: a ⇒�

(CG-(?, <))
W, V �X T <: ?⇒� (CG-(?, >))

W, V �X ?<: T ⇒�
...

Figure 2.7: Extension of the V �a S <: T ⇒C constraint generation judgment that applies
to the type inference alluded to in the GJ proposal. Unmodified rules (modulo the con-
stant type variables set W that is ignored in the other rules) are represented using the ‘...’
notation. Changes to the existing rules are emphasized.

subtyping relation, thanks to the (VAR) subtyping rule from Figure 2.1.

For example, given a constant type variable b,

({ b } ,��{ a } a → a <: Int → b ⇒ {Int <: a <: b}).

The existence of constant type variables implies that type variables may later appear on both

sides of the subtyping relation, e.g., Int → a <: ⊥→ a. The (CG-Var-Refl) rule represents

a single, valid scenario, where a subtyping relation is allowed to have uninstantiated type

variables on both sides of the subtyping relation. Such a subtyping relation, though allowed,

carries no information on the kind of type constraints, and produces an empty constraint

set, e.g., (�,� �{ a } Int → a <: ⊥ → a ⇒ �). Thus, the type inference still ensures that a

single best solution can be found from the constraints sets.

The two additional constraint generation rules, (CG-(?, <)) and (CG-(?, >)), allow for the

don’t care ? constant type to be present in the subtyping relation. Since wildcards stand for an

unknown type information they do not lead to any new type constraints for uninstantiated

type variables. Furthermore the rules require that for any type S and T in S <: T either ? �∈ S

or ? �∈ T .

The presented semi-formal function application rule, and the adapted constraint generation

judgment, give an intuition behind the type inference technique used in the Scala language

and its connection to the Colored Local Type Inference approach. This relationship allows us

to base the formalization of our debugging techniques on the well-established Colored Local

Type Inference, only to later extend some of its elements to the implementation of Scala’s

type system without compromising the soundness of our approach, or tying it to a particular

local type inference implementation.

31





Chapter 3

Guided-analysis for type derivation
trees

Type checking of any program can be thought of as a recursive application of type inference

rules to individual terms of the program. Such applications essentially attempt to build com-

plete type derivation trees which reveal the details of the typing decisions.

It is important to note that using type derivation trees as a basis for debugging typing de-

cisions has been attempted in the past (e.g., Tsushima and Asai [2013], Chitil [2001]) with

mixed results. The main challenge remains in tracking numerous constraints that affect any

kind of typing decisions, especially when applied to applications that go beyond simple toy

examples. Type derivation trees constructed as part of the Local Type Inference have how-

ever interesting properties: type information is propagated only between adjacent nodes and

types are approximated locally, rather than being solved globally in order to achieve a com-

plete solution. We show that debugging such local type derivation trees, which comes with its

own set of challenges, becomes a feasible solution to understanding decisions of local type

inference.

In Section 3.1 we describe challenges in debugging Colored Local Type Inference that are

present when having access to complete type derivation trees. Section 3.3 provides a novel

abstraction that is sufficient to encapsulate type information about the types, and their evo-

lution along the nodes of the type derivation tree. The abstraction is used for a guided nav-

igation through the nodes of the type derivation trees (Section 3.5) without resorting to any

heuristic-based techniques. The algorithm which defines such navigation is able to find

nodes in the type derivation trees (or rather type checking decisions they represent), where

types are introduced for the first time. In other words, for any inferred type (or part of it) we

are able to locate its origin in the type derivation tree.

The results of the algorithm, the type checking decisions explaining the source of the type

(Section 3.4), may not be final, in a sense that they themselves may exist as a result of some

33



Chapter 3. Guided-analysis for type derivation trees

other type checking decisions. Fortunately, we can always assign them to one of the three

possible categories, and explain them separately: the type may be inferred from the expected

type of the context (Section 3.6), the inferred instantiation of a type variable (Section 3.7), or

an explicit type annotation (Section 3.8).

3.1 Using type derivation trees for type debugging

To illustrate the debugging challenges using type derivation trees we first compare our ap-

proach to explaining the motivating example from Chen and Erwig [2014a]. We will later con-

sider a more interesting example from the viewpoint of local type inference, which is harder

to debug using the traditional means of type constraint manipulation.

3.1.1 Debugging simple function applications

The example in Listing 3.1 defines an identity function, and a boolFunc function expecting

a single argument of type Boolean. Similarly to the problem presented by Sheng et al., the

role of the polymorphic identity function is to add a slight twist to the problematic code and

illustrate the analysis of parametric polymorphism (rather than analyzing a straightforward

mismatch in a trivial boolFunc(1) application). The error message included in the Scala code

informs the user precisely on the nature and location of the type mismatch. It also leaves the

process of finding out where the types Int and Boolean originate from entirely to the user.

1 def identity[A](x: A): A = x
2 def boolFunc(v: Boolean): Int = if (v) 1 else 0
3

4 boolFunc(identity(0)) // error: type mismatch;
5 // found : Int
6 // required: Boolean
7 // boolFunc(identity(0))
8 // ^

Figure 3.1: Type mismatch with the propagated expected type of the argument.

We can encode the problematic application in the underlying language of Colored Local Type

Inference in a straightforward manner, as presented in Listing 3.2 (we assume the traditional

definition of Bool values from Simply Typed Lambda Calculus in Pierce [2002]).

By applying the inference rules of Colored Local Type Inference from Figure 2.4 to this appli-

cation, we can construct an equivalent type derivation tree, as shown in Figure 3.3.

The typing error from listing in Figure 3.1 is marked in the derivation tree in Figure 3.3 as

(type mismatch) and results from the structural inequality between a synthesized type of the

34



3.1. Using type derivation trees for type debugging

(fun(v: Bool) v 1 0) ((fun[a](x: a)x) 0)

Figure 3.2: Encoding of the Scala code from Figure 3.1 in the language of Colored Local
Type Inference.

w
(app)

(app)
w

Typechecking application of

(fun[a](v: Bool) v 1 0) ((fun[a](x: a)x) 0): ?, 

(fun[a](v: Bool) v 1 0) ((fun[a](x: a)x) 0)

w?, 

w x: a ??, ,x: a

Bool Int 
?, 

w(var)  ?, ,x: a
(abs   )tp

(type-mismatch)(fun[a](x: a)x) 0: {a  Int} a Bool 

Int <: b  C1
a <:   Bool  C20:  Int a ?fun[a](x: a)x: a.a a

12 3

4

5

6

7

8

(var)

(fun[a](v: Bool) v 1 0):w?, 

...
v 1 0: Intw?, (abs      )tp,?

Figure 3.3: A fragment of the type derivation tree for the encoding from Figure 3.2. High-
lighted elements identify intermediate type decisions that led to a type mismatch.

(fun[a](x : a)x) 0 application, Int , and an inherited expected type, Bool. The difference in

the location of the error between the Scala and the Colored Local Type Inference versions

stems from the implementation details outlined in Section 2.2 and it can be ignored for the

purpose of the present example.

The encoding of the small example consist of only six inference rules, yet it gives a glimpse at

the kind of complexity that users should be expected to deal with when using type derivation

trees. The term (fun[a](v : Bool ) v 1 0) ((fun[a](x : a)x) 0), for which the judgment fails to

infer the correct type, becomes the root of the tree. We call the branch of the type derivation

tree from the root to the (type mismatch) the failed path.

In order to discover how the inherited type Bool (superscript 1) has been first introduced

in the type derivation tree, we have to understand from which direction its information has

been propagated. From the presented type derivation tree, we can see that it flows from the

parameter part of the anonymous function (superscript 2) towards the argument of the func-

tion. Moreover, there is a connection between the part of the inferred type of the anonymous

function and the type annotation for the parameter v in fun(v : Bool) v 1 0. The informal de-

scription of the link between the types can be traced back to the way the types are propagated

in the type inference rules.

The user might also want to find out the source of the synthesized Int type (superscript 3).

From the formalization in Section 2.1 we know that type variable substitution (superscript

4), σ, always has its source in the collected constraints (superscripts 5 and 6), C 1 and C 2. It

quickly becomes a non-trivial task to understand what are inferred constraint sets and how

bounds of constraint C 1 have its source in the inferred type of the constant 0 (superscript 7),

35



Chapter 3. Guided-analysis for type derivation trees

while the type bounds of constraint C 2 come from the result type of the inferred type of the

identity function (superscript 8).

With this simple type derivation tree, it becomes apparent that using type derivation trees for

debugging purposes is powerful but should ignore some premises of inference rules that are

irrelevant to the nature of the problem that we try to understand. Additionally, the direction

of the analysis clearly depends on whether we investigate the source of the inherited or the

synthesized type.

In the next example we give a more in-depth intuition on how we can apply that approach

to a more realistic scenario, where non-trivial polymorphic function types typically make the

analysis hard to follow.

3.1.2 Debugging foldRight application

The introduction has provided an example of a confusing error for an application involving

the foldRight function (Figure 1.1). By encoding the example in the core language, and ex-

plaining the decisions of the type inference process, we show how limitations of local type in-

ference leak to type error messages without offering any obvious type debugging techniques

or workarounds to correct it.

We define the problematic snippet using the straightforward encoding of lists (summarized

for reference in Appendix A). We assume that the type of the foldRight term has been in-

ferred as ∀a. LIST[a]→ (∀b. LIST[b]→ ((a,b) → b) → b), where Li st denotes a type con-

structor of list collection, and a 1 constant is of a base type Int, where Int <:�. Therefore the

erroneous foldRight application can be encoded as:

foldRight(Cons(1,Nil())(Nil())((x, y)→ Cons(x+1, y))

An application of the Colored Local Type Inference rules (defined in Figure 2.4) to this appli-

cation leads to a type derivation tree shown in Figure 3.4.

The type mismatch is marked in the derivation tree in Figure 3.4 as (type mismatch) and

results from the structural inequality between the assigned type of the body of the function,

LIST[Int], and an expected type, LIST[⊥]1.

Debugging typing decisions through a simple visual assessment of the type derivation tree

was still a viable option for the function application example from Section 3.1.1, but it is no

1In Scala, type ⊥ is equivalent to type Nothing but has no Java correspondence. The top type � is equivalent
to types Any and Object in Scala and Java, respectively.

36



3.1. Using type derivation trees for type debugging

(var) ?, w Cons:

(app) 1
(type-mismatch)

(abs) 3

..., w f

5

(var)
6

7

(app)
8

9

(app)
w

10

4 ..., w f

(app) w

foldRight(xs)(Nil()): {b List[ ]}((Int,b) b) b ?

Typechecking application of

Typechecking function argument fun(x,y)  Cons(x + 1,y) 

?, 

foldRight(xs)(Nil())(f): ?, 

w foldRight(xs):?, 
((Int,b) b) b <:   ?  C6

List[ ]<: b  C5

foldRight(xs)(Nil())(f)

w Nil():{a }List[a] ?[?/b]b, 

w Nil: a.() List[a] ??, 
List[a] <:   ?  C4

w fun(x,y)  Cons(x + 1,y):(Int, List[ ]) List[ ], 

2
wList[ ], , x: Int, y: List[ ] Cons(x+1, y): {a Int}List[a]  List[ ]

1 = , x: Int, y: List[ ] 

a.((a, List[a])  List[a]) w(app)        [?/a]a, 1 (x+1): Int  ?
w(var) [?/a]List[a], 1 List[ ]  List[?] List[ ] <:   List[a]  C3

Int <: a  C1
List[ ] <: List[a]  C2

b.(b ((Int,b) b) b) 

Figure 3.4: Fragment of a type derivation tree for the application foldRight(xs)(Nil())( f ),
where xs = Cons(1,Nil()) and f = fun(x,y) → Cons(x + 1,y). Superscripts identify inter-
mediate type decisions that led to a type mismatch.

longer the case for the foldRight application. Nevertheless, the systematic type propaga-

tion, primarily used to elide more type annotations, also offers a means to backtrack through

the type checking process as long as we are able to meticulously follow the decisions of the

inference rules.

For example, in Figure 3.4 we notice that the conflicting expected type is being consistently

propagated on the failed path in locations 1, 2 and 3. Furthermore, by looking only at the

position of the conflicting element in the propagated type information, we see that it is first

introduced in the type derivation tree during type variable substitution (superscript 4).

The substituted type variable b is first introduced in the inferred type of the partially ap-

plied function foldRight(xs). Since b is an abstract type variable, there is no need to fur-

ther continue the analysis of LIST[⊥] in the left branch of the type derivation tree, (? ,Γ �w

foldRight(xs) :∀b. b → ( Int,b )→ b → b); we have found the location where the conflicting

expected type LIST[⊥] is first introduced. The informal description relied only on the infor-

mation on how elements of types flow from one type inference rule to the other, irrespective

of actual instances of types.

A visually easier to interpret Figure 3.5 presents a stripped down version of the previous

derivation tree, which only shows how elements of the inferred type of the partially applied

function foldRight(xs)(Nil()) are systematically propagated to infer the type of the anony-

mous function. It becomes apparent that the root of the tree becomes essentially a point

where we shift from backtracking on the type derivation tree to actively using the collected

type information to navigate to a different part of the type derivation tree. We call this point

a Propagation Root.

37



������� �	 
��
�
��������� ��� ���� 
��������� �����

(var) ?, � w Cons:

(app) 1
(type-mismatch)

(abs) 3

...,� w f

5

(var)
6

7

(app)
8

9

(app)
w

10

4 ...,� w f

(app) w

foldRight(xs)(Nil()): {b�List[�]}((Int,b)�b)�b�?

Typechecking application of

Typechecking function argument

?, �

foldRight(xs)(Nil())(f): ?, �

w foldRight(xs):?, �
((Int,b)�b)�b <: � � ? � C6

List[�]<: b � C5

foldRight(xs)(Nil())(f)

w Nil():{a��}List[a]�?[?/b]b, �

w Nil: �a.()�List[a]�??, �
List[a] <: � � ? � C4

w fun(x,y)� Cons(x + 1,y):(Int, List[�])�List[�], �

2
wList[�], �, x: Int, y: List[�] Cons(x+1, y): {a�Int}List[a] � List[�]

�1 = �, x: Int, y: List[�] 

�a.((a, List[a])� List[a]) w(app)        [?/a]a, �1 (x+1): Int � ?
w(var) [?/a]List[a], �1 List[�] � List[?] List[�] <: � � List[a] � C3

Int <: a � C1
List[�] <: List[a] � C2

�b.(b�((Int,b)�b)�b) 

fun(x,y) �Cons(x + 1,y)

 !"#$% &'() * +!,-.!/%0 1$2",%34 51 46% 47-% 0%$!824!53 1$5,  !"#$% &'9 :6%$% 46% "$27%0;

5#4 %.%,%34+ 05 354 %<-.2!3 46% +5#$=% 51 46% %<-%=4%0 47-% >?@ABCD'

E4 !+ !,-5$4234 45 354%F 4624 46% GHIJKLKMNIO PIIM !+ .!Q%.7 45 R% 0!11%$%34 1$5, 46% 2=4#2. HIIM

51 46% 47-% 0%$!824!53 4$%% +!3=% 46% -$5R.%,24!= 1$2",%34 :!.. 47-!=2..7 R% -2$4 51 2 R!""%$

47-% 0%$!824!53 4$%% !3 46% =5,-.%4% -$5"$2,'

S%15$% :% =534!3#% 5#$ !315$,2. 47-% 0%$!824!53 4$%% %<-.5$24!53F !3 +%2$=6 15$ 46% +5#$=% 51

46% >?@ABCD 47-%F :% /$+4 15$,2..7 0%/3% 46% =53=%-4 51 46% GHIJKLKMNIO PIIM !3 5$0%$ 45

R%44%$ #30%$+4230 !4+ +!"3!/=23=%'

T����U����� V��� ��� ��� �W��X��
 �����

Y%/3!4!53 & =62$2=4%$!Z%+ 46% JKH[OM 51 46% 47-% !31%$%3=% \#0",%34F #+%0 .24%$ !3 46% =62-4%$

230 !3 46% 0%/3!4!53 51 46% GHIJKLKMNIO PIIM'

]�^������ � GKH[OM I_ M`[ MaJ[ NO_[H[Ob[ cdeLf[OMg

h6% JKH[OM 51 46% !31%$%3=% \#0",%34 iGF j kl m ) n o !3 2 47-% 0%$!824!53 4$%% !+ 46%

\#0",%34 :6!=6 62+ iGF j kl m ) n o .!+4%0 2+ 53% 51 !4+ -$%,!+%+'

h6% iiGF j kl m ) n o po 35424!53 0%/3%+ 2 1#3=4!53 4624 $%4#$3+ 46% -2$%34 51 46% iGF j kl

m ) n o !31%$%3=% \#0",%34' h6% $%+#.4 51 46% 1#3=4!53 !+ #30%/3%0 15$ 46% HIIM 51 46%

47-% 0%$!824!53 4$%%'

h6% %<!+4%3=% 51 46% GHIJKLKMNIO PIIM =23 35: R% 0%/3%0 15$,2..7 !3 h6%5$%, q'

&r



3.1. Using type derivation trees for type debugging

Theorem 1 Propagation of prototype information and Propagation Roots.

We consider any type inference judgment of a form (P, Γ �w E : T ), where T might or

might not have been inferred, and P �= ?, and let the parent of (P, Γ �w E : T ) be repre-

sented as (P p , Γp �w E p : T p ).

The prototype P in (P, Γ�w E : T ) has been either propagated from its parent, i.e., P is

part of the prototype P p , or it has been introduced for the first time in its parent and P

is not part of P p . If the prototype P is introduced for the first time by the parent of the

type inference judgment, we call such parent the Propagation Root for prototype P .

Proof.

A proof by induction on the type inference rule for the parent of the type

inference judgment. A complete proof is provided in Appendix C.

Lemma 3.1 allows us to state that we can always find the type inference judgment that in-

troduces the prototype for the first time, through simple backtracking through the nodes of

the type derivation tree. The subject will be formally explored in more detail later for both

error-free (Section 3.6) and erroneous (Section 4.1) type derivation trees.

Lemma 3.1 Existence of the Propagation Roots for type derivation trees.

For any inference judgment of the form (P, Γ �w E : T ), where T might or might not

have been inferred and P �= ?, we can always find the inference judgment (P ′, Γ′ �w

E ′ : T ′), abbreviated as �w
P ′ , where T ′ might or might not have been inferred, such that

(P, Γ �w E : T ) is a subtree that is part of the �w
P ′ inference judgment, and partial type

information P is first being propagated in �w
P ′ and it is not part of �w

P ′ ’s own prototype.

We call the path from the (P, Γ �w E : T ) inference judgment down the type derivation

tree to �w
P ′ , the Prototype Propagation Path.

Proof.

The proof of Lemma 1 follows directly from Theorem 1, the formulation of

the parent of the type inference judgment in Definition 3, and the require-

ment on the root of the type derivation tree on having the ? prototype, i.e., a

program has to start with no expected type.

39



Chapter 3. Guided-analysis for type derivation trees

Debugging type variable instantiations

Our informal description of the foldRight application has identified the type variable b and

its instantiation to type Li st [⊥] in the foldRight(xs)(Nil()) partial application as the first

node in the type derivation tree where the conflicting expected type has been fully stated.

This is an important step in the analysis of our motivating example, yet not the final one.

The precise debugging technique would tell which of the type constraints (superscript 9 in

Figure 3.4) were used in the instantiation of the type variable b, and how do they relate to the

inferred type of the argument Nil(), LIST[⊥].

If we were only interested in the source of the inherited expected type, then reporting the

argument Nil(), as the source of type constraints would be correct. However, rather than

treating the (type mismatch) failure as a black box, we can gain much more information

from taking into account the failed subtyping derivation tree. Since we assume that Li sts

in our encoding are covariant, we know that the actual mismatch originates from its type ar-

guments:
Int �<:⊥

LIST[Int] �<: LIST[⊥]
The premise of such failed subtyping derivation tree, provides further information on how

to narrow down the analysis of the subtree that instantiates the type variable b - we can fo-

cus on tracking the origin of type element ⊥ in from the LIST[⊥] type rather than LIST[⊥].

This in turn implies that the analysis of the type derivation trees has to understand how

the type parameter a (superscript 7) from type f or al l a. () → LIST[a] was instantiated to

type ⊥ (superscript 8) in the application Nil(). Careful look at the inference rule (app) in

([?/b]b, Γ �w Ni l () : LIST[⊥]) reveals that even though constraints are collected for the type

variable a (superscript 7), none of them are relevant for the inference of the most optimal

type, and in consequence, the⊥ type, the true source of the type error is inferred. That is the

level of detail, in terms of finding minimal explanations of types, our analysis aims to achieve.

Similarly as before, our informal explanation has only relied on how type inference rules infer

the instantiations of the type parameters and propagate the elements of types, rather than

being specific to the foldRight application. We exploit this insight in two ways:

• We are able to locate the smallest fragment of the type derivation that encapsulates the

node where the error is reported to the user and all the nodes that either propagate or

introduce the conflicting type for the first time.

• By identifying the nodes of the type derivation that introduce types for the first time,

we can suggest opportunistic source code fixes at program locations associated with

such nodes.

For example, a naive, non-minimal analysis could suggest to the user to annotate the

complete argument in the application with an explicit type annotation, e.g., Nil() :

40



3.2. Introduction to the analysis of type derivation trees

Li st [Int ]2. We, on the other hand, can improve the instantiation of the type variable

a in function application Nil() and suggest an explicit type argument, e.g., Nil[Int ]().

We will come back to the subject of precise heuristics when discussing our type debug-

ging implementation in Section 6.7.

A focus during the informal analysis only on particular elements of prototypes and types

allowed us to ignore other non-trivial typing decisions in the type derivation tree. The type

selection, presented in the form of grayed-out boxes, is completely oblivious to the specifics

of the problem and relies solely on the information of how partial type information flows

between the type inference rules.

The next section provides an overview of the components of the algorithm that analyzes the

decisions of a generic type derivation tree based on only on the applied type inference rules

and the type selection information. Later we give a formal definition to the abstraction be-

hind the grayed-out boxes in the type derivation trees, and how it can be built in an incre-

mental manner when navigating type derivation trees. Importantly, from the formal point

of view the type selection maintains a focus only on the semantically identical elements of

types.

3.2 Introduction to the analysis of type derivation trees

The aim of our thesis is to be able to explain the typing decisions of the erroneous and error-

free programs, or their fragments, using the same mechanism. The algorithm defined in this

chapter only applies to the error-free type derivation trees. As we will describe in detail in

Chapter 4, the analysis of the errors encountered in failed type derivation trees reduces to

locating the correct, error-free subtrees of the derivations and finding the correct input values

for our algorithm based on the shape of the path that led to the type inconsistencies.

In high-level terms the algorithm analyzing the typing decisions of Colored Local Type Infer-

ence takes as input any error-free type derivation tree, or rather a root node of such deriva-

tion, and a type selection information that extracts part of the inferred type of the term that

resulted from such derivation. The purpose of the algorithm is to find the typing decision that

introduced the selected part of the inferred type, known in our notation as the target type, for

the first time in the provided type derivation tree. The reason for considering the individual

type elements that make the inferred type is that it allows us to potentially extract only small

fragments of the tree, visually interpreted as paths, that affected them; the complete inferred

type clearly results from the complete type derivation tree. Therefore the desired output of

the algorithm are the nodes of the type derivation tree which represent the source of the tar-

get type. In reality, the result is somewhat more involving and requires further discussion.

2An explicit type annotation t : T is just a syntactic sugar for (fun(x : T )x) t application in the core language of
Colored Local Type Inference

41





3.2. Introduction to the analysis of type derivation trees

Figure 3.6. In reality it should be sufficient to return the minimal number of nodes

corresponding only to the final points of the exploration paths.

3. The programmers trying to understand the type checking of some source code do not

want to deal with inference judgments and type derivation trees in general. We notice

however that the nodes of type derivation trees assign types to individual terms. Thus

it becomes possible to explain the source of the selected type elements by means of the

program locations of the located terms.

4. Each of the nodes encountered during the exploration of the tree may involve a num-

ber of different kinds of typing decisions that may or may not somehow affect the value

of the target type. For example the type elements of the inferred types may be synthe-

sized from the term, inherited from the type checking context, or both.

This in turn means that type inference rule level of granularity is insufficient. Report-

ing only the individual nodes, or the complete exploration paths, of the provided type

derivation tree would be insufficient to explain the source of the target type. For exam-

ple the highlighted nodes in Figure 3.6 do not express the important role and origin of

type variable substitutions {a ⇒⊥} and {b ⇒ LIST[⊥]}.

The number of different combinations of type checking decisions that may take place within

a single type derivation node motivated a different design and output of the algorithm. Rather

than defining the algorithm that attempts to explain the source of the target type by finding

in one exploration pass the minimal number of nodes of the type derivation tree, our core

algorithm finds only the first node of the provided type derivation tree, or rather its subtree,

that introduced the selected type element. This means that the result of the core algorithm

does not necessarily return the minimal path. For the returned node we also capture the

kind of the typing decision that led to the inference of the type element, as well as the type

selection information that extracts the type element from the inferred type of the node. The

refined output of the analysis is described in detail in Section 3.4.

For example, for the inference judgment and the type selection from Figure 3.6a, we would

return:

• the same node,

• the same type selection, and

• the information that the target type was inferred as part of the type variable instantia-

tion that takes place in the returned inference judgment.

On the other hand for the same inference judgment but a different type selection from Figure

3.6b we would return

• the inference judgment that assigned type to the foldRight(xs) term,

43



Chapter 3. Guided-analysis for type derivation trees

• the type selection from the inferred type ∀b. b → ((
(
Int ,b

)→ b)→ b), and

• the information that the selected target type was inferred as part of the type variable

instantiation that takes place in the returned inference judgment.

The returned nodes of the type derivation tree are grouped into 4 categories, based on the

kind of the typing decision that inferred the target type. For each of the categories we define

a set of specialized analysis functions that allow us to further explore the nodes and their

typing decisions, if necessary. Such exploration is also known as the expansion of the nodes

in our terminology.

Depending on the kind of the typing decision and the kind of the term, the individual anal-

ysis function may further invoke the core algorithm, traverse towards the root of the type

derivation tree, starting with the node returned by the core algorithm, or both. In that sense,

we can perceive the result of the core algorithm, the triple describing the node, as a contin-

uation. The continuation can be further explored, if necessary, in order to filter the relevant

nodes of the type derivation that led to the inference of the target type.

Specialized functions

Core
analysis

Prototype

Adaptation

Type Variable Instantiation

Type Annotations or Terms

w e: T) and type selection(P, 

w e': T')
 kind
 and (P', '
and type selection

Figure 3.7: An overview of the input and output values of the algorithm, and its com-
ponents, that analyzes the decisions of the type derivation trees in order to explain the
source of the selected part of the inferred type T in the P, Γ�w e : T typing judgments.

Figure 3.7 illustrates the main components outlined in the above description. The generic

core algorithm (explained in Sections 3.5.1 and 3.5.2) takes any type inference judgment and

navigates the type derivation tree in order to find the node that introduced the selected part

of the inferred type, T , for the first time. For example, the nodes that only propagate the

type information of the target type, without modifying or inferring its type elements, will be

stepped through.

As we describe in Section 3.4 the target type can be either enforced by the type inherited from

the type checking context (the analysis of the Prototype component is described in Section

44



3.3. Foundations of TypeFocus

3.6), synthesized as part of the ↗ adaptation process (the Adaptation component is reusing

the analysis of the Prototype component), result from the non-trivial type variable instanti-

ation (the analysis of the Type Variable Instantiation component is defined in Section 3.7),

or be synthesized directly from the explicit type annotation or the term (the analysis of the

Type Annotations or Terms component is defined in Section 3.8). The outgoing arrows of the

four components indicate that the specialized analysis functions either directly explain the

typing decisions through other nodes of the type derivation tree by returning the same kind

of the output as the core algorithm, or delegate to the core analysis algorithm. As we will

show in Section 3.8, nodes that infer the target type from the type annotations or terms are

considered to be minimal and will not be further expanded.

The core algorithm is generic, in a sense that it accepts any error-free type inference judg-

ment. The algorithm uses the provided type selection to specialize the analysis and identify

the source of the target type. At the same time, we notice that its output also includes the

type selection, allowing for the continuation of the analysis without losing track of the target

type in the specialized functions. For example, this way the specialized function in the Type

Variable Instantiation component will not analyze the source of the complete type variable

substitution but only of the selected type element of it.

The type selection, formally defined in the next section, serves as a glue that binds together

the analysis between the individual components and the core algorithm; all specialized func-

tions take as input a node of the type derivation tree and the type selection that extracts the

desired part of the inferred type.

3.3 Foundations of TypeFocus

In this section we formally introduce a TypeFocus, an abstraction that drove our informal

exploration of type derivation trees. In short, the TypeFocus is a type selection on type expres-

sions. Visually, we can perceive any type expression as a tree structure, where the internal

vertices always represent the type constructors. In the case of type applications, the children

of the internal vertices, connected through undirected edges, represent the type arguments.

The TypeFocus can be interpreted as a path from the root of such type expression to some

(internal or external) node of the type expression. The length of the path is equivalent to the

number of edges of the tree it selects.

For example, Figure 3.8 illustrates four possible type selections on the inferred type of the

partially function foldRight(xs)(Nil()) from Section 3.1.2.

The type selection is based on the possible shapes of types rather than particular type in-

stances. Therefore such type selection is allowed on types and prototypes, both of which

affect how types are inferred in local type inference.

Terms type selection, type extraction, or simply type focus on types are used interchangeably

45



Chapter 3. Guided-analysis for type derivation trees

List
ListInt List

List
ListInt List

List
ListInt List

List
ListInt List

(a) (b) (c) (d)

Figure 3.8: Examples of different type selections on the inferred type of the
foldRight(xs)(Nil()) function application from Figure 3.4. The darker edges pro-
vide the visual interpretation of the type selection from the inferred type in (a)
(( Int, LIST[⊥] )→ LIST[⊥])→ LIST[⊥] , (b) (( Int, LIST[⊥] )→ LIST[⊥] )→ LIST[⊥],

(c) (( Int, LIST[⊥] ) → LIST[ ⊥ ]) → LIST[⊥], and (d) (
(
Int , LIST[⊥] )→ LIST[⊥]) →

LIST[⊥].

and refer to the same process of returning a part of the given type expression.

Later in the section, we provide a formal definition of the TypeFocus abstraction and illustrate

its usage on the types inferred as part of the non-trivial typing judgments.

3.3.1 A type selection on type expressions

With the visual interpretation of the TypeFocus abstraction, it becomes clear that the TypeFo-

cus path is a list of individual type selectors, or edge selectors in the type expression tree. We

distinguish 3 different kinds of TypeFocus selectors, φ, for our core language; one for each of

the types and their type elements. The TypeFocus, denoted as Θ, is defined recursively as an

empty path, or a concatenation of some TypeFocus selector and TypeFocus:

φ ::= φfun-param | φfun-res | φselx (type selector)

Θ ::= [ ] | φ ::Θ (TypeFocus)

Similarly to list notation, the φ1 :: φ2 :: [ ] TypeFocus is equivalent to the shorter [φ1,φ2]

notation, for any φ1 and φ2.

When applied to any type the TypeFocus, Θ, is treated as a function of type

Θ : T → (T + (T ×Θ)) (type extraction with TypeFocus)

We adopt the definition of sum and product types that is present in Pierce [2002]. The Type-

Focus takes a type and returns a value of a sum type. The left (tagged) value of the sum type

46



3.3. Foundations of TypeFocus

contains the selected part of the input type, while the right (tagged) value is a product type

of type and TypeFocus. Before we explain the reasons behind the unusual return type, we will

first define complete semantics for the application of TypeFocus to types in Definition 4.

Definition 4 Semantics of TypeFocus Θ of type T → (T + (T ×Θ)) for the core language.

([ ])(T ) = inl T

(φfun-param ::Θ
′)(T ) =

{
Θ′(S) if T =∀a.S →R
inr

〈
T, φfun-param ::Θ

′〉 else

(φfun-res ::Θ
′)(T ) =

{
Θ′(R) if T =∀a.S →R
inr

〈
T, φfun-res ::Θ

′〉 else

(φselxi
::Θ′)(T ) =

⎧⎨
⎩ Θ′(Ti ) if

T = {x1 : T1, ... , xn : Tn} and
1≤ i ≤ n

inr
〈

T, φfun-res ::Θ
′〉 else

The individual type selector φfun-param extracts the parameter type of a function type, φfun-res

extracts the result type of a function type, and φselxi
extracts the type of a member xi of a

record type.

Intuitively, the semantics of TypeFocus demand that if the type selection path is empty we

return the identical type in a left tagged value. Since individual TypeFocus selectors, φ, are

the elements of the path, the type selection attempts to apply them in sequence from left to

right; if the head of the TypeFocus successfully selected the type, the resulting type is applied

recursively to the tail of the type selection path until an empty TypeFocus is encountered or

the internal structure of the type is different from the TypeFocus selector expectation. If an

internal structure of the type is different, the application of TypeFocus returns the right tagged

tuple consisting of the input type, and the TypeFocus instance.

For example,

• [φfun-res](A → (B →C )) = inl (B →C ), the TypeFocus extracts a part of the input type

A→ (B →C ).

• [φselz](A → (B → C )) = inr
〈

A→ (B →C ), [φselz ]
〉

, the function type does not match

the expected record type of the TypeFocus, and the application returns the failed right

tagged tuple.

Similarly,

• [φfun-res,φfun-res](A → (B → C )) = inl C , the TypeFocus extracts a part of the nested

function type.

47



Chapter 3. Guided-analysis for type derivation trees

• [φfun-param,φselx ,φfun-res](A→ (B →C ))= inr
〈

A, [φselx ,φfun-res]
〉

, the extraction could

only perform a partial type selection on the provided type.

Typically, type selection can be envisioned as a straightforward extractor function of type

(T → T ). Our definition of TypeFocus allows us to deal gracefully with real examples when

type selection fails to extract part of a type. Such failure happens when the input type does

not conform to the type expected by the instance of TypeFocus. In the case of a type selection

failure, the value of the product type consists of the part of the type on which selection failed,

and of TypeFocus instance that could not perform the type selection on the remaining part of

the type.

Under certain circumstances a failed type selection is not a sign of unsoundness, but in fact

may be desired and reveal important typing properties. For example, our formulation of

TypeFocus will allow us also to apply the same type selection to the type variables that have

been instantiated or not. Let’s consider the TypeFocus Θ′, where Θ′ = [φfun-res,φfun-res,φselx],

and its application to some function type with instantiated type variable Θ′({b⇒{x: B }}(b →
(Int → b))) = inl B . The type extraction from the given type succeeds by returning the left

tagged value. The application of the same TypeFocus to the same type, but with the abstract

type variables, only partially selects part of the function type in Θ′(∀b.(b → (Int → b))) =
inr

〈
b, [φselx]

〉
. In both cases we want to be able to apply the same type selection to the

same type, modulo the type variable substitution.

Two TypeFocus values can be composed together using the ‘:::’ notation, i.e., Θ’ ::: Θ”, for

any Θ’ and Θ”. The semantics of the composition intuitively define a concatenation of two

TypeFocus paths, which ensures that Θ′′ is applied to the type that was first extracted in the

Θ′ application if and only if the latter selection was successful, i.e., if the application of Θ′

returned a left tagged value. Otherwise, it returns a failed right tagged tuple; the tuple consists

of the part of the type that was extracted until a shape mismatch occurred in Θ′ selection,

and a composition of Θ′′ and the failed Θ′ instance. Similarly as in the list notation, the

[φ1,φ2] ::: [φ3,φ4] concatenation is equivalent to the [φ1,φ2,φ3,φ4] notation for any φ1, φ2,

φ3, φ4 type selectors.

For example,

• ([φfun-res] ::: [φfun-res])(A→ (B →C ))= inl C .

• ([φfun-param,φselx ] ::: [φfun-res])(A → (B →C ))= inr
〈

A, [φselx ,φfun-res]
〉

, and the result

represents only a partial type selection.

For convenience, Definition 5 defines an auxiliary function Θtpe of type (T +T ×Θ)→ T that

takes the result of the application of TypeFocus and returns its type component, irrespective

of whether it returned a left or right tagged value.

48



3.3. Foundations of TypeFocus

Definition 5 Extracting type selection from TypeFocus application.

Θtpe(v) = case v of

∣∣∣∣∣ inl T ⇒ T

inr
〈

T,Θ′
〉 ⇒ T

To avoid ambiguous terms, throughout the rest of the work we use the following terminology

for describing the analysis of type derivation trees:

• Conflicting types - refers to types that participate in a type mismatch where the type of

the term fails to conform to the expected type.

• Source of the type - refers to the inference judgment where the given type is first intro-

duced in the type derivation tree. For instance, in the foldRight application analyzed

in Figure 3.4, the source of the expected type Li st [⊥] in a type mismatch refers to the

(app) inference judgment [?/b]b,Γ�w Nil() :a⇒⊥ Li st [a]↗?.

• Target type - refers to the type for which we want to find source(s) by analyzing the typ-

ing decisions of the type derivation tree. When we say that a target type is represented

by some TypeFocus instance, we mean that a type selection on some type corresponds

semantically to that target type.

To help with the interpretation of TypeFocus type selection, we typically represent the

extracted type component through a grayed-out selection on types on which TypeFo-

cus is applied to.

For example, [φfun-param] applied to type ∀a. a → Int extracts ∀a. a → Int

• Basic and complex TypeFocus - we classify a TypeFocus instance as a basic one if it is

either [ ], [φfun-param], [φfun-res] or [φselx]. A complex TypeFocus instance consists of at

least two TypeFocus selectors i.e., the length of the type selection path is at least of size

2.

• Type inference rule of the type inference judgment - always refers to the last type infer-

ence rule used in the given inference judgment.

The correlation between the nodes of derivation and TypeFocus

The analysis of type derivation trees can quickly become infeasible due to the amount of type

information. To make it practical, our analysis will associate every node of the type derivation

tree with a particular TypeFocus instance, thus reducing the typing information to a simple

concept of type selection.

We illustrate the intuition behind such TypeFocus and type inference rule association using

Figure 3.9. The figure summarizes the essential elements of the informal analysis of the

49



Chapter 3. Guided-analysis for type derivation trees

term prototype inferred type TypeFocus

Cons(x + 1) List[⊥] Li st [Int ] �↗ Li st [⊥] [ ]

fun((x, y)→ Cons(x+1, y)) (Int,Li st [⊥])→ List[⊥] Undefined [φfun-res]

foldRight(xs)(Nil()) ? {b⇒Li st [⊥]}(((Int ,b)→ b )→ b) [φfun-param,φfun-res]

foldRight(xs) ? ∀b.b → (((Int ,b)→ b )→ b) [φfun-res,φfun-param,φfun-res]

Figure 3.9: Summary of the analysis of the type derivation tree for foldRight application
from Figure 3.4 leading to the source of type LIST[⊥]. The columns represent the ele-
ments of the �w inference judgment (the environment is omitted). The TypeFocus value
encapsulates the target type information at each node.

source of type LIST[⊥] in the foldRight function application (Figure 3.5 in Section 3.1) by

listing all involved �w type inference judgments. Each row corresponds to the type deriva-

tion tree node in a path from the conflicting types to the source of the inherited type. The last

column reduces the target type information to TypeFocus instances.

The summary highlights how TypeFocus unifies type selection on prototypes up to the Prop-

agation Root (the first two rows) with type selection on the inferred types for terms up to the

source of type LIST[⊥] (the last two rows).

Since TypeFocus instances correspond to partial type information that is propagated at each

node of the type derivation tree, the TypeFocus information can be further simplified to the

following TypeFocus composition:

term type inference rule TypeFocus

Cons(x + 1) (app) Θ1 = [ ]

fun((x, y)→ Cons(x+1, y)) (abs) Θ2 =φfun-res ::Θ1

foldRight(xs)(Nil()) (app) Θ3 =φfun-param ::Θ2

foldRight(xs) (app) Θ4 =φfun-res ::Θ3

The summary reveals the relation between the incremental TypeFocus construction and prop-

agation of partial type information in the rules that define the Local Type Inference.

The TypeFocus-based analysis - the intuition

With the semantics of TypeFocus explained, we are now in a position to illustrate its practical

application on a non-trivial example that analyzes the decisions of the type inference rule,

(app) (from Figure 2.4), that infers the type of function applications.

For the purpose of the example we can consider a fragment of the type derivation tree that

inferred the type of a function application, say f (e), where (?, ε �w f (e) : {x : A → B , y : C }).

50



3.3. Foundations of TypeFocus

We assume that the type of the function f has also been inferred in the (?, ε �w f : ∀a. a →
{x : a, y : C }) judgment, and let the inferred type variable substitution be σ f (e), where σ f (e) =
[a ⇒ (A→B)].

The example aims to explain the source of two different elements of the inferred type of the

function application, represented by the Θf(e) TypeFocus:

Case Θf(e) = [φselx ,φfun-res]:

The TypeFocus represents the target type B in the inferred type of function application be-

cause Θf(e)({x : A→B , y : C })= inl B .

From the (app) type inference rule we know that:

1. The inferred type of function application is the same as the result type of the inferred

type of the function (T in (?, ε�w f ′ : ∀a.S → T ) for some f ′) modulo the type variable

substitution (we ignore the consequences of the↗ adaptation for the moment).

2. The type variable substitution does not modify the components of types, except for

providing type instantiation for the abstract type variables.

This means that the type resulting from the application of the Θf(e) to the inferred type of

the function application, and the type resulting from the application of the Θf(e) to the result

type of the function, refer to the same type even though they might return different type

values.

An application of Θf(e) to the result type of the inferred function type of f gives Θf(e)({x : a, y :

C })= inr
〈

a, [φfun-res]
〉

. The extracted type variable a reveals that in order to understand the

origin of the target type B we have to find out how σ f (e) type substitution, that instantiated

the type variable a, was inferred in the first place, but we do not have to continue the analysis

of the premise that inferred the type of the function. In other words, we have found a desired

source of the target type.

The function application node in the type derivation represents the source of the target type

but it does not yet reveal how the σ f (e) type substitution was inferred. That is why, the source

can be categorized as the intermediate one, and requires further analysis as we will explain

later in the section. Intuitively, the failed TypeFocus, [φfun-res], will allow us continue the

analysis of the inferred instantiation of the type variable since [φfun-res](σ(a)) = inl B still

extracts the target type information.

Case Θf(e) = [φsely]:

The TypeFocus represents the target type C in the inferred type of the function application

because Θf(e)({x : A→B , y : C })= inl C .

Using the same argument as in the previous case, Θf(e) can be applied to the inferred re-

sult type of the function, i.e., Θf(e)({x : a, y : C }) = inl C . The extracted type, which is not a

type variable, indicates that for locating the source of the target type, one can immediately

51



Chapter 3. Guided-analysis for type derivation trees

navigate to the node that inferred the type of the function, and ignore the type variable sub-

stitution and the decisions that inferred the type of the argument e.

The analysis of the inferred type of the function, (?, ε �w f : ∀a. a → {x : a, y : C }), must not

use the same Θf(e) TypeFocus. The latter fails to represent the desired target type when ap-

plied to the inferred type of the function, i.e., Θf(e)({x : A→B , y : C })= inl C but

Θf(e)(∀a. a → {x : a, y : C })= inr
〈∀a. a → {x : a, y : C }, Θf(e)

〉
.

To derive rules for constructing TypeFocus instances that cross the boundaries of individual

type inference rules, we look at the expected shape of the inferred types. In the case of the

(app) rule, the inferred type of the function has to be a polymorphic function type. Therefore

in order to provide a type selection that faithfully represents the initial target type informa-

tion in the (?, ε �w f : ∀a. a → {x : a, y : C }) judgment, we append φfun-res to Θf(e) since

(φfun-res ::Θ
f(e))(∀a. a → {x : a, y : C })= inl C , as desired.

With the above examples we have illustrated the construction and application of TypeFocus,

The process is dependent only on the formal definition of the type inference rule, and yet can

guide the navigation over the type derivation tree.

3.3.2 The well-formedness property

TypeFocus represents a type selection for the already inferred type of an inference rule. We

have shown that in the application of TypeFocus to error-free examples, one can still return

some failed partial type selections. In order to distinguish incorrectly constructed TypeFocus

instances, we now formally define the difference between the correct and the invalid partial

type selections.

Correct partial type selections exist only when dealing with types that have uninstantiated

type variables. In the previous section we have applied TypeFocus to the result type of the

inferred function type, which resulted in a right tagged tuple. The failed type selection is still

correct since the used TypeFocus has been constructed for the same type but with type vari-

ables already instantiated. We summarize such well-behaved type selections in Definition

6.

Definition 6 Well-formedness of TypeFocus for some type T ( Θ, a �WF T ).
The TypeFocus Θ is well-formed with respect to some type T in the context of some
uninstantiated type variables a, denoted as (Θ, a �WF T ), iff

• Θ(T )= inl T ′, or

• Θ(T )= inr
〈

T ′,Θ′
〉

and (T ′ ∈ a ∨ T ′ = ?)

The TypeFocus Θ is strictly well-formed with respect to some type T iff Θ(T ) = inl T ′

for some T ′.

52



3.3. Foundations of TypeFocus

The well-formedness judgment ensures that an application of a TypeFocus to some type can

either fully extract the desired part of the target type it represents, or it extracts up-to an

uninstantiated type variable. The definition also ensures that TypeFocus instances are well-

behaved with respect to prototypes and can handle wildcard constant types.

Definition 7 Partial type selection.
The partial type selection on type T using TypeFocus Θ (in the context of uninstantiated
type variables a), refers to a well-formed type selection, (Θ, a �WF T ), such that
Θ(T )= inr

〈
T ′,Θ′

〉
for some T ′ and Θ′, where T ′ ∈ a.

For example, for TypeFocus ΘS = [φselx]:

(ΘS,��WF {x : A→B , y : C }) and (ΘS, { a }�WF a) but (ΘS, { a } ��WF a → {x : a, y : C }).

The well-formedness property ensures that an application of TypeFocus to some type is safe

and performs a correct, potentially partial, type selection. An inversion lemma in Lemma 3.2

summarizes the finding. Later in the chapter, the guarantees of the lemma will prove to be

sufficient to guide the analysis of the type inference rules in a directed way.

Lemma 3.2 Inversion lemma for well-formed type selection.

If (Θ, a �WF T ) for any Θ, T , and a, then the result of Θ(T ) is:

• inl T ′ for some T ′, or

• inr
〈

T ′′,Θ′′
〉

for some T ′′ and Θ′′, where T ′′ ∈ a∨T ′′ = ? .

Proof.

Straightforward. Directly from Definition 6 on well-formedness of TypeFocus

with respect to types.

Lemma 3.3 Inversion lemma for strictly well-formed type selection.

If (Θ,� �WF T ) for any Θ, and T , where ? �∈ T , then the result of the Θ(T ) application is

inl T ′ for some T ′.

Proof.

Straightforward. Directly from Definition 6 on type selection that is strictly

well-formed with respect to types.

53



Chapter 3. Guided-analysis for type derivation trees

3.4 Foundations of Typing Slice

With the TypeFocus abstraction we have shown a technique for navigating type derivation

trees. In this section we describe the actual outcome of the TypeFocus-based analysis.

Previous work on analyzing type errors and type system decisions has typically represented

the results of its analysis through minimal program source locations, minimal sets of con-

flicting type constraints or program modifications, as described in Chitil [2001], Stuckey and

Sulzmann [2005], Haack and Wells [2004], and Chen and Erwig [2014b]. Our algorithm will

instead find type derivation subtrees that introduce the target type for the first time. This

way we can explain if the target type has been synthesized, inherited, or a mixture of both,

and still choose the most suitable representation for expressing the result (e.g., source code

modification, visual type derivation tree exploration or source code location). The result also

includes the TypeFocus value associated with the type derivation subtree, or rather the type

that it inferred. The TypeFocus, as in all the previous cases encapsulates the focus on the

target type that is part of the inferred type.

The result of the algorithm may not necessarily be final, in a sense that further typing deci-

sions from the returned type derivation subtree could potentially be irrelevant when explain-

ing the source of the target type. At the same time, as we will show, the result contains all the

necessary inputs for further analysis, i.e., the typing judgment and the TypeFocus.

The conscious choice has significant consequences for the end-users, as well as for the con-

struction of the analysis of the typing decisions. The intermediate type derivation subtrees

allow us to inform users about the intermediate typing decisions, and their corresponding

program locations, that led to the inference of some target type, especially important for ex-

plaining non-trivial dependencies that span over the different program locations.

Intermediate typing decisions returned by the algorithm can be grouped together based on

how they affected the target type (such as, was the type partially or completely synthesized,

inherited or a mixture of both?). Each of the groups has to be analyzed in a different way

but the intermediate results allow us to define analysis components that are well-defined and

isolated from the other reasons, keeping the core of the algorithm simple and the approach

in general viable to language extensions.

Finally, because local type inference propagates type information locally between the adja-

cent nodes, our approach to finding such adjacent intermediate typing decisions is on a par

with the principles of Colored Local Type Inference ( and in contrast to global type inference

techniques where it would be redundant).

54



3.4. Foundations of Typing Slice

3.4.1 Typing Slice

The result of a TypeFocus-based analysis is a final or an intermediate source of the target type.

Both are represented through an abstraction named Typing Slice. Due to a range of typing

decisions that may effectively infer the target type, we have to allow for different kinds of

Typing Slices. To represent them we use a triple 〈ν, (P, Γ�w E : T ),Θ〉 consisting of:

• A slice kind, ν, identifying the kind of typing decision that led to the target type. We

provide a classification of the slices later in the section.

• An error-free type inference judgment (or type derivation subtree), (P, Γ�w E : T ).

• A TypeFocus, Θ, representing the target type information in the inferred type of the

included inference judgment. The TypeFocus satisfies the well-formedness property

with respect to the inferred type T , i.e., Θ,fv(T )�WF T .

For presentation reasons, we use the ν3 notation for Typing Slice triples later in the work

(ν3 ::= 〈ν, (P, Γ�w E : T ), Θ〉).

The kind of the typing slice ranges over four different categories, symbolically represented as:

ν ::= νPT | νADAPT | νTVAR | νTSIG

all of which we will now discuss in turn. The Typing Slices belonging to the same category ex-

hibit the same properties, in a sense that they can be further analyzed with the same category

of well-defined techniques that will be subject of sections 3.6, 3.7 and 3.8, respectively.

3.4.2 Prototype Typing Slice

A Prototype Typing Slice (νPT) allows us to represent typing judgments where the target type

is inferred in a type checking mode, meaning that it has been fully inherited from the con-

text. In practice, this means that any premise or auxiliary typing decision that is part of the

inference rule can be safely ignored. In the Prototype Typing Slice the included TypeFocus

not only represents a well-formed type selection on the inferred type of the term, but also on

the prototype that is part of the inference judgment.

To illustrate the objective of the Prototype Typing Slice we consider the analysis of the same

type inference judgment that inferred the type of some term to be (Int → Int ) but with a

different target type:

• ( Int → Int ) - we need to explain the source of the parameter type.

• (Int → Int ) - we need to explain the source of the result type.

55



Chapter 3. Guided-analysis for type derivation trees

The difference means that the value of TypeFocus, say Θfun, just reflects the fact that as part of

the analysis of the type derivation tree we have reached the particular node with a different

objective (or rather different target type to explain).

In the first case Θfun = [φfun-param]:

(abst p) Int → ?, ��w fun(x : Int )x : Int → Int ↗ Int → ? | Int → Int

The type after the | symbol (not part of the official type inference judgment) shows the com-

puted result of the ↗ operation that adapts the type of the term to the provided prototype.

In the presented inference judgment, the target type has been fully inherited from the proto-

type - the application of Θfun to the prototype, Θfun(Int → ?)= inl Int , and the application

of Θfun to the inferred type, Θfun(Int → Int )= inl Int , yield the same parameter type of the

function type.

In the second case Θfun = [φfun-res]:

(abst p) Int → ?,��w fun(x : Int )x : Int → Int ↗ Int → ? | Int → Int

In the presented inference judgment, the target type has not been fully inherited from the

prototype - the application of Θfun to the prototype, Θfun(Int → ?) = inl ?, yields a constant

wildcard type, meaning that no information regarding the particular fragment of the inferred

type has been enforced from the outside context at this node of the derivation.

In consequence, the first target type will be explained using the Prototype Typing Slice, while

the second one must not. The practical implications of such statement are that in the former

case we can completely ignore the analysis of the premises of the type inference rule (abst p),

while for the latter example this is not the case.

The relation between the application of the same type selection of the target type to the in-

ferred type and to the prototype is formally defined in Lemma 3.4. The statement establishes

that the application of TypeFocus to the prototype is safe, provided that it is safe with respect

to the inferred type of the term. This in turn implies that such TypeFocus will extract the same

part of the prototype that inferred the target type.

Lemma 3.4 Well-formedness of TypeFocus with respect to the prototype.

If (P, Γ�w E : T ) and (Θ, a �WF T ) for fv(T )⊆ a, then (Θ, a �WF P ).

Proof.

Proof by induction on the structure of the TypeFocus instances. A full proof

is provided in Appendix D.1.

56



3.4. Foundations of Typing Slice

3.4.3 Type Variable Typing Slice

Type inference rules for function applications, (app) and (appt p) determine optimal instan-

tiation for all type variables that are present in the polymorphic function type. Type infer-

ence rules specify that the instantiation comes either from the collected and solved type con-

straints, or from the explicit type arguments, as illustrated in our informal introduction to

TypeFocus.

We use the Type Variable Typing Slice (νTVAR) to identify a type inference judgment where the

instantiation of the type variable is the source of the target type.

3.4.4 Adaptation Typing Slice

An Adaptation Typing Slice (νADAPT) stands for a typing decision that infers the target type as

part of the result of the↗ adaptation. We recall that the↗ operation adapts the type of a term

to a prototype, which may lead to type synthesis when their shapes are structurally different.

For example, let TypeFocus [φfun-res,φfun-param] represent the target type in some inference

judgment (the type after the | symbol represents the inferred type):

(abst p) A→?→?, ε �w e : A→⊥↗ A→?→? | A→ � →⊥

In the example term e was assigned type A →⊥. Such type is a subtype of the inferred one

but does not match the shape of the required prototype. Reporting the Adaptation Typing

Slice indicates that the selected part of the inferred type has been synthesized during the ↗
adaptation, as highlighted in the involved components of types: A→ ⊥ ↗ A→ ? → ? | A→
� →⊥.

Therefore, in comparison to the Prototype Typing Slice, returning the Adaptation Typing Slice

indicates the two elements that explain the source of the target type: the part of the inherited

prototype and the synthesized type of the term.

3.4.5 Type Signature Typing Slice

The Type Signature Typing Slice (νTSIG) represents typing decisions that have fully synthesized

the type of the target type from the term. Therefore, for our core language, the source of the

target type, which is represented by the Type Signature Typing Slice, stands for one of the

following:

• An explicit type annotation for the parameter of the abstraction.

• A variable, whose type is synthesized from the environment.

57



Chapter 3. Guided-analysis for type derivation trees

• An abstraction term.

• A record term.

For example, we consider the typing judgment where the last type inference rule used is (var)

and the target type is represented through a TypeFocus [φfun-param]:

(var) ?, (ε, x : Int → Int )�w x : Int → Int ↗ ? | Int → Int

The highlighted part of the inferred type of the term represents the information about the

target type.

Reporting the Type Signature Typing Slice identifies the part of the type of a variable x, com-

ing from the environment ((ε, x : Int → Int )), as the source of the target type. Such Typing

Slice can be inferred because none of the previous kinds of the Typing Slice (involving proto-

type or the type variables) applied for the given scenario.

An abstraction term becomes the source of the target type if the target type is a function type,

and the inferred type of the abstraction has been synthesized from the term. Similarly, a

record term can become the source of the target type if the target type is a record type, and

the inferred type of the record has been synthesized from the term.

As we will indicate in Section 3.8, the Type Signature Typing Slices are final, in a sense that

they do not require further analysis of the associated type derivation trees and can directly

be associated with program locations.

3.5 TypeFocus-based analysis of type derivation trees

This section presents an algorithm to locate the source of the target type in a type derivation

tree. The algorithm is TypeFocus-based, meaning that we navigate only those typing deci-

sions, or nodes of the type derivation tree, which affect the inference of the target type. As a

result, at each such node, we can extract the target type information from the type inferred

as part of the inference judgment of the node.

We first give examples on how previously described Typing Slices fit as an outcome of the

algorithm for analyzing inference typing decisions, and follow with definitions of auxiliary

functions used in the algorithm. Next, we describe in detail the algorithm for three represen-

tative inference rules. Finally, we show that algorithms used for analyzing typing decisions of

those rules can be generalized and be applied to the rest of the Colored Local Type Inference

formalization.

The TypeFocus-based algorithm presented in this section is only defined for derivable (or

error-free) type derivation subtrees. As we illustrate in Section 4, the information about the

58



3.5. TypeFocus-based analysis of type derivation trees

erroneous parts of the type derivation trees can always be reduced to the appropriate Type-

Focus abstraction. Such an approach allows us to apply the core algorithm not only for ex-

ploring typing decisions (with error-free types) but also for debugging type errors in general,

all without modifying the core algorithm.

The algorithm - overview of the results

The algorithm is realized using the SLICES function of type ((P, Γ �w E : T ), Θ) → ν3. The

function takes a derivable type inference judgment, corresponding to a subtree of the type

derivation tree and represented by its local root, and a TypeFocus, which represents a selec-

tion on the inferred type of the given type inference judgment.. The function returns a se-

quence of Typing Slices triples explaining the source of the selected target type. In order to

analyze type derivation trees, the SLICES function is defined for every inference rule of the

Colored Local Type Inference formalization. The function is organized in a recursive manner,

since the type inference algorithm is recursive itself.

To illustrate the result of the algorithm, we apply the SLICES function to the inference judg-

ment that inferred the type of some nested abstraction (fun(x)fun(y : A)y) in some type

checking context:

SLICES

(
(abs) (Int → ?→ ?,ε�w fun(x)fun(y : A)y : Int → A → A), [φfun-res,φfun-param]

)
={〈

νTSIG, (?→ ?, ε�w fun(y : A)y : A → A), [φfun-param]
〉}

In the example, the last type inference rule used in the judgment is (abs) and when applied

to the provided term it infers the type Int → A → A. The target type is highlighted in the

inferred type of the abstraction using the information from the provided TypeFocus value.

The algorithm returns the Type Signature Typing Slice, which explains the source of the tar-

get type - it was first introduced by the nested abstraction (or rather the type inference judg-

ment that determined its type). We encourage the reader to write down the complete type

derivation tree (consisting all together of three type inference rules) to verify the result. The

returned Typing Slice also includes the TypeFocus value which selects the part of the inferred

type, thus allowing us to associate the source of the target type with the type annotation of

the parameter of the abstraction.

As the algorithm is TypeFocus-based, it will return different results for different target types

of the same judgment. For example, let’s consider a different target type, expressed through

a TypeFocus [φfun-param]:

SLICES

(
(abs) (Int → ?→ ?, ε�w fun(x)fun(y : A)y : Int → A→ A), [φfun-param]

)
={〈

νPT, (Int → ?→ ?, ε�w fun(x)fun(y : A)y : Int → A→ A), [φfun-param]
〉}

The result, a Prototype Typing Slice, correctly identified that the highlighted target type Int

has been fully inherited from the context.

59



Chapter 3. Guided-analysis for type derivation trees

is-hole : P → Bool

is-tvar : (T, a)→ Bool

shape-match : (T, P, Θ)→ Bool

head : Θ→Θ

tail : Θ→Θ

prefix : (Θ,Θ)→ Bool

normalize : (Θ, T, a)→Θ

Figure 3.10: Type signatures of auxiliary functions used in the definition of the SLICES

algorithm. Bool type stands for the type of Boolean values true and false.

Auxiliary functions

The definition of the algorithm makes use of a few auxiliary functions, which are summa-

rized in Figure 3.10. For reference, Appendix B provides a complete implementation for each

of the defined functions. Rather than providing a detailed motivation behind each of them

at this point, we encourage the reader to come back to this section, if necessary, once they

experience their usage in our core algorithm in Section 3.5.1.

is-hole The is-hole function takes a prototype, and returns a Boolean value true if the

prototype is a ? constant type, and false otherwise.

is-tvar The is-tvar function returns a Boolean value true if the provided type is a type vari-

able and it is within the provided set of uninstantiated type variables. The function returns

false otherwise.

shape-match The shape-match function verifies if a provided type, T , and a prototype, P , are

structurally equal within the type selection of the provided TypeFocus. The function assumes

that (P,fv(P )�WF Θ), where Θ represents the provided TypeFocus value.

By taking into account the type selection of the input TypeFocus, the function can determine

if only the desired part of the synthesized type and the prototype are structurally unequal,

rather than considering the full synthesized type and the full prototype. In consequence, we

can precisely identify when the type synthesis of the↗ adaptation is the source of the part of

the inferred type.

For example, the A→⊥ type is clearly not structurally equal to the A→ ?→ ? prototype, but

their type elements can be:

• shape-match(A→ ⊥ , A→ ?→ ? , [φfun-res])= false:

In the case of the A →⊥↗ A → ?→ ? = A → �→ ⊥ adaptation, the false result in-

dicates that the selected part of the inferred type (A → �→ ⊥ ) has been synthesized

as part of the↗ adaptation.

• shape-match( A →⊥, A → ?→ ?, [φfun-param])= true:

In the case of the A → ⊥↗ A → ? → ? = A → �→ ⊥ adaptation, the true result

indicates that the selected part of the inferred type ( A → �→ ⊥) has not been syn-

thesized as part of the↗ adaptation.

60



3.5. TypeFocus-based analysis of type derivation trees

head and tail The head and the tail functions extract the elements of TypeFocus path in a

similar way as head and tail extract elements of list collection.

The main difference from their list counterparts is that head and tail are both total func-

tions, returning [ ] when head is applied to an empty type selection, and when tail is ap-

plied to any basic TypeFocus. Therefore the head and tail functions break TypeFocus down

into a first non-empty selection TypeFocus that would have been applied to any type, and the

remaining TypeFocus composition directly following it, respectively. For example,

• head([φfun-res,φfun-param])= [φfun-res], head([φfun-res])= [φfun-res], and head([ ])= [ ]

• tail([φfun-res,φfun-param])= [φfun-param], and tail([φfun-res])= [ ].

The head and tail deconstruction of any TypeFocus satisfies the decomposition condition

that is specified in Definition 8. The condition ensures that an application of TypeFocus to any

type is equivalent to an application of the head of the TypeFocus followed by an application

of the tail of the TypeFocus.

Definition 8 Decomposition of TypeFocus.

∀Θ,T. Θ(T ) == (head(Θ) ::: tail(Θ))(T )

The ability to decompose the TypeFocus will prove crucial for navigating type derivation trees

when combined with the well-formedness property. In Lemma 3.5 we present Canonical

Forms of TypeFocus instances that can be inferred from the type selections that are well-

formed with respect to some types. As we will explain later in the section, the lemma will

prove to be crucial for defining rules that navigate type derivation trees based solely on the

shapes of types and the preservation of the well-formedness property.

Lemma 3.5 Canonical Forms.

For any TypeFocus Θ and type T , such that (Θ, a �WF T ) and fv(T )⊆ a:

1. If T is a type⊥, then head(Θ) is [ ].

2. If T is a type�, then head(Θ) is [ ].

3. If T is a type ∀a.T1 → T2, then head(Θ) is either [ ], [φfun-param], or [φfun-res].

4. If T is a type {x1 : T1, ... , xn : Tn}, then head(Θ) is either [ ] or [φselxi
] where 1≤ i ≤ n.

5. If T is a type variable, then head(Θ) is undefined.

61



Chapter 3. Guided-analysis for type derivation trees

Proof.

Straightforward. From the well-formedness property in Definition 6 and the

type selection specification in Definition 4.

Lemma 3.6 Canonical Forms for strict well-formed type selections.

For any TypeFocus Θ and type T , such that Θ,��WF T :

1. If T is a type⊥, then head(Θ) is [ ].

2. If T is a type�, then head(Θ) is [ ].

3. If T is a type ∀a.T1 → T2, then head(Θ) is either [ ], [φfun-param], or [φfun-res].

4. If T is a type {x1 : T1, ... , xn : Tn}, then head(Θ) is either [ ] or [φselxi
] where 1≤ i ≤ n.

5. If T is a type variable, then head(Θ) is [ ].

Proof.

Straightforward. A trivial extension of proof for Lemma 3.5 with TypeFocus

instances that do not allow for partial type selections.

prefix The prefix function determines if one TypeFocus is a prefix of the latter. The prefix

function is realized by the prefix property provided in Definition 9.

Definition 9 The TypeFocus prefix property.

For any TypeFocus values, say Θ and Θ’, if Θ is a prefix of Θ’, then the prefix property,

denoted as prefixP
(Θ,Θ’), is satisfied.

The prefix property is defined recursively as:

prefixP
(Θ,Θ’) ⇔ (Θ = [ ]) or (head(Θ) == head(Θ’) and prefixP

(tail(Θ),tail(Θ’)))

For example,

• prefix([φfun-res], [φfun-res,φfun-param]) = true, and

prefix([ ], [φfun-res,φfun-param]) = true.

62



3.5. TypeFocus-based analysis of type derivation trees

• prefix([φfun-res], [φfun-param]) = false, and

prefix([φfun-param,φfun-res], [φfun-param]) = false.

The prefix function only verifies if one TypeFocus value is a prefix of the other. From the

definition of the prefix property it can be easily deducted that any TypeFocus instance has a

finite number of prefixes. In practice, we want to order the prefixes in terms of the length of

the path; typically we are interested in the largest prefix of some TypeFocus, as characterized

by Definition 10.

Definition 10 The largest well-formed prefix of TypeFocus

Given any type T , a set of free variables a, such that fv(T ) ⊆ a, and any TypeFocus Θ,

then Θ’ represents the largest prefix of Θ well-formed with respect to type T iff

• Θ’ is a prefix of Θ, i.e., (prefix(Θ’,Θ) = true), and

• Θ’ is well-formed with respect to type T , i.e., (Θ’, a �WF T ), and

• Θ’ is the largest possible prefix of Θ:

∀Θ”. (prefix(Θ”,Θ) = true) ∧ (Θ”, a �WF T ) =⇒ (prefix(Θ”,Θ’) =
true) ∨ (Θ” == Θ’)

normalize The normalize function allows us to relax the precision of TypeFocus, necessary

for dealing with types that are synthesized as part of the ↗ adaptation, or with approxima-

tions of type constraints3 (Section 3.7.2). In other words the role of the normalize function is

to transform TypeFocus instances that are not well-formed with respect to some type into the

well-formed ones.

For example,

• normalize([φfun-res,φfun-res], Int →⊥,ε) = [φfun-res],

because ([φfun-res,φfun-res](Int →⊥)= inr
〈⊥, [φfun-res]

〉
.

• normalize([φfun-res], Int →⊥,ε) = [φfun-res],

because [φfun-res](Int →⊥) = inl⊥.

• normalize([φfun-res,φfun-res],∀a. Int → a, { a }) = [φfun-res,φfun-res],

because [φfun-res,φfun-res](∀a. Int → a)= inr
〈

a, [φfun-res]
〉

.

3The approximation of types refers to calculating least upper bound or greatest lower bound of multiple type
constraints.

63



Chapter 3. Guided-analysis for type derivation trees

The normalize function takes a TypeFocus, Θ, a type, T , and a set of undetermined type vari-

ables a, and returns a TypeFocus. The returned value is well-formed with respect to T , and

at the same time is a prefix of the input TypeFocus. The function is total since we can always

find the TypeFocus satisfying those conditions (Lemma 3.7) but the normalize always returns

the largest well-formed prefix of the input TypeFocus.

Lemma 3.7 Existence of the normalized TypeFocus.

Given any type T , and a set of free type variables a, such that fv(T ) ⊆ a, and any Type-

Focus Θ, we can always find Θ′ such that prefix(Θ’,Θ)= true and Θ′, a �WF T .

Proof.

If (Θ,fv(T )�WF T ) then (Θ’ == Θ) since prefix(Θ”,Θ”)= true for any Θ”.

Otherwise,∀Θ. prefix([ ],Θ)= true ∧ ([ ],fv(T )�WF T ), i.e., the identity type

selection is a prefix of any TypeFocus.

With such description in mind we can characterize the result of the application of normalize

function to any TypeFocus Θ, any type T , and a set of undetermined type variables a as:

• If (Θ, a �WF T ) then the result is Θ itself.

• Else the result is the largest prefix of Θ that is well-formed with respect to type T , ac-

cording to Definition 10.

3.5.1 Algorithm for analyzing type inference decisions - a fragment

The complete algorithm, represented by the SLICES function, analyzes the decisions of type

derivation trees by considering the last type inference rule used in the judgment given as

an input. The algorithm is realized by the rule-specialized partial functions, denoted as

SLICESrule, where the rule subscript refers to a particular type inference rule of the Colored

Local Type Inference formalization. In Figure 3.11 we provide a fragment of the complete

algorithm that analyzes decisions of the three representative rules of the Colored Local Type

Inference algorithm.

For clarity, each case of the SLICES function provides parameters of the analyzed type infer-

ence rule, i.e., the prototype, the environment, the term, and the inferred type. We use a �w∗
notation that is equivalent to the analyzed inference judgment, to avoid unnecessary dupli-

cation of the inference rule elements.

For example, in the SLICES(abs) function �w∗ stands for the inference judgment of shape

64



3.5. TypeFocus-based analysis of type derivation trees

(∀a.T → P, Γ �w fun(x)E : ∀a.T → S), and for the SLICES(var) function �w∗ stands for the

inference judgment of shape (P, Γ�w x : Γ(x)↗ P ).

The arguments of the slices function, the inference judgment (P, Γ �w E : T ) and the Type-

Focus Θ, must satisfy only one requirement - the provided TypeFocus value has to be well-

formed with respect to the inferred type, i.e., (Θ,fv(T )�WF T ). The condition is necessary to

perform a guided navigation of the type derivation tree.

Analyzing the inferred type of the abstraction

We first describe the SLICES(abs) algorithm for analyzing typing judgments where the last used

type inference rule is (abs). The definition of the algorithm is provided in Figure 3.11.

Given the definition of the type inference rule (in Figure 2.4), the function has to determine if

the target type has been inherited from the prototype or whether it has been synthesized in

its only premise (no other typing decision could affect any of the possible target types at this

point).

The first step of the algorithm determines if the target type has been fully inherited from the

expected type of the context. Using the well-formedness pre-condition and Lemma 3.4, we

can apply the provided TypeFocus to the prototype to identify the part corresponding to the

target type (line 1), PΘ .

If PΘ �= ?, then the target type information has already been enforced by the context of the

inference judgment. In consequence, further analysis of the premises of the (abs) rule is

fruitless. To represent such type inference decision, the SLICES(abs) function returns immedi-

ately with the Prototype Typing Slice,
〈
νPT, �w∗ , Θ

〉
, in line 3.

If PΘ = ?, then the target type has been synthesized as part of the typing decisions of the

inference judgment. We use the head of the input TypeFocus to decide on the direction of the

analysis. By the (Θ, a �WF ∀a.T → S) precondition and the Canonical Forms lemma (Lemma

3.5), the only allowed values for head(Θ) are: [ ], [φfun-param], and [φfun-res].

Both, [ ](∀a.T → P ) = inl ∀a.T → P and [φfun-param](∀a.T → P ) = inl T , extract a non-

wildcard prototype when applied to the prototype, and by contradiction, are impossible.

If head(Θ) = [φfun-res] and PΘ = ?, then the prototype carries no partial type information on

the target type and the latter is synthesized in the premise of the rule. Therefore SLICES(abs)

analyzes the only premise of the type inference rule, (P, Γ, a, x : T �w E : S), in a recursive call

to the SLICES algorithm (line 2), if and only if head(Θ)= [φfun-res].

The TypeFocus provided as the argument in the recursive invocation of the SLICES function

differs from the initial one. Knowing that the head of Θ selects the result type of the function

type, we must exclude this type selection when analyzing the premise of the rule. By defi-

nition of tail and the decomposition property (Definition 8), (tail(Θ),fv(S) �WF S), which

65



Chapter 3. Guided-analysis for type derivation trees

satisfies the SLICES function precondition in its recursive invocation and correctly represents

the target type information when analyzing the premise of the inference judgment.

FUNCTION SLICES(abs)
(

(∀a.T → P, Γ�w fun(x)E :∀a.T → S), Θ
)=

1

2

3

Θ(∀a.T → P )tpe = PΘ

IF (is-hole(PΘ)) sl i ces((P, Γ, a, x : T �w E : S), tail(Θ))
ELSE

{ 〈
νPT, �w∗ , Θ

〉 }
FUNCTION SLICES(var) ( (P, Γ�w x : Γ(x)↗ P ), Θ )=

1

2

3

4

5

6

7

Θ(P )tpe = PΘ

IF (is-hole(PΘ))
IF (shape-match(Γ(x), P, Θ))

{ 〈
νTSIG, �w∗ , Θ

〉 }
ELSE

normalize(Θ, Γ(x), fv(Γ(x)))=Θ′′{ 〈
νADAPT, �w∗ , Θ

〉
,
〈
νTSIG,�w∗ ,Θ′′

〉 }
ELSE

{ 〈
νPT, �w∗ , Θ

〉 }
FUNCTION SLICES(app)

(
(P,Γ�w F (E) : σC1∪C2,T T ↗ P ), Θ

)=
1

2

3

4

5

6

7

8

9

10

11

12

13

Θ(P )tpe = PΘ

IF (is-hole(PΘ))
IF (shape-match(σC1∪C2,T T, P, Θ))
Θ(T )tpe = TΘ

IF (is-tvar(TΘ, a))
{ 〈

νTVAR, �w∗ , Θ
〉 }

ELSE sl i ces( (?,Γ,�w F :∀a.S → T ), φfun-res ::Θ)
ELSE

normalize(Θ, σC1∪C2,T T, �)=Θ′′

Θ′′(T )tpe = TΘ{ 〈
νADAPT, �w∗ , Θ

〉 } ∪(
IF (is-tvar(TΘ, a))

{ 〈
νTVAR, �w∗ , Θ′′

〉 }
ELSE sl i ces( (?, Γ�w F :∀a.S → T ), φfun-res ::Θ

′′) )

)
ELSE

{ 〈
νPT, �w∗ , Θ

〉 }
Figure 3.11: A representative fragment of the SLICES algorithm that analyzes type infer-
ence rules of Colored Local Type Inference. A complete algorithm is provided in Section
3.5.3.

Analyzing the inferred type of the variable

The SLICES(var) function in Figure 3.11 analyzes typing decisions of the type derivation tree,

if the last type inference rule used in it, was (var) (defined in Figure 2.4).

The analysis of the inference judgment proceeds by checking if the target type has been fully

66



3.5. TypeFocus-based analysis of type derivation trees

inherited, identically as in the previous case. The algorithm will return a Prototype Typing

Slice if the extracted prototype, PΘ, is not a wildcard constant type. Otherwise we have to

search for a different source of the target type.

This time we have to take into account also the consequences of the ↗ adaptation between

the synthesized type of the variable and the inherited prototype. We use the shape-match

function for that purpose. The function returns false if and only if the synthesized type,

Γ(x), does not match structurally the prototype, P , within the type selection of TypeFocus,

meaning that the↗ operation synthesized the target type.

If shape-match(Γ(x), P, Θ) = false, the algorithm returns the Adaptation Typing Slice to re-

flect the discovery of the source of the target type. The Adaptation Typing Slice (line 6) implies

that the source of the target type is both inherited from the context, P , and synthesized from

the term, x. Since the type (var) type inference does not involve any further type inference

in its premises, the source of the synthesized type can be immediately represented with the

Type Signature Typing Slice (line 6).

We note that the result of the shape-match application also implies that the well-formedness

of the provided TypeFocus value with respect to the synthesized term is not guaranteed, i.e.,

(Θ,� �WF P ) by Lemma 3.4 but (Θ,fv(Γ(x)) �WF Γ(x)) is not necessarily satisfied. In order to

return a well-formed type selection in the Type Signature Typing Slice, the former is always

normalized with respect to the Γ(x) type (line 5).

If shape-match(Γ(x), P, Θ) = true, then the analysis of the type inference rule is much sim-

pler - the target type is fully synthesized from the type of the variable and (Θ,fv(Γ(x)) �WF

Γ(x)). The algorithm returns immediately with the Type Signature Typing Slice since the tar-

get type is introduced in the type derivation tree directly from the environment Γ.

Analyzing the inferred type of the function application

The SLICES(app) function in Figure 3.11 analyzes typing decisions of the inference judgment

where the last used type inference rule is (app).

From the definition of the type inference rule we identify four typing decisions that may be

the source of the part of the inferred type:

1. The inherited prototype information, P .

2. The type synthesized from the↗ adaptation in (σC1∪C2,T T )↗ P .

3. The instantiation of a single type variable in the polymorphic function type resulting

from the σC1∪C2,T type substitution.

4. The inference of the type of the function in the (?, Γ�w F :∀a.S → T ) premise.

67



Chapter 3. Guided-analysis for type derivation trees

Similarly as in the previous cases, the SLICES(app) function first checks if the target type has

been fully inherited from the context and returns immediately with the Prototype Typing

Slice if PΘ �= ? in line 13.

If PΘ = ?, the target type was not inherited from the context and we have to consider the other

possible options.

Similarly as in the case of the (var) rule, the shape-match function is used to understand the

consequences of the↗ adaptation. We notice, however, that further analysis, which analyzes

how the target type has been synthesized from the term, follows exactly the same steps, irre-

spective of whether the adaptation affected the target type or not, modulo the value of the

used type selection. For clarity, we can summarize the relation between the ↗ adaptation

and the used type selection (here denoted as Θapp) as follows:

• If shape-match(σC1∪C2,T T, P, Θ)= true then (Θ,��WF σC1∪C2,T T ) and Θapp =Θ,

from the precondition of the SLICES function.

• If shape-match(σC1∪C2,T T, P, Θ) = false and normalize(Θ, σC1∪C2,T T, �) = Θ′′ then

(Θ′,��WF σC1∪C2,T T ) and Θapp =Θ′′,
from the precondition of the SLICES function and the definition of the normalize func-

tion.

In both cases, the resulting TypeFocus, Θapp, is well-formed with respect to the synthesized

type of the function application. This in turn allows us to decide between the two remaining

typing decisions that could have synthesized the target type: the instantiation of a single type

variable or the inferred type of the function.

In order to decide between the two, equally valid, possibilities, we apply the TypeFocus to the

result type of the polymorphic function type which can potentially involve some uninstan-

tiated type variables. The intuition, formally stated in the substitution lemma (Lemma 3.8),

uses the fact that the synthesized type of the function application is exactly the same as the

result type of inferred type of the function (modulo type substitution). The immediate conse-

quence of the substitution lemma is that a TypeFocus that is well-formed with respect to the

type with instantiated type variables is also well-formed with respect to the same type but

with type variables not being instantiated.

Lemma 3.8 Well-formedness of TypeFocus over type substitution.

For any TypeFocus Θ, and a type T , such that (Θ,��WF T ), if T results from a type sub-

stitution, σ, on some type S, such that T =σS and dom(σ)= a, then (Θ, a �WF S).

Proof.

Proof by induction on the structure of T . A complete proof is available in

Appendix D.3

68



3.5. TypeFocus-based analysis of type derivation trees

We now turn our attention to the consequences of the application of the Θapp TypeFocus to

the inferred result type of the ∀a.S → T function type.

If Θapp(T )= inl T ′ or Θapp(T )= inr
〈

T ′,Θ′′
〉

, for all Θ′′, such that T ′ ∈ a, then by definition of

the (app) inference rule

1. The type variable extracted from the inferred polymorphic function type, ∀a.S → T , is

indirectly the source of the target type.

2. The type variable is only instantiated with the inferred type substitution, σC1∪C2,T , in

the analyzed function application judgment.

3. The target type is first introduced as a result of the inferred type substitution and the

type substitution itself is the source of the target type.

Our algorithm does not attempt to immediately analyze the source of the extracted type vari-

able instantiation due to our policy of reporting intermediate Typing Slices. Instead the al-

gorithm returns a Type Variable Typing Slice that identifies the inference judgment for the

function application, and its inferred type substitution, as the source of the target type. The

result can be further analyzed using the type variable-specific analysis methods (Section 3.7).

If Θapp(T )= inl T ′ such that T ′ �∈ a, then the source of the target type is in the type derivation

tree that inferred the type of the function. The algorithm analyzes the subtree using the re-

cursive call to the SLICES function with the updated TypeFocus, φfun-res ::Θ
app, representing

a well-formed type selection from the inferred type of the premise.

3.5.2 Algorithm for analyzing type inference decisions - a template

The detailed analysis of the algorithm for the representative rules of Colored Local Type Infer-

ence reveals an import insight; most of the decisions of the algorithm can be generalized to

form the template for analyzing type inference rules. The generalization illustrates also the

key elements that need to be taken into account when defining the analysis functions for new

type inference rules. Figure 3.12 presents a slices-template function which can be applied

to each of the type inference rules to create a type inference rule-specific SLICES function.

The first step of the template (lines 1 and 3) determines if the target type has been fully in-

herited from the context. An application of the TypeFocus to the prototype selects the part

corresponding to the target type (by Lemma 3.4). That is why if the extracted part of the pro-

totype is a wildcard constant type then we can be sure that the inference judgment did not

inherit the target type from the context. If the extracted part of the prototype, PΘ is not a wild-

card constant type then we always return immediately with a Prototype Typing Slice (line 14)

that reflects the source of the target type.

69



Chapter 3. Guided-analysis for type derivation trees

FUNCTION slices-template ( (P, Γ�w E : T ), Θ )=
1 Θ(P )tpe = TΘ

2 TE ↗ P = T
3 IF (is-hole(TΘ))
4 IF (shape-match(TE , P, Θ))
5 IF (head(Θ) �= [ ])
6 slices-template(..., Θtarget-type)
7 ELSE

{ 〈νTSIG, (P, Γ�w E : T ), Θ〉 }
8 ELSE

9 normalize(Θ,TE ,fv(TE ))=Θ′′

10
{ 〈νADAPT, (P, Γ�w E : T ), Θ〉 } ∪

11 ( IF (head(Θ′′) �= [ ])
12 slices-template(..., Θtarget-type)
13 ELSE

{ 〈
νTSIG, (P, Γ�w E : T ), Θ′′

〉 }
)

14 ELSE
{ 〈νPT, (P, Γ�w E : T ), Θ〉 }

Figure 3.12: A generalization of the SLICES algorithm in the form of a slices-template

function of type ((P, Γ �w E : T ),Θ) → ν3. The grayed-out analysis is provided only for
illustration purposes, since it represents rule-specific analysis dependent upon the types
inferred in the premises and the provided TypeFocus instance.

If the type inference rule involves the T ↗ P adaptation we have to check if the type that

resulted from the operation is the source of the target type. The adaptation operation only

synthesizes types if the type does not match structurally the prototype. To determine that we

use the previously defined shape-match function.

If the application of shape-match returns false (line 4), it implies that the type of the term

has been synthesized during the ↗ adaptation (line 2), and we return an Adaptation Typing

Slice to indicate the source of the target type (line 10). As discussed in the case of the SLICESapp

and SLICESvar functions, the steps for analyzing the synthesis of the target type from the term

(lines 5− 7 and 11− 13) are exactly the same, irrespective of the adaptation, modulo the value

of the used TypeFocus.

The template indicates that analyzing the role of the propagated prototype is independent

from the premises of the inference rules and has to be checked for first. However, as visible

in parts between lines 5− 7 and 11− 13, the analysis of how the target type was synthesized

from the term is rule-dependent. The template only hints that such analysis is dependent

upon the type selection of the head of the provided TypeFocus, as we have illustrated on the

concrete examples in the previous section. If the source of the target type is determined to

come from one of the premises of the type inference rule, then a recursive call to the algo-

rithm is triggered (lines 6 and 12) with a TypeFocus (Θtarget-type) that reflects the target type

information in the inferred type of the premise.

70



3.5. TypeFocus-based analysis of type derivation trees

The construction of the Θtarget-type TypeFocus is again rule-dependent but it typically in-

volves either appending the type selector to the provided TypeFocus value or a TypeFocus

decomposition. The TypeFocus reflects how the type information is propagated from the con-

clusions to the premises of the type inference rules, irrespective of the concrete types found

in the type derivation trees.

3.5.3 A complete algorithm

In this section we present a complete algorithm which provides analysis steps for every in-

ference rule of the Colored Local Type Inference formalization from [Odersky et al., 2001, pg.

11]. For presentation reasons the algorithm had to be separated into 4 parts:

• Figure 3.13 describes the analysis of the inference rules (var), (abst p,?), (abst p,�) and

(abst p).

• Figure 3.14 describes the analysis of the inference rules (abs), (appt p) and (app⊥).

• Figure 3.15 describes the analysis of the inference rules (app), (app⊥) and (sel).

• Figure 3.16 describes the analysis of the inference rules (rec?), (rec�) and (rec).

The algorithm applies the analysis template presented in Section 3.5.3 to each of the infer-

ence rules. Crucially, each of the rules provides the rule-specific logic on how the target type

could be synthesized from the underlying term and uses the result of the Canonical Forms

lemma to guide the analysis using the provided TypeFocus value.

Some of the rules (visually) differ from the provided generalization, even when identifying

Adaptation Typing Slices and Prototype Typing Slices that we classified as being rule- inde-

pendent. This is because, when possible, we have simplified the formalization of the algo-

rithm without comprising its integrity, to provide a more succinct definition.

For example, only a small number of rules involves the↗ adaptation, therefore we ignore the

check when the operation is not present in the rule. Rules (abst p,?), (abst p,�), (abs), (sel),

(rec), (rec�) and (rec) are prime examples of such simplification.

Furthermore, corner case rules of the inference, such as (abst p,�) and (rec�), return im-

mediately with the appropriate Typing Slices since their prototype, �, will never involve the

wildcard constant types.

71



Chapter 3. Guided-analysis for type derivation trees

FUNCTION SLICES(var) ( (P, Γ�w x : Γ(x)↗ P ), Θ )=
(var) P, Γ�w x : Γ(x)↗ P

1

2

3

4

5

6

7

Θ(P )tpe = PΘ

IF (is-hole(PΘ))
IF (shape-match(Γ(x), P, Θ))

{ 〈
νTSIG, �w∗ , Θ

〉 }
ELSE

normalize(Θ, Γ(x), fv(Γ(x)))=Θ”{ 〈
νADAPT, �w∗ , Θ

〉
,
〈
νTSIG,�w∗ ,Θ′′

〉 }
ELSE

{ 〈
νPT, �w∗ , Θ

〉 }
FUNCTION SLICES(abst p,?)

(
(?, Γ�w fun[a](x : T )E :∀a.T → S),Θ

)=
(abst p,?)

?, Γ, a, x : T �w E : S

?, Γ�w fun[a](x : T )E :∀a.T → S

1

2

IF (head(Θ) �= [φfun-res])
{ 〈

νTSIG, �w∗ , Θ
〉 }

ELSE SLICES( (?, Γ, a, x : T �w E : S),tail(Θ))

FUNCTION SLICES(abst p,�)
(

(�, Γ�w fun[a](x : T )E :�),Θ
)=

(abst p,�)
�, Γ, a, x : T �w E : S

�, Γ�w fun[a](x : T )E :�
1

{ 〈
νPT, �w∗ , [ ]

〉 }
FUNCTION SLICES(abst p)

(
(∀a.P → P ′, Γ�w fun[a](x : T )E :∀a.T → S ↗∀a.P → P ′),Θ

)=
(abst p )

P, Γ, a, x : T �w E : S

∀a.P → P ′, Γ�w fun[a](x : T )E :∀a.T → S ↗∀a.P → P ′

1

2

3

4

5

6

7

8

9

10

11

Θ(∀a.P → P ′)tpe = PΘ

IF (is-hole(PΘ))
IF (shape-match(∀a.T → S,∀a.P → P ′,Θ))

IF (head(Θ) �= [φfun-res])
{ 〈

νTSIG, �w∗ , Θ
〉 }

ELSE SLICES( (P ′, Γ, a, x : T �w E : S), tail(Θ))
ELSE

normalize(Θ, ∀a.T → S, a)=Θ′′{ 〈
νADAPT, �w∗ , Θ

〉 } ∪(
IF (head(Θ′′) �= [φfun-res])

{ 〈
νTSIG, �w∗ , Θ′′

〉 }
ELSE SLICES( (P ′, Γ, a, x : T �w E : S),tail(Θ′′))

)
ELSE

{ 〈
νPT,�w∗ ,Θ

〉 }
Figure 3.13: (Part 1) Algorithm for locating typing decisions that infer types. The algo-
rithm is realized through the SLICES function of type ( (P, Γ�w E : T ), Θ )→ ν3.

72



3.5. TypeFocus-based analysis of type derivation trees

FUNCTION SLICES(abs)
(

(∀a.T → P, Γ�w fun(x)E :∀a.T → S), Θ
)=

(abs)
P,Γ, a, x : T �w E : S

∀a.T → P,Γ�w fun(x)E :∀a.T → S
1

2

3

Θ(∀a.T → P )tpe = PΘ

IF (is-hole(PΘ)) sl i ces((P, Γ, a, x : T �w E : S), tail(Θ))
ELSE

{ 〈
νPT, �w∗ , Θ

〉 }

FUNCTION SLICES(appt p)

(
(P, Γ�w F

[
R
]

(E) : [R/a]T ↗ P ),Θ
)
=

(appt p )
?, Γ,�w F :∀a.S → T [R/a]S, Γ�w E : [R/a]S

P,Γ�w F
[

R
]

(E) : [R/a]T ↗ P

1

2

3

4

5

6

7

8

9

10

11

12

13

Θ(P )tpe = PΘ

IF (is-hole(PΘ))
IF (shape-match([R/a]T, P, Θ))
Θ(T )tpe = TΘ

IF (is-tvar(TΘ, a))
{ 〈

νTVAR, �w∗ , Θ
〉 }

ELSE SLICES( (?, Γ�w F :∀a.S → T ), φfun-res ::Θ)
ELSE

normalize(Θ, ( R/a )T, a)=Θ′′

Θ′′(T )tpe = T ′
Θ{ 〈

νADAPT, �w∗ , Θ
〉 } ∪(

IF (is-tvar(T ′
Θ, a))

{ 〈
νTVAR, �w∗ , Θ′′

〉 }
ELSE SLICES( (?, Γ�w F :∀a.S → T ), φfun-res ::Θ

′′) )

)
ELSE

{ 〈
νPT, �w∗ , Θ

〉 }

FUNCTION SLICES(appt p,⊥)

(
(P, Γ�w F

[
R
]

(E) :⊥↗ P ),Θ
)
=

(appt p,⊥)
?, Γ,�w F :⊥ �,Γ�w E : S

P, Γ�w F
[

R
]

(E) :⊥↗ P

1

2

3

4

5

Θ(P )tpe = PΘ

IF (is-hole(PΘ))
IF (P �= ?))

{ 〈
νADAPT, �w∗ , Θ

〉 } ∪ SLICES((?, Γ�w F :⊥), [ ])
ELSE SLICES((?, Γ�w F :⊥), Θ)

ELSE
{ 〈

νPT, �w∗ , Θ
〉 }

Figure 3.14: (Part 2) Algorithm for locating typing decisions that infer types. The algo-
rithm is realized through the SLICES function of type ( (P, Γ�w E : T ), Θ )→ ν3.

73



Chapter 3. Guided-analysis for type derivation trees

FUNCTION SLICES(app)
(

(P, Γ�w F (E) : σC1∪C2,T T ↗ P ), Θ
)=

(app)

?, Γ,�w F :∀a.S → T [?/a]S,Γ�w E : S′
�a S′ <: S ⇒C1

�a T <:�↘ P ⇒C2

P, Γ�w F (E) : σC1∪C2,T T ↗ P

1

2

3

4

5

6

7

8

9

10

11

12

13

Θ(P )tpe = PΘ

IF (is-hole(PΘ))
IF (shape-match(σC1∪C2,T T, P, Θ))
Θ(T )tpe = TΘ

IF (is-tvar(TΘ, a))
{ 〈

νTVAR, �w∗ , Θ
〉 }

ELSE sl i ces( (?,Γ,�w F :∀a.S → T ), φfun-res ::Θ)
ELSE

normalize(Θ, σC1∪C2,T T, �)=Θ′′

Θ′′(T )tpe = TΘ{ 〈
νADAPT, �w∗ , Θ

〉 } ∪(
IF (is-tvar(TΘ, a))

{ 〈
νTVAR, �w∗ , Θ′′

〉 }
ELSE sl i ces( (?, Γ�w F :∀a.S → T ), φfun-res ::Θ

′′) )

)
ELSE

{ 〈
νPT, �w∗ , Θ

〉 }
FUNCTION SLICES(app⊥) ( (P, Γ�w F (E) :⊥↗ P ),Θ )=
(app⊥)

?, Γ,�w F :⊥ �,Γ�w E : S

P, Γ�w F (E) :⊥↗ P

1

2

3

4

5

Θ(P )tpe = PΘ

IF (is-hole(PΘ))
IF (P �= ?))

{ 〈
νADAPT, �w∗ , Θ

〉 } ∪ SLICES((?, Γ�w F :⊥), [ ])
ELSE SLICES((?, Γ�w F :⊥), Θ)

ELSE
{ 〈

νPT, �w∗ , Θ
〉 }

FUNCTION SLICES(sel) ( (P, Γ�w F.x : T ),Θ )=
(sel)

{x : P }, Γ,�w F : {x : T }

P, Γ�w F.x : T

1

2

3

Θ(P )tpe = PΘ

IF (is-hole(PΘ)) SLICES( ({x : P }, Γ�w F : {x : T }), φselx ::Θ )
ELSE

{ 〈
νPT, �w∗ , Θ

〉 }
Figure 3.15: (Part 3) Algorithm for locating typing decisions that infer types. The algo-
rithm is realized through the SLICES function of type ( (P, Γ�w E : T ), Θ )→ ν3.

74



3.5. TypeFocus-based analysis of type derivation trees

FUNCTION SLICES(rec?) ( (?, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xn : Tn}), Θ )=

(rec?)
?, Γ�w F1 : T1 ... ?, Γ�w Fn : Tn

?, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xn : Tn}

1 IF (head(Θ) �= [φselxk
])

{ 〈
νTSIG, �w∗ , Θ

〉 }
2 ELSE SLICES((?, Γ�w Fk : Tk ), tail(Θ)) 1≤ k ≤ n

FUNCTION SLICES(rec�) ( (�, Γ�w {x1 = F1, ..., xn = Fn} :�), Θ )=

(rec�)
�, Γ�w F1 : T1 ... �,Γ�w Fn : Tn

�, Γ�w {x1 = F1, ..., xn = Fn} :�
1
{ 〈

νPT,�w∗ , [ ]
〉 }

FUNCTION SLICES(rec)

( ({x1 : P1, ..., xm : Pm}, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xm : Tm}), Θ )=

(rec)
(P1, Γ�w F1 : T1) ... (Pm , Γ�w Fm : Tm) (�, Γ�w Fm+1 : Tm+1) ... (�, Γ�w Fn : Tn)

{x1 : P1, ..., xm : Pm}, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xm : Tm}

1 Θ({x1 : P1, ..., xm : Pm})tpe = PΘ

2 IF (is-hole(PΘ))
3 head(Θ) = [φselxk

]
4 SLICES((Pk , Γ�w Fk : Tk ), tail(Θ)) 1≤ k ≤m
5 ELSE

{ 〈
νPT, �w∗ , Θ

〉 }
Figure 3.16: (Part 4) Algorithm for locating typing decisions that infer types. The algo-
rithm is realized through the SLICES function of type ( (P, Γ�w E : T ), Θ )→ ν3.

75



Chapter 3. Guided-analysis for type derivation trees

3.6 On understanding the propagation of the expected type

The algorithm for analyzing type derivation trees deliberately returns intermediate Typing

Slices. Among different kinds of Typing Slices, Prototype and Adaptation are the only ones

which specifically recognize the expected type (the prototype) as the source of some target

type. The expected type information does not translate to program locations, or makes sense

without a lengthy description of the context of the program in general. It is therefore neces-

sary to formulate a technique that can automatically locate the node in the type derivation

tree, where the expected type from the Typing Slices is first introduced.

In this section, we show that the problem of finding the source of the inherited type is no

harder than finding the Propagation Root for the given prototype, the problem that we infor-

mally introduced in Section 3.1.2.

Prototype propagation

PS, S w ES : TS

Pn, n w En : Tn

Pn-1, n-1 w En-1 : Tn-1

Pf, f w Ef: Tf

Pr, r w Er : Tr

Propagation root
for PS

Pa, a w
Ea : Ta

...

Pu , u w Eu : Tu

...

...

...

Figure 3.17: Elements of prototype propagation for some prototype P s . The P s prototype
is implicitly propagated in prototypes P n , P n−1, ..., P f . The (P r , Γr �w E r : T r ) typing
judgment represents the Propagation Root for prototypes P s , P n , P n−1, ..., P f because
it introduces in its premise a fresh prototype P f that is not part of the P r prototype. Be-
ing not propagated, the fresh prototype P f results from the inferred type of one of the
premises of the Propagation Root, such as T a . The dotted premises indicate potentially
non-empty premises of the inference rules.

A summary of the possible nodes of the type derivation tree that participate in the propaga-

tion of type elements of the inherited prototype P s is presented in Figure 3.17. The figure

serves as a reference point, when discussing typing judgments, their prototypes, and how

they were propagated. In the figure prototype P n includes the P s prototype, prototype P n−1

includes the P n prototype but prototype P r does not include prototype P f . Therefore the

(P r , Γr �w E r : Rr ) judgment symbolically represents the Propagation Root of the P s , P n ,

P n−1, ..., P f prototypes and the fresh prototype P f derives from the inferred type (T a) of one

of the other premises of the Propagation Root.

76



3.6. On understanding the propagation of the expected type

The Prototype (and Adaptation) Typing Slices consist of the (P s , Γs �w E s : T s) inference judg-

ment and the Θs TypeFocus, where the s superscript stands for the Typing Slice information.

From the definition of those Typing Slices, we can infer that:

• (Θs,fv(T s) �WF T s) and Θs(T s) = inl T t ar g et for some T t ar g et , i.e., the information

about the target type, can be extracted from the part of the inferred type T s .

• (�,fv(P s) �WF P s), Θs(P s) = inl P t ar g et for some P t ar g et , and P t ar g et �= ?, i.e., the

target type has been fully inferred from the extracted part of the prototype, P t ar g et .

By referring to the elements of the type derivation tree in Figure 3.17, we give an overview of

a two-part generic algorithm that relates the prototype P t ar g et with its distant source, type

T a :

1. We define the algorithm that traces backwards through the nodes of the type derivation

tree (Section 3.6.1). The algorithm walks from the (P s , Γs �w E s : T s) judgment to the

Propagation Root (P r , Γr �w E r : T r ) judgment.

2. We identify the (P f , Γ f �w E f : T f ) inference judgment which is a direct premise of

the Propagation Root. The prototypes that participate in the propagation of its ele-

ments, i.e., from P f to P s , define a so called Prototype Propagation Path represented

in Figure 3.17 through a dotted selection.

3. We reduce the Prototype Propagation Path to a type selection, symbolically defined as

Θprototype, such that (Θprototype,� �WF P f ) and Θprototype(P f ) = inl P s . The reduction

is only based on the kind of type inference rules that were used in the judgments.

4. We define the algorithm that locates the origin of P f in the premises of the Propagation

Root (Section 3.6.2).

5. We compose the type selections of Θs and Θprototype to define a complete algorithm

that locates the source of the target prototype in the Propagation Root (Section 3.6.3).

We elaborate on each of the steps in the discussion that follows.

3.6.1 Inference of a Propagation Root

The search for the Propagation Root of some prototype is formulated in the propagation judg-

ment

Θi �p (P i , Γi �w E i : T i )� 〈(P o , Γo �w E o : T o),Θo〉 (propagation judgment)

77



Chapter 3. Guided-analysis for type derivation trees

The i and o superscripts are used to distinguish between the input and output inference judg-

ments and TypeFocus instances.

The �p propagation judgment takes a TypeFocus instance (Θi) and an inference judgment

((P i , Γi �w E i : T i )), such that (Θi,��WF P i ) and (Θi(P i )tpe �= ?). The propagation judgment

infers a tuple consisting of the inference judgment (P o , Γo �w E o : T o) and a TypeFocus Θo.

The returned inference judgment represents the Propagation Root of P i and the returned

TypeFocus (Θo) reduces the Prototype Propagation Path of P i to a type selection, such that

Θo(P f )tpe == Θi(P i )tpe.

The �p propagation judgment is defined using the set of recursive declarative rules in Fig-

ure 3.18. The algorithm recursively traces backwards through the type derivation tree until

it reaches a Propagation Root for the corresponding prototype. That is why the rules that

realize the propagation judgment divide into two groups - those that backtrack through the

type derivation tree, and those that stop it and return the collected information. For space

reasons, the definition uses the�w
premise and�w

parent notation for representing the input infer-

ence judgment, (P i , Γi �w E i : T i ), and its parent, respectively.

The first 5 rules - Propabs , Propabst p
, Propabst p,� , Propr ec� , and Propr ec1

- identify type infer-

ence rules which only propagate prototype information from the conclusion of the rule to

one of its premises. The two important elements shared by each of the mentioned rules in-

volve:

• Recursively invoking the propagation judgment to backtrack through the type deriva-

tion tree. We navigate the type derivation tree backwards by referring to the parent of

the judgment (�w
premise↓).

• Reducing the prototype propagation of a single type inference rule to a type selection.

For example, in rule Propabst p
the prototype propagation that takes place in the (abst p)

type inference rule (P ′ in ∀a.P → P ′) is reduced to an equivalent type selection, i.e., if

the type selection on any prototype P ′ is Θi, then the type selection on the prototype

P ′ that is part of the ∀a.P → P ′ type is (φfun-res ::Θ
i).

The remaining 6 rules - Propapp , Propapp⊥ , Propappt p
, Propappt p,⊥ , Propsel and Propr ec2

- iden-

tify type inference rules where the direct prototype propagation between the rule’s conclu-

sion and the premise does not take place. Judgments involving such type inference rules are

what we formally define as Propagation Roots. We call such instances of type inference rules

Propagation Roots.

Rule (rec) of Colored Local Type Inference leads to two distinct Prop rules, Propr ec1
and

Propr ec2
. The difference stems from how the prototype of the conclusion of the type inference

rule, {x1 : P1, ..., xm : Pm}, is used to infer the type of the record member. Depending on

which premise of the rule we backtrack from, the prototype used in the premise has been

either simply propagated from the rule’s conclusion (Pk where 1 ≤ k ≤m) or synthesized (�

78



3.6. On understanding the propagation of the expected type

Propabs

(�w
premise) ↓ = (�w

parent) = (abs)

φfun-res ::Θ
i �p (�w

parent)� 〈(P o , Γo �w E o : T o),Θo〉
Θi �p (�w

premise)� 〈(P o , Γo �w E o : T o),Θo〉

Propabst p

(�w
premise) ↓ = (�w

parent) = (abst p)

φfun-res ::Θ
i �p (�w

parent)� 〈(P o , Γo �w E o : T o),Θo〉
Θi �p (�w

premise)� 〈(P o , Γo �w E o : T o),Θo〉

Propabst p,�

(�w
premise) ↓ = (�w

parent) = (abst p,�)
Θi �p (�w

parent)� 〈(P o , Γo �w E o : T o),Θo〉
Θi �p (�w

premise)� 〈(P o , Γo �w E o : T o),Θo〉 Propr ec�

(�w
premise) ↓ = (�w

parent) = (rec�)
Θi �p (�w

parent)� 〈(P o , Γo �w E o : T o),Θo〉
Θi �p (�w

premise)� 〈(P o , Γo �w E o : T o),Θo〉

Propr ec1

(�w
premise) ↓ = (�w

parent) = (rec) {x1 : P1, ..., xm : Pm}, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xm : Tm}
(�w

premise)= (Pk , Γ�w Fk : Tk ) for 1≤ k ≤m
φselxk

::Θi �p (�w
parent)� 〈(P o , Γo �w E o : T o),Θo〉

Θi �p (�w
premise)� 〈(P o , Γo �w E o : T o),Θo〉

Propapp

(�w
premise) ↓ = (�w

parent) = (app)

Θi �p (�w
premise)�

〈
(app) (�w

parent),Θi
〉 Propapp⊥

(�w
premise) ↓ = (�w

parent) = (app⊥)

Θi �p (�w
premise)�

〈
(app⊥) (�w

parent),Θi
〉

Propappt p

(�w
premise) ↓ = (�w

parent) = (appt p)

Θi �p (�w
premise)�

〈
(appt p) (�w

parent),Θi
〉 Propappt p,⊥

(�w
premise) ↓ = (�w

parent) = (appt p,⊥)

Θi �p (�w
premise)�

〈
(appt p,⊥) (�w

parent),Θi
〉

Propsel
(�w

premise) ↓ = (�w
parent) = (sel)

Θi �p (�w
premise)�

〈
(sel) (�w

parent),Θi
〉

Propr ec2

(�w
premise) ↓ = (�w

parent) = (rec) {x1 : P1, ..., xm : Pm}, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xm : Tm}
(�w

premise)= (�, Γ�w Fk : Tk ) for m < k ≤ n

Θi �p (�w
premise)�

〈
(rec) (�w

parent),Θi
〉

Figure 3.18: Definition of a Θi �p (P i , Γi �w E i : T i ))� 〈(P o , Γo �w E o : T o),Θo〉 judg-
ment using the recursive Prop rules. The algorithm is driven by the kind of the last type
inference rule used in the parent of the input inference judgment, i.e., (�w

premise) ↓.

for m < k ≤ n).

The (sel) type inference rule is also classified as a Propagation Root. We notice that, even

though the prototype P from the conclusion of the type inference rule appears in the premise’s

prototype in {x : P }, the record prototype itself is introduced for the first time in the (sel)

rule.

For completeness, Figure 3.19 realizes the �p judgment in an algorithmic fashion. The

PrototypeBacktrack function, identically to the deductive rules of the�p judgment, takes an

input TypeFocus and a type inference judgment, and returns the Propagation Root of the lat-

ter and the Prototype Propagation Path reduced into a TypeFocus value. The algorithm traces

79



Chapter 3. Guided-analysis for type derivation trees

FUNCTION PrototypeBacktrack(Θi, (P i , Γi �w E i : T i ))=
(P i , Γi �w E i : T i ) ↓ = �w

parent

MATCH (�w
parent) OF

CASE (abs) : PrototypeBacktrack(φfun-res ::Θ
i, �w

parent)
CASE (abst p ) : PrototypeBacktrack(φfun-res ::Θ

i, �w
parent)

CASE (abst p,�) : PrototypeBacktrack(Θi, �w
parent)

CASE (rec�) : PrototypeBacktrack(Θi, �w
parent)

CASE (rec) :
(�w

parent) == (rec) {x1 : P1, ..., xm : Pm}, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xm : Tm}
(P i , Γi �w E i : T i ) == (Pk , Γ�w Fk : Tk )
IF (1≤ k ≤m) PrototypeBacktrack(φselxk

::Θi, �w
parent)

ELSE

〈
�w
parent, Θi

〉
CASE (app) :

〈
�w
parent, Θi

〉
CASE (app⊥) :

〈
�w
parent, Θi

〉
CASE (appt p ) :

〈
�w
parent, Θi

〉
CASE (appt p,⊥) :

〈
�w
parent, Θi

〉
CASE (sel) :

〈
�w
parent, Θi

〉

Figure 3.19: The algorithmic definition of the Θi �p (P i , Γi �w E i : T i )) �
〈(P o , Γo �w E o : T o),Θo〉 judgment from Figure 3.18. The algorithm pattern matches on
the kind of the last type inference rule used in the parent of the input inference judgment.
Pattern matching distinguish between the prototype propagation and the introduction
of the fresh prototype value.

backwards through the nodes of the type by pattern matching on all of the possible type in-

ference rules that do not require a non-wildcard prototype. Identically to the deduction rules

of Figure 3.18 the algorithmic definition distinguishes between the rules that only propagate

prototype information and the rules that serve as Propagation Roots.

3.6.2 Analysis of a Propagation Root

The Prop rules that realize the propagation judgment (Figure 3.18) identify 6 type inference

rules that can serve as a Propagation Root for a prototype. The typing decisions that infer

the fresh prototype P f in those rules may differ significantly. That is why in this section we

define a slicesPtRoot function that takes any Propagation Root and finds the source of the

fresh prototype based on the typing decisions of the formal type inference rules.

The slicesPtRoot partial function, of type ( (P, Γ�w E : T ), Θ )→ ν3 takes an inference judg-

ment representing the Propagation Root of some prototype, say P ′, and a TypeFocus, say Θ,

such that (Θ,ε�WF P f ) and Θ(P f )= inl P ′. The function returns a sequence of Typing Slices

80



3.6. On understanding the propagation of the expected type

explaining the source of the prototype P ′.

The slicesPtRoot function is realized through a set of rule-specific functions defined in Fig-

ure 3.20. Each type inference rule is considered separately, as indicated through the rule sub-

script in the function name slicesPtRootrule. For clarity, Figure 3.20 highlights the position

of P f , that is inference rule-specific, with gray boxes.

Having presented the purpose of the slicesPtRoot function we will now delve into the de-

tails of each of the type inference rule of Colored Local Type Inference that can serve as the

Propagation Root for some prototype.

The (app) type inference rule

The slicesPtRoot(app) function finds the source of the highlighted prototype ([?/a]S) used

in the inference of the type of the argument. The type inference rule states that the non-

wildcard elements of the used prototype can only come from the inferred type of the func-

tion. Therefore in order to locate the source of the prototype we delegate to the established

TypeFocus-based analysis from Section 3.5.3.

We recall that in order to trigger the TypeFocus-based analysis we have to provide a type se-

lection that is well-formed type selection with respect to the inferred type of the function.

The TypeFocus used in the slicesPtRoot(app) function, φfun-param :: Θ, satisfies that condi-

tion because: (Θ,��WF [?/a]S) (from the precondition of the slicesPtRoot function) implies

(Θ,fv([?/a]S)�WF [?/a]S), and, by Lemma 3.8, (Θ, a �WF S) and (φfun-param ::Θ, a �WF ∀a.S → T ).

The (appt p) type inference rule

The slicesPtRoot(appt p) function analyses the inference of a type of a function application

using a similar approach as in the case of the (app) rule, except that it also has to take into

account the presence of the explicit type arguments.

By a similar argument as in the previous case, φfun-param :: Θ defines a type selection well-

formed with respect to the inferred type of the function because: (Θ,� �WF [R/a]S) (from the

precondition of the slicesPtRoot function) implies (Θ,fv([R/a]S)�WF [R/a]S), and, by Lemma

3.8, (φfun-param ::Θ, a �WF S), and (φfun-param ::Θ, a �WF ∀a.S → T ).

In contrast to the function application with elided type arguments ([?/a]S), we have to take

into account the possibility that the fresh prototype could involve one of the explicit type

arguments ([R/a]S). The reconstructed type selection is sufficient to distinguish between the

two possible sources of the prototype:

• (φfun-param ::Θ)(∀a.S → T )tpe = a and a ∈ a:

The extraction of the type variable a implies that the explicit type argument is the

source of the prototype represented by the Θ TypeFocus. Since type arguments defines

81



Chapter 3. Guided-analysis for type derivation trees

FUNCTION slicesPtRoot(app) ( (app), Θ )=

(app)

?, Γ,�w F :∀a.S → T [?/a]S ,Γ�w E : S′
�a S′ <: S ⇒C1

�a T <:�↘ P ⇒C2

P, Γ�w F (E) : σC1∪C2,T T ↗ P

1 SLICES((?, Γ�w F : ∀a.S → T ), (φfun-param ::Θ) )

FUNCTION slicesPtRoot(app⊥) ( (app⊥), Θ )=

(app⊥)
?, Γ,�w F :⊥ � ,Γ�w E : S

P, Γ�w F (E) :⊥↗ P

1 SLICES((?, Γ�w F : ⊥), [ ])

FUNCTION slicesPtRoot(appt p)

(
(appt p), Θ

)=
(appt p )

?, Γ,�w F :∀a.S → T [R/a]S , Γ�w E : [R/a]S

P, Γ�w F
[

R
]

(E) : [R/a]T ↗ P

1

2

3

Θcont =φfun-param ::Θ

IF (is-tvar(Θcont(S)tpe, a))
{ 〈

νTVAR, (?, Γ�w F : ∀a.S → T ), Θcont
〉 }

ELSE SLICES((?, Γ�w F : ∀a.S → T ), Θcont)

FUNCTION slicesPtRoot(appt p,⊥)
(
(appt p,⊥), Θ

)=
(appt p,⊥)

?, Γ,�w F :⊥ � ,Γ�w E : S

P, Γ�w F
[

R
]

(E) :⊥↗ P

1 SLICES((?, Γ�w F : ⊥), [ ] )

FUNCTION slicesPtRoot(sel) ( (sel), Θ )=

(sel)
{x : P } , Γ,�w F : {x : T }

P, Γ�w F.x : T

1

2

IF (head(Θ) == [φselx ])
{ 〈νPT, (P, Γ�w F.x : T ), tail(Θ)〉 }

ELSE
{ 〈νTSIG, ({x : P }, Γ�w F : {x : T }), Θ〉 }

FUNCTION slicesPtRoot(rec) ( (rec), Θ )=

(rec)
(P1, Γ�w F1 : T1) ... (Pm , Γ�w Fm : Tm) ( � , Γ�w Fm+1 : Tm+1) ... ( � , Γ�w Fn : Tn)

{x1 : P1, ..., xm : Pm}, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xm : Tm}

1
{ 〈νPT, ({x1 : P1, ..., xm : Pm}, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xm : Tm}), [ ]〉 }

Figure 3.20: Algorithm for finding the source of the fresh prototype P f r esh that is in-
troduced in the Propagation Root judgments. The algorithm is realized through the
slicesPtRoot function of type ( (P, Γ�w E : T ), Θ ) → ν3 which analyzes typing deci-
sions of every type inference rule that can serve as a Propagation Root. The gray boxes
highlight the position of the fresh P f prototype source of which the function explains.

82



3.6. On understanding the propagation of the expected type

an instantiation of the type variable the discovery is represented by the Type Variable

Typing Slice.

• (φfun-param ::Θ)(∀a.S → T )tpe = a and a �∈ a:

None of the type variables, and, in consequence, none of the type arguments are the

source of the selected part of the prototype. We will explain the source of the prototype

by delegating to the generic TypeFocus-based analysis.

The (app⊥) and (appt p,⊥) type inference rules

The (app⊥) and (appt p,⊥) type inference rules propagate prototype � as a consequence of

the inferred type of the function, ⊥. Consequently, the corresponding slicesPtRoot(app⊥)

and slicesPtRoot(appt p,⊥) functions analyze the indirect relation between the typing deci-

sions by delegating to the TypeFocus-based SLICES algorithm. Since both � and ⊥ represent

types with no inner type components, we simplify the type selection to an identity TypeFocus,

[ ], without compromising the correctness of the algorithm.

The (rec) type inference rule

The source of the highlighted� prototype in rule slicesPtRoot(rec) cannot be inferred from

other premises of the (rec) rule. By returning the Prototype Typing Slice we explain the

indirect source of the prototype - the record type prototype which did not define the expected

type for any of the members xk where m < k ≤ n.

The (sel) type inference rule

The {x : T } prototype is used to infer the type of the record term in the (sel) type inference

rule. Indirectly, the source of the fresh prototype lies in the record selection term. Rather

than always returning the record selection term as an explanation of the fresh prototype, the

algorithm takes into account the type selection in order to provide a correct explanation of

the part of the fresh prototype.

For example, a simple inference judgment (Int → ?, ε�w { x = fun(y)y }.x : Int → Int ) uses

prototype Int → ? to infer the type of the fun(y)y abstraction. If the analysis seeks to explain

the source of only a fragment of the given prototype ( Int → ?), then the Int prototype is a

result of a prototype propagation and the decisions of the .x record selection are irrelevant.

We use the properties of the type selection in order to distinguish between the two scenarios.

From the precondition of the slicesPtRoot function (Θ,��WF {x : P }) and by the Canonical

Forms lemma (Lemma 3.5) head(Θ) is either [ ] or [φselx]. If head(Θ) == [φselx] for any x then

the record selection operations is irrelevant for explaining the source of the prototype and it

has been inherited from the context (as explained by the Prototype Typing Slice in line 1). If

head(Θ) = [ ] then Θ = [ ] (by Lemma D.2) and the source of the prototype lies in the record

selection term, as explained by the Type Signature Typing Slice.

83



Chapter 3. Guided-analysis for type derivation trees

Final remarks

The slicesPtRoot function has to handle every type inference rule that may serve as a Prop-

agation Root for some prototype. The essence of every case lies in identifying a link between

the fresh prototype and a typing decision that introduced it in the formal type inference rule.

The slicesPtRoot functions are generic in a sense that the whole information about the part

of the fresh prototype, source of which we seek to explain, is encapsulated in the TypeFocus

abstraction and the well-formedness property is maintained based on the formal specifica-

tion of the type inference rules.

3.6.3 Source of the Prototype and Adaptation Typing Slices

We have divided the process of analyzing prototype propagation into two separate problems.

Section 3.6.1 has defined the propagation judgment that identifies a Propagation Root, a typ-

ing judgment that introduces a fresh prototype in one of its premises. Section 3.6.2 has de-

fined a generic function that locates the source of the freshly introduced prototype in any

Propagation Root. Using the TypeFocus value we can now combine the two techniques to

define a complete algorithm that explains the source of any non-wildcard prototype that has

been propagated in the type derivation tree.

The observation leads to a definition of the SLICESPT function in Figure 3.21, which takes

a Prototype or an Adaptation Typing Slice and returns an explanation of the source of the

prototype that is represented by those Typing Slices.

SLICESPT ( 〈ν, (P s , Γs �w E s : T s), Θs〉 )=
[ ]�p (P s , Γs �w E s : T s)�

〈
(�w

r ),Θprototype
〉

slicesPtRoot(�w
r , Θprototype ::: Θs)

Figure 3.21: Algorithm for explaining the source of prototype represented by Prototype
and Adaptation Typing Slices. Algorithm is realized through the SLICESPT partial func-
tion of type (ν3 → ν3), which takes a Prototype or an Adaptation Typing Slice and re-
turns other Typing Slices. The SLICESPT function is partial as it assumes that ν = νPT or
ν= νADAPT.

The first step of the function infers the Propagation Root of the P s prototype included in

the Typing Slice. Having found the corresponding Propagation Root judgment, symbolically

represented using the �w
r notation, we can find the source of the fresh prototype that it in-

troduces using the slicesPtRoot function. The slicesPtRoot(�w
r ,Θprototype) application

would return the source of the P s prototype, while the slicesPtRoot(�w
r ,Θprototype ::: Θs)

application returns the source of the target prototype P t ar g et , which can be illustrated as:

84



3.6. On understanding the propagation of the expected type

(Θprototype ::: Θs)(P f )=
Θs(Θprototype(P f )tpe)= (by the TypeFocus composition)

Θs(([ ])(P s)tpe)= (by definition of Θprototype in the propagation judgment)

Θs(P s)= (by definition of [ ])

inl P t ar g et (by definition of Typing Slices)

The call to the auxiliary slicesPtRoot function will always return the sequence of Typing

Slices reflecting the initial type selection.

The SLICESPT function may produce further non-final Typing Slices. Their analysis is finite

thanks to two basic properties of type propagation in Local Type Inference:

1. The types are consistently propagated in any type derivation tree from left to right, and

from the root towards the leaf nodes. Since the algorithm of the SLICESPT function

traces backwards through the adjacent nodes of the type derivation tree the involved

type inference judgments come closer to the actual root of the type derivation tree with

every analysis of the source of a prototype.

2. The root inference judgment must be inferred with a wildcard prototype.

In summary, the SLICESPT explains the origin of the target prototype represented by Proto-

type and Adaptation Typing Slices, which in turn explains the target type represented by those

Typing Slices as well.

85



Chapter 3. Guided-analysis for type derivation trees

3.7 On understanding the type variable instantiation

The algorithm for analyzing the decisions of type derivation trees returns Typing Slices to

explain the origin of a particular target type. Among different kinds of Typing Slices, the Type

Variable Typing Slice is the only one which identifies the instantiation of a type variable as

the source of the target type. In our formalization the type variable instantiation takes place

only while inferring the type of function application, either with elided type arguments (the

(app) type inference rule) or when they are explicitly provided (the (appt p) type inference

rule). For a complete type debugging experience we will define techniques that explain the

instantiations of type variables.

In this section we show that the TypeFocus abstraction is flexible enough to allow for a con-

venient representation of type constraints that are used in the instantiation process. Conse-

quently, the TypeFocus abstraction is sufficient to explain the source of type variable instanti-

ation by explaining the source of the individual type constraints used in the process. Section

3.7.1 presents an algorithm for translating type constraints into their equivalent TypeFocus

abstractions. The translation of type constraints not only provides a succinct and faithful

representation of type constraints but allows us to trigger a TypeFocus-based analysis that

will explain their origin (Section 3.7.2).

With such definitions in place, we are able to formalize the explanation of the typing deci-

sions that inferred the type of functions applications with elided type arguments (Section

3.7.3), as well as those with explicit type arguments (Section 3.7.4). We conclude with the dis-

cussion about the possibility of debugging the variants of type variable instantiations (Sec-

tion 3.7.5), such as the one present in the Scala implementation.

3.7.1 From a type constraint to a TypeFocus

The type variables instantiations are inferred from the collected type constraints (as explained

in Section 2.1.5). The type constraints lead to a-constraint sets that define lower and upper

type bounds for each of the type variables in a. The a-constraint set does not carry informa-

tion about the origin of type bounds, nor is it suitable for locating them due to the implicit

approximation of type constraints. The key idea that links type constraints to our thesis is

that individual type bounds can be represented as type selections on types that participate

in the subtyping derivation.

We make use of the fact that all type constraints that are added to the a-constraint set are of

the form {A <: B}, where A and B are just part of the same subtyping check S <: T and either

A ∈ a or B ∈ a. Therefore a TypeFocus, say Θ, that represents some type constraint from the

subtype derivation extracts either Θ(S) = inl A ∧ Θ(T ) = inl B or Θ(S) = inl B ∧ Θ(T ) =
inl A.

The {A <: B} form of the collected type constraint implies that only a lower or upper type

86



3.7. On understanding the type variable instantiation

bound of a single type variable can be represented by a single TypeFocus instance at the same

time. To distinguish between them, we will use the variance information ψ±, defined as

ψ± ::= + | - (variance information)

We define a TypeFocus-generation judgment of the form

a, ψ± �g en S <: T � Θ (TypeFocus-generation)

to infer a sequence of TypeFocus instances from the subtyping derivation between two types

S and T , where either fv(S) = � or fv(T ) = �. We use a Θ notation that is equivalent to

Θ = {Θ1, ..., Θn
}

for n ≥ 0. The Θ sequence represents individual lower (if ψ± = +), or upper

(if ψ± = -) type bounds for some type variable a. Such definition means that Θ, where Θ ∈Θ,

is equivalent to a single type constraint for some type variable a such that the type of the

constraints is either Θ(S)tpe or Θ(T )tpe.

Example: Representation of simple type constraints

We consider an example of an { a }-constraint set, C1, generated from the type of the argu-

ment ((A → B)→ A) and the type of the parameter ((A → a)→ A) of some function applica-

tion:

�{ a } (A→B)→ A <: (A→ a)→ A⇒C1, where {⊥ <: a <: B} ∈C1

The sequence of TypeFocus instances inferred for the identical subtyping derivation would

therefore result in:

a, +�g en (A→B)→ A <: (A→ a)→ A � ε

a, -�g en (A→B)→ A <: (A→ a)→ A � {
[φfun-param,φfun-res]

}

The type extracted using the generated sequence agrees with the corresponding upper type

bound of the type variable a from the C1 constraint set, since ([φfun-param,φfun-res])((A →
B) → A) = inl B . At the same time the empty sequence of TypeFocus instances inferred for

the lower type bound of the type variable a corresponds to the implicitly added type ⊥. The

judgment is correct in a sense that it does not generate a TypeFocus instance for implicitly

added⊥ and� type bounds.

The sequence of TypeFocus instances resulting from the judgment is oblivious to any approx-

imations that take place in the regular constraint generation process. As we show in the next

87



Chapter 3. Guided-analysis for type derivation trees

example, the approximated type bounds from the inferred constraint sets can always be re-

covered thanks to the variance information.

Example: Representation of approximated type constraints

We let C2 represent the { a,b }-constraint set generated from the type of the argument and the

type of the parameter of some function application:

�{ a,b } {x : a → b, y : a → Int }<: {x : (Int → Int )→ Int , y : (⊥→⊥)→ Int }⇒C2 ,

where {⊥→ Int <: a <:�, ⊥ <: b <: Int}⊆C2

The sequence of TypeFocus instances inferred for the identical subtyping derivation for each

of the type variables would therefore result in:

a, +�g en {x : a → b, y : a → Int } <: {x : (Int → Int )→ Int , y : (⊥→⊥)→ Int } �{
[φselx ,φfun-param], [φsely ,φfun-param]

}
a, -�g en {x : a → b, y : a → Int } <: {x : (Int → Int )→ Int , y : (⊥→⊥)→ Int } � ε

b, +�g en {x : a → b, y : a → Int } <: {x : (Int → Int )→ Int , y : (⊥→⊥)→ Int } � ε

b, -�g en {x : a → b, y : a → Int } <: {x : (Int → Int )→ Int , y : (⊥→⊥)→ Int } �{
[φselx ,φfun-res]

}

The translation is not one-to-one equivalent, as in the previous example, because for the

lower type bound of the type variable a it infers two TypeFocus instances, corresponding

to the two individual lower type bounds; we can always manually calculate the least upper

bound of the extracted types to reflect the approximated type bounds of the inferred con-

straint sets:

[φselx ,φfun-param]({x : (Int → Int )→ Int , y : (⊥→⊥)→ Int })tpe∨
[φsely ,φfun-param]({x : (Int → Int )→ Int , y : (⊥→⊥)→ Int })tpe =

Int → Int ∨⊥→⊥=⊥→ Int

The semantics of the TypeFocus translation - formally

The �g en judgment is realized through a set of algorithmic ΘG rules, defined in Figure 3.22.

The ΘG rules mimic the constraint generation CG rules defined in Pierce and Turner [2000]

which in turn realize the (�a S <: T ⇒ C ) constraint generation judgment. The ΘG rules

recursively construct TypeFocus instances based on the shape of the subtyping derivation and

the kind of type bounds considered. For clarity, the definition uses a
{
ΘX ::Θ

}
notation to

abbreviate
{
ΘX ::Θ1, ... , ΘX ::Θn

}
, where Θi ∈Θ and 1 ≤ i ≤ n. If Θ = ε, then

{
ΘX ::Θ

}
is equivalent to an empty sequence.

The ΘG algorithm defines four base rules: ΘG(-, <), ΘG(+, <), ΘG(-, >) and ΘG(+, >). We recall

that the CG constraint generation algorithm defines only two rules that generate the base type

88



3.7. On understanding the type variable instantiation

ΘG(+, <)
a, +,W �g en a <: T � ε

ΘG(-, <)
a, -,W �g en a <: T � { [ ] }

ΘG(+, >)
a, +,W �g en T <: a � { [ ] }

ΘG(-, >)
a, -,W �g en T <: a � ε

ΘG( TOP)
S �∈ { a,⊥ }

a, ψ±,W �g en S <:� � ε
ΘG(BOT )

S �∈ { a,� }

a, ψ±,W �g en ⊥ <: S � ε

ΘG(�)
a �∈ (fv(S)∪fv(T ))

a, ψ±,W �g en S <: T � ε

ΘG(FUN)

a �∈ b a ∈ (fv(∀a.R → S)∪fv(∀a.T →U ))

a, ψ±, W ∪b �g en T <: R � Θ
′

a, ψ±, W ∪b �g en S <:U � Θ
′′

a, ψ±, W �g en ∀b.R → S <: ∀b.T →U � {
φfun-param ::Θ

′ }∪{ φfun-res ::Θ
′′ }

ΘG(REC)

a ∈ (fv(S1)∪ ... ∪fv(Sn)∪fv(T1)∪ ... ∪fv(Tn))

a, ψ±, W �g en S1 <: T1 � Θ
1

... a, ψ±, W �g en Sm <: Tm � Θ
m

a, ψ±, W �g en {x1 : S1, ..., xm : Sm , ..., xn : Sn} <: {x1 : T1, ..., xm : Tm} �{
φselx1

::Θ
1
}
∪ ... ∪

{
φselxm

::Θ
m
}

Figure 3.22: Algorithmic rules ΘG that define the (a, ψ±,W �g en S <: T � Θ) judgment.
The rules mimic the corresponding constraint generation algorithm CG defined in Pierce
and Turner [2000]. The implicit W variable set keeps track of bounded out-of-scope type
variables.

constraints: (CG-Lower) and (CG-Upper).

The difference stems from our choice to ignore or accept type constraint information based

on whether we seek to represent a lower or upper type bound of the type variable. There is

no need no perform variable-elimination promotion (⇑) and demotion (⇓) directly within the

ΘG rules because we do not perform any approximation. For example, rather than always

inferring a TypeFocus instance for a subtyping derivation such as a <: Int → Int , we will

only do so, if we seek to represent the upper bounds of the type variable a.

Rules ΘG( TOP) and ΘG(BOT ) directly correspond to their constraint generation counterparts

(CG-(top)) and (CG-(bot)), respectively, where the top type and the bottom type is a su-

pertype and a subtype of any type, respectively, and do not lead to type constraints. The

additional premises in the rules, along with the ΘG(�) rule ensure that the definition is al-

gorithmic. We notice that the implicitly and explicitly added ⊥ and � type bounds are not

distinguishable in the a-constraint set; initially every a-constraint set is {⊥ <: ai <:�} for all

ai ∈ a. Our TypeFocus translation faithfully represents every type constraint, including those

involving explicit top or bottom types.

89



Chapter 3. Guided-analysis for type derivation trees

TheΘG(FUN) andΘG(REC) rules define the inference of TypeFocus for arrow and record type con-

structors, respectively. Whenever the subtyping derivation between their type elements re-

turns a non-empty sequence, we simply compose it with an appropriate TypeFocus instance;

the composition ensures that the type selection is well-formed with respect to the type appli-

cation involving the given type constructor.

The algorithmic rules ΘG are well-behaved, meaning that every type selection extracts a left

tagged value from the types of the subtyping derivation. The statement is formally specified

in Lemma 3.9.

Lemma 3.9 Well-formedness of the Θ sequence generated from the subtyping deriva-

tion.

Let any S and T , a set of type variables a, a type variable ai such that ai ∈ a, and vari-

ance information ψ±, such that either fv(T )∩a =�, or fv(S)∩a =�.

If (ai , ψ± �g en S <: T � Θ) then

∀Θ.∃T ′.∃S′. Θ ∈Θ ∧ Θ(T )= inl T ′ ∧ Θ(S)= inl S′ ∧ (T ′ = ai ∨S′ = ai )

Proof.

By induction on the last ΘG rule used.

A complete proof is available in Appendix E.1.

The generated sequences of TypeFocus instances are sound with respect to the type con-

straints that are generated by the original constraint generation judgment of Local Type Infer-

ence. The soundness property, formally stated in Lemma 3.10, states that for any type variable

ai the types that are extracted by the Θ instances approximate (with least upper bound ap-

proximation) to the same type as the lower bound inferred from the constraint generation

judgment. Similarly for the upper bound types of the type variable, except that the approxi-

mation means greatest lower bound approximation of types.

Lemma 3.10 Soundness of the TypeFocus translation with respect to the inferred a-

constraint set.

For any types S and T , a set of type variables a and a set of out-of-scope bounded vari-

ables W :

If (ai , +�g en S <: T � Θ) and ai ∈ a and (W �a S <: T ⇒C ) then

{A <: ai <: B} ∈C and

(fv(S)∩a =� =⇒ ∨
W Θ(T )= A) and (fv(T )∩a =� =⇒ ∨

W Θ(S)= A).

If (ai , -�g en S <: T � Θ) and ai ∈ a and (W �a S <: T ⇒C ) then

90



3.7. On understanding the type variable instantiation

{A <: ai <: B} ∈C and

(fv(S)=� =⇒ ∧
W Θ(T )=B) and (fv(T )=� =⇒ ∧

W Θ(S)=B).

Proof.

By induction on the last rule used in the (ai , ψ± �g en S <:T � Θ) judgment.

A complete proof is available in Appendix E.2.

We use a
∨

W Θ(T ) notation to abbreviate a calculation of the least upper bound approxima-

tion from the type selections, i.e.,
∨

W Θ(T ) is equivalent to

Θ1(T )tpe ⇑W ∨ ... ∨ Θn(T )tpe ⇑W (for Θi ∈ Θ where 1 ≤ i ≤ n). Similarly
∧

W Θ(T ) ab-

breviates a calculation of the greatest lower bound approximation from the type selections,

i.e.,
∧

V Θ(T ) is equivalent to Θ1(T )tpe ⇓W ∧ ... ∧ Θn(T )tpe ⇓W (for Θi ∈Θ where 1≤ i ≤ n).

If Θ =� then
∨

W Θ(T )=⊥ and
∧

W Θ(T )=�. The approximations take into account the po-

tential variable-elimination promotion (⇑) and demotion (⇓) with respect to the type variable

set W , as carried out in the (CG-Lower) and (CG-Upper) rules, respectively. For presentation

reasons, when the W set is omitted, the promotion and demotion is performed with respect

to an empty set of bounded type variables.

The TypeFocus instances representing the type constraints of some type variable are also com-

plete with respect to the a-constraint set inferred by the corresponding constraint generation

judgment. The completeness property, formally stated in Lemma 3.11, ensures that the Type-

Focus instances inferred from the generation judgment reflect all the possible constraints

corresponding to the lower and upper type bound, respectively. The completeness property

is divided into two parts, one for each of the possible type bounds. Apart from the check for

the inclusion of a type constraint (i.e., Θ’(T )= inl ai implies Θ’ ∈Θ+
) we also have to verify

that the type constraint belongs to the appropriate type bound. The TypeFocus-sequences

themselves do not carry information about the kind of the type bound they represent there-

fore both definitions rely on the fact that knowing which of the types of the subtyping deriva-

tion is type variable-free links the position of the type variable in the type with the kind of

lower or upper type bound it can produce. For example, the a <:� subtyping check defines a

type constraint that is valid as an upper type bound type constraint but not as the lower type

bound type constraint.

The definition uses the implicit variance position function posa of type T →ψ. The function

returns information about the type T being constant, covariant, contravariant, or invariant

in the given type variable a. The complete variance information is defined symbolically as

ψ ::= ψ± | 0 | ± (complete variance information)

91



Chapter 3. Guided-analysis for type derivation trees

For simplicity, we assume now that if posa(T ) returns± then both statements±= + and±= -

are correct, and if posa(T ) returns 0 then statement 0 = + is valid, and defer the explanation

of such semantics until Section 3.7.2.

Lemma 3.11 Completeness of the TypeFocus translation with respect to lower and

upper type bounds of the a-constraint sets .

We let a represent a set of free type variables,

let types S and T such that either fv(S)∩a =� or fv(T )∩a =�.

If (ai , +�g en S <: T � Θ
+
) then

(fv(S)∩a =�) =⇒
(∀Θ’. (Θ’(T )= inl ai ) and (Θ’,ε�WF S) and (posai

(T )= +) =⇒ Θ’ ∈Θ+
)

and

(fv(T )∩a =�) =⇒
(∀Θ’. (Θ’(S)= inl ai ) and (Θ’,ε�WF T ) and (posai

(S)= -) =⇒ Θ’ ∈Θ+
)

If (ai , -�g en S <: T � Θ
-
) then

(fv(S)∩a =�) =⇒
(∀Θ’. (Θ’(T )= inl ai ) and (Θ’,ε�WF S) and (posai

(T )= -) =⇒ Θ’ ∈Θ-
)

and

(fv(T )∩a =�) =⇒
(∀Θ’. (Θ’(S)= inl ai ) and (Θ’,ε�WF T ) and (posai

(S)= +) =⇒ Θ’ ∈Θ-
)

Proof.

Prove by induction on the structure of S and T , the two types that participate

in the subtyping derivation.

The complete proof is available in Appendix E.3.

Together, the soundness and completeness properties ensure that the generated sequence of

TypeFocus instances faithfully represent all type constraints that are used to infer lower or

upper type bounds for the involved type variables, irrespective of any least upper bound or

greatest lower bound approximations.

3.7.2 Relating type constraints to their source

With the TypeFocus translation from the previous section, we have shown that type con-

straints can be represented as type selections on types that participate in the subtyping deriva-

92



3.7. On understanding the type variable instantiation

FUNCTION constraint-to-slice((app), a, ψ±, Θa)=

(app)

?, Γ,�w F :∀a.S → T [?/a]S,Γ�w E : S′
�a S′ <: S ⇒C1

�a T <:�↘ P ⇒C2

P, Γ�w F (E) : σC1∪C2,T T ↗ P

constraint-to-slicear g ((app), a, ψ±, Θa) ∪
constraint-to-slicept ((app), a, ψ±, Θa)

FUNCTION constraint-to-slicear g ((app)(P, Γ�w F(E) : σC1,C2,T T ↗ P ), a, ψ±, Θa)=
1 a, ψ± �g en S′ <: S � Θ

2
⋃Θ SLICES(([?/a]S,Γ�w E : S′), normalize(Θi ::: Θa, S′, �)) for Θi ∈Θ

FUNCTION constraint-to-slicept ((app)(P, Γ�w F(E) : σC1,C2,T T ↗ P ), a, ψ±, Θa)=
1 a, ψ± �g en T <:�↘ P � Θ

2
⋃Θ

〈
νPT, (P, Γ�w F(E) : σC1∪C2,T T ↗ P ), normalize(Θi ::: Θa, P, fv(P ))

〉
for Θi ∈Θ

Figure 3.23: Definition of the partial function constraint-to-slice of type(
(P, Γ�w E : T ), T, ψ±,Θ

)→ ν3, which analyzes the source of type constraints used to
infer the instantiation of a type variable. The origin of type constraints is explained using
Typing Slices.

tion. In this section we show that such representation is sufficient to explain the origin of

every individual type constraint.

We recall from Section 2.1.5, that the (app) inference rule infers the minimal type substitu-

tion σC1∪C2,T , from the two distinct a-constraint sets:

1. The a-constraint set C1, in �a S′ <: S ⇒C1, infers type constraints from the subtyping

check between the type of the argument and the type of the corresponding formal pa-

rameter. Importantly, the S′ type has been inferred through a regular type inference

judgment and can be analyzed using the TypeFocus-based algorithm (Section 3.5.3).

2. The a-constraint set C2, in�a T <:�↘ P ⇒C2, infers type constraints from the subtyp-

ing check between the inferred result type of the function and the inherited prototype.

Importantly, the�↘ P type has been inferred from the expected type context and can

be analyzed using the SLICESPT function that analyzes the source of the prototype (Sec-

tion 3.6).

Figure 3.23 defines the algorithm that locates the source of used type constraints, based on

the above observations. A constraint-to-slice partial function of type(
(P, Γ�w E : T ), T, ψ±,Θ

)→ ν3 is implemented in terms of two auxiliary partial functions,

constraint-to-slicear g and constraint-to-slicept , of the same type; both are

93



Chapter 3. Guided-analysis for type derivation trees

parametrized by the function application inference judgment, a type variable which instan-

tiation is to be analyzed, variance information indicating which kind of type bounds where

used to infer the optimal solution, and a TypeFocus. The purpose of the TypeFocus value will

be discussed later in the section. Both functions return the sequence of Typing Slices, which

explain the origin of type constraints that instantiate the requested type variable.

We will now delve into the details of the two functions in order to explain how they analyze

the two subtyping derivations.

The constraint-to-slicear g function

The constraint-to-slicear g function relies on the fact that the type of the argument, S′, is

inferred through a regular type inference judgment and can be directly explained with a Type-

Focus-based SLICES algorithm.

Given the type selection Θi representing the individual type constraint, the TypeFocus-based

analysis can explain the source of the type constraint. This implies that the result will also

explain the origin of the complete type variable instantiation. The SLICES(([?/a]S,Γ �w E :

S′), Θi) application would reflect such a correct semantics but it would also ignore the need

for a more precise analysis, where we want to find the origin of only the part of the inferred

type variable instantiation.

Explaining the source of only the fragment of the type variable instantiation

The constraint-to-slicear g function triggers the analysis with a normalize(Θi ::: Θa,S′,�)

TypeFocus. To illustrate the need for the normalization we consider two possible values of Θa,

representing the partial type selection on the type variable instantiation:

• Case Θa == [ ] :
normalize(Θi ::: [ ], S′, �)=
normalize(Θi, S′, �)= (by definition of the application of the [ ] TypeFocus)

Θi (by Lemma 3.9 and the definition of normalize)

• Case Θa != [ ] :
normalize(Θi ::: Θa, S′, �)=
normalize(Θa, S′′, �) (by Lemma 3.9 and Θi(S′)= inl S′′)
Θa’ (for some Θa’ such that Θa’, ε�WF S′′)

The first case illustrates the scenario when the TypeFocus provided to the constraint-to-slice

function is structurally equivalent to the identity type selection. The composition is equiva-

lent to the Θi TypeFocus, and is well-formed with respect to the type of the argument. This

in turn means that it satisfies the pre-condition of the SLICES function and can be used to

analyze the inferred type of the argument.

The second case illustrates the scenario when the TypeFocus provided to the

94



3.7. On understanding the type variable instantiation

constraint-to-slice function will extract some part of the type variable instantiation. Since

the type selection Θa does not guarantee the well-formedness with respect to the type of the

argument, we have to apply the normalize function to it.

Example: Representing partial type variable instantiations

To illustrate the challenges of explaining type variable instantiations through their type con-

straints, we consider an example of the { a }-constraint set inferred from the type of the ar-

gument, S′, and type of the formal parameter of the function, S, in the constraint generation

judgment:

�a (Int →�)→ ((Int → (Int → Int ))→ Int )<: a → (a → Int )⇒
{⊥ <: a <: Int → (Int → Int )}

The inferred { a }-constraint set had to calculate the greatest lower bound between the two

upper bounds: {a <: Int → �} and {a <: Int → (Int → Int )}. Using the inferred type

constraints, we let the inferred type substitution be σ = [a ⇒ Int → (Int → Int )], and for

simplicity assume that the target type is part of the instantiated type variable a.

The type selections inferred for the upper bound of the type variable a are then:

a, -�g en (Int →�)→ ((Int → (Int → Int ))→ Int ) <: a → (a → Int ) �{
[φfun-param], [φfun-res,φfun-param]

}

We consider two potential cases of the target type Tt ar g et :

• For Θa = [ ], Tt ar g et =Θa(σa)=Θa( Int → (Int → Int ) )= inl Int → (Int → Int ):

The target type refers to the complete type variable instantiation.

Locating the source of the target type Tt ar g et resolves to understanding the source of

its two type constraints represented by the [φfun-param] and [φfun-res,φfun-param] type

selection. The two values can guide the TypeFocus-base analysis of the argument of

type S′, which was part of the subtyping derivation, because ([φfun-param],ε�WF S′) and

([φfun-res,φfun-param],ε�WF S′).

• For Θa = [φfun-res,φfun-param], Tt ar g et =Θa(σa)=Θa(Int → (Int → Int ))= inl Int :

The target type refers to a part of the type variable instantiation.

Locating the source of the target type Tt ar g et resolves to understanding the source of its

two type constraints represented by the ([φfun-param] ::: Θa) and ([φfun-res,φfun-param] :::

Θa) type selection. The straightforward composition comes at a cost of not necessarily

being safe with respect to the inferred type of the argument. For our particular subcase

we notice that ([φfun-param] ::: Θa,ε ��WF S′) and ([φfun-res,φfun-param] ::: Θa,ε �WF S′),

meaning that the former TypeFocus composition cannot guide the TypeFocus-based

analysis.

95



Chapter 3. Guided-analysis for type derivation trees

The comparison shows the need for precision, meaning that we want to debug parts of the

type variable instantiations, and completeness, meaning that we want to be able to debug the

origin of the involved type constraints. The definition of the constraint-to-slice function

(Figure 3.23), expresses the former through the TypeFocus composition, while the normaliza-

tion ensures that the TypeFocus-based analysis still applies, without any loss in its precision.

The constraint-to-slicept function

The constraint-to-slicept function explains the source of the part of the prototype used in

the subtyping derivations. It uses a similar methodology as in the constraint-to-slicear g

function, except that it cannot trigger the TypeFocus-based analysis. Rather, we explain the

source of the prototype directly, with the appropriately constructed type selection, by return-

ing the Prototype Typing Slice.

Final remarks

The algorithm realized by the constraint-to-slice function highlights the advantages of

separating the TypeFocus-based analysis and its related Typing Slices; by considering the in-

dividual type constraints and their source we can delegate their analysis to the previously de-

fined TypeFocus-based algorithms. The constraint-to-slice function is generic, in a sense

that it is parametrized by the type variable and variance information, and can be applied to

any inference judgment where the last type inference rule used was (app). The separation of

the analysis of the lower and upper type bounds of the type variable is crucial for explaining

different specifications of the minimal substitution that can be used to infer the type of the

variable.

3.7.3 Explaining function applications with elided type arguments

Type Variable Typing Slices inform that the source of the target type lies in the inferred instan-

tiation of some type variable. In this section we define an algorithm that explains the source

of the inferred instantiation for function applications with elided type arguments. The anal-

ysis of the inference judgment that is included in the Typing Slice has to take into account

different locations where type constraints are collected from as well as different semantics of

the minimal type substitution that determine the inferred instantiation of the type variable.

The algorithms is realized by the SLICESTVAR partial function defined in Figure 3.24 which

returns the sequence of other, potentially non-intermediate, Typing Slices explaining the

source of the instantiation. The function is partial because it is defined only for the inference

judgment where the last type inference rule used is (app).

96



3.7. On understanding the type variable instantiation

FUNCTION SLICESTVAR
( 〈

νTVAR, (app) (P, Γ�w F(E) : σC1,C2,T T ↗ P ), Θs
〉 )=

1 case Θs(T ) of

∣∣∣∣ inl T ′ ⇒ 〈
T ′, [ ]

〉
inr

〈
T ′, Θ’

〉 ⇒ 〈
T ′, Θ’

〉 ∣∣∣∣= 〈a, Θa〉
2 IF (posa(T )= + ∨ posa(T )= 0)
3 slicesTVARAux+((app), a, Θa)
4 ELSE IF (posa(T )= -)
5 slicesTVARAux-((app), a, Θa)
6 ELSE

7 slicesTVARAux+((app), a, Θa) ∪ slicesTVARAux-((app), a, Θa)

FUNCTION slicesTVARAux+
(
(app) (P, Γ�w F(E) : σC1,C2,T T ↗ P ), Ta , Θa

)=
1 constraint-to-slice((app), Ta , +, Θa) = ν3

2 IF ( ν3 = ε )
{ 〈

ν⊥TSIG, (P, Γ�w F(E) : σC1,C2,T T ↗ P ), Θa
〉 }

3 ELSE ν3

FUNCTION slicesTVARAux-
(
(app) (P, Γ�w F(E) : σC1,C2,T T ↗ P ), Ta , Θa

)=
1 constraint-to-slice((app), Ta , -, Θa)= ν3

2 IF ( ν3 = ε )
{ 〈

ν�TSIG, (P, Γ�w F(E) : σC1,C2,T T ↗ P ), Θa
〉 }

3 ELSE ν3

Figure 3.24: Algorithm for analyzing the source of the Type Variable Typing Slice for the
inference judgment that infers the type of function application with elided type argu-
ments. The algorithm is defined using a partial function SLICESTVAR of type ν3 → ν3,
where dom(SLICESTVAR) is the Type Variable Typing Slice with the inference judgment
having (app) as the last used type inference rule. The function is implemented in terms
of two auxiliary functions which explain the origin of the lower or upper type bound of
the given type variable separately.

The function is implemented in terms of two auxiliary partial functions, slicesTVARAux+ and

slicesTVARAux-, which explain the origin of type constraints that defined the lower and up-

per type bound of the type variable, respectively. By delegating to the appropriate auxiliary

function, the algorithm can reflect the specification of the minimal type substitution that

has been defined in the Local Type Inference formalization. The position of the underlying

type variable with respect to result type of the function (T in ∀a.S → T ) dictates its minimal

substitution and the debugging technique to analyze it:

• If the T type is constant or covariant in the type variable, then we delegate to the

slicesTVARAux+ function.

• If the T type is contravariant in the type variable, then we delegate to the slicesTVARAux-
function.

• Otherwise, the T type has to be invariant in the type variable; the approximated lower

and upper type bounds of the type variable in the { a }-constraint set have to be equal,

97



Chapter 3. Guided-analysis for type derivation trees

meaning that both type bounds are the source of the inferred type variable instantia-

tion and need to be analyzed.

Both of the auxiliary functions delegate to the previously described constraint-to-slice

function which is parametrized by the variance information. The functions also verify the

result of the constraint-to-slice function; lack of constraints manifests itself through an

empty sequence, which corresponds to the decision of Local Type Inference to infer the bot-

tom or the top type in the type hierarchy. We identify such decisions by returning the Type

Signature Typing Slice with the underlying function application inference judgment. To avoid

ambiguity between the two cases, we append an additional label as a superscript of the νTSIG

tag, ν⊥TSIG and ν�TSIG, respectively.

3.7.4 Explaining function applications with explicit type arguments

Type Variable Typing Slices inform that the source of the target type lies in the inferred instan-

tiation of some type variable. In this section we define an algorithm that explains the source

of the inferred instantiation for function applications with explicit type arguments.

To relate the Type Variable Typing Slice with an explicit type argument we recall two circum-

stances where the Typing Slice can be returned by our algorithms:

• The core TypeFocus-based algorithm that analyzes typing decisions of the (appt p ) in-

ference rule (the SLICES(appt p) function in Figure 3.14). The type variable has been ex-

tracted from the result type of the function type, i.e., T in ∀a.S → T .

• Analysis of typing decisions of the Propagation Root (the slicesPtRoot(appt p) function

in Figure 3.20). The judgment of the Typing Slice refers to the inference of the type of

the function in function application. The type variable has been extracted from the

parameter of the function type, i.e., S in ∀a.S → T .

The distinction is visible in the sliceTVAR(t ar g ) partial functions in Figure 3.25 that together

realize the algorithm.

Both functions take the Type Variable Typing Slice which included the inference judgment

and the TypeFocus information, necessary to identify the type variable. To explain the origin

of the type variable instantiation the two functions return directly the corresponding type

argument and a TypeFocus that is well-formed with respect to the type argument. This means

that our TypeFocus-based analysis can not only identify the precise type argument as the

source of some target type, but also identify the exact part of the type argument, based on

the TypeFocus value. For example, in the foldRight[LIST[⊥]](...) function application from

Section 3.1.2 we would be capable of highlighting foldRight[LIST[ ⊥ ]](...) rather than just

foldRight[ LIST[⊥] ](...). In that sense, our TypeFocus-based analysis is not only limited to

analyzing the elided type arguments but also the explicit ones.

98



3.7. On understanding the type variable instantiation

FUNCTION sliceTVAR(t ar g )

( 〈
νTVAR,(appt p) (P,Γ�w F

[
R
]

(E) : [R/a]T ↗ P ), Θs
〉 )

=
1 case Θs(T ) of

∣∣∣∣ inl T ′ ⇒ 〈
T ′, [ ]

〉
inr

〈
T ′, Θ’

〉 ⇒ 〈
T ′, Θ’

〉 ∣∣∣∣ = 〈a, Θa〉

2 〈Ra , Θa〉

FUNCTION sliceTVAR(t ar g )
( 〈

νTVAR, (?, Γ�w F :∀a.T → S), Θs
〉 )=

1 case Θs(∀a.T → S) of

∣∣∣∣ inl T ′ ⇒ 〈
T ′, [ ]

〉
inr

〈
T ′, Θa

〉 ⇒ 〈
T ′, Θa

〉 ∣∣∣∣= 〈a, Θa〉

2 (?, Γ�w F : ∀a.T → S) ↓= (appt p) (P, Γ�w F
[

R
]

(E) : [R/a]T ↗ P )

3 〈Ra , Θa〉

Figure 3.25: Analysis of Type Variable Typing Slice for function applications with explicit
type arguments. The first partial function analyzes the Typing Slice reported as part of
the SLICES(appt p) function in Figure 3.14, the second partial function analyzes the Typ-
ing Slice reported as part of the slicesPtRoot(appt p ) function in Figure 3.20. For brevity,
we assume that the type argument is linked with the type variable based on their in-
dices, i.e., Ra instantiates type variable a.

3.7.5 Discussion

The TypeFocus-based techniques for analyzing type variable instantiation have been formally

based on the Local Type Inference. We discuss challenges of applying the same approach to

the more realistic variants that are less strict by not always attempting to infer optimal type

arguments.

Debugging Local Type Inference variants

The simple version of Local Type Inference presents a number of expressiveness problems by

inferring unintended type variable instantiations or not inferring them at all, which may hin-

der its adoption. The work by Hosoya and Pierce [1999] illustrates two of the main problems

of Local Type Inference as:

• Hard-to-synthesize-arguments - a category of problems largely related to the inability

to infer types of anonymous functions that are arguments for polymorphic parame-

ter types. Most of the non-polymorphic parameter types that exhibit such issues have

been dealt with by the introduction of Colored Local Type Inference which propagates

partial type information between adjacent nodes of the type derivation tree.

• No best type argument - synthesis of local type arguments defines strict rules on how a

type substitution is chosen from the collected type constraints. This not only leads to

99



Chapter 3. Guided-analysis for type derivation trees

situations where the inferred type is under-approximated but may also imply that the

type substitution is undefined when a suboptimal solution is available.

The second argument has been the source of the biggest criticism of the local type inference

approach, especially for type parameters appearing covariantly and contravariantly in the

result type of the function. We illustrate the problem using the function application involving

reference values (we assume the notation of Simply Typed Lamda Calculus with References

defined in Pierce [2002]).

Example: Inference of instantiations for type variables that appear invariantly

For illustration purposes we consider a function application ‘ref 1’ where the ref function

of type ∀b. b → REF[b] is applied to a constant value 1 of type Int . The application returns a

reference value.

The application of the (app) type inference rule yields two subtyping derivations (�{ b } Int <:

b ⇒ {Int <: b <:�}) and (�{ b } REF[x]<:�↘ ?⇒ {⊥ <: b <:�}). The constraint generation

infers some { b }-constraint set C where {Int <: b <: �} ∈C . The specification for inferring

the minimal type substitution dictates that the σC ,REF[b] substitution is undefined because

type REF[b] is invariant in the type variable b. The real-world implementations of Local Type

Inference, such as the one present in Scala, do not attempt to be complete and instead instan-

tiate the type variable to the lower type bound Int . Any complete type debugging technique

that analyzes the synthesis of type arguments has to take into account the possibility of such

non-optimal choices.

Modifying the semantics of the minimal substitution

The specification of the minimal type substitution for the type that is invariant in some type

variable a requires both of its type bounds to be equal. This dictates the definition of the

SLICESTVAR function in line 7 of Figure 3.24. The analysis of a non-optimal implementation,

that selects either a lower or upper type bound, can be directly reflected by modifying the

fragment of the function with

• either slicesTVARAux+((app), a, Θa),

• or slicesTVARAux-((app), a, Θa), respectively,

leaving the core of the TypeFocus-based analysis unchanged.

Minimal and maximal type substitution in a variant of GJ

The work of Hosoya et al. does not propose a definite solution when an optimal minimal

type substitution does not exist. The first formalization attempt of Generic Java provided an

early attempt to the challenge in Bracha et al. [1998]; the proposed formalization of type in-

ference for Java with Generics used a special undefined type � which allowed for expressing

100



3.7. On understanding the type variable instantiation

compatibility between different type constructors and, as a result, removing the need for ex-

plicit type arguments all together. Unfortunately, the Java formalization has been shown to

lead to soundness issues in Jeffrey [2001]. Due to a lack of any formal specification of the vari-

ant of GJ that Scala implements, this section discusses how the TypeFocus-based technique

proposed in this thesis applies to the elements of the informal type system from Section 2.2.

The proposed type system of GJ uses a modified minimal type substitution specification in or-

der to infer type arguments for function applications with elided type arguments, as defined

in the (INST-APP) rule in Listing 2.6. Unlike Local Type Inference it also defines the specifica-

tion of the maximal type substitution. The maximal type substitution is used for propagating

partial type information when instantiating polymorphic types of the arguments.

The specifications for inferring the minimal and the maximal type substitution σC ,T from

the a-constraint set C with respect to some type T , can be summarized as follows:

• The minimal type substitution:

For each {Si <: ai <: Ti} ∈C :

– If T is constant or covariant in ai , then σC ,T (ai )= Si

– else if T is contravariant in ai , then σC ,T (ai )= Ti

– else if T is invariant in ai , then σC ,T (ai )= Si

– else σC ,T is undefined.

• The maximal type substitution:

For each {Si <: ai <: Ti} ∈C :

– If T is constant or covariant in ai , then σC ,T (ai )= Ti

– else if T is contravariant in ai , then σC ,T (ai )= Si

– else if T is invariant in ai , then σC ,T (ai )= Ti

– else σC ,T is undefined.

The specifications refine the inference conditions for types that are invariant in a given type

variable. The change does not pose any problems for our type debugging techniques since

we already separate the analysis of lower and upper type bounds. The main challenge for

101



Chapter 3. Guided-analysis for type derivation trees

understanding the decisions of Scala’s type inference, in comparison to Colored Local Type

Inference, is the mechanism that instantiates the polymorphic types of the arguments. In the

remainder of the section we illustrate how a modest modification to the TypeFocus generation

rules can infer TypeFocus sequences that faithfully represent type constraints that keep track

of such inferred instantiations. Unlike the other parts of the chapter, the explanation will be

example-driven, due to a lack of formal specification for the type system.

Extending the core language with Li st type constructors

For illustration purposes the types of the core language are extended with a Li st type con-

structor that is invariant in its only type parameter:

Terms E = ...

Type schemes U = ∀a.T

Types T,S,R = a | � | ⊥ | T → T | {x1 : T, ..., xn : T } | LIST[T]

Environments Γ = ...

This, in turn, dictates an extension to the TypeFocus specification from Definition 4, such

that Θ = ... | φList. Semantically, φList extracts the type argument from the type application

involving Li st type constructor such that:

(φList ::Θ
′)(T ) =

{
Θ′(A) if T = LIST[A]

inr
〈

T, φList ::Θ
′〉 else

To illustrate the analysis of type scheme instantiation we will use a few auxiliary functions,

defined in Odersky [2002]. The type signatures of the functions are:

nil : ∀a. ()→ LIST[a]

cons : ∀b. (b, LIST[b])→ LIST[b]

singleList : ∀b. b → LIST[b]

toTop : �→⊥ (equivalent to: val x : �= ...)

toInt : Int →⊥ (equivalent to: val x : Int = ...)

toIntList : LIST[Int]→⊥ (equivalent to: val x : LIST[Int]= ...)

Functions nil, cons and singleList provide basic operations on lists, such as creation of

an empty list, appending an element to the list and creating a single element list, respec-

102



3.7. On understanding the type variable instantiation

ΘG(+, <)
T �= ? T �= a

a, +,W �g en a <: T � ε
ΘG(+, >)

T �= ? T �= a

a, +,W �g en T <: a � { [ ] }

ΘG(-, <)
T �= ? T �= a

a, -,W �g en a <: T � { [ ] }
ΘG(-, >)

T �= ? T �= a

a, -,W �g en T <: a � ε

ΘG( TOP)
S �∈ {a,⊥, ? }

a, ψ±,W �g en S <:� � ε
ΘG(BOT )

S �∈ {a,�, ? }

a, ψ±,W �g en ⊥ <: S � ε

ΘG(<, ?)
a, ψ±,W �g en ? <: T � ε

ΘG(>, ?)
a, ψ±,W �g en T <: ? � ε

...

ΘGVAR
a, ψ±,W �g en a <: a � ε

ΘG(LIST )

a ∈ (fv(∀b.LIST[R]∪∀b.LIST[S]))

a, ψ±, W ∪b �g en R <: S � Θ
′

a, ψ±, W ∪b �g en S <: R � Θ
′′

a, ψ±, W �g en ∀b.LIST[R] <: ∀b.LIST[S] � {
φList ::Θ

′ }∪{ φList ::Θ
′′ }

Figure 3.26: Extension of the a, ψ± ,W �g en S <:T � Θ TypeFocus generation judgment
for the algorithmic rules presented in Figure 2.7 in Section 2.2. Unmodified rules are
represented using the "..." notation, and any changes to the existing rules are emphasized
using the grayed-out boxes.

tively. Functions toTop, toInt and toIntList encode variable assignment that is present in

the original description; the functions take a single argument having a type variable-free type,

allowing us to illustrate how a non-polymorphic function can propagate type information to

its arguments.

In Figure 3.26 we define a modest extension of the TypeFocus generation judgment, and its

ΘG rules, to reflect the constraint generation rules proposed in Section 2.2. The additional

rule ΘG(LIST ) generates type selectors from the subtyping derivation between two type ap-

plications involving list type constructors. The new ΘGVAR rule (along with the highlighted

T �= a and T �= ? premises that ensure unambiguity) corresponds directly to the constraint

generation rule (CG-Var) that compares the type variable that appears on both sides of the

subtyping check. The definition also takes into account the presence of the ? constant types

that do not introduce any new type constraints to the constraint sets.

Debugging the instantiation of polymorphic types in GJ

With the auxiliary functions we will now illustrate that the decisions that instantiate the poly-

morphic types of arguments (type schemes) from the formal types of the parameters of the

103



Chapter 3. Guided-analysis for type derivation trees

function can be translated to TypeFocus instances and thus analyzed by our TypeFocus-based

approach. For reference, Figure 3.27 provides a summary of the instantiation rules that de-

fine the instantiation judgment.

(Inst-REFL) �, R;Γ� e : T inst e : T
(Inst-∀) fv(R)=W W, � �a T <: R ⇒C max σC ,R

�, R;Γ� e :∀a.T inst e[σC ,R a] : σC ,R T

(Inst-1)
�, R;Γ� e : U inst e’ : T

a, R;Γ� e : U inst e’ : T
(Inst-2)

� ∃e ′,T ′. �, R;Γ� e : U inst e’ : T
R ≈a,b R ′ �, [?/b]R ′;Γ� e : U inst e’ : T

a, R;Γ� e : U inst e’ : T

Figure 3.27: The formalization of the instantiation judgment as taken from Odersky
[2002]. The (Inst-∀) rule uses the constraint generation judgment rather than the sub-
sumption relation of Γ� S ≤ T , to highlight the source of type substitution.

• Case (Inst-REFL) :

The rule applies when the inferred type of the argument is non-polymorphic, and the

expected type R has been fully defined, meaning it has no unresolved type variables.

By definition of the rule, the instantiation of the type of the argument is the type itself.

For example, an argument 1 in the function application toInt(1) will not involve any

type variable instantiation and the subtyping derivation for the type of the argument

and the expected type leads to an empty constraint set, i.e., �� Int <: Int ⇒�. The

subtyping derivation immediately leads to an equivalent empty set of TypeFocus in-

stances.

• Case (Inst-∀) :

The rule applies when the expected type R of the argument has been fully defined, but

the inferred type of the argument is a type scheme.

For example, the rule will type check the function application toIntList(nil()) and

assign type Int . To instantiate the type of the argument ni l (), ∀a.LIST[a], the rule

uses the expected type LIST[Int] coming from the parameter of the function. Using

the regular constraint generation judgment (�{ a } LIST[a] <: LIST[Int]⇒C ) it infers

the constraint set C , where {Int <: a <: Int} ∈C , and the maximal type substitution

Int for the type variable a. The inferred type substitution is sufficient to instantiate the

∀a.LIST[a] type scheme to type LIST[Int].

The type selectors inferred from the subtyping derivation between the type of the argu-

ment and the type of the parameter of the function are:

– a, +, ��g en LIST[a] <: LIST[Int] � Θ
′
, where Θ

′ = { [φList]
}
.

– a, -, ��g en LIST[a] <: LIST[Int] � Θ
′′

, where Θ
′′ = { [φList]

}
.

104



3.7. On understanding the type variable instantiation

The sequences represent the type constraints of the type variable a and allow us reflect

the equivalent maximal instantiation of type schema inferred from the type of the pa-

rameter of the function because
∧
Θ
′′

(LIST[Int]) = Int . This in turn means that we

can employ the TypeFocus-based analysis in order to analyze the instantiation of the

type scheme for this particular case.

• Case (Inst-1) :

The rule applies when the expected type of the argument R has been partially defined

and may contain some uninstantiated type variables.

For example, the rule allows to assign type LIST[Int] to an application cons(1, nil()).

In accordance with the rule (INST-APP), types Int and∀a.LIST[a] are first assigned to

the arguments of the application, respectively. For the first argument, the instantiation

of type Int is type Int itself, according to the derivation involving rules (Inst-1) and

(Inst-REFL). For the type of the second argument, the (Inst-1) rule instantiates the

type of ni l (), ∀a.LIST[a], with the expected type LIST[b], where b is promoted to the

set of constant type variables. The instantiation of the type of the ni l () argument infers

an { a }-constraint set C in the ({ b } ,��{ a } LIST[a]<: LIST[b]⇒C ) judgment, where

{b <: a <: b} ∈ C . Consequently, the maximal instantiation of the ∀a.LIST[a] type

scheme is inferred as type LIST[b].

Using the TypeFocus generation rules, the subtyping derivation leads to the following

TypeFocus instances:

– a, +, { b }�g en LIST[a] <: LIST[b] � Θ
′
, where Θ

′ = { [φList]
}
.

– a, -, { b }�g en LIST[a] <: LIST[b] � Θ
′′

, where Θ
′′ = { [φList]

}
.

The inferred TypeFocus instances agree with the inferred lower and upper type bounds

of the type variable a, and again can reflect the maximal instantiation of type scheme

from the parameter of the function because
∧
Θ
′′

(LIST[b])= b.

• Case (Inst-2) :

Similarly as in the case of the rule (Inst-1), the (Inst-2) applies when the expected

type R has been partially defined and may contain some uninstantiated type variables.

In order to disambiguate the application of the two rules, (Inst-2) applies only if the

former has failed, as expressed through the � ∃e ′,T ′. �, R;Γ � e : U inst e’ : T meta

premise.

For example, the rule will assign type LIST[�] to a singleList(nil()) function appli-

cation. The type scheme of the ni l () argument, ∀a. LIST[a], cannot be instantiated

with the expected type b because of the shape mismatch with the type of the formal

parameter.

Rather than rejecting such an expression, the (Inst-2) rule substitutes constant type

variables with the wildcard constant types, as expressed by the notation of the approx-

imated type R ′ (R ≈a,b R ′) and the wildcard type substitution ([?/b]R ′). This leads to a

105



Chapter 3. Guided-analysis for type derivation trees

constraint generation judgment (�a LIST[a] <: ?⇒ C ), where {⊥ <: a <: �} ∈C , the

inference of the maximal type substitution of the type variable a to type �, and the

instantiation of the ∀a.LIST[a] type scheme to type LIST[�].

The type selectors inferred from the same subtyping derivation faithfully represent the

type constraints of the type variable a:

– a, +,��g en LIST[a] <: ? � Θ
′
, where Θ

′ = ε.

– a, -,��g en LIST[a] <: ? � Θ
′′

, where Θ
′′ = ε.

The inferred TypeFocus instances agree with the inferred lower and upper type bounds

of the type variable a, and again can reflect the maximal instantiation of the argument’s

type scheme from the parameter of the function because
∧
Θ
′′

(b)=�.

The informal explanation of the rules that instantiate type schemes and their type variables

illustrates that the elements of their non-trivial typing decisions can be fully represented

through TypeFocus instances, as well. It only took a modest extension of the ΘG generation

rules to reflect the modified type system formalization. This in turn

We notice that the proposed GJ formalization, and its potential implementations, illustrate

an interesting property of modern type systems. The locality and separation of the individual

typing decisions, such as the instantiation of type schemes, inference of type substitutions or

simply type assignment of types to terms, may lead to suboptimal solutions but at the same

time are far more suitable for type debugging purposes. The analysis techniques can be easily

modularized and customized, depending on the needs of the underlying type system.

Type graphs

Type systems using global type inference, i.e., when type constraints are collected globally

and solved in a separate stage, lack in general our freedom to customize the analysis algo-

rithm without compromising or modifying the underlying type debugging technique. For

example the type inference algorithms used for the traditional Hindley-Milner type systems

rely on the unification of the collected type constraints. The unification leads to the inference

of type variable substitutions but typically does not attempt to keep track of the steps that led

to it.

Type graphs is a data structure introduced by Heeren et al. in Heeren et al. [2003a], Heeren

[2005] to represent substitutions for type variables and which allows to mitigate the funda-

mental drawbacks of unification. Type graphs not only describe the direct equality type con-

straints collected from the Haskell programs but also the complete decision process explain-

ing the reasons for the unification. In comparison to similar unification-based approaches,

the data structure does not introduce implicitly any bias in solving the collected type con-

106



3.7. On understanding the type variable instantiation

straints and is equally suitable for detecting, and representing inconsistent sets of type con-

straints for the erroneous programs.

Type graphs represent equality type constraints between the type constants, e.g., A, and

type variables, e.g., v , in A ≡ v , as well as composite types involving type constructors, such

as F v0 v1 ≡ F A B , for some binary type constructor F . Type variables, type constants and

type applications correspond to vertices in the graph. The initial equality type constraints

are represented by the undirected edges between them. The vertices of the applied types are

further decomposed into so called term graphs where the individual type elements, again rep-

resented as the derived vertices, are connected with the type constructors using the directed

edges. That is why for the equality type constraints between the applied types, the data struc-

ture propagates the equality information down to the corresponding type elements of the

types and represents them using the so called implied or derived edges. The type errors in

such graphs are detected by essentially finding different type constants within the group of

vertices connected using only the initial and the implied edges. The advantage of the type

graph structure is that even though the inconsistencies can involve the vertices represent-

ing the type elements of the applied types, the directed edges of the term graphs allow us to

trace back to the initial equality type constraints. Thus one can reduce the inconsistencies to

erroneous paths on such type graphs without committing to any unification solving strategy.

The main disadvantage of the type graphs approach is that the data structure can grow arbi-

trary large. In order to limit the scope of the unification the authors of Heeren [2005] propose

to limit the number of the derived edges under certain conditions. Furthermore, similarly

to how we deal with space explosion in Section 5.5, they can limit the size of type graphs to

individual binding groups, which ads the local aspect to the global type inference approach.

The debugging of type derivation trees representing the decision of local type inference in-

directly constructs type graphs when analyzing the subtyping checks between types (either

correct and the failed ones). For example, the analysis of the subtyping check A <: B in the

function application type inference rule, for some types A and B where either type may con-

tain some type variables, generates the local type graph, where we construct term graph for

each of the individual type A and B, and the added lower or upper bounds of type variables rep-

resent the derived edges. The TypeFocus values that are inferred from the subtyping checks

represent the same concept as the paths that are inferred from the type graph data structure.

In our case however, the TypeFocus selections, or paths, are later used in order to navigate fur-

ther decisions of the adjacent nodes of the type derivation tree, since the reconstructed type

graphs are only local with respect to the type inference rules. Moreover the local type graphs

are reconstructed on-the-fly from the already committed decisions of local type inference,

rather than influencing it.

107



Chapter 3. Guided-analysis for type derivation trees

Conclusion

The role of TypeFocus is far more fundamental that just an encapsulation of target type in-

formation at each node of the type derivation tree, or an encapsulation of type constraints

information from the subtyping derivation; the TypeFocus serves as an abstraction that can

unify the consequences of different typing decisions. The latter can later be used to guide the

analysis using the established TypeFocus-based algorithm.

108



3.8. On understanding the Type Signature Typing Slice

3.8 On understanding the Type Signature Typing Slice

The algorithm for analyzing the decisions of type derivation trees returns Typing Slices to ex-

plain the origin of a particular target type. Among different kinds of Typing Slices, the Type

Signature Typing Slice is always final and directly corresponds to some synthesized type in-

formation and a program location. In this section we describe how the TypeFocus that is part

of every Typing Slice allows for the reconstruction of the source location from the underlying

type inference judgment.

The core TypeFocus-based algorithm has identified a number of scenarios where a Type Sig-

nature Typing Slice is returned as an explanation of some target type. The algorithm for ana-

lyzing the source of the propagation of the expected type (Section 3.6) and the algorithm for

analyzing the source of the type variable instantiation (Section 3.7.3) also explicitly return a

Type Signature Typing Slice under certain circumstances.

We list all scenarios in the analysis of the decisions of the type inference rules that return

the Type Signature Typing Slice, and explain how their elements translate directly to program

locations:

• Case 〈νTSIG, (P, Γ�w x : Γ(x)↗ P ), Θ〉 (the SLICES(var) function in Figure 3.13):

The type of the variable, coming from the environment Γ, is identified as the source of

the target type. Therefore the location of the variable itself implies the target type.

Admittedly, such a source may be considered as not final because it depends on the

node in the type derivation tree where the environment is extended with a variable type

information. For type derivation trees of the core language, finding such node would

simply resolve to a trivial backtracking and is omitted. For languages with mutable

state or non-local scopes of the environment an implementation-dependent search

on the type derivation tree has to be developed.

By definition of Typing Slices the included TypeFocus is well-formed with respect to the

type of the variable (Θ,fv(Γ(x)) �WF Γ(x)). Consequently, the source of the target type

can be identified from the source of the type assigned to the variable using the provided

TypeFocus value.

• Case
〈
νTSIG, (?, Γ�w fun[a](x : T )E :∀a.T → S), Θ

〉
(the SLICES(abst p,?) function in Fig-

ure 3.13) :

By definition of Typing Slices the included TypeFocus is well-formed with respect to the

inferred type of the function (Θ, a �WF ∀a.T → S). Using the Canonical Forms Lemma

(Lemma 3.5), head(Θ) is either [ ], [φfun-param] or [φfun-res]:

– head(Θ) = [ ]:

By Lemma D.2, Θ = [ ]. Therefore the target type is represented by the function

109



Chapter 3. Guided-analysis for type derivation trees

type constructor and the abstraction term of the inference judgment explains the

origin of the target type.

– head(Θ) = [φfun-param]:

From the definition of the type inference rule the source of the target type lies in

the part of the explicit type of the parameter of the abstraction, T . To explain the

origin of the target type we can apply the tail of the TypeFocus to the type of the

parameter, such that tail(Θ)(T ) = inl T ′ for some type T ′. The T ′ fragment of

the type of the parameter represents the smallest program fragment explaining

the source of the target type.

– head(Θ) = [φfun-res]:

By definition of the SLICES(abst p,?) function, the case is not possible.

• Case
〈
νTSIG, (∀a.P → P ′, Γ�w fun[a](x : T )E :∀a.T → S ↗∀a.P → P ′), Θ

〉
(in the SLICES(abst p) function):

By definition of Typing Slices the included TypeFocus is well-formed with respect to the

assigned type of the function (Θ, a �WF ∀a.T → S). Using the same argument as for the

SLICES(abst p,?) function, the source of the target type is either the abstraction term of

the judgment or the explicit type of the parameter of the function.

• Case 〈νTSIG, (?, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xn : Tn}), Θ〉 (the SLICES(rec?)

function in Figure 3.16):

By definition of Typing Slices the included TypeFocus is well-formed with respect to the

inferred type of the record (Θ,fv({x1 : T1, ..., xn : Tn}) �WF {x1 : T1, ..., xn : Tn}). Using

the Canonical Forms Lemma (Lemma 3.5), head(Θ) is either [ ] or [φselxk
] for some k

such that 1≤ k ≤ n:

– head(Θ) = [ ]:

By Lemma D.2, Θ = [ ]. Therefore the target type is a record type and the record

term of the judgment, {x1 = F1, ..., xn = Fn}, explains the origin of the target type.

– head(Θ) = [φselxk
]:

By definition of the SLICES(rec?) function, the case is not possible.

• Case 〈νTSIG, ({x : P }, Γ�w F : {x : T }), Θ〉 (the slicesPtRoot(sel) function in Figure

3.20):

By definition of Typing Slices the included TypeFocus is well-formed with respect to the

inferred type of the term (Θ,fv(T )�WF T ). From the definition of the slicesPtRoot(sel)
function, head(Θ) = [ ], and Θ = [ ] (Lemma D.2). Since the TypeFocus is always an

identity type selection, the target type refers to the record type, and the underlying

term F explains the source of the target type.

• Case
〈
ν⊥TSIG, (P, Γ�w F(E) : σC1,C2,T T ↗ P ), Θ

〉
(the slicesTVARAux+ function in Fig-

ure 3.24):

110



3.9. Conclusions

The Type Signature Typing Slice explains that the target type ⊥ has been inferred as a

result of lack of type constraints in the function application with elided type arguments.

The identity of the type variable that is instantiated to the⊥ type can trivially be recov-

ered using the included TypeFocus value: given ( ?, Γ�w F : ∀a.S → T ) for some S and

T , Θ(T ) = inl x and x ∈ a. Lack of type constraints only indirectly corresponds to the

function application program location, therefore a more elaborate explanation of the

target type would have to be put in place.

• Case
〈
ν�TSIG, (P, Γ�w F(E) : σC1,C2,T T ↗ P ), Θ

〉
(in the SLICESTVAR- function):

The case is analogous to the slicesTVARAux+ function, except for the inferred type vari-

able instantiation,�.

The Type Signature Typing Slice represents a final step in the analysis of the source of the

target type. This means that any type debugging mechanism that implements the TypeFocus-

based analysis has to provide a detailed description for every kind of Type Signature Typing

Slice, e.g., explaining the link of Typing Slices, their typing judgments and TypeFocusvalue

with the source code. As we have shown in the above cases, the included TypeFocus value

is sufficient to extract fragments of the explicit type annotations that determine the source

of the target type. We also notice that while the number of possible Type Signature Typing

Slices is not small, it is tractable and can be trivially defined for any implementation of our

type debugging technique.

3.9 Conclusions

We have presented a new approach to understanding the decisions of Local Type Inference,

and its variants. We assume the existence of a type derivation tree representing the type

checking of the program and provide means to navigate its decisions in a controlled way. De-

pending on which type element of the inferred type of the term we want to explain, there are

potentially many different combinations of the nodes of the type derivation tree that intro-

duce the type for the first time. We provide a systematic and a deterministic way of stepping

through the adjacent nodes of the type derivation tree based on a concept of type selection.

While simple, the type selection was shown to be sufficient to direct the analysis of for exam-

ple non-trivial type variable instantiations that involve the analysis of subtype checking as

well.

The formal approach illustrates how the analysis of some selected fragment of the inferred

type of the term can be continued among the different type checking decisions that can influ-

ence it. In other words the inputs and outputs of the algorithm and the specialized functions

always explain the same initial type selection that triggered the analysis in the first place. As

part of the analysis of the initial inference judgment, each of the explored nodes of the type

derivation is associated with a unique TypeFocus type selection. This in turn means that the

111



Chapter 3. Guided-analysis for type derivation trees

final nodes of the TypeFocus-based analysis remain loosely connected with the initial infer-

ence judgment, and its type selection, without maintaining an expensive and complex data

structure on top of the type derivation tree.

Apart from being able to separate the analysis of different kinds of the type checking deci-

sions, the approach mimics the mechanism of local type inference; the local type inference

approximates types and propagates the type information in multiple steps, between the ad-

jacent nodes. Similarly, the exploration of the nodes of the type derivation tree is based on

the type selection that is constructed only from the previously visited, adjacent nodes.

112



Chapter 4

Foundations of type mismatch errors

The core TypeFocus-based algorithm (Section 3.5.3) analyzes typing decisions of type deriva-

tion trees. The algorithm is defined for type derivation trees, or their fragments, that are

derivable, i.e., no errors were encountered during the application of type inference rules. In

this section we show that the non-derivable parts of type derivation trees, i.e., the branch of

the type derivation that failed to infer the type of the term, can be reduced to a TypeFocus

value and we can use it to trigger the TypeFocus-based analysis techniques from the previous

chapter. Indirectly, the translation also shows how to find the initial inputs for the TypeFocus-

based analysis functions for any type mismatch error.

(var) ?, w Cons:

(app)
(type-mismatch)

(var)

(app)

(app)
..., w f

(app)
w

Typechecking application of

Typechecking function argument fun(x,y)  Cons(x + 1,y) 

foldRight(xs)(Nil())(f): ?, 

w foldRight(xs):?, 
((Int,b) b) b <:   ?  C6

List[ ]<: b  C5

foldRight(xs)(Nil())(f)

w Nil():{a }List[a] ?[?/b]b, 

w Nil: a.() List[a] ??, 
List[a] <:   ?  C4

1 = , x: Int, y: List[ ] 

a.((a, List[a])  List[a]) w(app)        [?/a]a, 1 (x+1): Int  ?
w(var) [?/a]List[a], 1 List[ ]  List[?] List[ ] <:   List[a]  C3

Int <: a  C1
List[ ] <: List[a]  C2

b.(b ((Int,b) b) b) 

w foldRight(xs)(Nil())(f): ?, 

11

22

33

222

w foldRight(xs)(Nil()): {b List[ ]}((Int,b) b) b ??, 

Cons(x+1, y): {a Int}List[a]  List[ ]wList[ ], , x: Int, y: List[ ] 
(abs)

..., w f

w fun  (x,y)  Cons(x + 1,y):(Int, List[ ]) List[ ], 

Figure 4.1: Fragment of a type derivation tree for the application foldRight(xs)(Nil())( f ),
where xs = Cons(1,Nil()) and f = fun(x,y) → Cons(x + 1,y). This section provides the
analysis and the translation of the highlighted elements of the tree.

113



Chapter 4. Foundations of type mismatch errors

We show in this section that the problem of explaining a type mismatch error in a type deriva-

tion tree constructed using the rules of Colored Local Type Inference consists of three parts.

For clarity, we illustrate each of them on the familiar foldRight function application in Figure

4.1:

• We translate the conflicting types that failed the subtyping relation into TypeFocus in-

stances (Section 4.2, the highlighted box 1 in Figure 4.1).

• We translate the non-derivable parts of type derivation trees into TypeFocus instances

(Section 4.1, the highlighted box 2 in Figure 4.1). The non-derivable tree refers to a

fragment of the complete type derivation tree that failed to infer the type of the term

but nevertheless retained the structure of the derivation, including the kind of type

inference rules applied and their prototype elements.

• We locate the error-free type inference judgment which introduced the conflicting ex-

pected type, or part of it, for the first time (Section 4.1, the highlighted box 3 in Figure

4.1). The located inference judgment and the reconstructed TypeFocus value allows us

to trigger a regular TypeFocus-based analysis algorithm in search of the source of the

expected type.

The type inference rules of Colored Local Type Inference precisely define typing decisions

where a type mismatch error can occur. The errors materialize due to a failed ↗ adaptation

attempt between the synthesized type of the term and the inherited expected type. In Section

4.3 we define a complete set of steps necessary to explain the source of the two types that

participate in a type mismatch.

We conclude with a complete example of a non-trivial type mismatch conflict that is ex-

plained formally using only our TypeFocus-based approach (Section 4.4).

4.1 Inference of a Propagation Root

We recall that the conflicting expected type, in a failed adaptation process, is propagated in

the non-derivable fragments of type derivation trees in an identical way as for the error-free

type derivation trees, i.e., it is driven by the prototype component in the type inference rules.

The observation implies that the propagation of the conflicting prototype is just a special

case of the analysis of the propagation of the expected type that we formalized in Section 3.6.

The Prop rules (Figure 3.18 in Section 3.6.1), that realize the search for the Propagation Root,

use the prototype information in order to infer the equivalent TypeFocus values. Because

none of the rules utilize the information about the inferred types of terms, and are only-

driven by the kind of the type inference rule used, the search for the Propagation Root in

a non-derivable inference judgment is just a special case of the �p prototype propagation

114



4.1. Inference of a Propagation Root

judgment. That is why we define a propagation judgment for the erroneous type derivation

trees in an almost identical way to its derivable counterpart from Section 3.6.1:

(Θi �p
e (P i , Γi �w E i : T i )� 〈(P o , Γo �w E o : T o),Θo〉)

The �p
e propagation judgment takes a TypeFocus instance (Θi) and a failed inference judg-

ment ((P i , Γi �w E i : T i )), such that (Θi,� �WF P i ) and (Θi(P i )tpe �= ?). The propagation

judgment infers a tuple consisting of the inference judgment (P o , Γo �w E o : T o) and a Type-

Focus Θo. The returned inference judgment represents the Propagation Root of P i and the

returned TypeFocus value reduces the Prototype Propagation Path of P i to a type selection,

such that Θo(P f )tpe == Θi(P i )tpe. The lack of the inferred type information is represented

through a grayed-out part in the propagation judgment and can be simply ignored.

For easier understanding, the �p
e propagation judgment is realized in the algorithmic fashion

using the PrototypeBacktrackError function in Figure 4.2, similarly to its error-free counter-

part (Figure 3.19). The PrototypeBacktrackError function differs in two aspects:

• The inferred type component is missing.

• The cases for the (abst p,�), (rec�), (appt p,⊥), (app⊥) rules and a subcase of the (rec)

rule are omitted because they propagate the top type. From the definition of the ↗
operation, ∀T. (T ↗�)=�, therefore type�will never lead to a type mismatch error.

The algorithm pattern matches on the kind of the last type inference rule used in the parent

of the input inference judgment. Pattern matching either backtracks through the nodes of

the type derivation tree on the prototype propagation in a recursive manner (the type infer-

ence rules (abs), (abst p ) and (rec)), or returns the Propagation Root when the prototype value

is freshly introduced from one of its typing decisions (the type inference rules (app), (appt p )

and (sel)). The individual recursive invocations reduce the prototype propagation to the ap-

propriate type selections, based on the kind of the type inference rule. The grayed-out type

elements indicate the failure to infer the type of the term.

Using the above argument, we notice that all properties of the �p propagation judgment for

the error-free type derivation trees apply directly to the �p
e propagation judgment for the

erroneous type derivation trees. We refer the reader to Section 3.6.1 for details.

Analysis of the Propagation Root (for non-derivable inference judgments)

The PrototypeBacktrackError function from Figure 4.2 identifies three type inference rules

as a potential Propagation Root for a non-? in a partially derivable type derivation tree. Sim-

ilarly as in their error-free counterparts, the typing decisions that infer the fresh prototype,

P f , in the Propagation root may differ significantly from rule to rule.

115



Chapter 4. Foundations of type mismatch errors

FUNCTION PrototypeBacktrackError(Θi, (P i , Γi �w E i : T i ))=
((P i , Γi �w E i : T i )) ↓ = �w

parent

MATCH (�w
parent) OF

CASE (abs) : PrototypeBacktrackError(φfun-res ::Θ
i, �w

parent)
CASE (abst p ) : PrototypeBacktrackError(φfun-res ::Θ

i, �w
parent)

CASE (rec) :
(�w

parent) == (rec) {x1 : P1, ..., xm : Pm}, Γ�w {x1 = F1, ..., xn = Fn} : {x1 : T1, ..., xm : Tm}
(P i , Γi �w E i : T i ) == (Pk , Γ�w Fk : Tk ) for 1 ≤ k ≤m
PrototypeBacktrackError(φselxk

::Θi, �w
parent)

CASE (app) :
〈
�w
parent, Θi

〉
CASE (appt p ) :

〈
�w
parent, Θi

〉
CASE (sel) :

〈
�w
parent, Θi

〉

Figure 4.2: The algorithmic definition of the Θi �p
e (P i , Γi �w E i : T i ) �

〈(P o , Γo �w E o : T o),Θo〉 prototype propagation judgment for erroneous type derivation
trees.

The search for the source of the fresh prototype introduced in a non-derivable inference judg-

ment is realized by the SLICESPTERROR partial function. Similarly as in the case of its error-

free counterpart ( the slicesPtRoot function in Section 3.6.1), the SLICESPTERROR function

is of type ( (P, Γ�w E : T ), Θ ) → ν3; the function takes the inference judgment representing

the inferred Propagation Root, and the TypeFocus that expresses a well-formed type selec-

tion on a freshly introduced prototype P f , where P f belongs to the premise of the provided

Propagation Root judgment, and returns the source of the Θ(P f )tpe prototype in the form of

Typing Slices. The grayed-out part of the inferred types indicates that the function accepts

judgments that failed to infer the type of the term.

The SLICESPTERROR function is realized through a set of type inference rule-specialized par-

tial functions in Figure 4.3. Each of the possible type inference rules is considered separately,

as indicated through the rule subscript in the function name SLICESPTERRORrule. For clarity,

we highlight the position of the fresh prototype P f in Figure 4.3 with gray boxes. The defini-

tion of the algorithm assumes that Θ,fv(P f )�WF P f , where the P f prototype is type inference

rule-specific.

The SLICESPTERROR and slicesPtRoot functions differ only in the interpretation of the de-

cisions of the (sel) type inference rule that infers the type of record member selection. Un-

like the error-free counterpart, we cannot report the intermediate Prototype Typing Slice to

represent the source of the conflicting prototype because Typing Slices require a derivable in-

ference judgment. Instead, the function inlines the analysis of the implicit Prototype Typing

Slice that is reported in the slicesPtRoot function.

116



4.2. From a failed subtyping derivation to a TypeFocus

FUNCTION SLICESPTERROR(app)

(
(app) (P, Γ�w F (E): σC1∪C2,T T ↗ P ), Θ

)=
(app)

?, Γ,�w F :∀a.S → T [?/a]S ,Γ�w E : S′ �a S′ <: S ⇒C1
�a T <:�↘ P ⇒C2

P, Γ�w F (E): σC1∪C2,T T ↗ P

1 SLICES((?, Γ,�w F :∀a.S → T ), φfun-param ::Θ )

FUNCTION SLICESPTERROR(appt p)

(
(appt p) (P, Γ�w F

[
R
]

(E): [R/a]T ↗ P ), Θ
)
=

(appt p )
?, Γ,�w F :∀a.S → T [R/a]S , Γ�w E : [R/a]S

P, Γ�w F
[

R
]

(E): [R/a]T ↗ P

1

2

3

Θcont = φfun-param ::Θ

IF (is-tvar(Θcont(S)tpe, a)) {
〈
νTVAR, (?, Γ,�w F :∀a.S → T ), Θcont

〉
}

ELSE SLICES((?, Γ,�w F :∀a.S → T ), Θcont)

FUNCTION SLICESPTERROR(sel) ( (sel) (P, Γ�w F.x: T ), Θ )=

(sel)
{x : P } , Γ,�w F : {x : T }

P, Γ�w F.x: T

1

2

3

4

5

IF (head(Θ) == [φselx ])
tail(Θ)�p

e (P, Γ�w F.x: T )� 〈(P o , Γo �w E o : T o),Θo〉
SLICESPTERROR((P o , Γo �w E o : T o), Θo)

ELSE

{ 〈νTSIG, ({x : P }, Γ�w F : {x : P }↘⊥), tail(Θ)〉 }

Figure 4.3: The definition of the SLICESPTERROR partial function of type
( (P, Γ�w E : T ), Θ ) → ν3 that locates the source of the fresh prototype P f r esh that
is introduced in the non-derivable judgment of the Propagation Root. The highlighted
parts represent the possible fresh P f prototypes introduced for the first time in the
Propagation Roots.

4.2 From a failed subtyping derivation to a TypeFocus

A failed↗ adaptation between the two types S and T represents an inability to find the small-

est supertype of S that structurally matches the type T . In other words, a failed S ↗ T adapta-

tion is equivalent to a failed S <: T subtyping derivation. In order to explain the source of the

conflicting elements of the synthesized term type and the inherited expected type, we have

to take into account the details of the failed subtyping derivation in our TypeFocus-based

exploration.

We define a translation of the failed subtyping derivation to equivalent TypeFocus type selec-

tions in the judgment of the form (�sub
decl S �<: T → Θ). The judgment defines the inference

of TypeFocus instances (Θ) that extract the conflicting type elements from the types S and T .

Figure 4.4 provides a definition of the subtyping judgment in terms of the declarative rules

117



Chapter 4. Foundations of type mismatch errors

ΘSubD(sub)
S <: T (derivable)

�sub
decl S �<: T → ε

ΘSubD(fail)
S <: T (not derivable)

�sub
decl S �<: T → { [ ] }

ΘSubD(fun)

�sub
decl T �<: R →Θ

′ �sub
decl S �<: U →Θ

′′

�sub
decl ∀a.R → S �<: ∀a.T →U →

{
φfun-param ::Θ

′ } ∪ { φfun-res ::Θ
′′ }

ΘSubD(rec)

�sub
decl P1 �<: R1 →Θ

1
.... �sub

decl Pm �<: Rm →Θ
m

�sub
decl {x1 : P1, ... , xm : Pm , ... , xn : Pn} �<: {x1 : R1, ... , xm : Rm}→{

φselx1
::Θ

1
}
∪ ... ∪

{
φselxm

::Θ
m
}

Figure 4.4: Definition of the �sub
decl S �<: T →Θ judgment using declarative ΘSubD rules.

ΘSubD that target the subtyping relation of the core language.

For example, the type (Int → Int ) is not a subtype of the type (� → Int ), and the failed

subtyping derivation translates the relation between the two types as

�sub
decl (Int → Int ) �<: (�→ Int )→ { [φfun-param]

}

The inferred TypeFocus faithfully represents the conflicting elements of both types since

[φfun-param](Int → Int )= inl Int and [φfun-param](�→ Int )= inl� and� �<: Int .

The ΘSubD rules return a non-empty sequence of type selectors for two types S and T that

do not satisfy the subtyping relation. The base case ΘSubD(fail) rule returns an identity

type selection which highlights the conflicting elements. The other base rule, ΘSubD(sub),

corresponds to types that are subtypes, as required by the premise of the rule, and return an

empty sequence of TypeFocus instances. The ΘSubD(fun) and ΘSubD(rec) rules correspond

to the subtyping check between the function and record type constructors, respectively; the

type constructor rules only collect the TypeFocus instances corresponding to their conflicting

elements.

The failed subtyping judgment is sound with respect to the underlying types, meaning that

every TypeFocus instance inferred from the failed subtyping derivation extracts type elements

that are not subtypes. Lemma 4.1 formally states the soundness property. The disjunction on

the right hand side of the implication is necessary to specify that the conflicting elements

may arise due to type parameters being covariant, contravariant, or invariant in the type

constructor.

118



4.2. From a failed subtyping derivation to a TypeFocus

Lemma 4.1 Soundness of the TypeFocus translation with respect to the failed subtyping

derivation.

For any two types S and T , if �sub
decl S �<: T →Θ, then

∀Θ. Θ ∈Θ implies (Θ(S)tpe �<: Θ(T )tpe) or (Θ(T )tpe �<: Θ(S)tpe)

Proof.

Straightforward. By induction on the last ΘSubD rule used.

The declarative ΘSubD rules are not syntax driven, nor do the they enforce inferring unique

TypeFocus instances that extract minimal type elements. For example, the declarative �sub
decl

rules accept the following derivation of the previously discussed failed subtyping derivation

�sub
decl (Int → Int ) �<: (�→ Int )→ { [ ] } since

[ ](Int → Int )= inl (Int → Int ) and [ ](�→ Int )= inl (�→ Int ) and Int → Int �<:�→ Int .

In Figure 4.5 we present a complete definition of the algorithmic ΘSub rules that unambigu-

ously realize the algorithmic �sub subtyping judgment. The ΘSub rules are syntax driven

and capture the information about the conflicting type elements of the types. In contrast to

the previous declarative definition, the construction of the rules ensures that type selection

extracts the smallest possible conflicting type elements of the two participating types.

The ΘSub base case rules return the identity TypeFocus when two types cannot directly sat-

isfy the subtyping relation: ΘSub(var 1), ΘSub(var 2), ΘSub( f un1), ΘSub( f un2), ΘSub(r ec1),

ΘSub(r ec2) and ΘSub(top−bot ). The type selection is further refined through the TypeFocus

composition in the ΘSub( f un) and ΘSub(r ec) rules corresponding to subtype checking for

type constructors. Similarly as in the case of the declarative rules, types that always sat-

isfy the subtyping relation yield an empty TypeFocus sequence, as defined by the ΘSub(var ),

ΘSub(top) and ΘSub(bot ) rules in our core language.

The ΘSub rules also take into account the implicit presence of the wildcard constant type;

the extension allows for applying the failed subtyping judgment to all types that participate

in the↗ adaptation. The grayed-out ΘSub(>?) and ΘSub(<?) rules simply generate an empty

sequence when ? participates in the subtyping relation since, by its definition, it matches any

type. In order to avoid ambiguous or incorrect type selectors some of the rules also have an

additional grayed-out condition in their-premises with respect to the wildcard type.

119



Chapter 4. Foundations of type mismatch errors

ΘSub(var ) �sub a �<: a → ε
ΘSub(var 1)

X �∈ { a, �, ? }

�sub a �<: X → { [ ] }

ΘSub(var 2)
X �∈ { a, ⊥, ? }

�sub X �<: a → { [ ] }
ΘSub(top−bot ) �sub � �<: ⊥→ { [ ] }

ΘSub(top) �sub T �<: �→ ε
ΘSub(bot ) �sub ⊥ �<: T → ε

ΘSub(<?) �sub T �<: ?→ ε
ΘSub(>?) �sub ? �<: T → ε

ΘSub( f un)
�sub T �<: R →Θ

′ �sub S �<: U →Θ
′′

�sub ∀a.R → S �<: ∀a.T →U →
{
φfun-param ::Θ

′ } ∪ { φfun-res ::Θ
′′ }

ΘSub( f un1)
X �∈ { (∀a.R → S), ⊥, ?

}
�sub X �<: ∀a.T →U → { [ ] }

ΘSub( f un2)
X �∈ { (∀a.T →U ), �, ?

}
�sub ∀a.R → S �<: X → { [ ] }

ΘSub(r ec)
�sub P1 �<: R1 →Θ

1
.... �sub Pm �<: Rm →Θ

m

�sub {x1 : P1, ... , xm : Pm , ... , xn : Pn} �<: {x1 : R1, ... , xm : Rm}→{
φselx1

::Θ
1
}
∪ ... ∪

{
φselxm

::Θ
m
}

ΘSub(r ec1)
X �∈ { {x1 : R1, ... , xm : Rm}, �, ? }

�sub {x1 : P1, ... , xm : Pm , ... , xn : Pn} �<: X → { [ ] }

ΘSub(r ec2)
X �∈ { {x1 : P1, ... , xm : Pm , ... , xn : Pn}, ⊥, ? }

�sub X �<: {x1 : R1, ... , xm : Rm}→ { [ ] }

Figure 4.5: Definition of the �sub S �<: T → Θ judgment using algorithmic ΘSub rules.
Grayed-out parts represent an extension of the failed subtyping judgment with ?, don’t
care, constant types.

The algorithmic definition of the failed subtyping judgment is sound with respect to its declar-

ative counterpart, as stated in Lemma 4.3.

Lemma 4.2 Soundness of the algorithmic �sub translation with respect to the declara-

tive �sub
decl translation.

For any types S and T ,

(�sub S �<: T →Θ) implies ∃Θ′. �sub
decl S �<: T →Θ

′
and (∀Θ’. Θ’ ∈Θ′ =⇒ Θ’ ∈Θ).

Proof.

Straight-forward. By induction on the last ΘSub rule used.

120



4.3. On explaining type mismatch errors

The �sub judgment is however not complete with respect to the �sub
decl judgment in a tradi-

tional statement of the problem:

For any two types S and T , if �sub
decl S �<: T → Θ then �sub S �<: T → Θ

′
for any Θ

′

and ∀Θ. Θ ∈Θ =⇒ Θ ∈Θ′.
The declarative style of the ΘSubD rules means that the �sub

decl judgment may infer TypeFo-

cus instances that do not extract the smallest possible conflicting type and will not be in-

ferred in the algorithmic �sub judgment. The algorithmic �sub judgment does correctly re-

flect the failed subtyping derivations, as expressed through the refined completeness prop-

erty in Lemma 4.3. The latter ensures that a failed subtyping derivation always translates to

a non-empty sequence of type selections that extract the conflicting type elements.

Lemma 4.3 Completeness property of the TypeFocus translation in the �sub judgment

with respect to the failed subtyping derivation.

For any type S and T ,

if S �<: T , then �sub S �<: T →Θ and Θ �= ε and

∀Θ. Θ ∈Θ implies (∃S′,T ′. Θ(S)= inl S′ and Θ(T )= inl T ′ and (S′ �<: T ′ or T ′ �<: S′))

Proof.

By induction (twice) on the structure of types S and T .

A complete proof is available in Appendix E.4.

The immediate consequence of the translation of the failed subtyping derivation is the ability

to represent the type elements of the conflicting types, which integrates well with the regular

TypeFocus-based analysis approach. This in turn implies that our type debugging approach

can be applied to explaining non-trivial terms involving large number of type constructors

and type arguments.

4.3 On explaining type mismatch errors

A traditional approach to explaining type mismatch errors involves finding either the mini-

mal term (or the minimal number of program locations) that synthesized the conflicting type,

or the minimal term (or the minimal number of program locations) that introduced the con-

flicting expected type (examples involve the work of Chitil [2001] or Chen and Erwig [2014b]).

In general, without involvement of the users, we can only apply heuristics to decide which of

the two options conflicts with the programmer’s intention. As we will show in this section the

TypeFocus translation devised in the previous sections is generic enough to allow us to trigger

121



Chapter 4. Foundations of type mismatch errors

the analysis of both of the possibilities.

For any two types S and T that are not subtypes and result in the failed inference judgment,

(T, Γ �w E : S �↗ T ), we can infer a sequence of TypeFocus instances representing the failed

type elements in the �sub S �<: T → Θ judgment. The inferred type selection Θsub, where

Θsub ∈Θ, is sufficient to explain

• the source of the conflicting type element of S using the regular TypeFocus-based anal-

ysis algorithm in

SLICES((?, Γ�w E : S), Θsub)

• the source of the conflicting type element of T in the analysis of the propagated ex-

pected type in

[ ]�p
e (T, Γ�w E : S �↗ T )� 〈(P o , Γo �w E o : T o),Θo〉

SLICESPTERROR((P o , Γo �w E o : T o), Θo ::: Θsub)

In the second case we apply the SLICESPTERROR function to the inferred Propagation Root

and the TypeFocus (Θo ::: Θsub). The TypeFocus extracts the conflicting part of the fresh pro-

totype P f that was introduced in the Propagation Root judgment, which in turn represents

a type selection on the conflicting type elements of the prototype, as required. The latter

statement can be visible once we write in full the type selection from the fresh prototype:

(Θo ::: Θsub)(P f )=
Θsub(Θo(P f )tpe)= (by definition of the TypeFocus composition)

Θsub([ ](T )tpe)= (by definition of the inferred Θo from the propagation judgment)

Θsub(T )= (by definition of [ ] type selection)

inl T t ar g et (by soundness Lemma 4.2)

where T t ar g et represents the type element of the inherited type T that conflicted with the

corresponding type element of the synthesized type S, as required.

4.4 Example: Explaining the type mismatch of the foldRight appli-

cation

Section 3.1 has used visual cues in the partially derivable type derivation trees to provide an

informal explanation of the two type mismatch errors. In particular, we have considered a

non-trivial example of the failed type inference in the application of the foldRight function

to the empty list and the anonymous function. Using the identical foldRight function appli-

cation example, we show how in practice we can apply the previously defined translation of

the erroneous type derivation trees fragments to trigger the TypeFocus-based analysis.

122



4.4. Example: Explaining the type mismatch of the foldRight application

For the purpose of the example, the specification of TypeFocus in Definition 4 has to now take

into account the possibility of Li st type constructors. The φList TypeFocus extracts the type

argument from the type application involving Li st type constructor such that

(φList ::Θ
′)(T ) =

{
Θ′(A) if T = LIST[A]

inr
〈

T, φList ::Θ
′〉 else

We extend the definition of the �sub S �<: T →Θ judgment (Figure 4.5) to take into account

the new type constructor (Figure 4.6).

According to the TypeFocus techniques defined in this chapter, any analysis of the type mis-

match error begins with translating the failed subtype derivation in the erroneous type deriva-

tion tree

LIST[⊥], Γ, x : Int , y : Li st [⊥]�w Cons(x+1, y) :a⇒Int LIST[a] �↗ LIST[⊥]

to type extractors on the conflicting types in

�sub LIST[Int] �<: LIST[⊥]→ { [φList]
}

The inferred type selection can then be used for the analysis of the conflicting types since

([φList],��WF LIST[Int]) and ([φList],��WF LIST[⊥]).

Source of the conflicting type element of the synthesized type LIST[Int]

Using the core TypeFocus-based algorithm SLICES (Section 3.5.3) and the SLICESTVAR func-

tion analyzing Type Variable Typing Slices (Section 3.7.3), we find the source of the conflict-

ing type argument Int from the synthesized type LIST[Int]. For the purpose of the exam-

ple we assume the existence of an implicit infix ‘+’ function of type ∀b. (b,b) → b and let

Γ′ = Γ, x : Int , y : LIST[⊥].

A summary of steps that resolve the intermediate Typing Slices involves:

1.
SLICES(( ?, Γ′ �w Cons(x+1, y) : [a⇒Int ]LIST[ a ]), [φList])={ 〈

νTVAR, ( ?, Γ′ �w Cons(x+1, y) : [a⇒Int ]LIST[ a ]), [φList]
〉 }

2.

SLICESTVAR(
〈
νTVAR, ( LIST[⊥], Γ′ �w Cons(x+1, y) : [a⇒Int ]LIST[ a ]), [φList]

〉
)={ 〈

νTVAR, ( ?, Γ′ �w x+1 : [b⇒Int ] b ), [ ]
〉

,〈
νTSIG, ( ?, Γ′ �w y : LIST[ ⊥ ]), [φList]

〉
}

123



Chapter 4. Foundations of type mismatch errors

ΘSub(l i st )
�sub A �<: B →Θ

′

�sub LIST[A] �<: LIST[B]→
{
φList ::Θ

′ }

ΘSub(l i st1)
X �∈ { LIST[B], ⊥, ? }

�sub X �<: LIST[A]→ { [ ] }
ΘSub(l i st2)

X �∈ { LIST[B], �, ? }

�sub LIST[A] �<: X → { [ ] }
...

Figure 4.6: Extension of the �sub S �<: T → Θ judgment definition from Figure 4.5 with
covariant Lists. The ‘...’ notation refers to the unchanged rules.

3.

SLICESTVAR(
〈
νTVAR, ( ?, Γ′ �w x+1 : [b⇒Int ]b), [ ]

〉
)=⎧⎨

⎩
〈
νTSIG, ( ?, Γ′ �w x : Γ′(x) ), [ ]

〉
,〈

νTSIG, ( ?, Γ′ �w 1 : Int ), [ ]
〉

⎫⎬
⎭

For clarity the summary highlights the fragments of types in the reported judgments corre-

sponding to the TypeFocus values of the Typing Slices. We also notice that the kind of the

Typing Slice immediately dictates the TypeFocus-based function it can be analyzed with, if

necessary.

The analysis of the Const(x + 1, y) function application in the second step reveals two type

constraints that affect the instantiation of the type variable a. The Typing Slices correspond

to the two type constraints {Int <: a} and {⊥ <: a} inferred from the arguments (x+1) and

y , respectively. The type of the former type constraint subsumes the latter in the subtyping

ordering and can be safely omitted when considering only the relevant type constraints that

affect the instantiation of the extracted type variable.

The result, the two final Type Signature Typing Slices, determine that the type argument Int

of the synthesized type LIST[Int] was inferred from two terms:

• the variable x (and indirectly its type in the environment).

• the literal constant 1.

Source of the conflicting type element of the inherited type LIST[⊥]
The search for the source of the expected type is more involving because it first has to trans-

late the propagation of the expected type into an equivalent TypeFocus instance. For presen-

tation reasons, we let

• Γ′ = Γ, x : Int , y : LIST[⊥].

124



4.4. Example: Explaining the type mismatch of the foldRight application

• foldRightApp = foldRight(xs)(Nil())(fun(x, y)→ Cons(x+1, y)).

In the first steps, the algorithm first resolves the Propagation Root of the inherited type (using

the algorithm from Section 4.1), finds the source of the prototype (Int , LIST[⊥])→ LIST[⊥]
introduced in the Propagation Root in the second step, only to later expand the intermediate

Typing Slices, if necessary. The individual steps of the analysis can be summarized as:

1.
[ ]�p

e (LIST[⊥], Γ′ �w Cons(x+1, y) : [a⇒Int ]LIST[a] �↗ LIST[⊥])

�
〈

(?, Γ�w foldRightApp : undefined), [φfun-res]
〉

2.
SLICESPTERROR((?, Γ�w foldRightApp : undefined), [φfun-res] ::: [φList]) =

{ tvarSlice }

where tvarSlice =〈
νTVAR, ( ?, Γ�w foldRight(xs)(Nil()) : [b⇒LIST[⊥]]((Int , b)→ b )→ b)),

φfun-param :: [φfun-res,φList]

〉

3.
SLICESTVAR ( tvarSlice ) ={ 〈

νTVAR, ( ?, Γ�w Nil() : [a⇒⊥]LIST[ a ]↗ ?), [φList]
〉 }

4.
SLICESTVAR

( 〈
νTVAR, ( ?, Γ�w Nil() : [a⇒⊥]LIST[ a ]↗ ?), [φList]

〉 )={ 〈
ν⊥TSIG, ( ?, Γ�w Nil() : [a⇒⊥]LIST[ a ]↗ ?), [φList]

〉 }

For clarity reasons the summary highlights the fragments of types in the reported judgments

corresponding to the TypeFocus values of the Typing Slices.

The final Type Signature Typing Slice (step 4) identifies the application Nil() as the source of

the conflicting expected type. More precisely, the kind of the Typing Slice, ν⊥TSIG, determines

that due to lack of type constraints the type variable a was instantiated to type ⊥ and the

Nil() term is the source of the target type⊥.

In both of the cases the formal analysis of the erroneous program agrees with our informal

explanation from Section 3.1. The analysis is autonomous in a sense that the types of the

type mismatch conflict drive entirely the complete analysis of the problem and the Typing

Slices are deterministically associated with one of the previously defined TypeFocus-based

techniques based on the Typing Slice kind alone.

125



Chapter 4. Foundations of type mismatch errors

4.5 Final remarks

In this section we have defined a formal approach to analyzing the type mismatch errors in

a language that implements the formalization of a variation of Local Type Inference. Our

approach integrates seamlessly with the existing TypeFocus-based analysis techniques by re-

ducing the non-derivable elements to the TypeFocus values. Real-world programs can exhibit

different category of errors, such as an inference of type arguments that do not conform to the

declared type bounds of type parameters, or failed overloading resolution. In practice, most

of them will involve some form of subtyping polymorphism, and we have shown examples

where we can translate the latter to TypeFocus values with relatively little effort.

The debugging of type errors relies on the fact that the non-derivable type derivation trees

preserve the structure and are not immediately discarded. This is an acceptable restriction

for languages with local type inference; the errors tend to be heavily localized which allows

for a separation of the erroneous branches of the type derivation tree and continuation of

type checking for the other parts of the program.

In our approach we do not attempt to address programs that exhibit multiple type errors or

errors that depend on each other, as it is the case for example in Chen and Erwig [2014b].

This in turn implies that debugging type errors may involve separate type debugging sessions

for each of the type errors reported for the program. The limitation is acceptable since each

of the type errors can be explained in an autonomous way without any user interaction.

126



Chapter 5

Lightweight extraction of type checker
decisions

The TypeFocus-based analysis presented in the previous sections navigates type derivation

trees in order to explain the typing decisions of the local type inference. The idea of using

type derivation trees for type debugging purposes is not novel; previous attempts include pro-

totypes for the OCaml type checker (in Tsushima and Asai [2013]) or some variants of Simply

Typed Lambda Calculus (in McAdam [2002]). The past, straightforward approaches hardly

apply to non-trivial examples due to incompatibility with the official type checker and a non-

autonomous mode of operation that requires constant user feedback. In addition none of

the approaches have considered languages using Local Type Inference.

A novelty of our approach lies in obtaining low-level data from the existing type checking

runs, all without affecting the compiler’s logic or reducing its features. The collected data is

then sufficient to create a data structure that closely resembles the desired type derivation

trees. The separation of the construction of the derivation has two main implications:

• The low-level representation can be collected using a minimal, non-intrusive instru-

mentation infrastructure, that minimizes the performance impact of regular, non - de-

bugging compiler runs and is easy to maintain during the usual development of the

type checker.

• Expressions having a similar structure may lead to subtle type checking differences,

which in turn can lead to different runs of the type checker and different low-level

data. By mapping to a common high-level representation we establish a well-defined

set of expected type checking rules supported by the process. Algorithms that navigate

type checker runs based on the reconstructed high-level representation are statically

checked for correctness.

127



Chapter 5. Lightweight extraction of type checker decisions

def typecheckAst(ast: Tree, pt: Type): Tree = {

EV ≪ EV.TypecheckAst(ast, pt)

... // instrumented typing of ast

EV ! EV.AstTyped(...)
...

EV ≫ EV.TypecheckDone(...)

...
}

(a) A an explicit instrumentation.

def typecheckAst(ast: Tree, pt: Type): Tree =

EV. instrument (EV.TypecheckAst(ast, pt), EV.TypecheckDone(_)) {
... // instrumented typing of ast

EV ! AstTyped(...)
...

}

(b) A compact version.

Figure 5.1: A brief look at the Instrumentation API.

In this section we will step through the construction of this high-level representation. Section

5.1 discuses the API used for instrumenting the compiler and Section 5.2 discusses how the

individual type inference rules, their premises and typing judgments are represented through

a high-level representation. Section 5.3 describes a one-to-many translation from low-level

data traces to their high-level counterparts; the unambiguity of the mapping is determined

by imposing restrictions on the possible definitions of the high-level representation.

5.1 Compiler instrumentation

The type debugger tool collects low-level type checker information by manually instrument-

ing the existing Scala compiler using a minimal API, a set of low-level instrumentation classes,

and an infrastructure for debugging. The instrumentation primarily extracts raw type check-

ing information that includes abstract syntax trees, type or symbol references; depending on

the fragment of the type checking being instrumented, more specialized type information is

collected, e.g., type variable variance information or an inferred type substitution. Listing

5.1 provides a small example of the manually instrumented method that type checks an AST

(parameter ast of type Tree) using the expected type (pt of type Type).

In the example, value EV represents a reference to the instrumentation universe that extends

the main compiler class, called DebuggerGlobal, which controls the execution of the com-

piler (the implementation-dependent DebuggerGlobal class will be discussed in the next

128



5.1. Compiler instrumentation

chapter). The instrumentation universe defines an abstract base class Event, that all the low-

level instrumentation classes will extend from, and the instrumentation methods used for

reporting them, i.e., ≪, ≫ and !. In the example, values TypecheckAst, AstTyped and

TypecheckDone of type Event, have been defined in the instrumentation universe (for con-

sistency, we chose to explicitly mention path-dependent types EV.x, where x represents a

member of the universe).

The instrumentation API introduces the notion of an instrumentation block, which makes it

possible for structural information to be collected during instrumentation. The additional

property is sufficient for recreating traditional premises-conclusion relations in the typing

rules, as opposed to typically “flat” instrumentation data. These instrumentation blocks are

delimited by the≪ and≫ operators, and typically also contain other (potentially nested)

instrumentation blocks, delimited using the same operators, as well as single instrumenta-

tion points (defined using the ! operator). As a result, the framework understands that di-

rect instrumentation points between the≪ and≫method calls can be considered as type

checking dependencies, without having direct references to them in the source code. The

equivalent compact version of the instrumented code in the second part of the listing is us-

ing an instrument method; the method wraps the type checker code as a by-name argument,

and ensures proper opening and closing of the instrumentation block.

Listing 5.2 presents a (simplified) fragment of the instrumentation universe definition that is

available in the compiler. The listing provides an overview of the instrumentation classes and

methods, including the convenient overloaded instrument method that ensures an appro-

priate block handling (the difference between the two alternatives stems from the presence

of the default closing event, or lack thereof). Due to the Scala’s optimizer not performing

whole-program analysis (Dragos [2008]) most of the methods are marked as final and have

an @inline annotation. The inlining helps to avoid performance penalties associated with

the additional method calls during the regular, non-debugging compiler runs.

The mode of operation of the type checker is determined using the isOn method. When the

result is a Boolean value false, any instances of the instrumentation classes will be discarded.

When the result is true, the instances of the instrumentation classes are used to construct a

raw tree representation; the individual instances represent the values in the nodes of the tree,

and the parent/child relationship between the nodes is determined by the block opening/-

closing information.

The withNoEvents method indicates that fragments of the type checker, provided as an argu-

ment, will always execute with the instrumentation turned off. The method allows to discard

the type checker executions that are implementation-dependent, unsupported, or irrelevant

from the analysis point of view, and otherwise would have to be unnecessarily exposed in the

high-level representation.

We chose to manually instrument the Scala compiler since the alternative is to modify byte-

code (using e.g., http://eclipse.org/aspectj/), which is too coarse-grained; the instrumenta-

129



Chapter 5. Lightweight extraction of type checker decisions

1 trait EventsUniverse {
2 self: DebuggerGlobal =>
3

4 val EV: EventModel
5

6 abstract class EventModel {
7 @inline
8 final def >>>(x: Event): Unit = if (isOn) { // ... }
9

10 @inline
11 final def <<<(x: Event): Unit = if (isOn) { // ... }
12

13 @inline
14 final def <<(x: Event): Unit = if (isOn) { // ... }
15

16 @inline
17 final def instrument[T](x: Event, y: T => Event)(body: => T): T = {
18 <<< x
19 val result = body
20 >>> y(result)
21 result
22 }
23

24 @inline
25 final def instrument[T](x: Event)(body: => T): T = {
26 <<< x
27 val result = body
28 >>> EV.Done
29 result
30 }
31

32 @inline
33 final def isOn: Boolean = // ...
34

35 @inline
36 final def withNoEvents(body: => T): T = // ...
37

38 abstract class Event { ... }
39 case class TypecheckAst(tree: Tree, tpe: Type) extends Event
40 case class AstTyped(tree: Tree) extends Event
41 case class TypecheckDone(tree: Tree) extends Event
42 case object Done extends Event
43 ...
44 }
45 }

Figure 5.2: A brief look at the instrumentation universe.

tion blocks not always align at the entry and exit of some type checker method. An automatic,

or semi-automatic, approach to instrumenting the compiler would admittedly be less error-

prone but for practical reasons we chose the former. At the same time any bytecode manipu-

lation library would have to be aware of the semantics of the language in which the compiler

130



5.2. High-level representation

is written in order not to limit the level of detail of the decision process.

5.2 High-level representation

In this section, we provide a brief overview of our high-level type checking representation. In

section 5.3, we delve into the details of how it maps to our low-level instrumentation data.

Listing 5.3 defines a Goal class (or represent a type checking decision) that has a reference to

all its premises (or dependencies that need to be satisfied), and a conclusion, parent, which is

also of type Goal. The class defines an abstract type member U and a member underlying of

the type U; both members statically define a link between the two representations. The bare

Goal base class is the counterpart of the low-level base instrumentation class (EV.Event), in

the high-level representation, and the relation is reflected in the upper bound of the abstract

type member.

abstract class Goal {
type U <: EV.Event
def underlying: U

def parent: Goal
def premises: List[Goal]

}

abstract class Typecheck extends Goal {
type U <: EV.TypecheckAst

def typeg: TypeGoal
def adaptg: AdaptGoal

}

abstract class TypeGoal extends Goal {
type U <: EV.TypeEvent

}

abstract class AdaptGoal extends Goal {
type U <: EV.AdaptEvent

}

Figure 5.3: Base class of high-level representation, Base, and Typecheck goal that speci-
fies typing operations that assign type to a generic Abstract Syntax Tree.

The role of the subclasses of Goal and their members is to express more concrete require-

ments of the typing decisions they represent. Subclasses also refine the upper bound of the

abstract type member in order to reflect the link to the low-level instrumentation classes they

stand for. Through such class hierarchy, nodes of a type derivation tree can be constructed

from subclasses of Goals and represent numerous typing decisions, e.g., typing of function

application or member selection.

Class Typecheck is an example of such a subclass; semantically, Typecheck represents the de-

cision process of every type inference rule in the Colored Local Type Inference formalization,

where we first synthesize the term’s type and later adapt the type to the prototype, if necessary.

131



Chapter 5. Lightweight extraction of type checker decisions

In order to satisfy the Typecheck goal, for example, its members require that it first performs a

typing operation, as indicated through a TypeGoal type, and then an adaptation, as indicated

through the AdaptGoal type. The refinement of the upper bound in the mentioned classes

ties them to their respective, more specialized low-level instrumentation classes.

For convenience, the implementation of each of the high-level abstract classes comes with a

companion object that has an appropriately generated unapply method, such as

1 object Typecheck {
2 def unapply(clazz: Typecheck): Option[(TypeGoal, AdaptGoal)] =
3 Some((clazz.typeg, clazz.adaptg))
4 }

for the Typecheck class. The provided method of the companion object allows for a conve-

nient pattern matching (Emir et al. [2007]) on type derivation trees.

5.3 Mapping between representations

To understand how we map from low-level instrumentation data to high-level derivation

trees, we first compare them side-by-side in the instrumented code that type checks abstrac-

tions (in Listing 5.4 and Listing 5.5) and function applications (in Listing 5.6 and Listing 5.7).

We explain why a naive approach of a one-to-one mapping from the low-level instrumenta-

tion to the high-level representation is inefficient in terms of polluting the code space of the

compiler. The one-to-many mapping approach taken in this thesis allows us to reduce the

number of instrumentation instructions and define high-level goals that hide the unneces-

sary details of the implementation. Using a number of examples we illustrate that a one-to-

many mapping comes at a cost - ambiguous definitions can lead to different valid mappings

where in general we cannot select the most specific one.

Later in Section 5.4 we formally define the one-to-many translation. We show that with a

small number of restrictions on the high-level representation we can define rules that non-

ambiguously map to them from the low-level instructions representing the type checking.

Towards a high-level representation for type checking functions: An Example

Listing 5.4 presents a simplification of Scala’s actual implementation that assigns types to

functions. In the example, the typedFunction method takes an argument of type Function

(an AST node for functions), and an expected type of the function. The main instrumentation

block (lines 1-12), that creates an instance of a low-level instrumentation class TypeFun, de-

132



5.3. Mapping between representations

1 def typedFunction(ast:Function, pt:Type): Function = EV.instrument(EV.TypeFun(ast, pt)) {

2 val Function(params, body) = ast
3 val (paramsPt, resultPt) = decompose(pt) / parameters and the result type parameters
4 val params1 = (params zip paramsPt).map {
5 case (param, paramPt) => typedParam(param, paramPt)
6 }

7 val body1 = typecheckAst (body, resultPt)

8 ...
9 val ast1 = Function(params1, body1)

10 ...
11 ast1
12 }

13 def typedParam(param:ValDef, pt:Type): ValDef = EV.instrument(EV.TypeFunParam(param)) {

14 ...

15 val param1 = typecheckAst (param, pt)

16 ...
17 param1
18 }

Figure 5.4: An example of the instrumented method that type checks ASTs of functions.
The ... part represents the irrelevant implementation details.

limits the logical block of type checker’s executions, and essentially specifies that any other in-

vocation of the instrumentation in between is directly part of type checking the function AST.

Similarly, any instrumentation invocation within the second instrumentation block (lines 13-

18), is part of the decision process that type checks the type of the parameter in the abstrac-

tion. We recall that the previously defined type checking method, typecheckAst, is already

instrumented (visually represented through a gray box around it) and does not have to be

placed within the instrumentation block separately.

The method extracts the individual elements of the Function AST (parameters and the body

of the function in line 2) and type elements of the prototype (line 3); both involve simple

pattern matching on the result of the right hand side of the expression. Later, the typedParam

function is applied to the individual parameters of the function, along with their respective

prototypes (lines 4-6), in order to determine the types of the parameters (the zip method

combines the corresponding elements of the two collections into tuples). Importantly, the

individual instrumentation blocks that track the typing of the parameters of the function, as

well as the instrumentation block for typing the body of the function (line 7), are all direct

dependencies of the first, main, instrumentation block.

Now that we’ve seen an example of an instrumentation when type checking functions, we

look into the high-level class hierarchy, that can accurately represent it.

Listing 5.5 provides an example of a high-level TypeFun class that is a subclass of the TypeGoal.

The initial verification of the parameters of the function is represented through the params

133



Chapter 5. Lightweight extraction of type checker decisions

abstract class TypeFun extends TypeGoal {
type U <: EV.TypeFun

def params: List[TypecheckParam]
def body: Typecheck

}

abstract class TypecheckParam extends Goal {
type U <: EV.TypeFunParam

def tParam: Typecheck
}

Figure 5.5: The high-level class hierarchy for representing the typing decisions that infer
the type of the function, similarly to the various (abs) rules in the Colored Local Type
Inference formalization.

member, and the verification of the body of the abstraction is represented through the body

member. Importantly, the variable number of the possible parameters of the function is ex-

pressed through the collection class List type constructor. The TypecheckParam high-level

class requires a single type checking operation - the verification of the type of the parame-

ter - in order to be satisfied. Finally, we notice that both high-level classes refine the upper

bounds of the high-level classes in order to reflect the types of the low-level events they can

represent.

In order to relate the two representations of the type checking, we return to the low-level

instrumentation data. These low-level instrumentation events are essentially sequences of

type checking events, with an additional hierarchy information gathered from the block de-

limitations. By pattern matching on such instrumentation sequences, in a postfix fashion,

the mapping groups the sequences into individual categories that correspond to the mem-

bers of high-level classes.

Towards a high-level representation for function applications: An Example

Listing 5.6 presents a simplified view on the Scala’s implementation, and instrumentation, for

a more involved example that types function applications. In the example, the typedApplication

method takes an argument of type Apply (an AST node for function applications), and an ex-

pected type of type Type, and returns an AST with the inferred type of the function applica-

tion, i.e., the AST has a value assigned to its type attribute.

The main instrumentation block (lines 2-8) is delimited by the instrumentation classes TypeApp

and TypeAppDone. As a result, any instrumented typing decision, executed as part of the type

checking function application, is essentially part of such instrumentation block. The already

instrumented typecheckAst method, infers the type of the function, and its type checking

decisions are part of the main instrumentation block as well.

The rest of listing 5.6, beginning in line 6, represents the logic that determines the type of the

134



5.3. Mapping between representations

1 def typedApplication(ast: Apply, pt: Type): Tree =

2 EV.instrument(EV.TypeApp(ast, pt), EV.TypeAppDone(_)) {

3 val Apply(funAst, argsAsts) = ast

4 val fun1 = typecheckAst (funAst, WildcardType)

5

6 if (fun1.tpe == ErrorType) typedApplicationFallback(ast, pt)
7 else assignAppType(fun1, argsAsts, pt)
8 }
9

10 def assignAppType(fun1: Tree, args: List[Tree], pt: Type): Tree = {

11 EV <<< TypeApp1(...)

12 val app1 = fun1.tpe match {
13 case MethodType(params, resultTpe) =>
14 val paramsTpes = // ...
15 val args1 = (args zip paramsTpes).map { case (arg, argPt) =>

16 typecheckAst (arg, argPt) }

17 if (hasError(args1)) ... else ...
18 case PolymorphicType(tParams,MethodType(params,resultType)) =>
19 val paramsTpes = // ...
20 val argsPt = argsPtFromResultPt(resultTpe, tparams, paramsTpes)
21 val args1 = (args zip argsPt).map { case (arg, argPt) =>

22 typecheckAst (arg, argPt) }

23 if (hasError(args1)) {
24 ... // fallback mechanism
25 } else {
26 ...
27 inferMethodInstance(args1, fun1, pt, paramsTpes)
28 }
29 case OverloadedType(_, alternatives) =>
30 ...
31 }

32 EV >>> EV.Done

33 app1
34 }
35

36 def typedApplicationFallback(ast: Apply, pt: Type): Apply =

37 EV.instrument(EV.InvalidFunApp(...)) {

38 ... // A fallback type checking for an erroneous function type
39 }
40 def argsPtFromResultPt(resultTpe: Type,tparams: List[Symbol],
41 params: List[Type]): List[Type] =

42 EV.instrument(EV.InferTypeArguments(tparams, resultTpe, params), EV.InferredPt(_) {

43 ... // An opportunistic inference of type arguments
44 // from the result type of the prototype
45 }
46 def inferMethodInstance(args: List[Tree], fun: Tree, pt: Type,
47 paramsTpes: List[Type]): Tree =

48 EV.instrument(EV.InferMeth(args, paramsTpes, pt)) {

49 ... // Inference of type variable instantiations
50 }

Figure 5.6: Example of the instrumented function that verifies function applications.

135



Chapter 5. Lightweight extraction of type checker decisions

function application. The non-trivial implementation fragment defines type checking steps

for different scenarios, as expressed by pattern matching on the inferred type of the func-

tion term; a function type having some unresolved local type parameters (PolymorphicType,

line 18), a monomorphic function type (MethodType, line 13), an overloaded type represent-

ing multiple method alternatives (OverloadedType, line 29), and an erroneous function type

that can possibly be adapted (ErrorType, line 6). Importantly, the different paths for type

checking the function application will result in the instantiation of different instrumentation

classes, and different sequences of low-level events within the EV.TypeApp and EV.TypeApp1

instrumentation blocks.

Now that we’ve seen an example of an instrumentation for a method that type checks func-

tion applications, we look into the high-level class hierarchy, that can accurately represent

such different execution paths.

Listing 5.7 defines a base class TypeApp for representing the decisions that type check func-

tion applications; the class refines an upper bound of the abstract type member in order to

reflect the low-level instrumentation class it links to, and defines a required member,

typecheckFun. The typecheckFunmember and its type, determine a single operation that will

always have to be executed for the application term - the inference of the type of the function.

The subclasses of the TypeApp class, i.e., the TypeAppFallback and TypeAppCorrect classes,

correspond to different type checker executions involving erroneous and error-free results of

type checking a function. The exposed fallback mechanism of the type checker does reveal

some internal details of Scala’s type checking, but at the same time allows us to navigate

through the type checking executions of the existing programs.

Class TypeApplicationMain, which is listed as a type of the member typeApp in the TypeApp-

Correct class, represents the base type checking decisions that assign the type to the func-

tion application, given an error-free function type. The required type checking operations

of the mutually exclusive executions paths are specified in the direct subclasses of the Type-

ApplicationMain class, i.e., in the TypeAppMonomorphic, TypeAppPolymorphic and TypeApp-

Overloaded classes. The hierarchy of subclasses and their members directly reflects the type

checking decisions when no type parameters are present, when some local type parameters

have to be inferred or when we deal with multiple method alternatives, respectively. All the

subclasses have a member named typecheckArgs, corresponding to type checking the argu-

ments of the application, but the member itself is not shared through the inheritance. In

our approach such member duplication is unavoidable, as the order of the declared mem-

bers of the high-level classes has to accurately represent the order of the corresponding type

checker’s decisions.

In the TypeAppPolymorphic class, member targsFromExpectedType reveals the instantiation

of type variables from the expected type of the function application, prior to type checking

the arguments; such opportunistic instantiation of type variables is not formalized in any

of the discussed formalizations. By instrumenting the existing compiler we can and have to

136



5.3. Mapping between representations

abstract class TypeApp extends TypeGoal {
type U <: EV.TypeApp

def typecheckFun: Typecheck
}
abstract class TypeAppFallback extends TypeApp {
def typeAdapted: Typecheck
...

}
abstract class TypeAppCorrect extends TypeApp {
def typeApp: TypeApplicationMain

}
– – – – – – – – –

abstract class TypeApplicationMain extends Goal {
type U <: EV.TypeApp1

}

abstract class TypeAppMonomorphic extends TypeApplicationMain {
def typecheckArgs: List[Typecheck]

}

abstract class TypeAppPolymorphic extends TypeApplicationMain {
def targsFromExpectedType: InferTArgsFromPt
def typecheckArgs: List[Typecheck]
def inferInstance: InferMethodInstance
def typeAppCont: TypeAppMonomorphic

}

abstract class TypeAppOverloaded extends TypeApplicationMain {
def typecheckArgs: List[Typecheck]
def inferAlternative: InferMethodAlternative
def typeApp: TypeApplicationMain

}

Figure 5.7: A fragment of the high-level representation corresponding to type checker
decisions necessary to type a function application, under different scenarios.

expose such decisions because they can affect the inferred type of function application (the

member corresponds to the instrumentation of the argsPtFromResultPt method in Listing

5.6) and further type checking decisions. Member inferInstance serves as an entry point

to the act of inferring minimal type parameter substitution, while the typeAppCont member

defines the type checking of the function application with instantiated type parameters.

The type checking of overloaded methods is represented through the TypeAppOverloaded

class; in the inferAlternative member the type checker infers a single method alternative

based on the types of the previously type checked arguments (the typecheckArgs member),

the inherited expected type and the type of the alternatives, and then repeats the typing of

137



Chapter 5. Lightweight extraction of type checker decisions

function application, as indicated through the type of the member typeApp.

In order to relate the low-level instrumentation events to this high-level representation, we

consider the type checking executions for the two simple function applications:

val xs: List[Int] = //...
xs.filter(x => x > 0)
xs.map(x => x + 1)

Both applications manipulate the ‘xs’ collection of type List[Int] by either removing the el-

ements that do not satisfy the ‘> 0’ predicate, or incrementing all the elements of the collec-

tion. The ‘filter’ method, as a member of the List[Int] collection has no local type parame-

ters, i.e., using our formal notation the type of ‘xs.filter’ is (Int →Boolean)→ LIST[Int],

while the type checking of the application involving ‘map’ method has to instantiate a local

type parameter, i.e., the type of the ‘xs.map’ member selection is ∀b.(Int → b) → LIST[b]

in our formal notation. Different type signatures of the methods imply different type checker

executions. For example, the first function applications will be defined by a context of a

single high-level instance of type Typecheck representing the type checking of the anony-

mous function ‘x => x > 0’, while the second application will be defined by a sequence

of high-level instances of types InferTArgsFromPt, Typecheck, InferMethodInstance and

TypeAppMonomorphic, due to the local type parameter instantiation.

Given the declaration of the TypeApplicationMain class and its abstract type member U, the

low-level instance of the EV.TypeApp1 event can be potentially mapped to three different sub-

classes. The mapping of the low-level EV.TypeApp1 event is determined by pattern matching

on the types of the instances that constitute the dependencies of the high-level event. The

mapping, being a postfix operation, pattern matches on the already mapped dependencies

against the types of the members of the high-level classes.

Ambiguous mappings

Our approach uses the types of the declared members of the high-level representation to

drive the pattern matching process. While flexible, it can lead to the issue of unpredictable or

ambiguous mappings. For example, a member having type List[T] implies that zero or more

type checking decisions of type T (or a subtype of it) have occurred. The type opens the door

for different interpretations of valid pattern matching strategies. Before we define restrictions

that avoid the undesired or ambiguously looking high-level representations (Section 5.4), we

discuss their examples first.

Ambiguous members within the same class definition

To illustrate one of the problems, Figure 5.8 provides a simpler and more intuitive represen-

tation for typing functions than the one given in Figure 5.5. To match the high-level represen-

138



5.3. Mapping between representations

tation the low-level instrumentation would have to be modified. The instrumentation for the

typedParam method in Figure 5.4 involving the low-level EV.TypeFunParam event would have

to be removed. Consequently, the instrumentation blocks that enclose the type checking of

the parameters of the abstraction and its body are all part of the main instrumentation block

of type EV.TypeFun.

abstract class TypeFun extends TypeGoal {
type U <: EV.TypeFun

def params: List[Typecheck]
def body: Typecheck

}

Figure 5.8: An ambiguous declaration of the high-level classes representing the type
checking of functions.

For the purpose of the example, we assume the existence of three already mapped high-level

instances, denoted as { x1, x2, x3 }. The runtime type of each of the instances is some subtype

of Typecheck, and the sequence will serve as a context for our postfix mapping strategy. The

types and number of high-level goals offers different possible mappings for the members of

the class TypeFun1:

• [params→ { x1, x2 } ,body→ { x3 }] -

The mapping reflects that the compiler type checked two parameters of the function

and then type checked the body of the function.

• [params→ { x1, x2, x3 } ,body→ ε] -

The mapping reflects that the compiler type checked three parameters of the function

and the body of the function was not verified, i.e., the instrumentation block that en-

closes the type checking of the body of the function was never executed. For example,

a type mismatch for one of the type parameters could prevent the type checking of the

body.

The lack of mapping for the member body can be either blamed on the insufficient low-

level instrumentation that omitted some execution, or lack of coverage of the high-level

representation.

In the given example, it is not possible to determine the source of the ambiguity nor the actual

type checker execution, when based solely on the types of the members.

Ambiguous one-to-many mappings

A straight-forward approach to instrumenting the type checker’s codebase adds instrumen-

tation blocks at:
1The [a → b] notation describes the choice to assign high-level values, b, to member a.

139



Chapter 5. Lightweight extraction of type checker decisions

1. The beginning and the end of the typing method.

2. For every type checker’s logic where its execution may diverge, such as for the condi-

tional blocks or when pattern matching.

Listing 5.9 illustrates the result of following such a proposal to the letter; needless to say, the

instrumentation blocks start to become part of the codebase, rather than only complement-

ing it. Such over-instrumentation will significantly affect the maintenance of the type checker.

On the positive side, the mapping between the low-level instrumentation events and the high-

level representation can now be classified as a one-to-one mapping.

In our approach, we elide some of the instrumentation blocks instead, and infer the different

type checker execution paths based on the possible sequences of the low-level events. The

already discussed type checking of the function application (Figure 5.7) is one example of

such an approach.

To consider the other extreme of the instrumentation spectrum, the under-instrumentation,

we remove some instrumentation blocks from our reference instrumentation example in Fig-

ure 5.6. The removal of the low-level EV.TypeApp1 and EV.InvalidFunApp events would lead

to a simpler high-level representation, as presented in Listing 5.10. The new high-level hier-

archy has four different subclasses of the TypeApp base class that model various type checker

executions. As a result, any instrumentation block with a low-level EV.TypeApp event will

have to be mapped to its high-level counterpart in a one-to-many relation.

The proposed simplification is ambiguous. To illustrate, we consider a mapping context with

a sequence of the already mapped high-level instances, { x1, x2 }, where the runtime type of

each of the instances is some type S, such that S is a subtype of Typecheck. The mapping that

is based on the given sequence can lead to different possibilities:

• [typecheckFun→ { x1 } ,typeAdapted→ { x2 }] (for the TypeAppFallback class)

The low-level events represent a valid mapping for the TypeAppFallback class, where

some function application had to be typed using the fallback mechanism.

• [typecheckFun→ { x1 } ,typecheckArgs→ { x2 }] (for the TypeAppMonomorphic class)

The low-level events represent a valid mapping for the TypeAppMonomorphic class, where

some function application did not have to instantiate any local type parameters of the

function.

• [typecheckFun→ { x1 } ,targsFromExpectedType→ { } ,typecheckArgs→ { x2 } ,

inferInstance→ { } ,typeAppCont→ { }] (for the TypeAppPolymorphic class)

The low-level events represent a partial mapping for the TypeAppPolymorphic class,

where mappings for some members could not be satisfied.

• [typecheckFun→ { x1 } ,typecheckArgs→ { x2 } , inferAlternative→ { }]

(for the TypeAppOverloaded class)

140



5.3. Mapping between representations

1 def typedApplication(ast: Apply, pt: Type): Tree =

2 EV.instrument(EV.TypeApp(ast, pt), EV.TypeAppDone(_)) {

3 val Apply(funAst, argsAsts) = ast

4 val fun1 = typecheckAst (funAst, WildcardType)

5 if (fun1.tpe == ErrorType) typedApplicationFallback(ast, pt)
6 else assignAppType(fun1, argsAsts, pt)
7 }
8

9 def assignAppType(fun1: Tree, args: List[Tree], pt: Type): Tree = {

10 EV <<< TypeApp1(...)

11 val app1 = fun1.tpe match {
12 case MethodType(params, resultTpe) =>

13 EV.instrument(...) {

14 ... // same as before

15 if (hasError(args1)) EV.instrument(...) {

16 ...

17 } else EV.instrument(...) {

18 ...
19 }
20 }
21 case PolymorphicType(tParams,MethodType(params,resultType)) =>

22 EV.instrument(...) {

23 ... // same as before

24 if (hasError(args1)) EV.instrument(...) {

25 ... // fallback mechanism

26 } else EV.instrument(...) {

27 ...

28 inferMethodInstance (args1, fun1, pt, paramsTpes)
29 }
30 }
31 case OverloadedType(_, alternatives) =>

32 EV.instrument(...) {

33 ... // same as before
34 }
35 }

36 EV >>> EV.Done
37 app1
38 }
39

40 def typedApplicationFallback(ast: Apply, pt: Type): Apply =

41 EV.instrument(EV.InvalidFunApp(...)) {

42 ...
43 }

Figure 5.9: Example of the overzealous instrumentation of the function that verifies func-
tion applications. In comparison to the initially proposed instrumentation from Figure
5.6, the example instruments every possible type checking path separately.

141



Chapter 5. Lightweight extraction of type checker decisions

abstract class TypeApp extends TypeGoal {
type U <: EV.TypeApp

def typecheckFun: Typecheck
}

abstract class TypeAppFallback extends TypeApp {
def typeAdapted: Typecheck

}

abstract class TypeAppMonomorphic extends TypeApp {
def typecheckArgs: List[Typecheck]

}

abstract class TypeAppPolymorphic extends TypeApp {
def targsFromExpectedType: InferTArgsFromPt
def typecheckArgs: List[Typecheck]
def inferInstance: InferMethodInstance
def typeAppCont: TypeAppMonomorphic

}

abstract class TypeAppOverloaded extends TypeApp {
def typecheckArgs: List[Typecheck]
def inferAlternative: InferMethodAlternative
def typeApp: TypeApp

}

Figure 5.10: A fragment of the ambiguous high-level representation corresponding to
type checker decisions necessary to type a function application.

The low-level events represent a partial mapping for the TypeAppOverloaded class, where

the mappings for some members could not be satisfied and where left empty.

In the above example, none of the two valid mappings is more specific than the other with

respect to their members and their types, leading to an ambiguity. The included two partial

results illustrate the potential ambiguities that may arise if we allow for approximated map-

pings. The approximations would require heuristic that order partial mappings with respect

to different properties, such as the types of the members, assigned values and their number,

or lack thereof. Inevitably, such approximations would add up to the complexity of the high-

level representation, making it harder to reason about and satisfy the requirement of precise

type derivation tree navigations.

The next section defines the properties of the high-level representation that allow us to avoid

such undesirable ambiguous definitions. The restrictions still elide many of the unnecessary

instrumentation blocks, making our approach practical, as illustrated at the beginning of the

section.

142



5.4. A translation from a low-level instrumentation to a high-level representation

5.4 A translation from a low-level instrumentation to a high-level

representation

In this section, we define the semantics of the mapping function which maps instances of

low-level events into their high-level counterparts. The algorithm translates the low-level

data recursively, in a depth-first postfix manner. In other words, we first map all low-level

instrumentation data enclosed within the instrumentation block, and then use the mapped

sequence as a context for pattern matching. The pattern matching uses the types of the mem-

bers of the high-level classes, and their order, to infer the most specific mapping for the low-

level event. For a low-level event that does not initiate the instrumentation block, we simply

map it in a one-to-one manner.

Definition 11 High-level Representation.
T ::= 〈E , T, { M1, ..., Mn }〉 (high-level type with members)
E ::= EV.e (low-level events)
M ::= 〈x, S〉 (member)
S ::= List[ T ] | T (possible types of members)

To simplify the presentation, we use the notation from Definition 11 that reduces the high-

level representation to only the essential elements. The high-level goal is represented as a

triple consisting of the type of the underlying low-level event it relates to, E , its immediate

super type, and the sequence of its declared members, { M1, ..., Mn } , where n ≥ 0. The

individual members of the classes are represented as tuples of names and their types. The

type of the member, S, is either a type of a high-level class, or a, potentially empty, sequence

of them, denoted as List[ T ]. For the purpose of further discussion, a term optional member

refers to members which type is List[ T ], for some T .

With such definition in mind, the base high-level class, Goal , is equivalent to 〈EV.Event, �,ε〉,
where � is some predefined, language-dependent top type. The definition restricts the dec-

laration of the high-level goals to single inheritance.

Auxiliary functions

Definition 12 gives type signatures of auxiliary functions and properties used for defining the

mapping operation. For completeness, in Figure 5.11 we provide the definitions of the latter.

The semantics of the functions are as follows:

• The premises function returns types of the declared members for the requested type of

the high-level class. The returned sequence respects the order of the members in the

class.

• The linearization function returns the chain of super types up to the type, given as a

143



Chapter 5. Lightweight extraction of type checker decisions

Definition 12 Mapping: Type signatures of auxiliary functions and properties

premises : T → S
linearlization : (T,T )→ T

spec : (T,T )→M
non-opt : M → S
prefix : S → T

lub : (T,T )→ T
underlying : S → T

Generic operations on sequences:
idx : ∀a.(a, a)→ Nat

head : ∀a.a → a
tail : ∀a.a → a
last : ∀a.a → a

Properties:
opt : S → Bool

sub : (T,T )→ Bool

sub2 : (T,T )→ Bool

second argument of the function. For example, for the class hierarchy from Figure 5.7

linearization(TypeAppPolymorphic,Goal) =

{ Goal, TypeApplicationMain, TypeAppPolymorphic }.

• The spec function will return a complete sequence of the inherited and declared mem-

bers of the given type. The resulting sequence essentially represents, what we call, the

specification of the high-level class, against which pattern matching will be done.

• The partial function non-opt returns a type of a first non-optional member, and the

prefix function returns types of members up to and including the first non-optional

one.

• The lub function returns the least common super type of the two types of the high-level

classes, which is known to always exist in our classes hierarchy.

• The underlying function returns the high-level type accepted by the member, irrespec-

tive of whether it is optional or not.

The generic partial functions idx, head, tail, and last, operate on the sequences of any

elements, and, if defined, return the index of the element in a sequence, the first element of

the sequence, and the rest, and the last element of the sequence, respectively.

The definition also specifies two properties, sub and sub2, which use the linearization infor-

mation to determine if the first type is a subtype of a second one, and if any of the types is a

subtype of the other, respectively. Finally, the definition provides the opt property, which is

true if the type of the member is optional, i.e., it is of shape List[ T ] for some T .

144



5.4. A translation from a low-level instrumentation to a high-level representation

premises(t ) = { S1, ..., Sn } where t = 〈Et , Tt , { 〈x1, S1〉 , ..., 〈xn , Sn〉 }〉

linearization(t , t ′) =

⎧⎪⎨
⎪⎩

ε if t =�
{ t } else if t = t ′{
linearization(T ′, t ′); t

}
else where t =

〈
E ′,T ′, M

〉
spec(t , t ′) = { 〈

x(1,1),S(1,1)
〉

, ...,
〈

x(1,n1),S(1,n1)
〉

, ...,
〈

x(m,1),S(m,1)
〉

, ...,
〈

x(m,nm ),S(m,nm )
〉 }

where

linearization(t , t ′)= { T 1, ..., T m , T m+1 }
T 1 = 〈E1∗, T 1∗ ,

{ 〈
x(1,1),S(1,1)

〉
, ...,

〈
x(1,n1),S(1,n1)

〉 }〉
...

T m = 〈Em∗ , T m∗ ,
{ 〈

x(m,1),S(m,1)
〉

, ...,
〈

x(m,nm ),S(m,nm )
〉 }〉

non-opt(m) =
{

S1 if m = { 〈x1, S1〉 , ..., 〈xn , Sn〉 } and ¬opt(S1)
non-opt(tail(m)) else if m �= ε

prefix(m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ underlying(S1) } ∪ prefix(tail(m)) if
m = { 〈x1, S1〉 , ..., 〈xn , Sn〉 }

and opt(S1)

{ S1 } else if
m = { 〈x1, S1〉 , ..., 〈xn , Sn〉 }

and ¬opt(S1)
ε else

lub(t , t ′) = lub0(linearization(t ,Goal), linearization(t ′,Goal))
where

lub0(t , t ′)=

⎧⎪⎨
⎪⎩

T1 if t = { T1, ..., Tn } , t ′ = { T ′1, ... T ′m
}

,T1 = T ′1
lub0(tail(t ), t ′) else if t = { T1, ..., Tn } , t ′ = { T ′1, ... T ′m

}
,n >m

lub0(t , tail(t ′)) else

underlying(t ) =
{

T if t = LIST[T ]

t else
sub(t , t ′) = t ∈ linearization(t , t ′)

sub2(t , t ′) = sub(t , t ′) ∨ sub(t ′, t )

opt(s) =
{

true if s = List[ Ts ] for some Ts
false else

idx(xi , x′) =
{

i if x′ = { x1, ..., xi , ..., xn
}

undefined else

head(x′) =
{

x1 if x′ = { x1, ..., xn }
undefined else

tail(x′) =
{

{ x2, ..., xn } if x′ = { x1, x2, ..., xn }
undefined else

last(x′) =
{

xn if x′ = { x1, ..., xn }
undefined else

Figure 5.11: Mapping: Definitions of auxiliary functions and properties

Properties of Mapping

The result of pattern-matching is a finite ordered map, denoted as σT
A , that is inferred from a

sequence of high-level instances. Each key of the map corresponds to the declared, or inher-

ited, member of the high-level class A, and the values are sequences of high-level instances,

that are themselves subsequences of T . Formally, the domain, dom, of σT
A is specified as

dom(σT
A) = { x(1,1), ..., x(1,n1), ..., x(m,1), ..., x(m,nm )

}
where

〈
x(i , j ), S(i , j )

〉 ∈ spec(A,Goal) and

∀x. x ∈ dom(σT
A) =⇒ σT

A(x)⊆ T . If the member is not optional, then σT
A(x) returns either an

empty sequence, ε, or a single element sequence, { x }, for any x, as expected. We determine

145



Chapter 5. Lightweight extraction of type checker decisions

the correctness of the inferred mapping based on a few properties that we will now define.

Any mapping inferred from a sequence of high-level instances has to respect the original

order of the elements from which it was constructed. The property is formally specified in

Definition 13. The ordering property ensures that

• The order of members preserves the order of the sequences assigned to the members.

• The order of the high-level instances in every assigned sequence is also preserved.

Definition 13 Mapping: Order preservation

Let σT
A be the inferred mapping for some high-level type A, and let the mapping be

inferred from a sequence of high-level instances T , then

∀x, y. x ∈ dom(σT
A) ∧ y ∈ dom(σT

A) ∧ idx(x,dom(σT
A))< idx(y,dom(σT

A)) =⇒
σT

A(x)= ε ∨ σT
A(y)= ε ∨ (idx(last(σT

A(x)),T ) < idx(first(σT
A(y)),T ))

and

∀x. x ∈ dom(σT
A) ∧ (σT

A(x) �= ε) =⇒
(∀Tx ,Ty . Tx ∈σT

A(x) ∧ Ty ∈σT
A(x) ∧ (idx(Tx ,σT

A(x)) < idx(Ty ,σT
A(x)) ) =⇒

idx(Tx ,T ) < idx(Ty ,T ))

The pattern matching is type-based, meaning that the high-level instances assigned to each

of the members conform to the underlying type of the member itself, as described in Defini-

tion 14.

Definition 14 Mapping: Type preservation

Let σT
A be the inferred mapping for some high-level type A, where A =

〈
E A , T ′

A , MA

〉
,

and the mapping be inferred from a sequence of high-level instances T , then

∀x,Sx . x ∈ dom(σT
A) ∧ 〈x,Sx〉 ∈ spec(A, Goal ) =⇒

(∀Ax . Ax ∈σT
A(x) =⇒ ∃Tx . (Sx = List[ Tx ] ∧ sub(Ax , Tx )) ∨ (Sx = Tx ∧ sub(Ax , Tx )))

A correctly inferred mapping also has to be complete, meaning that non-optional dependen-

cies are always satisfied in it, as described in Definition 15.

Definition 15 Mapping: Completeness

Let σT
A be an inferred mapping for some high-level type A, and be inferred from a se-

quence of high-level instances T , then

∀x,Sx . x ∈ dom(σT
A) ∧ 〈x,Sx〉 ∈ spec(A,Goal ) ∧ ¬opt(Sx ) =⇒ σT

A(x) �= ε

146



5.4. A translation from a low-level instrumentation to a high-level representation

Avoiding ambiguity

In order to avoid common programming errors in the definition of the high-level mapping,

that would make the process of mapping non-deterministic, we introduce restrictions on the

possible definitions of high-level classes. The overall impact of the restrictions is minimal,

meaning that a conflict between the definitions of high-level classes can always be resolved

through an introduction of a distinct low-level instrumentation block around the ambiguous

decisions of the type checker.

Definition 16 specifies a two-part restriction on the definition of the high-level classes which

reject among others our ambiguous examples in Section 5.3:

1. The high-level class cannot have two, inherited or declared, optional members that

share the same type that are separated by zero or more of other optional members.

2. The high-level class cannot have an optional member next to a non-optional one that

shares the same type.

We note that the two types share the same type if their underlying types conform to each other.

In combination with the ordering property, the restrictions define the notion of a unique

assignment of the high-level instances to the members of the same class. Both restrictions

rely on the order of the members and their indices in the sequence of inherited and declared

members in order to define the zero or more and next separation between the two members.

Definition 16 High-level representation: Uniqueness

Let A be a type of a high-level class, and S A represent types of all, inherited and

declared, members of A, such that S A =
{

S(1,1), ..., S(1,n1), ..., S(m,1), ..., S(m,nm )
}

where〈
x(i , j ), S(i , j )

〉 ∈ spec(A, Goal). Then A can be uniquely mapped, denoted as a uniq(A)

property, when

(1)

∀Si ,S j . ∀Ti ,T j . Si ∈ S A ∧ S j ∈ S A ∧ (idx(Si ,S A)< idx(S j ,S A)) ∧
( opt(Si ) ∧ opt(S j ) ∧ sub2(underlying(Si ),underlying(S j )) ) =⇒
∃Sk . (idx(Si ,S A)< idx(Sk ,S A)) ∧ (idx(Sk ,S A)< idx(S j ,S A)) ∧ ¬opt(Sk )

and

(2)

∀Si ,S j . ∀Ti . Si ∈ S A ∧ S j ∈ S A ∧ (idx(Si ,S A)< idx(S j ,S A)) ∧
(opt(Si ) ∧ ¬opt(S j ) ∧ sub2(underlying(Si ),S j ) =⇒

∃Sk . (idx(Si ,S A)< idx(Sk ,S A)) ∧ (idx(Sk ,S A)< idx(S j ,S A)) ∧ ¬opt(Sk )

The specification so far has established restrictions with respect to the members and their

147



Chapter 5. Lightweight extraction of type checker decisions

abstract class Base extends Goal {
type U <: EV.LowLevel

}

abstract class HighLevelFoo extends Base {
def fooA: A
def fooB: B

}

abstract class HighLevelBar extends Base {
def barA: List[A]
def barB: B

}

abstract class HighLevelBaz extends Base {
def fooA: List[A]
def fooB: List[B]

}

Figure 5.12: An example of a high-level class hierarchy that would map some low-
level EV.LowLevel event in a one-to-many mapping to one of the HighLevelFoo,
HighLevelBar or HighLevelBaz classes. The pairs of the disallowed high-level mappings
include the high-level classes of HighLevelFoo and HighLevelBar, and HighLevelFoo and
HighLevelBaz, and HighLevelBar and HighLevelBaz, given some types A and B, such that
A � <: B and B � <: A.

types of individual classes. We will now formally define ambiguity conditions for distinct

high-level classes that participate in the one-to-many mapping.

Definition 17 defines two conditions that need to be satisfied in order for a type of a high-

level class to be non-ambiguous with respect to some other type of a high-level class, both of

which can map from the low-level instrumentation event of the same type:

1. We ensure that a mapping between the two types that are subtypes can be distinguished

thanks to the existence of a non-optional member in the subtype.

2. When the two types are not subtypes of each other, we ensure that a type of the first,

non-optional member, will serve as a factor that distinguishes the two possible map-

pings. In other words, at least one of them has to have a declared, non-optional mem-

ber, which cannot share the same type with the first declared non-optional member of

the other high-level type, nor the types of the declared optional members immediately

preceding it.

Figure 5.12 presents examples of pairs of the high-level mappings that will be disallowed

through such definition.

148



5.4. A translation from a low-level instrumentation to a high-level representation

Definition 17 High-level representation: Non-ambiguity

Let A and B be types of some two distinct high-level classes, where A =
〈

E A ,T ′
A , MA

〉
and B =

〈
EB ,T ′

B , MB

〉
, and E A = EB . Then, the definition of class A is not ambiguous

with respect to the definition of class B , denoted as a nonambig(A,B) property, for

(1)
If sub(A,B) then

∃Si , xi . 〈xi , Si 〉 ∈ spec(A,B) ∧ ¬opt(Si )

(2)

If ¬sub(A,B) and lub(A,B)=C then

∃Sx . non-opt(spec(A,C ))= Sx ∧ (∀y. y ∈ prefix(spec(B ,C )) =⇒ ¬sub2(x, y))

or

∃Sy . non-opt(spec(B ,C ))= Sy ∧ (∀x. x ∈ prefix(spec(A,C )) =⇒ ¬sub2(x, y))

Finally, we notice that a mapping that is inferred from a sequence of high-level instances, T ,

has to represent a complete matching with respect to T , meaning that it has assigned every

element of T to one of the members of type A.

Definition 18 Completeness of matching

Let σT
A be an inferred mapping for some high-level type A, and be inferred from a se-

quence of high-level instances T , then

∀Tx . Tx ∈ T =⇒ ∃y. y ∈ dom(σT
A) ∧ Tx ∈σT

A(y)

The above restrictions allow us to find out if translations from low-level events to their high-

level counterparts are safe. The safety of the translation determines that given a sequence of

the high-level instances, and a type of the low-level event, there are no two different ways of

performing a one-to-many mapping for a single high-level goal, if possible at all, and that the

two possible high-level goal definitions are never ambiguous with respect to each other. The

property is formally stated in Definition 19.

Definition 19 Mapping: Safeness of one-to-many mapping

Let E be a type of the low-level instrumentation event, T
E

be a sequence of unique high-

level types it can map to, such that ∀TE . TE ∈ T
E =⇒ TE =

〈
E , Tsuper , MTE

〉
for some

Tsuper and MTE . Then T
E

represents a safe one-to-many mapping from E iff

∀TE . TE ∈ T
E =⇒ uniq(TE ) ∧ (∀T ′

E . T ′
E ∈ T

E =⇒ TE = T ′
E ∨ nonambig(TE ,T ′

E )).

Lemma 5.1 uses the previous definitions to state the uniqueness of any one-to-many map-

149



Chapter 5. Lightweight extraction of type checker decisions

ping: if there exists a valid mapping for the low-level event, given the sequence of high-level

instances as a context for the mapping, then there is always only a single high-level type that

it can be mapped to.

In addition, the lemma tells us that if no mapping for the given sequence could be found, the

blame lies in either insufficient instrumentation or incompatibility between the low-level

and high-level representations, but never because of the ambiguous definition of the high-

level representation.

Lemma 5.1 Uniqueness of one-to-many mapping

Let T represent a sequence of types of the already mapped low-level events, that are

direct dependencies of a low-level event E . Let T
E

represent a safe sequence of high-

level types the low-level event E can map to, and σT
Z denote the inferred mapping for

some type Z with respect to T that matched completely the given T sequence.

Then,

∀A,B. A ∈ T
E ∧ B ∈ T

E ∧ (σT
A is defined) ∧ (σT

B is defined) =⇒ A =B

Proof.

Proof by contradiction. The details of the proof are available in Appendix F.

Matching algorithm

For completeness, in this section we discuss a straight-forward inference of the σT
T mapping

for some high-level type T and a context sequence T . In the following discussion, we refer to

the inherited and declared members of type T as a specification, and the high-level instances

representing the context for pattern matching as actuals (for actual instances that contrast

with the expected ones), or simply context.

The pseudo-algorithm presented in Figure 5.13 defines a recursive partial function matching

that compares one-by-one the types of members of the specification with the types of the ac-

tuals, until both of the collections finish. When both of the arguments are empty sequences,

the function returns an empty mapping, ε, and the algorithm is finished.

If the type of a member involves List type constructor, then the actuals are split into a prefix/-

suffix pair by the auxiliary function matching0; the sequence is split based on the underlying

type of the optional member. Later, the algorithm continues the specification/actuals match-

ing with the suffix part, if possible.

The definition retrieves the runtime type of high-level instances through an implicitly defined

150



5.5. Discussion

matching : (M ,Goal)→σ

matching(ε, ε) = ε

matching({ M1, ... , Mn } , { a1, ..., am }) if (n > 0) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
x → a1

] ∪ matching(M
′
, a2) if

M1 = 〈x, List[ Tx ]〉 ∧
matching0(Tx , { a1, ..., am })= 〈a1, a2

〉
[x → { a1 }] ∪ matching(M

′
, A

′
) else if

(m > 0) ∧ M1 = 〈x,Tx〉 ∧
sub(runtimeTpe(a1),Tx )

where M
′ = tail({ M1, ... , Mn }) and A

′ = tail({ a1, ..., am })

matching0 : (T,Goal)→ 〈Goal,Goal
〉

matching0(Tx , ε) = 〈ε,ε〉
matching0(Tx , a) =⎧⎨
⎩
〈{

head(a)
} ∪ a1, a2

〉
if

sub(runtimeTpe(head(a)),Tx ) ∧
matching0(Tx ,tail(a))= 〈a1, a2

〉〈
ε, a

〉
else

Figure 5.13: Overview of the matching algorithm implemented in terms of the matching

partial function. The function takes a sequence of members, and their types, and a se-
quence of already mapped high-level instances, and returns the inferred mapping, if pos-
sible.

function runtimeTpe2. The runtime type information of the high-level instances, can then be

used in the sub subtyping tests, to determine if the type of the high-level goal shares the same

type with the expected type of the member.

The algorithm realized by the matching function is greedy, in a sense that when mapping

against an optional member it does not attempt to look-ahead the specification to find if the

high-level instances might be mapped to sometime later. The approach is in agreement with

our formally defined restrictions and delivers predictable and easy to process results.

5.5 Discussion

A reconstruction of the high-level representation, performed during the debugging runs of

the type checker, will have a non-negligible impact on the running time of any type debug-

ging analysis. In Section 5.5.1 we present important insights on how to take the advantage

of local type inference in order to reduce the footprint of the reconstructed type derivation

2In the Scala implementation the runtime type information of the high-level goals has to be explicitly passed
around using TypeTags, as explained in http://docs.scala-lang.org/overviews/reflection/typetags-manifests.
html, since static type information is erased.

151



Chapter 5. Lightweight extraction of type checker decisions

trees. Later we discuss the advantages of statically-checked algorithms that navigate through

the decisions of the type derivation trees (Section 5.5.2). We conclude with a set of guidelines

for manually instrumenting a generic type checker using Local Type Inference (Section 5.5.4)

and the applicability of our technique when instrumenting the compiler of Scala or Java (Sec-

tion 5.5.3).

5.5.1 Decreasing the instrumentation footprint

Factors affecting the size of the constructed type derivation trees, among others, include the

size of debugged programs, the level of detail of the exposed type checker decisions, or the

presence of advanced type system features. As a result, the runtime execution and the mem-

ory consumption of the technique proposed in the previous section can vary significantly,

from negligible to unacceptable even for Scala programs having ∼ 300 LOC.

In the following discussion we address the three important inefficiencies of the proposed

low-level/high-level representations:

• The creation of complete type derivation trees.

• The construction of intermediate, raw, instrumentation trees.

• The instrumentation of compiler hot-spots.

Direct construction of high-level type derivation trees

The presence of an intermediate, unstructured tree is useful from the implementation point

of view but at the same time inefficient since it means that any type derivation tree is con-

structed twice. As a solution we use the fact that the translation of low-level events is a post-

fix operation and can be performed on-the-fly during an execution of the type checker in a

debugging mode.

To construct the high-level representation directly the instrumentation framework will keep

track of the still unmapped low-level events and of the already constructed parts of the high-

level type derivation tree. In other words, whenever the type checker execution enters a typ-

ing decision that starts a new instrumentation block the issued low-level data is pushed onto

a stack of yet unmapped events. The individual low-level elements will be translated to their

high-level counterparts in a recursive fashion. On exit from the instrumentation block we

pop the low-level event from the top of the stack and infer the correct high-level represen-

tation based on the already mapped context. The approach is possible because the context

of the mapping is fully encapsulated in the nested high-level instances and not propagated

from the outside.

152



5.5. Discussion

Lazy type initialization

The instrumentation framework presented so far considers complete type derivation trees,

thus ignoring the locality property of local type inference. We refine such basic definition by

first identifying a few of the properties of the local type inference, and its implementation,

that allow us to construct only partial high-level derivation trees and still accurately repre-

sent the type checking of fragments of programs. We assume that programs are scanned and

parsed in a negligible amount of time when compared to type checking phase, leading to

type-less trees that preserve the necessary source code positions. The raw trees can then be

used to locate a minimal subtree that encloses the fragment of the program to be debugged.

The delayed initialization

The Scala compiler initializes symbols and their types in a lazy manner; the lazy type as-

signment is realized by the compiler phase preceding the actual type checking, the name

analysis phase. The lazy initialization is realized by assigning the internal type value of type

TypeCompleter (where TypeCompleter is a subtype of the Scala’s type Type) as types of the

publicly accessible members, such as methods, abstract types, values or classes. The values

of type TypeCompleter can be conceptually treated as closures that delay the computation

of the type of the declaration, by having a reference to the AST of its type annotation or, on

lack of it, an AST of the expression that allows to infer its type. The on-demand completion

of the delayed computation will force the verification of the type of the definition on a first

attempt to retrieve its value. The latter process differs in no way from the previously defined

and exposed type checking operations.

The lazy initialization presents important optimization opportunities when constructing high-

level type derivation trees for sequences of statements, such as definitions of bodies of classes,

or bodies of methods. The traditional model for type checking a block of statements proceeds

in a sequential manner. Given a request to expose the decisions of a compiler for a fragment

of a program, we only type check statements (and thus issue the low-level instrumentation

events) that are enclosed or enclose such a demanded fragment. The filtering of relevant

statements is based purely on the (range) position information of the source code and the

individual AST statements.

The partial type derivation trees constructed from such selective instrumentation, still rep-

resent the detailed representation of the relevant type checking execution. The partial type

derivation trees differ in the order of the initialization of the declarations, or lack thereof,

since the compilation will always trigger the verification of the used symbols when needed.

In other words, the construction of partial type derivation trees relies only on the correctness

of the existing delayed initialization implementation in the Scala compiler rather than on a

non-trivial static reachability analysis of programs or domain-specific heuristics (Pavlinovic

et al. [2014]).

As a side-effect of the selective instrumentation and the lazy initialization, the low-level events

153



Chapter 5. Lightweight extraction of type checker decisions

representing the instrumentation blocks of the delayed initialization can be triggered at any

point during type checker’s execution. The non-determinism makes it also impractical to

model the dependency on the delayed initialization decisions through the statically defined

members of the high-level classes. We first briefly discuss how the lazy initialization is mod-

eled in our low-level representation, and later report on our solution.

Representing the delayed initialization in type derivation trees

The low-level events representing the initialization of definitions and their types extend the

EV.NamerEvent class (named for the compiler phase where they are instantiated). Figure

5.14a provides the definition of the base class, along with the complete set of low-level sub-

classes, used for representing the initialization process in the Scala’s type checker. The classes

represent the initialization of type signatures of classes, objects, values, methods and type

members, respectively, and take as arguments only their corresponding Scala’s ASTs.

sealed abstract class NamerEvent extends Event
case class ClassSigNamer(classDef: ClassDef) extends NamerEvent
case class ModuleSigNamer(moduleDef: ModuleDef) extends NamerEvent
case class ValSigNamer(valDef: ValDef) extends NamerEvent
case class MethodSigNamer(methDef: DefDef) extends NamerEvent
case class TypeDefSigNamer(tpeDef: TypeDef) extends NamerEvent

(a) The low-level classes for representing the lazy initialization of definitions in Scala. The classes
are defined within the instrumentation universe (Figure 5.2).

sealed abstract class NamerGoal extends Goal {
type U <: EV.NamerEvent

}
abstract class MethodSignature {

type U <: EV.MethodSigNamer

def returnTpe: Typecheck
def params: List[Typecheck]

}

(b) The high-level base class for representing the lazy initialization of definitions in Scala,
NamerGoal, and an example of a high-level class for representing the initialization of the method
definition in Scala.

Figure 5.14: A comparison of the low-level and high-level instrumentation classes for
representing the delayed type initialization.

The low-level events and their dependencies are translated to their high-level counterparts

using the regular mapping technique. Figure 5.14b provides a definition of an abstract class

NamerGoal, that is the high-level counterpart of the low-level EV.NamerEvent class, and the

high-level class representing the initialization of the method’s definition, MethodSignature.

The MethodSignature class requires the type checking of the method’s returns type and type

checking of its parameters’ types.

154



5.5. Discussion

The high-level classes representing the delayed initialization are defined in a space separate

from the rest of the type checking representation. This means that neither NamerGoal type,

nor its direct or indirect subtypes have to be present among the types of members of the

previously discussed high-level classes. The low-level events of EV.NamerEvent are mapped

in a one-to-one mapping to their high-level counterparts, and their high-level goals can be

excluded from the mapping context. Consequently, the subtrees modeling the high-level

decision process of the delayed initialization are detached from the main type derivation tree

and their roots are available and searchable in a flat space of local type derivation trees.

Representing frequently executed type operations

The TypeFocus-based approach to understanding type derivation trees (Chapter 3) analyzes

the internal details of subtyping derivations, among others, to understand how type variables

are instantiated. In fact, a type-driven implicit resolution (Oliveira et al. [2010]) along with

subtype checking, are the two most commonly executed operations during the compilation.

Consequently, the implementations of the two type checking operations also represent some

of the main hotspots of the Scala’s compiler and their computations are internally aggres-

sively cached. From the type debugging point of view, such a caching is problematic because

• The equivalent typing decisions may be represented through different type derivations,

when cached results are returned.

• The caching operation is not transparent to the users of the instrumentation frame-

work.

• The caching cannot be globally disabled, even for the type debugging mode, for legiti-

mate performance concerns.

In our approach, the frequently executed operations are also instrumented using the light-

weight approach of low-level events except that issuing of those events is conditional.

To allow for a conditional instrumentation, the instrumentation universe from Figure 5.2

is extended with an instrumentCond method as defined in Figure 5.15. In contrast to the

instrument method (Figure 5.2), the conditional instrumentation is controlled through a sep-

arate instrumentation flag, the isCond method, returning a Boolean value.

The instrumentCond method controls only the instrumentation of the enclosed low-level

events and it needs to enclose only the entry and exit point of the frequently executed typ-

ing operations. By default, even during the debugging type checker runs, the isCond flag re-

turns value false and the instrumentation block defined using the instrumentCond method

issues a individual low-level (typing operation-specific) stub event that is mapped to the high-

level stub goal in a one-to-one relation (line 11). The high-level stub goal has no dependen-

cies, i.e., the class declaration has no inherited or declared members, and its underlying

155



Chapter 5. Lightweight extraction of type checker decisions

1 @inline
2 final def instrumentCond[T](x: Event)(
3 startEvent: => Event, stubEvent: T => Event, res: T => Event)(body: => T): T = {
4 if (isCond) {
5 EV <<< startEvent
6 val result = body
7 EV >>> resEvent(result)
8 result
9 } else {

10 val result = withNoEvents { body }
11 EV << stubEvent(result)
12 result
13 }
14 }

Figure 5.15: The definition of the instrumentCondmethod that allows for disabling locally
the execution of the instrumentation for hotspot operations.

low-level stub event only keeps a reference to the input and output of the computation. By

an application of the helper function withNoEvents (line 10), the conditional instrumenta-

tion disables the instrumentation of the type checker operation provided as the argument of

the instrumentation block.

In order to recover the lost information, the instrumentation framework uses the fact that the

frequently executed operations, such as subtype checking or implicit resolution, are idem-

potent when caching is turned off. Assuming that the operations themselves are exposed

through the reflection API or the compiler infrastructure the low-level data included in the

stub event provides sufficient information to re-execute the operations on demand. For cor-

rectness, the caching of the type checker’s results has to be controlled through the isCond

flag and is disabled if and only if isCond returns true. The stream of low-level events result-

ing from the instrumented executions of local operations is sufficient to construct local type

derivation trees on demand.

Instrumenting the frequently executed operations

The users of the instrumentation framework should not be aware of the existence of the high-

level stub classes, nor of the high-level classes that model the internals of the frequently ex-

ecuted operations, for concerns of code duplication and logical errors. Instead, any type

debugging framework built on top of the instrumentation framework should provide a well-

defined API that abstracts over the implementation details of the representation.

On the example of the implementation of the algorithmic subtyping in Scala we now explain

the challenges of instrumenting the frequently executed operations. Due to a number of pos-

sible combinations, and frequent fallbacks on failures, the heavily optimized implementation

156



5.5. Discussion

is mostly written in an imperative style. The sheer number of choices, not isolated through

functions or methods, and the similarity of subtyping operations between the elements of the

involved types, makes it difficult to define an instrumentation that is consistent, i.e., it is ap-

plied in the same way to a majority of the subtyping rules, and non-intrusive, i.e., it limits the

number of the instrumentation blocks, and that maps directly to a high-level representation

in a way that is easy to define.

In our approach, the subtyping algorithm is enclosed within a logical instrumentation block

and still mapped in a one-to-many fashion. To provide a non-ambiguous translation we in-

strument the beginning of every subtyping case (or mark it) with a single « instrumentation

method call. To visually illustrate the solution, we present a small fragment of the instrumen-

tation for a single case of the existing subtyping algorithm implementation:

1 def <:<(tp1: Type, tp2; Type): Boolean =

2 EV.instrument(EV.Conformance(tp1, tp2), EV.ConformanceResult(_)) {

3 tp2 match {
4 ...
5 case MethodType(params2, res2) =>
6 tp1 match {
7 case MethodType(params1, res1) =>

8 EV « EV.CompareMethod(tp1, tp2)

9 ...
10 (params1 zip params2).forall(_ =:= _) && res1 <:< res2
11 case _ =>

12 EV « EV.FailedSubtyping(tp1, tp2)

13 false
14 }
15 ...
16 }
17 }

In the example, the <:< method is the entry point in the compiler to any subtype checking

between the two types. The subtyping algorithm pattern matches on the values of types tp1

and tp2 in order to identify the individual subtyping rules. To extract the information, the en-

try point of the method is enclosed within the instrumentation block (line 2) and its mapping

will be inferred from the instructions issued within it.

The fragment describes the instrumentation of the comparison of two method types (lines 5-

7), which starts by issuing a low-level instrumentation event CompareMethod. Importantly, the

instrumentation leaves the type equality between the parameters of the type (using the =:=

method), and the subtyping check of the return types (using the <:< method) intact, meaning

it is not necessary to encapsulate them in a separate instrumentation block at the level of

the subtyping case. The technique applies seamlessly to instrumenting and exposing failed

subtyping checks when the two types cannot be compared (line 17). The individual low-level

marker events are mapped in a one-to-one fashion, and their sole purpose is to guide the one-

to-many mapping. The presence and position of the unique marker type as a type checking

dependency allows for pruning a substantial number of the high-level classes, as dictated by

157



Chapter 5. Lightweight extraction of type checker decisions

our matching algorithm.

Having seen the low-level details of the instrumentation, we now can compare it with its

high-level representation.

Figure 5.16 presents an example of a high-level representation for the three subtype checking

rules, all of which extend the base high-level representation, the Conformance class. The high-

level classes of the low-level marker events are also present as subclasses of a CompareFlag

base class.

The ConformanceMethodType class in Figure 5.16b gives a high-level representation for a pos-

sible subtype checking of method types - the discussed =:= type equality check is represented

through the params member, and the subtyping check between the return types is repre-

sented through the returnTpe member dependency. Both dependencies translate naturally

to a high-level representation. The lazy evaluation of the && operator is also reflected in the

type of the returnTpe member in order to allow for all possible subtyping executions.

The ConformanceTypeRef and ConformanceTypeRefFallback classes in Figure 5.16c repre-

sent faithfully the different comparison strategies between the two reference types 3, such

as List[Int] <: List[Nothing]. The members of the ConformanceTypeRefFallback class

define the fallback steps when two type references do not immediately represent the same

type, such as List[Int] <: Nil, i.e., the subtype checking will be attempted again as indi-

cated by the retry member.

The high-level representation of the subtype checking has shown two, equally valid, ways

to representing failures and fallbacks in the high-level representation - either through the

optional types or the class inheritance. The choice depends on the type checking circum-

stances but it is important to point out that the latter can be always represented through the

former approach but the conversion in the other direction is not always possible, due to the

matching strategy.

With such definition in mind, all three subclasses of the Conformance class (and others, omit-

ted from the discussion) will lead to a relatively simple mapping of the low-level instrumen-

tation block of EV.Conformance. The non-inheritance restriction of the marker classes is en-

forced through a refinement of the upper bound of the type member U in each of the high-

level marker classes. The usage of the high-level CompareFlag markers comes at a cost - their

dependencies are being leaked into the public signatures of the subtyping high-level classes.

This is an acceptable limitation for the frequently executed operations which are more likely

to be immediately translated to their equivalent TypeFocus values.

3A full description of the reference types is available at http://www.scala-lang.org/api/2.10.4/index.html#
scala.reflect.api.Types\protect\T1\textdollarTypeRef.

158



5.5. Discussion

1 abstract class Conformance extends Goal {
2 type U <: EV.Conformance
3 }
4

5 abstract class CompareFlag extends Goal {
6 type U <: EV.CompareFlag
7 }

(a) A high-level base class representing the results of subtype checking.

1 abstract class ConformanceMethodType extends Conformance {
2 def flag: CompareMethod
3 def params: List[TypeEq] // Compare types of parameters
4 def returnTpe: Option[Conformance] // Compare return types
5 def result: ConformanceResult // Result of conformance
6 }
7

8 abstract class CompareMethod extends CompareFlag {
9 type U <: EV.CompareMethod

10 }

(b) A high-level subtype checking between the two method types.

1 abstract class ConformanceTypeRefBase {
2 def flag: CompareTypeRef
3 def prefix: Conformance // Compare "prefixes" of types
4 def targs: List[ConformanceTArgs] // Compare type arguments
5 }
6

7 abstract class ConformanceTypeRef extends ConformanceTypeRefBase {
8 def result: ConformanceResult // Result of conformance
9 }

10

11 abstract class ConformanceTypeRefFallback extends ConformanceTypeRefBase {
12 def flagFallback: CompareTypeRefFallback
13 def retry: Conformance // Re-try conformance check
14 def result: ConformanceResult // Result of conformance
15 }
16

17 abstract class CompareTypeRef extends CompareFlag {
18 type U <: EV.CompareTypeRef
19 }
20

21 abstract class CompareTypeRefFallback extends CompareFlag {
22 type U <: EV.CompareTypeReFFallback
23 }

(c) A high-level representation for the conformance of two reference types, and, in case of failure,
the fallback subtyping mechanism.

Figure 5.16: A selection of a high-level representation describing the subtype checking
between the two types.

159



Chapter 5. Lightweight extraction of type checker decisions

1 val root: EV.TypeFun = // ...
2 root.pr emi ses.collect{
3 case param: EV.TypeFunParam => param
4 }.flatmap(_.pr emi ses).collect {
5 case tcheckParam: EV.TypecheckAst =>
6 tcheckParam.tree
7 }

(a) Navigating the raw type derivation trees

1 val root2: TypeFun = // ...
2 root2.params.flatMap(_.tParam.underlying.tree)

(b) Navigating the high-level type deriva-
tion trees

Figure 5.17: A comparison of navigating type derivation trees that are constructed only
from the low-level instrumentation data, and when they are based on the high-level rep-
resentation layer. The example uses the class hierarchy from Listing 5.5.

5.5.2 Navigating the type checker decisions

The duality of the low-level and high-level representation provides sufficient information to

define algorithm that navigate the decisions of the type checkers and can ignore the low-level

details when they are irrelevant. In Figure 5.17 we compare the two approaches for traversing

the decisions that type check function ASTs. The first code snippet uses only the low-level

instrumentation data and the unstructured instrumentation blocks, and the other relies on

the recreated high-level counterpart. The two code snippets attempt to extract the low-level

instrumentation data representing the ASTs of all type checked parameters of the function.

For navigating the raw type derivation tree, we assume that the base class EV.Event provides

an implicit premises member that retrieves all direct dependencies of the event in a list col-

lection (the List collection provides the usual higher-order functions such as flatmap, map or

collect).

In the first case the starting point, the root of the considered subtree, is a low-level event of

type EV.TypeFun (line 1). In order to retrieve the AST information from the dependencies

one has to manually filter the correct low-level instances of the events: pattern matching on

the EV.TypeFunParam type retrieves only the low-level events representing the type checking

of the parameters (line 3), and one needs to process further the dependencies of the result-

ing low-level events (line 4); by pattern matching on the EV.TypecheckAst type (line 5) we

can finally filter the low-level events representing the type checking of the individual type

parameters. A simple example indicates that the manual navigation through the raw type

derivation trees is an error-prone process and building a type debugging tool on top of such

representation would be unrealistic.

In the second case, the root of the considered subtree is a high-level goal of type TypeFun (line

1), such that root2.underlying refers to the low-level EV.TypeFun event in accordance with

our mapping specification. Defining navigation combinators through such reconstructed

high-level type derivation tree comes down to performing regular member selection, where

160



5.5. Discussion

the types of the qualifiers involved the already declared TypeFun and TypecheckParam classes.

The high-level goals are complemented by the low-level data and the access to it is verified

by the underlying.tree member selection in line 2. The second approach is not only shorter

but also statically verified.

5.5.3 Guidelines on instrumenting the existing type checkers

The initial instrumentation of any type checker for an industry-used language is a non-trivial

task requiring a good understanding of the implementation. We discuss a set of incremen-

tal steps that can guide the integration of the described instrumentation infrastructure in a

systematic way.

Instrumenting the implementation of the type checker starts with identifying the main entry

points to the type checking process and enclosing them with the instrumentation blocks. The

low-level events reported at such entry points will serve as the root(s) of any of the derived

representations. If the idempotent operation represents a particular hotspot of the compiler,

then one should use the conditional instrumentation blocks.

The next step requires enclosing the bodies of every type checking logic that infers the type

of the individual ASTs, e.g., the inference of the type of a function, a literal, an identifier, a

member selection, or a function application. The low-level events of such instrumentation

blocks share an immediate super type, and keep a reference to the inspected ASTs and the

propagated expected type at a given point of type checking. Such an optimistic instrumen-

tation does not yet attempt to distinguish between different type checker runs that can take

place within the instrumentation blocks.

With such an instrumentation in place, the compiler programmers have to design an ap-

propriate high-level class hierarchy that accurately reflects the main typing dependencies

of each of the individual instrumentation blocks. The straight-forward approach of instru-

menting only the type checking entry points will have to be refined on a case-by-case basis

for each of the considered AST nodes. The different type checking runs for the AST nodes

result in different sequences of low-level events which in turn can lead to ambiguous one-to-

many mappings. To disambiguate the mappings one has to add the auxiliary instrumenta-

tion blocks that logically group together similar typing decisions.

The initially steep instrumentation curve, provides an instrumentation framework that can

be later expanded in an incremental manner to support more language features. With the

withNoEvents method of the instrumentation universe we define a fine-grained control for

disabling the instrumentation of the unsupported language features and type checker exe-

cutions. The support for the individual type checker runs can be added incrementally, on a

case-by-case basis.

161



Chapter 5. Lightweight extraction of type checker decisions

An Example: Instrumenting the Scala type checker

The instrumentation infrastructure proposed in this chapter has been implemented in the

Scala’s type checker (for versions 2.10.4 and 2.11.1). We now briefly summarize the key in-

strumentation points of the implementation.

The main local and non-local type checking entry points in the Scala implementation in-

clude:

• The type checking of the compilation unit, i.e., the non-local root of any Scala source

file.

• The implicit search for a value that conforms to the expected type, given the source

code location that triggered the search in the first place.

• The subtype checking between the two types.

• The overload resolution method, that checks if one type is strictly more specific than

some other type, based on the specification of the language. Similarly to the previous

two operations, the overloading resolution is conditionally instrumented.

• The delayed initialization.

Each of the above entry points can serve as a root of a local or a non-local type derivation tree,

and is handled accordingly in the infrastructure.

The typecheckAst method from Listing 5.1 serves as an entry point to type checking of any

AST. The method is responsible for delegating the type checking to the AST-specific typing

method, and later performs the adaptation to the expected type. The resulting high-level

representation has already been discussed in the case of Listing 5.3.

With ∼ 55 kinds of ASTs that cover the core of the different term and type syntax trees in

the Scala compiler, the high-level representation provides a comparable number of base low-

level and high-level classes. Due to the possible fallback mechanisms and the semantical

differences of the ASTs of the same kind, the type checker runs for the same AST nodes can

result in different sequences of low-level events. Therefore, a high-level representation that

models the AST-typing decisions only, more than doubled the number of the required high-

level classes.

For feature completeness, our instrumentation framework had to expose in detail, among

others, the decision process of inferring the type variable instantiation for polymorphic meth-

ods, expressions, arguments and constructors, as well as the algorithms implementing the

implicit resolution or subtyping.

The instrumentation instructions are not performance negligible, since even with the pres-

ence of inlining they still involve simple flag checks during the regular compilation. Due

162



5.5. Discussion

to a bug in the Scala’s inliner, an overall impact of the instrumentation on the regular, non-

debugging compilation times let to around 8%-10% performance degradation. The compi-

lation times of the type checking with the instrumentation turned on largely depend upon

the size of the selection of type debugging, and range from barely noticeable to very slow. In

the case of techniques providing improved error feedback we believe it to be an acceptable

behavior.

An Example: Instrumenting the Java type checker

The instrumentation infrastructure implemented in our prototype targets the Scala compiler

but the lightweight instrumentation approach itself can apply to other mature type checker

implementations. As an example, we will give an overview of our instrumentation technique

can model the decision process of the Java’s type checker.

The main context-dependent analysis phase of the Java compiler is implemented using the

visitor design pattern4. The design choice resembles the implementation of the Scala type

checker, which pattern matches on the instances of the individual AST nodes in the typecheckAST

method, in order to delegate to an AST-specific typing logic. Importantly, the visitor pattern

implies that the individual AST-specific methods of the visitor class can be conveniently en-

closed using the instrumentation blocks of our infrastructure and delimit the type checking

decisions of the Java AST nodes.

To illustrate the process of modeling type checking decisions of the individual Java AST nodes,

we briefly describe the decision process of the visitApply method, which determines the

type of the method invocation AST (for details we refer the reader to the source code). The

visitApply method takes a parameter representing the AST of method invocation in the Java

compiler, and a local context information (includes the expected type of the AST), and re-

turns the result type of the method with instantiated local type parameters, if necessary. The

order of typing decisions for type checking function applications differs from the Scala’s im-

plementation: in short, the Java type checker verifies the type of the arguments and type

arguments, and type checks the method using the inherited expected type and the verified

types. The Java compiler has a considerably smaller number of fallback mechanisms (the

implicit resolution mechanism is not present in Java) leading to a simple instrumentation in

general.

In Figure 5.18 we propose a (simplified) class hierarchy that models the type checking of func-

tion applications in the Java compiler. The two main classes, TypeConstrApp and TypeMethod-

Invoc, reflect the two diverging executions of the compiler that assign types to constructor

invocations and regular polymorphic method invocations, both of which are handled in the

visitApply method. The common starting point is reflected in the super type of both of the

4The details of the attribute, or type, assignment to trees are available at http://hg.openjdk.java.net/jdk8/jdk8/
langtools/file/tip/src/share/classes/com/sun/tools/javac/comp/Attr.java

163



Chapter 5. Lightweight extraction of type checker decisions

abstract class TypeApp extends TypeGoal {
type U <: EV.TypeApp

}

abstract class TypeConstrApp
extends TypeApp {
def constr: VerifyConstr
...

}

abstract class TypeMethodInvoc
extends TypeApp {
def args: TypecheckArgs
def targs: TypecheckTArgs
def meth: Typecheck

}

abstract class TypecheckArgs extends Goal {
type U <: EV.TCheckArgs

def args: List[Typecheck]
}

abstract class TypecheckTArgs extends Goal {
type U <: EV.TCheckTArgs

def targs: List[Typecheck]
}

Figure 5.18: A fragment of the high-level representation modeling the Java’s type checker
decision process that assigns types to function applications.

classes, TypeApp, and the inherited abstract type member U, representing the low-level instru-

mentation block from which they can be mapped from.

Internally, the implementation of the Java type checker would enclose the type checking

of the arguments and type arguments with the distinct low-level instrumentation blocks,

using the EV.TCheckArgs (for type checking of the value arguments) and EV.TCheckTArgs

(for type checking of the type arguments) events. The logical grouping is necessary to de-

fine a non-ambiguous mapping of the typing decisions to their high-level counterparts, the

TypecheckArgs and TypecheckTArgs classes, respectively.

The high-level representation provides an unambiguous one-to-many mapping from the low-

level entry point of the visitApply method (represented by the EV.TypeApp event) to either

the TypeConstrApp or the TypeMethodInvoc class. The mapping models the type checking of

different method invocations that is again only inferred from the types of high-level goals.

The example of the Java compiler illustrates that the approach of lightweight instrumentation

that is mapped to a separate, implementation-specific high-level representation is not tied to

a particular language, and can be used to model the decisions of different type checkers.

5.5.4 Maintenance of the instrumentation

Manual instrumentation of the implementation of the type checker couples it tightly to the

particular version of the compiler. In consequence, with every minor or major compiler

release the instrumentation instructions have to be merged with compiler changes, a non-

164



5.5. Discussion

trivial task requiring a good understanding of the implementation. Importantly, any signifi-

cant changes in the compiler may undermine the high-level representation and its ability to

accurately reflect the type checker’s decision process.

In practice, the modifications to the existing instrumentation are likely to be performed in

an incremental manner, rather than incorporating the complete instrumentation anew with

every release. In the case of the Scala compiler development, none of its minor releases in the

2.10.x and 2.11.x branches had modified the main type checking process even when undergo-

ing code refactoring; for changes within the same major version, the existing set of low-level,

non-intrusive, events and high-level classes was sufficient.

In the case of the major releases of the compiler, there is a higher probability that the type

checker will alter, thus affecting the instrumentation blocks and/or high-level representation

exposed by our instrumentation framework. We first identify three possible scenarios of a

change in the type checker that breaks the high-level representation between the releases,

and then propose potential solutions to the problem:

• A compiler change introduces a new type checker execution path, which does not af-

fect any of the previous executions. For example, a new fallback mechanism handles

previously rejected AST nodes.

The additional low-level instrumentation, needed to expose the new behavior, will

have to map to a new high-level class representation in a one-to-many mapping. As-

suming the non-ambiguity of the mapping with respect to the previously defined in-

strumentation block, the previously defined high-level class hierarchy will continue to

represent the old type checker decisions process.

• A compiler change modifies an existing type checker decision process.

Depending on the scale of the change, either a new high-level class has to be added to

the high-level representation, or both a combination of low-level events and the modi-

fied high-level representation need to be added. In both cases, we can take advantage

of the one-to-many mapping to define a set of distinct, non-ambiguous classes shar-

ing a common super type to model the old and the new type checker execution with a

single class hierarchy. By pattern matching on the sealed super type, we can identify a

particular type checker execution and provide an appropriate analysis, within the same

codebase.

• A compiler change modifies the existing type checker decision process, but the change

still maps to a semantically different but already defined high-level representation.

The mapping between the low-level data and high-level representation is driven only

by the types of members of the high-level classes. If the change in the type checker

165



Chapter 5. Lightweight extraction of type checker decisions

execution results in a mapping context that still allows for the mapping to be successful

the change will not be detected. It is therefore the role of the infrastructure developers

to make such change explicit, by means of for example additional instrumentation.

Modeling the discrepancy of implicit search resolution: An Example

As an example of a type checker feature added in the 2.11.x release that modified the 2.10.x

Scala’s type checker, we consider an improvement of the encoding of functional dependen-

cies (Hallgren [2000]) with the implicit views5. To illustrate the change we discuss a simple

program where the functional dependency for some term is inferred implicitly and explicitly:

1 class StringOps { def foo: Int = // ... }
2 abstract class FunDep[A, B] { def u(t: A): B }
3

4 {
5 implicit def FundepString: FunDep[String, StringOps] = // ...
6 implicit def funDep[T, U](x: T)(implicit z: FunDep[T, U]): U = z.u(x)
7

8 val a1: Int = "x".foo // Type checks only in Scala 2.11.x
9 val a2: Int = funDep("x")(FundepString).foo // Type checks in Scala 2.10.x and 2.11.x

10 }

The listing defines a StringOps class with a single member foo of type Int, and an abstract

class FunDep representing the functional dependency with its two type parameters, such that

its only method u takes a value having a type of the first type parameter and transforms it

into a value having the type of the second type parameter. Later we define the two local im-

plicit functions, FundepString and funDep. The FundepString function returns a concrete

instance of the FunDep class. The funDep function encodes a generic implicit functional de-

pendency between its two local type parameters, T and U, using the implicit parameter z of

type FunDep[T,U]. In other words, the functional dependency between the instantiations of

type parameters T and U will be satisfied if and only if in an application involving the funDep

function the type checker can materialize the implicit argument of a required type.

The definition of the a2 value represents an explicit application of the functional dependen-

cies encoding, that is equivalent to the definition of the a1 value, modulo the reliance on the

implicit resolution mechanism.

The body of the definition of the a1 value is a member selection on a value "x" of type String

where foo is not among the defined or inherited members of type String. Before reporting

an error in line 8, the Scala type checker will always try to adapt the qualifier to a type that

has the member foo. The pattern is commonly used in the domain-specific libraries and

averts the boilerplate code such as the one listed in line 9. Before we delve into the details of

representing the type checking of the above function applications, we first give an informal

explanation of the process.

5The details of the improvement are present in the bug report that is available at https://issues.scala-lang.org/
browse/SI-3346.

166



5.5. Discussion

sealed abstract class VerifyImplicit extends Goal {
type U <: EV.VerifyImplicit
def typeImplicit: TypeGoal

}
abstract class VerifyNonViewImplicit extends VerifyImplicit {
def adaptImplicit: AdaptGoal
def tpeConformsToPt: SubtypingGoal
//...

}
abstract class VerifyViewImplicit extends VerifyImplicit {
def tpeConformsToPt: SubtypingGoal
// ...

}

abstract class ImplicitArgForParam extends Goal { ... }

Figure 5.19: A fragment of the high-level representation corresponding to verifying indi-
vidual implicit arguments during the implicit resolution. The "..." represents the deci-
sions irrelevant for the purpose of the example.

abstract class InferImplicitArgs extends Goal {
type U <: EV.ImplicitArgs
def implicitArgs: List[ImplicitArgForParam]

}

abstract class VerifyViewInferArgsImplicit extends VerifyImplicit {
def inferArgs: InferImplicitArgs
def adaptImplicit: AdaptGoal
def tpeConformsToPt: SubtypingGoal
// ...

}

Figure 5.20: A high-level class representing the verification of the individual implicit ar-
guments during the implicit resolution, for the modified 2.11.x type checker.

def analyzeImplicitArg(impl: VerifyImplicit) = {
impl match {
case VerifyNonViewImplicit(typeGoal, _, tpeConformance, ...) =>
// ...

case VerifyViewImplicit(typeGoal, tpeCOnformance) =>
// ...

// warning: the match may be non-exhaustive
//case VerifyViewInferArgsImplicit(typeGOal, inferImplicitArgs, tpeConformance) =>

}
}

Figure 5.21: A fragment of a logic that analyzes how the Scala type checker accept-
s/rejects implicit arguments using the exposed high-level representation. The pattern
matcher will statically verify the sealed VerifyImplicit class and warn about the omit-
ted new subclass.

167



Chapter 5. Lightweight extraction of type checker decisions

The implicit resolution of Scala 2.10.x will try to adapt the "x" qualifier by checking the

implicit values available in the scope of the member selection. The verification of the im-

plicit value funDep("x")will assign the internal method type (implicit z: FunDep[String,

?U]): ?U, where the local type parameter T has been instantiated to the type of the qualifier

("x"), the instantiation of the type parameter U is still unresolved (the ?U notation), and the

type checker still has to find an implicit argument for the parameter z. The search for the

implicit argument is preceded by an instantiation of all the unresolved type parameters. In

particular, the unresolved type parameter U will be instantiated to the maximal possible type

Nothing due to lack of type constraints. Consequently, the implicit resolution fails to mate-

rialize an argument of type FunDep[String,Nothing] and the "x".foo member selection is

rejected.

In Scala 2.11.x, the implicit resolution modifies the verification of the implicit views so that

the type checker tries harder to materialize the witness for an implicit parameter, if it exist.

In the modified version, the implicit resolution is performed directly after typing the implicit

value. Consequently, the implicit resolution for the parameter z is triggered with a partially

determined expected type (FunDep[String,?]) (where the wildcard type stands for the don’t

care type) which allows it to find a unique implicit argument FundepString in the local scope.

The change is subtle but significantly improved the expressive capabilities of the implicit res-

olution (Burmako [2013b]). In order to provide a comprehensive type debugging experience

for different compiler releases both behaviors need to be modeled in the high-level represen-

tation.

Having explained the differences between the two implicit resolution implementations, we

now turn our attention to a high-level representation that can model the differences.

Figure 5.19 defines a base class VerifyImplicit representing the mandatory decisions that

verify an implicit view or an implicit value, i.e., the implicit resolution mechanism will al-

ways assign a type to the selected implicit value (the typeImplicit member). The two im-

mediate subclasses, VerifyNonViewImplicit and VerifyViewImplicit, correspond directly

to the type checker’s decisions necessary to verify the implicit value and the implicit view,

respectively. In both cases, the type of the implicit is compared to the type expected by the

implicit resolution context (the tpeConformsToPt member) but only the former will perform

the additional type adaptation operation (the adaptImplicit member, its purpose is irrele-

vant for our example). Importantly, both classes lack any dependency on the type checking

operation that opportunistically infers the implicit arguments (represented by the high-level

goal of type ImplicitArgForParam), and would fail to model the implicit resolution mecha-

nism that is present in Scala 2.11.

The modification introduced in the Scala 2.11 release is exposed by enclosing the change

using the instrumentation block of the low-level EV.ImplicitArgs event. In Figure 5.20 we

provide a high-level representation of the instrumentation block, the InferImplicitArgs

class, where the implicitArgs member and its type define a dependency on the inference

168



5.6. Conclusions

of the implicit arguments, a change that we have informally alluded to previously. Figure

5.20 extends the class hierarchy of the subclasses of the VerifyImplicit base class with a

VerifyViewInferArgsImplicit class. The additional class models the modified type checker’s

behavior using the inferArgs member, without affecting the previous definitions.

Modeling the type checking decision process through a sealed class hierarchy means that it

can also help with identifying the incomplete algorithms (Figure 5.21) that have to be adapted

to the changes in the high-level representation.

5.6 Conclusions

We have presented the instrumentation technique for exposing the low-level type checking

decisions of existing compilers. To model the high-level decision process that is more suit-

able for defining statically checked algorithms we have also proposed a surprisingly simple

high-level class hierarchy. The gap between the two representations is eliminated through an

automatic mapping function.

The presented mapping strategy introduces a small number of restrictions regarding the high-

level representation; the restrictions could potentially be relaxed at a cost of runtime errors

with weaker guarantees. Inadvertently, weaker guarantees lead to ambiguities that are un-

likely to be possible to be fixed with basic instrumentation blocks and refactorings, and thus

are harder to reason about.

169





Chapter 6

Type Debugger - the implementation
details

Type derivation trees, their dual high- and low-level representation, and the algorithm for

analyzing the decisions of local type inference form the foundations of the type debugger tool.

In this chapter we outline the key components of the implementation of the infrastructure

that define the tool and its capabilities. To illustrate the individual components we first give

a very brief overview of the individual components that will be discussed in the chapter.

6.1 Overview

The infrastructure of the type debugging tool is divided into three main parts (illustrated in

Figure 6.1 for reference):

• A compiler infrastructure that allows for the control over the execution of the type

checking process and its instrumentation.

• The high-level representation of the elements of the type checking process, the algo-

rithm that defines the core TypeFocus-based analysis, and the definitions of the spe-

cialized functions that analyze its results (Typing Slices).

• An error feedback layer. The part includes algorithms that define the generic improved

error feedback, library-specific feedback defined in the plugins (Section 7.2.2), and the

interactive debugger infrastructure (Section 7.3). All of the possible feedback methods

define programmatically their operation using the high-level components (the high-

level representation, the Typing Slices, the TypeFocus) and the previously exposed algo-

rithms.

171



Chapter 6. Type Debugger - the implementation details

INSTRUMENTATION

MAPPING

COMPILER

INSTRUMENTED

HIGH-LEVEL
COMPILER
CONTROL

HIGH-LEVEL
REPRESENTATION TYPE FOCUS TYPING SLICES

TYPEFOCUS
TRANSLATIONS

TYPING SLICE-BASED ANALYSIS

TYPE PARAMETER
INSTANTIATION

IMPLICIT
RESOLUTION

OVERLOAD
RESOLUTION

MEMBER
SELECTION

FEEDBACK LAYER

ERROR ANALYSIS PLUGINS INTERACTIVE DEBUGGING ACTIONS

TYPING SLICE-BASED CODE MODIFICATIONS

COMPILER WITH CONTROLLED EXEC

... ...

C
O
M
B
I
N
A
T
O
R
S

N
A
V
I
G
A
T
I
O
N

TYPE MISMATCH

IMPLICIT RESOLUTION

INFERRED TARGS
...

SPECS

STDL

... IMPLICIT RESOLUTION

FUNCTION APPLICATION

TYPE PARAMETER INSTANTIATION

...

Figure 6.1: An overview of the type debugger infrastructure.

In Section 6.2 we describe the details of the integration of the instrumentation infrastructure

with the existing compiler. The extended compiler has to define a clear interface to trigger

the type checking process as well as to control the low-level frequently executed operations,

with and without the instrumentation enabled. Any operations requiring the compiler execu-

tion do not directly deal with the low-level compiler but instead with the high-level compiler

control facade component (visible in Figure 6.1). Consequently the component returns only

the high-level goals representing the requested compiler operation.

The implementation of the high-level representation (Section 5.2), the TypeFocus abstraction

(Section 6.3.1) and the Typing Slice abstraction (Section 6.4) define the three main compo-

nents that will be used in navigating the decisions of the reconstructed type checking deci-

sion process. The infrastructure defines an API for inferring the TypeFocus instances directly

from high-level goals, rather than dealing with the low-level type checking operations (the

TypeFocus Translations component is described in Section 6.3.2). The core of the analysis is

based on the repeated exploration of the Typing Slices inferred using the TypeFocus-based

algorithms (Sections 6.4.2 and 6.4.3).

The Typing Slices returned by the TypeFocus-based algorithms provide information sufficient

to continue their analysis, if necessary. Under certain circumstances, such as for generating

the library-specific error feedback or interactive debugging, we might want to change the

direction of the analysis in order to explore different type checking decisions. Such custom

analysis is allowed in the type debugging framework by exposing the API of the specialized

172



6.1. Overview

analysis functions for different type checking decisions. The specialized analysis functions,

examples of which we present in Section 6.5 and Section 6.6, allow for the analysis of the

type checking decisions at a more coarser level than the analysis of the dependencies of the

high-level goals, and finer level than simple Typing Slice-to-Typing Slice exploration. This

way the programmers who define custom error handlers, or any other heuristics, can define

the Typing Slice-specific analysis without having to understand many of the implementation

details of the compiler.

The type debugger also defines a code modification component (Section 6.7), which is inde-

pendent from the improved error generation infrastructure. The proposed mechanism can

not only infer corrections for the limitations of the underlying type system and the type in-

ference, but also do it with surgical precision. The modifications rely on the custom Typing

Slice-to-Typing Slice exploration, which reuses most of the existing infrastructure.

SOURCE
CODE

ERROR
SELECTION

HAS MORE
PLUGINS?

PLUGIN
DEFINED

FOR
ERROR?

GENERIC
ERROR
ANALYSIS

GENERATE
HIGH-LEVEL

REPRCOMPILE YES

NO

GENERATE
FEEDBACK

NO

GENERATE
FEEDBACK

Figure 6.2: A simplified execution of the type debugger tool that generates improved error
feedback.

We use Figure to illustrate how the type debugger tool generates improved error feedback in

terms of a more elaborate and precise error message.

For any given program, we first trigger a regular, non-instrumented compilation which will

bring a list of errors exactly the same as for the normal compiler execution. Later we trigger

a targeted compilation, based on the error selected by the user (or the first of the reported

errors), which in the process infers a high-level representation of the type checking of the

selected region. The type debugger will later check if any of the loaded type debugger plu-

gins (Section 7.2.2) is defined for the specific error message, and consequently generate an

improved error message. If no plugins were applicable, we delegate to the generic techniques

defined for the different kinds of errors. The generic and the plugin handlers of the errors use

the Typing Slice exploration to quickly step through the irrelevant elements of the type deriva-

tion tree, and identify those that can serve as a starting point for a more in-depth analysis.

For example, depending upon the type checking scenario, function applications or variable

assignments would serve as a good starting point for generating the improved error feedback

(one can notice a correlation with the definition of the Propagation Root from Section 3.1.2).

173



Chapter 6. Type Debugger - the implementation details

We defer the discussion of the interactive mode of the type debugger until Section 7.3.

6.2 Compiler infrastructure

In this section we present a minimal set of capabilities that a compiler implementation has

to provide in order to allow for a controlled execution of the instrumentation during the type

checking of Scala programs. Figure 6.3 defines an extension of Scala’s main compiler class

(named Global) that we use to illustrate the necessary functionality. The DebuggerGlobal

class defines three methods crucial for the generation and collection of the low-level data:

• The ‘withInstrumentation’ and ‘withDetailedInstrumentation’ methods take a generic

type checker operation, provided as a by-name argument, and execute it with a regular

or detailed instrumentation enabled, respectively. The methods themselves only con-

trol the emission of the low-level events, but refrain from performing any type deriva-

tion tree reconstruction.

• The ‘withEventListener’ method takes an instance of the EventListener listener class,

and registers it for the period of the execution of the type checking operation provided

as a by-name argument ‘exec’. The registered instance of the EventListener class

collects the low-level instrumentation instances through callbacks and constructs the

type derivation trees in the ‘event’ method. A reactive implementation (using for ex-

ample the approach of Maier and Odersky [2012]) presents a possible alternative to

collecting the low-level events but for our use-case is too excessive.

In addition to capturing the low-level instrumentation, the compiler has to expose methods

that can trigger general type checking operations as well as the local ones; the definition of

the DebuggerCompilerControl trait records a number of Scala-related operations required by

the Type Debugger:

• The ‘tcheck’ method triggers a type checking of the source files specified in the argu-

ment list in a non-debugging mode. Unlike the traditional pipeline of Scala’s compiler,

which goes through a number of independent phases until code generation, we stop at

the front-end of the compiler, i.e., the compiler executes scanning, parsing, the name

resolution phase and the type checking of the provided programs. Further compilation

phases, their decisions or errors are not exposed by our debugger.

• The ‘tcheckTargeted’ method triggers a type checking of a fragment of the previously

parsed source file. The method assumes that the program structure information from

the complete parsing of the source files is still available. The requested range position,

represented through the ‘pos’ parameter, holds information about the source tree and

174



6.2. Compiler infrastructure

1 abstract class DebuggerGlobal extends Global with DebuggerCompilerControl {
2

3 val EV: EventModel // a reference to the instrumentation universe
4

5 def withInstrumentation[T](exec: => T): T = // ...
6 def withDetailedInstrumentation[T](exec: => T): T = // ...
7 def withEventListener[T](listener: EventListener)(exec: => T): T = // ...
8

9

10 abstract class EventListener {
11 def event(ev: EV.Event): Unit
12 }
13 }
14

15 trait DebuggerCompilerControl {
16 self: Global =>
17

18 def tcheck(srcs: List[SourceFile]): Unit
19

20 def tcheckTargeted(pos: Position): Unit
21

22 def runSubtyping(tpe1: Type, tpe2: Type): Unit
23

24 def runTpeEq(tpe1: Type, tpe2: Type): Unit
25

26 def runImplicitSearch(pos: Position, tree: Tree, pt: Type, isView: Boolean): Unit
27

28 def runOverloadingResolution(tpe1: Type, tpe2: Type): Unit
29

30 def typeTAnnotation(tree: Tree, where: Position): Option[Tree]
31

32 def typeDef(ddef: DefDef, where: Position): Option[Tree]
33 }

Figure 6.3: A brief look at the DebuggerGlobal class that enriches the main compiler class
with the required instrumentation capabilities.

the program fragment to debug. The range position is sufficient to identify a minimal

enclosing AST fragment, and a path to it, thus realizing the selective type checking.

• The ‘runSubtyping’ method triggers a local subtype checking between the two low-

level type values.

• The ‘runTpeEq’ method triggers a local type equality check between the two provided

types.

• The ‘runOverloadingRes’ method triggers a local overloading resolution check between

the two provided types, i.e., it determines if the first type is more specific than the sec-

ond one.

• The ‘runImplicits’ method triggers the implicit resolution for the argument repre-

175



Chapter 6. Type Debugger - the implementation details

trait DebuggerCompilerOps {
self: HighLevelRepr =>

val global: DebuggerGlobal

def compilerOps: CompilerOps

abstract class CompilerOps {
import global.{Type, Position, Tree, Symbol}

def tcheck(pos: Position):

def subtyping(goal: Conformance): Option[Conformance]
def subtyping(tpe1: Type, tpe2: Type): Option[Conformance]

def tpeEquality(goal: TypeEq): Option[TypeEq]
def tpeEquality(tpe1: Type, tpe2: Type): Option[TypeEq]

def implicits(goal: ImplicitSearch): Option[ImplicitSearch]
def implicits(pos: Position, tree: Tree,

pt: Type, isView: Boolean): Option[ImplicitSearch]

def overloadRes(goal: OverloadResolution): Option[OverloadResolution]
def overloadRes(tpe1: Type, tpe2: Type): Option[OverloadResolution]

def locateIdent(sym: Symbol): Option[NamerGoal]
def locateDef(sym: Symbol): Option[NamerGoal]
def locateTMember(sym: Symbol): Option[NamerGoal]

}

}

Figure 6.4: An overview of the compiler interface available to the users of the Type De-
bugger. The interface defines methods that translate the low-level operations to their
high-level interpretations.

sented by the parameter ‘tree’. Here the implicit search term refers to the type-directed

mechanism for inferring the implicit arguments or converting the expressions to an ex-

pected type. If the argument for the ‘isView’ parameter is true, the method realizes

the search for an implicit conversion with the expected type ‘pt’. Otherwise the search

attempts to find an implicit argument which type conforms to the expected type ‘pt’.

The additional position information is sufficient to locate the smallest enclosing type

checking context that lists the available implicit values without triggering a complete

type checking process.

The methods that control the execution of the compiler are of type Unit, meaning that they

are not expected to return a value and the instrumentation itself is collected through side-

effects in the registered EventListener classes.

176



6.3. The TypeFocus generation

In Figure 6.4 we provide another layer of abstraction, defined on top of the previously de-

scribed compiler interface with methods returning the high-level goals instead. The

DebuggerCompilerOps interface has a private dependency on the definition of the high-level

hierarchy (as expressed through the HighLevelRepr self-type) and is tied to an instance of the

main debugger compilation class (as expressed through the ‘global’ member in line 4). The

‘compilerOps’ member returns an instance of the nested CompilerOps class. The class itself

serves as bridge between the operations on the low-level data and their high-level interpreta-

tions.

The methods of the CompilerOps class return the high-level representations of the local low-

level operations. The overloaded methods retrieve instances of the Goal class representing

the high-level decision process of subtyping (Conformance), type equality (TypeEq), implicit

resolution (ImplicitSearch) and overload resolution (OverloadResolution). The overloaded

methods mean that local type derivation trees can be retrieved through either a transpar-

ent expansion of the existing stub Goals that lack any detailed type checking info, or by a

provision of the low-level values directly, such as types or ASTs. The ability to trigger the low-

level type checking operations and retrieve their high-level representation is also crucial if we

want to allow the users of the debugger to diverge from a fixed, error-specific analysis of the

programs. We elaborate on the potential use-cases of the user-directed and the interactive

approach in Chapter 7.

The remaining ‘locateIdent’, ‘locateDef’ and ‘locateTMember’ members return the high-

level type derivation trees of identifiers, value or type members, respectively. Their type

has been determined during the delayed initialization and thus is not part of the main type

derivation tree. For situations where the origin of the type of the definition cannot be de-

termined, e.g., values, which type has been reconstructed from the type signature of the

bytecode or for the internal constant values, the methods will return an empty option value.

6.3 The TypeFocus generation

The TypeFocus abstraction stands at a core of any type debugging technique presented in

our work. In Section 6.3.1 we present its representation in Scala and provide a representative

list of TypeFocus subclasses for the existing Scala types. Later we present a selection of the

operations that infer TypeFocus instances from high-level goals (Section 6.3.2).

6.3.1 The TypeFocus for Scala

In Figure 6.5 we provide Scala’s interpretation of the TypeFocus abstraction and its required

operations. As in the case of the other exposed interfaces, the TypeFocus instances operate

on the existing Scala’s types and its definition has to have a reference to the compiler’s class

177



Chapter 6. Type Debugger - the implementation details

1 trait TypesFocus {
2

3 val global: DebuggerGlobal
4 import global.{Type, Symbol}
5

6 abstract class TypeFocus {
7 def apply(tp: Type): Either[Type, (Type, TypeFocus)]
8 def focus(tp: Type): Type = apply(tp).fold(id, _._1)
9

10 def compose(tfocus: TypeFocus): TypeFocus
11 def head: TypeFocus
12 def tail: TypeFocus
13

14 def update(tpe: Type, mod: Type): Option[Type]
15 }
16

17 // ... concrete instances, defined later
18 }

Figure 6.5: The TypeFocus interface.

(line 3 of the definition).

The main operation of the TypeFocus abstraction, the extraction of type elements, is realized

by the ‘apply’ method. The method returns a disjoint union as indicated by the Either type

constructor and reflects the two possible results of the type extraction: either a complete type

selection (of type Type), or a partial one (of a product type (Type, TypeFocus)). The auxiliary

‘focus’ method returns a type selection on the provided type, essentially ignoring the value

of the partial TypeFocus, included in the right projection of the union type.

The ‘compose’,‘ head’ and ‘tail’ methods allow for the construction and deconstruction of

the TypeFocus instances, with the semantics almost identical to their theoretical counterparts

(Section 3.3.1). The only difference is in the order of the application of the composition (for

details of the differences we refer the reader to Plociniczak et al. [2014]); for historical reasons,

and similarity to function composition, the ‘tfocus1 compose tfocus2’ composition, for any

TypeFocus instances tfocus1 and tfocus2, means that we first apply the tfocus2 extraction

to the provided type and only later tfocus1 to the result of the former. In other words, using

the notation of Section 3.3 ‘tfocus1 compose tfocus2’ is equivalent to ‘tfocus2 ::: tfcosu1’.

For example, to define a deep type extraction of some type X in the function type (S → X )→
T , we would use a TypeFocus that extracts the result type of the function, say tfocusRes,

a TypeFocus that extracts the type of the first parameter, say tfocusParam, and apply their

composition to some low-level type, tp, such as

178



6.3. The TypeFocus generation

(tfocusRes compose tfocusParam)(tp) match {
case Left(tp0) => // ...
case Right((tp0, tfocusCont)) => // ...

}

The ‘update’ method returns a type identical to the provided low-level type value, modulo

the extracted type element which is replaced with the value of the ‘mod’ parameter. For exam-

ple, given Scala’s interpretation of the Li st [Ni l ] and Int types, and some TypeFocus value,

‘tfocusVal’, which extracts the first type argument in the type application involving the List

type constructor, we can express the modification to types as (the grayed-out types refer to

their Scala interpretations):

tfocusVal.update(Li st [Ni l ], Int).get == Li st [Int ]

The localized type modifications were not part of the core of the type debugging analysis but

they offer the ability to perform surgical-level type modifications. The type modifications

are particularly useful when we combine them with the type mismatch information to define

heuristics that modify code (Section 6.7.2). With the ‘update’ operation the TypeFocus class

represents a variant of the Lens family (Foster et al. [2008]).

Having defined the TypeFocus abstraction, we are now in position to explain some of its in-

stances, and operations that infer them.

Examples of TypeFocus for Scala’s types

The implementation of the TypeFocus concept has to provide type extractors for each of the

internal types, and their components. In Figure 6.6 we provide a representative selection

of the TypeFocus class hierarchy. Apart from the identity TypeFocus, represented by the sin-

gleton class of IdTFocus and equivalent to an empty type selection in Section 3.3, the other

classes correspond directly to the Scala’s internal types, as defined in the specification of the

language in Odersky [2015]. To illustrate their role and semantics, we will now discuss them

in turn.

The TypeArgTFocus class:

The TypeArgTFocus class applies to first-order types that are constructed from an applica-

tion of type constructors, such as List or Set, to other first-order types. The TypeArgTFocus

extracts a single type argument based on its position (zero-indexed) in the type arguments

179



Chapter 6. Type Debugger - the implementation details

...
object IdTFocus extends TypeFocus { ... }

abstract class TypeArgTFocus extends TypeFocus {
def baseSym: Symbol
def argIdx: Int

}
object TypeArgTFocus {
def apply(baseSym: Symbol, argIdx: Int): TypeFocus = // ...
def unapply(x: TypeFocus): Option[(Symbol, Int)] = // ...

}

abstract class MethodParamTypeFocus extends TypeFocus {
def param: Int

}
object MethodParamTFocus {
def apply(idx: Int): TypeFocus = // ...
def unapply(tfocus: TypeFocus): Option[Int] = // ...

}

object MethodResTFocus extends TypeFocus { ... }

abstract class OverloadTFocus extends TypeFocus {
def alt: Symbol

}
object OverloadTFocus {
def apply(alt: Symbol): TypeFocus = // ...
def unapply(tfocus: TypeFocus): Option[Symbol] = // ...

}

abstract class MethodResTypeFocus extends TypeFocus
object MethodResTypeFocus {
def apply(): TypeFocus = // ...

}

abstract class TypeMemberTFocus extends TypeFocus {
def owner: Symbol
def memSym: Symbol

}
object TypeMemberTFocus {
def apply(owner: Symbol, memSym: Symbol): TypeFocus = // ...
def unapply(x: TypeFocus): Option[(Symbol, Symbol)] = // ...

}
...

Figure 6.6: A fragment of the TypeFocus hierarchy for extracting elements of Scala’s types

list. The TypeArgTFocus class abstracts over different kinds of type constructors by holding a

reference to the type designator of a class or a trait it was constructed from in the ‘baseSym’

member. A type descriptor reference does not limit its application only to the type construc-

tor which it was created from. Rather the application of the TypeArgTFocus instance to a type

first retrieves the least type instance of a ‘baseSym’ class that is a super type of the provided

180



6.3. The TypeFocus generation

type. Later TypeArgTFocus will attempt to extract the appropriate type argument of the re-

sulting type, based on its position. Consequently, the type selection takes into account the

semantics of nominal subtyping.

For illustration purposes we consider a simple class hierarchy of

class A[S, T]
class B[Z] extends A[Int, Z]

where we define an A class with two type parameters, and a generic class B that extends A

while instantiating type parameter S to a value type Int. Given a TypeFocus value ‘TypeArg-

TFocus(‘A’, 0)’ that refers to the type descriptor of class A and a type argument at position 0,

it can be applied to different Scala types and yield the expected type arguments (the grayed-

out types refer to their low-level Scala interpretations):

• TypeArgTFocus(‘A’, 0)(B [Str i ng ]) = Left(Int)

• TypeArgTFocus(‘A’, 0)(A[Str i ng , Int ]) = Left(Str i ng)

MethodParamTFocus and MethodResTFocus:

The instances of the MethodParamTFocus class and the MethodResTFocus class correspond

to the extraction of the parameter’s type and the return type from the method type, respec-

tively. A method type is a non-value type internally used to represent types of methods, and

denoted as (Ps)U , where (Ps) represents a sequence of named parameters and their types

and U is a regular value type or another method type representing the return type of the

method. Method types do not exist as types of values and are implicitly converted to func-

tion types through the eta-expansion. The described TypeFocus classes also have to mimic

the eta-expansion by extracting the corresponding elements of the function types; the im-

plicit translation guarantees that TypeFocus instances applied to types after and before the

eta-expansion operation transparently extract the identical type elements.

For example,

• For a method type:

MethodParamTFocus(0)((x : Int )(y : F loat )Str i ng) = Left(Int)

• For an equivalent, eta-expanded method type:

MethodParamTFocus(0)(Int => (F loat => Str i ng )) = Left(Int)

181



Chapter 6. Type Debugger - the implementation details

TypeMemberTFocus:

The TypeMemberTFocus class represents a type selection extracting the value of the type mem-

ber of the type. Similarly to the TypeArgTFocus, a type selection first retrieves the least type

instance of the ‘owner’ class that is a super type of the provided type, and then attempts to

find the type of the publicly accessible member having the same name as its ‘memSym’ value.

OverloadTFocus:

The Scala implementation assigns a so called overloaded type, denoted as T-(S0 <and> ...

<and> Sn) to member selections involving multiple alternatives, where T refers to some pre-

fix type, and Si refers to an i-th definition of the alternative. The overloaded type is an ex-

ample of an implementation-specific type, non-existent even in the Scala specification. The

type still needs to be represented in the TypeFocus hierarchy through the OverloadTFocus

subclass because its type elements affect the type checking process and can guide our Type-

Focus-based analysis.

To illustrate the need for type extractors that operate on the internal types, we briefly consider

an example involving an overloaded method ‘apply’ inspired by code snippets from a Scala

library used for generic programming:

1 abstract class TConst {
2 type Elem
3 def bar(): Elem
4 }
5 class A[S] {
6 def apply[T](x: T): TConst { type Elem = S } = // ...
7 def apply[T](x: T, y: T): TConst { type Elem = S } = // ...
8 }
9 val x:A[Int] = // ...

10 x.apply(1, 1).bar()

In the example, any analysis of the inferred type Int of the ‘x.apply(1,1).bar()’ function

application can be initially oblivious of the overloaded method apply and will be equivalent

to the TypeFocus value of TypeMemberTFocus(‘TConst’, ‘Elem’). As we progress with the

analysis of the source of the inferred type, the analysis steps through the function application

(‘x.apply(1,1)’) and member selection (‘x.apply’) terms and the TypeFocus value has to

fully encapsulate the typing decision process, including the overload resolution selection, in

order to guide the analysis of the type checking process for the qualifier term.

182



6.3. The TypeFocus generation

1 abstract class TConst {
2 type Elem
3 def bar(): Elem
4 }
5

6 abstract class A[S](x: S) {
7 def one[T](x: T): TConst { type Elem = S } = // ...
8 }
9 abstract class B extends A[Int](0) {

10 type Rep
11 def two[T](x: T): TConst { type Elem = Rep } = // ...
12 def three[T](x: T): TConst { type Elem = Int } = // ...
13 def three[T](x: T, y: T): TConst { type Elem = Int } = // ...
14 }
15 class C extends B {
16 type Rep = Int
17 }
18

19 val x: C = // ...
20 val y1: String = x.one(1).bar() // error
21 // ^
22 val y2: String = x.two(1).bar() // error
23 // ^
24 val y3: String = x.three(1).bar() // error
25 // ^
26 // error: type mismatch;
27 // found: Int
28 // required: String

Figure 6.7: An example of similarly looking, invalid value assignments. All value assign-
ments lead to the identical typer error message generated by Scala compiler, modulo the
reported error location, as indicated at the bottom of the listing.

The TypeFocus-driven analysis

The elements of the TypeFocus hierarchy are accompanied with companion objects provid-

ing ‘apply’ and ‘unapply’ methods, for creation of type selectors and pattern matching on

the TypeFocus instances (Emir et al. [2007]). With such definitions in mind, implementation

of the navigation rules that drive the analysis of the high-level goals comes down to pattern

matching on the head of TypeFocus values. To illustrate, we consider the analysis of a set of

invalid assignments in Figure 6.7; their conflicting Int types originate from different program

locations and involve non-trivial combinations of type system features.

Figure 6.7 defines an abstract class TConst, with a single abstract type member Elem and a

‘bar’ method. Later we define a single inheritance class hierarchy consisting of the A, B, and

C classes, each of which defines methods that return a subtype of the TConst type. The meth-

ods of the classes differ in how the type member Elem is instantiated in the refined types: in

the constructor (method ‘one’ in lines 6 and 9), through a separate abstract type member

183



Chapter 6. Type Debugger - the implementation details

1 ...
2 def classContext(tfocus: TypeFocus, goal: TypeClass) =
3 tfocus.head match {
4 case TypeArgTFocus(owner, _) => // ...
5 case TypeMemberTFocus(owner, member) => // ...
6 case OverloadTFocus(owner, alt) => // ...
7 case ... => // ...
8 }
9 ...

Figure 6.8: A fragment of the implementation of the TypeFocus-driven analysis. The
classContext method analyzes the typing decisions that verify the definitions of the
classes (represented by the high-level goal TypeClass).

Rep (method ‘two’ in lines 10 and 16), or an explicit type annotation in the type refinement

(method ‘three’ in lines 12, and 13). The function applications, involving the above methods,

all lead to the same type mismatch error (lines 20, 22, 24).

The regular TypeFocus-based analysis will identify the non-final source of the type mismatch

in the function applications, and later navigate to their respective member selections ‘x.one’,

‘x.two’, ‘x.three’, and the qualifier ‘x’. The type assigned to the ‘x.one(1)’, ‘x.two(1)’ and

‘x.three(1)’ applications is the same, i.e., TConst { type Elem = Int }, and is accompa-

nied by the same type selection, TypeMemberTFocus(‘TConst’, ‘Elem’). However the Type-

Focus-based analysis, being aware of the high-level goals, ends up with different TypeFocus

instances when analyzing the type of the qualifier in the discussed assignments:

• For ‘x’ in ‘val y1: String’ with TypeArgTFocus(‘A’, 0)

• For ‘x’ in ‘val y2: String’ with TypeMemberTFocus(‘B’, ‘Rep’)

• For ‘x’ in ‘val y3: String’ with OverloadTFocus(‘B’, ‘three’[0])

Despite the TypeFocus-based analysis reaching the same qualifier ‘x’ as the source of the con-

flicting type, the reconstructed TypeFocus values encapsulate the differences in the instanti-

ation and are sufficient to continue the analysis of the inferred type of the qualifier.

Knowing that the qualifier ‘x’ is of type C (line 19), the analysis will have to end up at the high-

level goal representing the type checking of class C. Figure 6.8 provides an overview of the

TypeFocus-driven analysis function which considers the high-level TypeClass goal represent-

ing the verification of the definitions of the classes. The classContext function uses the head

of the included TypeFocus instance (line 3) to guide the analysis of the class. In particular, we

can pattern match on the potential TypeFocus instances in order to define the generic steps

of the analysis that also apply to the three invalid assignments from Figure 6.7:

• In the context of the TypeClass goal, the TypeArgTFocus value indicates that we seek

184



6.3. The TypeFocus generation

to understand the instantiation of a non-local type parameter of the class or one of

its parents. The latter information is sufficient to direct the navigation to one of the

constructors of the underlying class and, eventually, display the improved error with

the location at

1 abstract class B extends A[Int](0) {
2 ~~~

• In the context of the TypeClass goal, the TypeMemberTFocus value indicates that the

instantiation of one of the type members explains the source of the target type. With

such value of TypeFocus we can navigate to the type derivation node that verifies the

declared type alias, and, eventually, display the improved error with the location at

1 abstract class C extends B {
2 type Rep = Int
3 ~~~

• In the context of the TypeClass goal, the OverloadTFocus value indicates the identity

of the method when dealing with multiple alternatives. With such information we can

navigate to the typing decisions that verified the overloaded method, and, eventually,

display the improved error with the location at

1 def three[T](x: T): TConst { type Elem = Int } = // ...
2 ~~~

The examples illustrate that the TypeFocus values, while simple in their definition, not only

represent trivial extraction of the components of types but can also easily guide the analysis

of non-trivial Scala programs, as formally alluded to in Section 3.5.3.

6.3.2 The inference of TypeFocus instances

Due to their low-level nature and the existence of stub goals, the translations from the low-

level operations to the TypeFocus instances should not be performed manually by the pro-

grammers. Rather the Type Debugger has to provide inference operations that transparently

deliver their interpretations and hide the internal details of the type checking.

185



Chapter 6. Type Debugger - the implementation details

1 trait TypeFocusOps {
2 self: HighLevelRepr with TypesFocus =>
3

4 def tfocusOps: TFocusOps
5

6 abstract class TFocusOps {
7 def toError(conf: Conformance): List[TypeFocus]
8 def fromConstraint(conf: Conformance): Option[TypeFocus]
9 def nonLocalTParam(memSel: TypeMemberSel, tfocus: TypeFocus): Option[TypeFocus]

10 }
11 }

Figure 6.9: The interface for generating TypeFocus instances from the low-level type
checking decisions.

To illustrate the TypeFocus translations required by the Type Debugger we consider a se-

lection of representative methods from Figure 6.9. There, the TypeFocusOps trait defines a

‘tfocusops’ abstract member of type TFocusOps, where the returned value offers the oppor-

tunities to translate high-level goals to their TypeFocus counterparts (the self-type of the trait

determines the private dependence on the high-level representation and the TypeFocus rep-

resentation).

The translation methods have to offer at least means to:

• Infer the TypeFocus values that represent the failed subtyping derivations (the ‘toError’

method, Section 4.2).

• Translate the type constraint node, located in some subtyping derivation tree, into an

equivalent TypeFocus instance (the ‘fromConstraint’ method, Section 3.7.1).

• Infer the TypeFocus value that can bridge the gap between the non-local type param-

eters or type members, and their presence in the type signatures of the members (the

‘nonLocalTParam’ method). The nonLocalTParam method is the only one that has not

been mentioned in any way in the formal description of the TypeFocus concept. We

will illustrate its importance by means of an example.

Example: The nonLocalTParam method

To illustrate the problem of non-local type parameters we consider a type mismatch error

between the two option values:

186



6.3. The TypeFocus generation

1 val xs: List[Int] = // ...
2 val y = xs.find(_ > 0)
3 val z: Option[String] = y
4 // ^
5 // error: type mismatch;
6 // found : Option[Int]
7 // required: Option[String]

In the example, we assign first element of the list of integers ‘xs’ that is greater than zero to the

‘y’ value. The inferred type of the ‘y’ value involves the optional Option type, and eventually

leads to a type mismatch error in line 3. The analysis of the error is problematic because

the ‘x.find(_ > 0)’ application (of type Option[Int]), or more precisely its type argument

Int, does not in general immediately relate to the qualifier ‘xs’, (of type List[Int]), which is

needed to analyze the term using our TypeFocus-based algorithm.

Given a (simplified) definition of the ‘find’ method declared in the List class as:

class List[A] {
...
def find(p: A => Boolean): Option[A] = // ....
...

}

the problem becomes apparent from the return type of the method. The ‘nonLocalTParam’

method will take high-level goal of the member selection (the ‘memSel’ parameter) and im-

plicitly compare the inferred type of the member selection ‘xs.find’ (of type (x: Int =>

Boolean)Option[Int]) and the type of the declared method ‘find’ (of type

(x: A => Boolean)Option[A]). The comparison takes into account the type selection pro-

vided by the tfocus argument.

The result bridges the gap caused by non-local type parameters or type members, allow-

ing us to continue the analysis of the qualifier with a correct type selection. In particular,

given the type selection TypeArgTFocus(‘Option’, 0), visually interpreted on the inferred

type of the member selection as Option[ Int ], the nonLocalTParam will translate it into a

TypeArgTFocus(‘List’, 0) value, visually interpreted on the inferred type of the qualifier as

the List[ Int ] type selection. The inferred TypeFocus allows us to analyze the high-level

goal representing the type checking of the qualifier and preserves the well-formedness and

precision of the initial type selection.

187



Chapter 6. Type Debugger - the implementation details

6.4 The TypeFocus-based analysis

The TypeFocus-based analysis of type derivation trees alleviates the need for understanding

the non-trivial dependencies between the high-level goals. Such navigation is strict, or de-

terministic, meaning that the expansion of Typing Slices is entirely driven by a single initial

TypeFocus value representing some target type. In this section we study the elements of the

implementation that realize the strict navigation, only to later complement it with more fine-

grained, Typing Slice-specific, techniques that allow the users of the debugger to deviate from

it at any point.

Section 6.4.1 provides the definition of Typing Slice in our Type Debugger. Later we present

functions that allow the users to infer Typing Slices from the type derivation tree (Section

6.4.2) and associate them with low-level information such as program locations (Section

6.4.3).

6.4.1 Typing Slices

The Typing Slice combines two crucial elements of the type debugging analysis - the high-

level representation and the TypeFocus. The base class of the Typing Slice, and its four dif-

ferent kinds translate in a straightforward way into a Scala class hierarchy, nested within the

TypingSlices trait:

1 trait TypingSlices {
2 self: HighLevelRepr with TypesFocus =>
3

4 sealed abstract class TypingSlice {
5 type Repr <: Goal
6

7 def repr: Repr
8 def tfocus: TypeFocus
9 }

10 sealed abstract class TSigSlice extends TypingSlice { ... } // type signature
11 sealed abstract class PtSlice extends TypingSlice { ... } // prototype
12 sealed abstract class AdaptSlice extends TypingSlice { ... } // adaptation
13 sealed abstract class TVarSlice extends TypingSlice { ... } // type parameter
14 }

The base TypingSlice class defines an abstract type member Repr with an upper bound

pointing at the high-level goal. When refined in the subclasses, the type determines the type

of the underlying high-level goal. The TypingSlice is realized by the ‘repr’ method returning

a reference to its underlying high-level goal, and by the ‘tfocus’ method returning a well-

formed TypeFocus value extracting a part of its underlying type.

With the definition of the TypingSlice in place, we are now in a position to show how one

can infer its values from the decisions of the type derivation trees.

188



6.4. The TypeFocus-based analysis

1 trait TypeFocusAnalysis {
2 self: HighLevelRepr with TypesFocus with TypingSlices =>
3

4 def analysis: AnalysisOps
5

6 abstract class AnalysisOps {
7 def typeSource(goal: TypeGoal, tfocus: TypeFocus): Option[TypeSlice]
8 def expectedTypeSource(adapt: AdaptGoal, tfocus: TypeFocus): Option[TypeSlice]
9 }

10 }

Figure 6.10: An interface for a TypeFocus-guided analysis of type derivation trees.

6.4.2 Inference of Typing Slices

The interface of the TypeFocus-based core algorithm is defined by the TypeFocusAnalysis

trait (Figure 6.10). As in the previous cases, the trait represents a dependency on the other

elements of the debugger through the self-type, i.e., it depends on the definition of the

high-level representation (HighLevelRepr), the definition of TypeFocus values (TypesFocus)

and Typing Slices (TypingSlices). More importantly, the trait defines an abstract method

‘analysis’ which returns the implementation of the core TypeFocus-based algorithm in the

form of an instance of the nested AnalysisOps class.

The AnalysisOps class provides two variants of the TypeFocus-based algorithm:

• The typeSource method takes a fragment of the type derivation tree representing the

synthesis of the type for some AST (the ‘goal’ parameter), and, if possible, explains the

source of its underlying type. To control the search it takes an instance of the TypeFocus

class in the parameter ‘tfocus’.

Without going into details, the implementation of the method simply pattern matches

on the subtypes of the sealed TypeGoal type and delegates to the corresponding term-

specific analysis rule, such as the analysis of function applications or typing of the

classes.

• The expectedTypeSource method returns the source of the expected type given a high-

level goal representing the adaptation of the synthesized type (the ‘adapt’ parameter).

The method returns the source of the target prototype, that is extracted using the value

of the ‘tfocus’ parameter.

The methods define a shallow search for the source of the type or the prototype in any type

derivation tree. The shallow search does not attempt to expand automatically the intermedi-

ate Typing Slices.

189



Chapter 6. Type Debugger - the implementation details

1 trait SlicesOps {
2 self: HighLevelRepr with TypesFocus with TypingSlices =>
3

4 val global: DebuggerGlobal
5 import global.{Tree, Position, Type}
6

7 def tslicesOps: TypingSlicesOps
8

9 abstract class TypingSlicesOps {
10

11 def extractPos(tslice: TypingSlice): List[Position]
12 def extractType(tslice: TypingSlice): Option[Type]
13 def extractAST(tslice: TypingSlice): Option[Tree]
14

15 def expand(tslice: TypingSlice): List[TypingSlice]
16 }
17 }

Figure 6.11: The definition of the operations on the Typing Slices.

6.4.3 Exploration of type checking with Typing Slices

The TypingSlice offers convenient means for representing the results of the exploration of

type derivation trees. At the same time, the abstraction does not immediately relate to the

low-level types and ASTs that are necessary to provide improved error feedback. It is also not

immediately obvious how to expand the non-final TypingSlice instances due to the sheer

number of the possible high-level goals and Typing Slices for a type system of a mature lan-

guage. That is why in Figure 6.11 we present a TypingSliceOps class that encapsulates a list of

the commonly required Typing Slices operations. The implementation of the class, returned

by the tslicesOps member of the SlicesOps trait, is tied to a particular instance of the com-

piler (lines 4 and 5) since the methods return the low-level compiler values.

The Typing Slice exploration method, ‘expand’, realizes the core idea of the guided type

derivation tree analysis. When given a non-final instance of the TypingSlice, it will transpar-

ently use the included TypeFocus value and the high-level goal, in order to determine the next

nodes in the type derivation tree which explain the target type. The extractPos, extractType

and extractAST methods return the low-level position, type and AST information associated

with the individual TypingSlice instance, respectively. The presented interface provides an

abstraction layer that hides the details of the type checking algorithm (and its high-level rep-

resentation) and at the same time can identify the source of target types through a repeated

expansion of the inferred Typing Slices.

The expansion of the Typing Slices allows us to quickly step through the nodes of the type

derivation tree: we can omit the goals that are irrelevant for the explanation of the process,

and only stop and address those that we deem to be important for the purpose of the partic-

190



6.5. Debugging function applications with elided type arguments

ular type debugging scenario. This means that any type debugging also has to provide access

to the specialized functions that analyze the typing decisions on a more fine-grained level

than just Typing Slice expansion. From the formal point of view the algorithms used in the

analysis of Type Variable Typing Slices in Section 3.7 represent one example of such special-

ized functions.

For illustration purposes, in the next two sections we delve into the details of how the two

non-trivial intermediate analysis techniques are exposed in the Type Debugger and why their

availability is important for providing improved type error feedback.

6.5 Debugging function applications with elided type arguments

The TypeFocus-based analysis of type derivation trees reduces the analysis of function appli-

cations with elided type arguments to two distinct decisions. It first locates the type parame-

ter which instantiation inferred the target type. Later the Typing Slice is expanded and the re-

sult, the Typing Slices, explain the origin of individual type constraints. The TypeFocus-based

navigation hides the complex implicit relations between the high-level goals representing the

inference process, such as the collection process of type constraints, their relation to the type

parameter, and the handling of other local type parameters.

To complement the TypingSlice-approach in Figure 6.12 we present a fragment of the Type

Debugger’s specialized functions specific to the analysis of the type parameters’ instantiation.

Similarly as in the previous cases the operations on the high-level goals are defined in the

nested abstract class, InferOps, which can be retrieved from the abstract member ‘inferOps’

(line 7):

• The ‘tparamInstantiation’ method (line 10) returns a typing decision representing the

location in the type derivation tree where the instantiation of a single type parameter

takes place. The search is triggered with a generic high-level goal and a TypeFocus value,

rather than with a particular value of Typing Slice. This means that the method will

return the answer for a range of possible type checking scenarios that elided type ar-

guments, and the identity of the particular type parameter is defined by the TypeFocus

value.

The result of the analysis is then a Typing Slice, of type SolveTParamSlice, and belongs

to the category of Type Variable Typing Slice formally defined in Section 3.4.

• The constraints method (lines 12-13) takes a high-level SolveTParam goal (the under-

lying goal of the SolveTParamsSlice Typing Slice), representing the site in the type

derivation tree where the type of some type parameter is inferred. The method returns

information about all low-level type constraints that were used in the process. The

overloaded variant of the method allows for modifying the default optimality condi-

tions, and return either information about the lower or upper type bounds of the type

191



Chapter 6. Type Debugger - the implementation details

1 trait InstantiationAnalysisOps {
2 self: HighLevelRepr with TypesFocus with TypingSlices =>
3

4 val global: DebuggerGlobal
5 import global.{Tree, Position, Type}
6

7 def inferOps: TypingSlicesOps
8

9 abstract class InferOps {
10 def tparamInstantiation(goal: Goal, tfocus: TypeFocus): Option[SolveTParamSlice]
11

12 def constraints(goal: SolveTParam): List[Constraints]
13 def constraints(goal: SolveTParam, lowerBounds: Boolean): List[Constraints]
14 }
15

16 abstract class Constraint {
17 def tparam: Type
18 def underlying: Conformance
19 }
20

21 implicit class ConstraintOps(val self: Constraint) extends AnyVal {
22 def toType: Type = // ...
23 def toAST: Option[Tree] = // ...
24 def toPos: Position = // ...
25 def isLowerBound: Boolean = // ...
26 def isFormalBound: Boolean = // ...
27 def toSlice(tfocusCont: TypeFocus): Option[TypingSlice] = // ...
28 }
29 }

Figure 6.12: An interface for analyzing the inference of type arguments.

parameter. The details of the Constraint abstraction are discussed later in Section

6.5.1.

The exploration methods of the presented InferOps class are not complete. Rather, we pro-

vide only a glimpse of the API that should be provided by the architects of the type debugging

framework since they have a good understanding of the details of the type checking process

and its high-level representation.

6.5.1 Representing the type constraints

The type constraints used in the Type Debugger are defined by the Constraint class (lines

16-19 in Figure 6.12). The class defines only two members:

• The ‘tparam’ member returns a low-level type parameter to which a type constraint

corresponds.

192



6.5. Debugging function applications with elided type arguments

• The ‘underlying’ member returns a high-level node of the subtyping derivation tree

where the type constraint was added to the type parameter’s constraint set.

The abstraction on its own does not offer any capabilities; the latter are enabled implicitly us-

ing the ConstraintOps Value Class1 and its members (lines 21-28). The ‘toType’, ‘toAST’, and

‘toPos’ methods retrieve the low-level details of the individual type constraint, such as the

type, the AST and the position, respectively. The ‘isLowerBound’ describes if the identified

type constraint belongs to the set of lower bounds, and the ‘isFormalBound’ determines if the

constraint comes from the type parameter or a type value that has been formally defined in

the type signature. The ‘toSlice’ method defines a translation from the identified type con-

straint into a TypingSlice. The translation is sufficient to trigger a TypeFocus-based analysis

of the source of the type constraint in the type derivation tree.

Consequently, the interface provided by the ConstraintOps takes the burden of discovering

the meaning of high-level nodes and their low-level data off the shoulders of the users, with-

out sacrificing on the level of detail. For example, the type constraints in Scala may originate

not only from the type of the argument or the type or the expected type of the application but

also from the formally defined type bounds in the signatures of the methods. Without the

API that exposes such information in a convenient form it would be impractical for the users

of the Type Debugger to analyze in detail the process of the instantiation of type parameters.

The level of detail we attempt to deliver with the API of Type Debugger is necessary to tackle

real examples. For illustration purposes we consider in Figure 6.13 a scenario of two unre-

lated classes A and B, and a generic Test class with two type parameters.

In the listing, the Test class defines two non-trivial polymorphic methods with a local type

parameter U bounded either by the non-local type parameter S (line 3), or the local type pa-

rameter Z (line 5). Lines 10-11 and 17-18 of the listing give examples of function applications

that later later lead to type errors. The error messages describe the nature of the conflict but

refrain from explaining the source of the types involved in the conflict. The relations between

the inferred types and the involved type constraints, such as in the example above, are rarely

trivial to understand or analyze.

By combining the TypingSlice-based exploration with the specialized functions we provide

tools for generating a more complete type debugging experience that can fully explain the

instantiation of type parameters. To illustrate, Figure 6.14 compares the improved error feed-

back resulting only from the Typing Slices operations (the API defined in Figure 6.11), and

the improved error feedback resulting from the Typing Slices and the analysis of the low-level

details of type constraints. The error messages themselves have been adapted for the illustra-

tion purposes and their role is only to show the ability to infer detailed source code locations.

1Value Classes present no runtime overhead mechanism. A detailed description is provided under http://docs.
scala-lang.org/overviews/core/value-classes.html.

193



Chapter 6. Type Debugger - the implementation details

1 class A; class B
2 class Test[T, S] {
3 def foo[U >: S](x: U): U = x
4 def bar[U >: Z, Z](x: U, y: Z): U = x
5 }
6

7 val x: Test[A, A] = // ...
8 val y: B = // ...
9

10 val y1 = x.foo(y)
11 val y1Expected: Int = y1
12 // error: type mismatch;
13 // found : Object
14 // required : Int
15 // val y1Expected: Int = y1
16 // ^
17 val y2 = x.bar(y, new A())
18 val y2Expected: Int = y2
19 // error: type mismatch;
20 // found : Object
21 // required : Int
22 // val y2Expected: Int = y2
23 // ^

Figure 6.13: An example of the error messages caused by the inference of the type parameter
instantiation from the multiple type constraints.

In fact, the operations on the type constraints reveal sufficient information to reconstruct on-

the-fly the type parameter dependency graphs, along the lines of those presented in el Bous-

tani and Hage [2011] and Hage and Heeren [2007], but without requiring a separate infras-

tructure.

194



6.5. Debugging function applications with elided type arguments

Expected type comes from the inferred
instantiation for the selected
type parameter:
[U >: S](x: U): U

~
The type parameter U has been
instantiated using the following
locations:
val x: Test[A, A] = // ...

~
val y: B = // ...

~
val y1 = x.foo(y)

~~~~~~~~

(a) High-level type constraints information.

Expected type comes from the inferred
instantiation for the selected
type parameter:
[U >: S](x: U): U

~
The type parameter U has been
instantiated using the following
locations:
Location (1):
def foo[U >: S](x: U): U = x

~
val x: Test[A, A] = // ...

~
Location (2):
x.foo(y)

~
val y: B = // ...

~

(b) A complete error feedback.

Expected type comes from the inferred
instantiation for the selected
type parameter:
[U >: Z](x: U, y: Z): U

~
The type parameter U has been
instantiated using the following
locations:
val y: B = // ...

~
val y2 = x.bar(y, new A())

~~~~~~~
val y2 = x.bar(y, new A())

~~~~~~~~~~~~~~~~~

(c) High-level type constraints information.

Expected type comes from the inferred
instantiation for the selected
type parameter:
[U >: Z](x: U, y: Z): U

~
The type parameter U has been
instantiated using the following
locations:
Location (1):
def bar[U >: Z, Z](x: U, y: Z): U = x

~
val y2 = x.bar(y, new A())

~~~~~~~
Location (2):
val y2 = x.bar(y, new A())

~
val y: B = // ...

~

(d) A complete error feedback.

Figure 6.14: A comparison of the improved error feedback for Listing 6.13 that explains
the instantiation of the local type parameter. The example error messages in the first part
rely only on the information from the Typing Slices, while the second part also analyzes
the individual type constraints in detail.

195



Chapter 6. Type Debugger - the implementation details

6.6 Debugging implicit resolution

Implicit resolution is the type-driven mechanism that applies arguments implicitly. In Scala

the mechanism has been used to encode the type classes pattern (Oliveira et al. [2010]), design

the coherent architecture for the Scala Standard Library (Odersky and Moors [2009]), provide

generic, highly-customizable libraries (Miller et al. [2013]), and define intuitive API for the

testing libraries, such as ScalaTest and ScalaCheck. The mechanism is deeply rooted in type

checking but, apart from a recent formalization attempt by Oliveira et al. [2012], efforts to

explain the feature are scarce2.

The problem of the lack of understanding of the implicit resolution is most irritating when the

compiler fails to infer an implicit argument, fails to apply an implicit conversion, or selects

an implicit value different from the intended one. Cryptic messages that accompany such

errors leak the internal details of the libraries, leaving users with no other option than trying

to fix the problem in a time-consuming trial and error fashion or with explicit arguments.

To reveal the lost information we instrument the implicit resolution mechanism in a similar

fashion to regular type checking, and reconstruct the high-level representation in the process.

In this section we present an overview of the high-level goals that are capable of representing

the main selection process. The high-level representation is accompanied by another layer of

abstraction that hides the undesirable internal details and provides a convenient interface for

navigating its decisions. We provide two examples of self-contained algorithms that analyze

the non-trivial errors involving the inference of the implicit arguments.

6.6.1 The high-level representation

The instrumentation of the implicit search, being a frequently executed type checking oper-

ation, is not enabled by default during the regular type debugging. Instead the instrumenta-

tion issues the low-level stub instrumentation event. The difference between the high-level

stub goal and the complete high-level goal representing the selection process is clear in the

high-level hierarchy involving the base ImplicitSearch class in Figure 6.15.

The two entry points of the instrumented implicit resolution process differ in the members

of the ImplicitSearchExpanded class, since the latter reveals the internal details of the pro-

cess. The ‘localContext’ and the ‘ptContext’ members and their types explain the two main

strategies for locating and verifying the implicit values (represented by the type of the class

ContextSource): the implicit values are first sought in the local contexts, such as the enclos-

ing classes, or the imported packages, and only on failure the search continues in the scopes

of the companion objects of the type elements of the expected type.

2The work Oliveira et al. [2012] differs quite significantly from the Scala implementation by, among others,
missing the support for subtyping.

196



6.6. Debugging implicit resolution

abstract class ImplicitSearch extends Goal {

type U <: EV.ImplicitSearch
}

abstract class ImplicitSearchStub
extends ImplicitSearch {

type U <: EV.StubInstrumentedSearch

def result: ImplicitSearchResult
}

abstract class ImplicitSearchExpanded
extends ImplicitSearch {

type U <: EV.ImplicitSearchExpanded

def localContext: ContextSource
def ptContext: Option[ContextSource]
def result: ImplicitSearchResult

}

abstract class ContextSource extends Goal {

type U <: EV.ContextSource

def scopes: List[ContextScope]
def verifyImplicits: List[VerifyImplicit]
def rankImplicits: List[ImplicitRanking]
def err: Option[ErrorGoal]

}

abstract class ContextScope extends Goal {
type U <: EV.EligibleImplicitScope

def implicits: List[EligibleImplicit]
}

abstract class EligibleImplicit
extends Goal {

type U <: EV.EligibleImplicit

def check: Conformance
}

abstract class VerifyImplicit
extends Goal {

type U <: EV.VerifyImplicit

typeImplicit: TypeGoal
}

Figure 6.15: A fragment of the high-level representation of the implicit search mechanism
implemented in the Scala type checker.

The individual steps of the implicit search are represented by the members of the

ContextSource class:

• The ‘scopes’ member represents the pre-selection from all the available implicit values,

also known as the applicable ones. The implicit values of the same scope are grouped

together within the same ContextScope class, as indicated by the collection type of its

only method, ‘implicits’.

• The ‘verifyImplicits’ member refers to the complete type checking operation on the

previously pre-selected eligible implicit values; the process may involve such type op-

erations as an inference of the elided type arguments or an inference of the arguments

for the implicit parameters.

• In order to determine a single, most specific implicit value the type-correct eligible im-

plicits are ordered based on their subtyping relation and the location of their definition.

The ranking mechanism (the ‘rankImplicits’ method) is exposed in the ImplicitRanking

high-level class (omitted for irrelevance).

197



Chapter 6. Type Debugger - the implementation details

1 trait ImplicitSearchOps {
2 self: HighLevelRepr =>
3

4 def iSearchOps: ISearchOps
5

6 abstract class ISearchOps {
7

8 def eligibleImplicits(isearch: ImplicitSearch): List[VerifyImplicit]
9 def usedImplicit(isearch: ImplicitSearch): Option[VerifyImplicit]

10 def allContexts(isearch: ImplicitSearch): List[ContextSource]
11

12 def implicitParams(impl: VerifyImplicit): List[ImplicitArgForParam]
13 def applicableImplicits(ctx: ContextSource): List[EligibleImplicit]
14 ...
15 }
16 }

Figure 6.16: A fragment of the implicit search interface, allowing to discover the decision
process of the implicit search without directly navigating the high-level type derivation
trees. The self-type of the trait illustrates the dependency on the high-level representa-
tion when being mixed-in.

• The optional ‘err’ member represents the event that reports an error that prevents the

inference of the implicit value, such as the infinite expansion of the implicit values.

The high-level representation reveals not only the operations that verify the eligible implicit

values, but also the hidden, typically cached pre-selection process of all the applicable im-

plicit values identified in different scopes of the search. The EligibleImplicit class and its

only member, ‘check’, reveal the details of the pre-selection, allowing the users of the Type

Debugger to programatically investigate the low-level reasons for rejecting or accepting the

individual implicit values.

Having presented a high-level overview of the implicit search decision process, we are now

in a position to describe the specialized analysis functions built on top of it.

6.6.2 Navigating the implicit resolution

The high-level hierarchy of the implicit resolution provides a detailed specification of the

decisions that drive the process. For many applications such level of detail is likely to be

unnecessary or confusing. In this section we discuss the need for the intermediate analysis

interface, in a similar spirit as the one described in Section 6.5. For that purpose we discuss a

selection of the methods of the interface in Figure 6.16 that are built on top of the discussed

high-level representation.

198



6.6. Debugging implicit resolution

The ImplicitSearchOps trait defines an abstract method ‘iSearchOps’ member of type

ISearchOps. The nested ISearchOps abstract class defines a selection of convenient naviga-

tion operations built on top of the implicit search type hierarchy:

• The ‘eligibleImplicits’ method returns a list of all the eligible implicit values that

matched the expected type.

• The ‘usedImplicit’ finds an eligible implicit value, and its verification process, that has

been selected as part of the implicit resolution process, if possible.

• The ‘allContexts’ method returns the high-level goals representing the different search

strategies for the inference of the implicit values.

• If the eligible implicit itself defines implicit parameters, the inference of the correspond-

ing implicit arguments is returned by the ‘implicitParams’ method.

• The ‘applicableImplicits’ method locates all the applicable implicit values that are

verified against the expected type.

Apart from providing the high-level analysis functions, most of the methods accept the base

ImplicitSearch class, rather than its subclasses. The latter hides the internal details of the

high-level stub goal representation, and implicitly translates the stub goals to proper high-

level goals, if necessary.

6.6.3 Example: Explaining the implicit resolution selection

With the small selection of API that exposes a fragment of the implicit resolution logic we can

already define algorithms that improve the non-trivial error messages. In this section we de-

fine a self-contained algorithm that improves the long standing problem of a confusing error

message in the presence of ambiguous implicit values. The problem is illustrated with a code

snippet in Figure 6.17 and the error messages mentioned in the comments. The problem

has persisted for a number of years, and appears regularly on user-mailing lists as one of the

classic pitfalls of the implementation.

The program defines two generic classes, Foo and Baz (line 1), and two polymorphic func-

tions, ‘bar’ and ‘bat’ (lines 9-10). For the purpose of the example, it is only important to

notice that the functions take two lists of parameters, where the second parameter list is im-

plicit. The example also provides three implicit values of the same type, i.e., ‘f1’, ‘f2’ and ‘f3’,

and an implicit polymorphic function ‘f4’ that requires another implicit parameter of type

Foo[S] (in a more realistic scenario the ambiguity is typically hidden among different scopes

of the implicit resolution, making it less obvious).

The problematic scenarios, and their error messages, are illustrated in the ‘test’ function

where functions ‘bar’ and ‘bat’ are partially applied to an integer constant ‘1’. Both implicit

199



Chapter 6. Type Debugger - the implementation details

1 class Foo[A]; class Baz[B]
2

3 implicit val f1: Foo[Int] = // ...
4 implicit val f2: Foo[Int] = // ...
5 implicit val f3: Foo[Int] = // ...
6

7 implicit def f4[S](implicit ev: Foo[S]): Baz[S] = // ...
8

9 def bar[T](x: T)(implicit ev: Foo[T]): Unit = ()
10 def bat[T](x: T)(implicit ev: Baz[T]): Unit = ()
11

12 def test() = {
13 bar(1) // error: ambiguous implicit values:
14 // both value f1 of type => Foo[Int]
15 // and value f2 of type => Foo[Int]
16 // match expected type Foo[Int]
17 // bar(1)
18 // ^
19

20 bar(1)(f1) // works
21

22 bat(1) // error: could not find implicit value for parameter baz: Baz[Int]
23 // bat(1)
24 // ^
25

26 bat(1)(f4(f1)) // works
27 }

Figure 6.17: An example of the error message caused by the ambiguous implicit values.

applications are rejected because the compiler will fail to statically determine a single, most

specific implicit value that matches the expected type:

• The first error message indicates that the ‘bar(1)(f1)’ and ‘bar(1)(f2)’ implicit appli-

cations are equally valid. At the same time, the error message refrains from reporting

the ambiguity involving the ‘bar(1)(f3)’ application, to keep the size of the error mes-

sages within the reasonable limits.

• The second error message simply states that no implicit of the expected type was present

at all. The error is confusing because from the code snippet it is clear that at least the

implicit value ‘f4 ’should be taken into account.

Both of the problems reported by the Scala compiler are caused by the same issue, but they

differ significantly in the reported error message, adding to the confusion.

We reduce the implicit resolution process to a lightweight recursive data structure that high-

lights the key elements of the selection process. Its sole purpose is to be able to represent

200



6.6. Debugging implicit resolution

the non-trivial cases of the inference of the implicit values that themselves require implicit

values, or chains of implicit values in our terminology. The data structure consists of two case

classes (defined in Figure 6.18 in lines 4-5):

• The ImplicitPath class represents a single eligible implicit value, as indicated through

the ‘underlying’ parameter. If the implicit value itself defines a dependency on some

implicit parameters, the search for the implicit arguments is reflected in the non-empty

value of the ‘params’ parameter.

For example, the search involving the implicit value ‘f1’ would be simply represented

as ‘ImplicitPath(‘f1’, Nil)’.

• The ImplicitParam class holds a reference to the ImplicitSearch goal representing

the entry point to any implicit resolution process for some implicit parameter and its

expected type. The list of all eligible implicit values (potentially involving chains of

implicits as well) is represented by the ‘eligible’ parameter.

Figure 6.18 defines a self-contained algorithm which analyzes the implicit resolution selec-

tion and constructs the lightweight data structures representing the ambiguous chains of im-

plicits. The analysis is divided into parts. The failed implicit resolution goal (ImplicitSearch)

has to be first identified from a type checking node that rejected the ‘bar(1)’ and ‘bat(1)’

function applications (lines 7-19). Only later can we analyze the selection process itself (lines

21-29).

Without going into the details, we note that the function has to first identify the root of the

failed inference of the implicit arguments in a generic way. By pattern matching with the

AdaptImplicitMethod goal (line 6) we extract the nodes representing the decisions that infer

the implicit arguments (using the ‘implicitParams’ value of type List[ImplicitArgForParam]

in line 9). The collection type indicates that the adaptation may infer a number of implicit ar-

guments and we have to select one that failed (implicitly checked with a reference to the low-

level data in ‘!p.infer.underlying.result’ in line 11). The located ‘failedImplParam’ value

of type ImplicitArgForParam represents the type checking operation that failed to infer an

argument for some generic implicit parameter. The ImplicitArgForParam class defines only

a single member ‘infer’ of type ImplicitSearch that can be interpreted as a link between

the regular type checking process and the implicit resolution search process.

With the goal representing the failed implicit resolution process (failedImplParam.infer in

line 13), we are now in a position to explain the construction of the data structure represent-

ing the chains of implicits in the ‘traces’ function. Given the ImplicitSearch goal the algo-

rithm first retrieves all the eligible implicit values that matched the expected type 3 (line 23).

For each of the eligible implicit values, we analyze the inference of the implicit arguments

3To keep the example simple we assume that all such values succeeded type checking and are equally specific
according to the ranking specification. The details of such encoding are irrelevant for our discussion.

201



Chapter 6. Type Debugger - the implementation details

1 trait AmbiguousImplicits {
2 self: HighLevelRepr with ImplicitSearchOps =>
3

4 case class ImplicitPath(underlying: VerifyImplicit, params: List[ImplicitParam])
5 case class ImplicitParam(underlying: ImplicitSearch, eligible: List[ImplicitPath])
6

7 def handleNoImplicitFoundError(tcheck: Typecheck): Option[String] = {
8 tcheck.adaptg match {
9 case AdaptImplicitMethod(_, implicitParams: List[ImplicitArgForParam], _) =>

10 for {
11 failedImplParam <- implicitParams.find(p => !p.infer.underlying.result)
12 } yield {
13 val implicitWithParams = traces(failedImplParam.infer)
14 errMessageFromTraces(implicitsWithParams)
15 }
16 case _ =>
17 None
18 }
19 }
20

21 def traces(isearch: ImplicitSearch): List[ImplicitPath] =
22 for {
23 eligible <- iSearchOps.eligibleImplicits(isearch)

24 } yield {
25 val params = iSearchOps.implicitParams(eligible).map {

26 (implArg: ImplicitArgForParam) =>
27 ImplicitParam(implArg.infer, traces(implArg.infer))}
28 ImplicitPath(eligible, params)
29 }
30 }

Figure 6.18: An example of the error handler that generates improved error feedback for
the rejected function applications with implicit parameters from Figure 6.17. The grayed-
out parts refer to the implicit-specific code that defines the error message, and the under-
lined fragments highlight the usage of the specialized analysis functions available from
the ImplicitSearchOps interface.

for the potentially non-empty list of implicit parameters (line 25). Since the goal represent-

ing the search for the implicit arguments is of type ImplicitSearch we trigger the ‘traces’

function recursively (line 27).

The ImplicitPath data structure reconstructed from the recursive invocation summarizes

the key information of the implicit resolution selection. For example for the partial function

applications ‘bar(1)’ and ‘baz(1)’ the ‘traces’ function will return

202



6.6. Debugging implicit resolution

List( ImplicitPath(‘f1’, Nil), ImplicitPath(‘f2’, Nil), ImplicitPath(‘f3’, Nil) )

List(
ImplicitPath(‘f4’,
List(ImplicitParam(‘ev’,
List(ImplicitPath(‘f1’, Nil), ImplicitPath(‘f2’, Nil), ImplicitPath(‘f3’, Nil))

))))

The result from the ‘traces’ function calls provides sufficient information to generate the

improved error messages in the ‘errMessageFromTraces’ function (omitted for irrelevance).

For example, the type error message resulting from the above analysis for the problematic

‘baz(1)’ function application will now be:

error: ambiguous implicit values:
value f4(f1) of type => Baz[Int],
value f4(f2) of type => Baz[Int]
and value f4(f3) of type => Baz[Int]
match expected type Baz[Int]
bat(1)

^

The encoding of the algorithm is complete, in a sense that it allows us to programatically de-

fine the search for all the eligible implicit values that have failed or succeeded to be selected,

and safe, because the access to the high-level dependencies and the retrieval of low-level

data is statically checked. The algorithm is also concise and (with a single recursion) easy to

reason about thanks to the operations provided by the API of the ISearchOps analysis (under-

lined in Figure 6.18).

6.6.4 Example: Implicit resolution and the limitations of local type inference

The specialized analysis functions of the implicit resolution process from Figure 6.16 are not

TypeFocus-driven; we will discuss the TypeFocus-driven analysis in Section 7.1. This does not

however stop it from being used in the algorithms that analyze the type inference process. In

fact by combining the specialized analysis functions of different type system features we are

able to explain problems that involve different type system features and were unlikely to be

explained before. To illustrate our argument we will encode a simple heuristic that provides

better feedback for the rejected program in Figure 6.19 where local type inference affects the

implicit resolution process.

The example defines a generic comparison function ‘universalCompare’ using the type-classes

pattern (line 6). The function takes two arguments of some generic type T and returns an inte-

ger value which sign communicates how the two values compare. The comparison between

203



Chapter 6. Type Debugger - the implementation details

1 abstract class A { def f: Any }
2 class B extends A { def f: Int = 5 }
3 class C extends A { def f: Long = 5L }
4

5 implicit val AOrdering: Ordering[A] = // ...
6 def universalCompare[T: Ordering](t1: T, t2: T): Int = // ...
7

8 universalCompare(2, 1) // works
9 universalCompare(new B, new C) // error:

10 // No implicit Ordering defined for A{def f: AnyVal}.
11 // universalCompare(new B, new C)
12 // ^

Figure 6.19: An example of a local type inference over-approximation leading to a failed
inference of the implicit value.

the two generic values is possible because the type parameter T defines a context bound [T:

Ordering] which is a syntactic sugar for an implicit parameter of type Ordering[T]4. The list-

ing also defines a base class A with a single abstract member ‘f’ of type Any, and subclasses

B and C, each declaring the definition of the abstract member but with a refined return type.

Finally, to compare values of type A the listing defines an ‘AOrdering’ implicit value which

materializes the Ordering for the elements of type A.

For example, a comparison of two integer values in line 8, allows the compiler to infer an

implicit argument of type Ordering[Int], resulting in a type-correct function application

‘universalCompare[Int](2,1)(math.Ordering.Int)’. It may therefore seem surprising to

the user that the compiler rejects the function application in line 9 even though the intended

‘AOrdering’ implicit value is available in the scope.

The interactions between local type inference and the implicit resolution, such as the one

above, are typically hard to explain and may involve reporting false positives. With our pre-

cise analysis they can now be programatically identified by taking the advantage of the known

typing scenarios when they can occur. In Figure 6.20 we present an intuition behind the

algorithm that locates the source of the type of the implicit parameter that failed to mate-

rialize the implicit argument. In the example we focus on the role of the local type infer-

ence over-approximation in the presence of invariant type parameters which manifested it-

self by searching for an implicit argument of type Ordering[Adef f: AnyVal] rather than

Ordering[A].

Similarly as in the previous algorithm, the error analysis accepts the Typecheck goal repre-

senting the type derivation for an individual function application and pattern matches on

the adaptation goal (lines 2-3) in search of the high-level goal representing the failed infer-

ence of the implicit argument (line 5). With the index of the failed implicit parameter we can

4The Ordering[S] type for some type argument S defines methods that can compare elements of type S.

204



6.6. Debugging implicit resolution

1 def analyze(tcheck: Typecheck): List[Position] = {
2 tcheck.adaptg match {
3 case AdaptImplicitMethod(_, params, _) =>
4 for {
5 failedImplParam <- params.find(p => !p.infer.underlying.result)
6 } yield {
7 analyzeImplicit(failedImplParam, params.indexOf(failedImplParam))
8 } getOrElse(Nil)
9 case ... => // ...

10 }
11

12 def analyzeImplicit(implicitParam: ImplicitArgForParam, idx: Int): List[Position] = {
13 for {
14 context <- iSearchOps.allContexts(failedImplParam.infer)

15 applicable <- iSearchOps.applicableImplicits(context)

16 tFocus <- tfocusOps.toError(applicable.check) if tfocus.head != IdTFocus

17 tslice <- analysis.expectedTypeSource(tcheck.adaptg,

18 tFocus compose MethodParamTFocus(idx))
19 } yield {
20 val paramTpe = failedImplParam.underlying.paramPt
21 val paramTpeFocused = tfocus.focus(paramTpe)
22

23 if (isTParam(paramTpeFocus) &&
24 isInvariant(paramTpeFocus, paramTpe)) {
25

26 val implTpeFocused = tfocus.focus(applicable.underlying.tpe)
27 inferOps.tparamInstantiation(tslice.repr, tslice.tfocus).flatMap { tparamSlice =>

28 val constraints = inferOps.constraints(tparamSlice.repr)

29 val found = constraints.forall { constr =>
30 tparamSlice.tfocus(constr.toType).fold(

31 _ <:< implTpeFocused, _ => false
32 )
33 }
34 if (found)
35 Some(
36 for {
37 constraint <- constraints
38 slice <- constraint.toSlice(tparamSlice.tfocus)
39 // ... // expands the slice
40 } yield pos)
41 else None
42 }
43 } else None
44 } flatten
45 }

Figure 6.20: An overview of the algorithm that identifies the source of the rejected implicit
value in Figure 6.19.The grayed-out parts refer to the implicit-specific code that defines
the error message, and the underlined fragments highlight the usage of the previously
defined specialized analysis functions.

205



Chapter 6. Type Debugger - the implementation details

trigger the analysis of the implicit resolution in the ‘analyzeImplicit’ function (line 7).

This time, rather than looking at the eligible implicit values, we consider the applicable im-

plicit values (line 15) that have been checked in all the available implicit scopes (line 14).

Later we use the fact that the applicable implicit values are being rejected based on subtype

checking and translate the failures to the equivalent TypeFocus values (line 16). For example,

based on the failed subtype checking the rejected ‘AOrdering’ implicit value infers the Type-

Focus value:

IdTFocus compose TypeMemberFocus(‘A’, ‘f’) compose TypeArgFocus(‘Ordering’, 0)

When applied to the type of the implicit value

Ordering[A { def f: Any }]

and the expected type

Ordering[A { def f: AnyVal }]

the highlighted parts can already illustrate the subtyping conflict, and the reason for the re-

jection of the implicit value.

The reconstructed type selection is sufficient to trigger the TypeFocus-based analysis which

finds the source of the expected type used in the implicit resolution (lines 17-18). The ‘tFocus

compose MethodParamTFocus(idx)’ type selection enriches the selection of ‘tFocus’ in order

to be compliant with the type of the partially applied function application, where the anal-

ysis is triggered from5. For example, for the inferred type of the partially applied function

application ‘universalCompare(new B, new C)’, the inferred type selection can be visually

interpreted as: (implicit ev: Ordering[A { def f: AnyVal }])Int.

The remaining part of the algorithm (lines 20-37) limits the scope of the accepted programs to

those affected by the inference of the instantiation of a single type parameter that appears in

an invariant position, e.g., T in Ordering[T], as indicated through the platform-dependent

‘isTParam’ (line 23) and ‘isInvariant’ (line 24) functions, respectively (their definitions are

omitted for irrelevance).

The result of the TypeFocus-based analysis, the tslice value, is later used to determine the

part of the type derivation tree that instantiated the local type parameter (line 27), and its

type constraints (line 28). In particular, the tparamSlice Typing Slice will represent the typ-

ing decision that instantiates the local type parameter T and the constraints value will refer

to the new B and new C arguments.

The application of the tparamSlice’s TypeFocus to the types of constraints (lines 30-32) en-

sures that we do not report some false positives. In particular, the condition checks that the

extracted type elements of the constraints, Int and Long, are both subtypes of the intended

5The inferred type of the function application prior to the inference of the implicit arguments is known to be
of a non-value MethodType of shape (implicit x0: X0, ..., xN: XN)Y, where X 0, ..., X N represent types of
implicit parameters and Y is the result type of the method.

206



6.6. Debugging implicit resolution

The inference of the implicit argument failed due to the inferred
instantiation of the type parameter T in
[T](t1: T, t2: T)(implicit evidence$1: Ordering[T])Int

~
Inferred instantiation of type parameter T,
Ordering[A { def f: AnyVal }]

~~~~~~
used locations:
Location (1):
class B extends A { def f: Int = 5 }

~~~
universalCompare(new B, new C)

~~~~~
Location (2):
class C extends A { def f: Long = 5L }

~~~~
universalCompare(new B, new C)

~~~~~
You may provide explicit type arguments to fix the problem:
‘universalCompare[A](new B, new C)’

Figure 6.21: An example of the improved feedback generated for the example from Figure
6.19 using the algorithm from Figure 6.20.

type Any (as checked through the <:< method in line 31).

Finally, each of the identified type constraints can be transformed into a Typing Slice and

further analyzed with the correct type selection on its own (lines 37-39). This not only allows

us to identify the minimal conflicting elements of the type checking that led to the conflict

but also suggest a correct widening of the inferred type, described in the next section. The

consequence of the above algorithm is the improved feedback provided in Figure 6.21.

The reconstructed TypeFocus value, and its application to the types of type constraints and

the type of the implicit value (lines 30-32) ensures that similarly looking, yet type-wise dif-

ferent typing scenarios that do not satisfy our criteria, are being rejected. For example, in a

scenario

1 class D
2 ...
3 universalCompare(new B, new D) // No implicit Ordering defined for Any.

the function application would be rejected by our algorithm and would not produce any false

negatives because the type of the D class is not a subtype of a type A{ def f: Any }.

The presented algorithm is Scala-specific and ignores other type checking scenarios or ap-

plicable implicit values. This does not however diminish the results of our solution; with a

207

Chapter 6. Type Debugger - the implementation details

small number of TypeFocus-based operations and statically verified type derivation tree ex-

ploration we are capable of encoding a generic algorithm that recognizes a non-trivial lan-

guage limitation.

6.7 Code modifications

The TypeFocus-based analysis of type derivation trees provides not only minimal program lo-

cations that explain the origin of types but also foundations for developing precise heuristics

on top of it. One prominent example involves code modifications that patch known local type

inference limitations. To exploit such an opportunity we notice that TypingSlices represent

the self-contained fragments of the type checking process that are easily identifiable.

In Section 6.7.1 we present key components of the type debugger’s infrastructure, sufficient

for identifying and manipulating the type checking decisions. To give an intuition behind

the range of possibilities offered by our proposal, we consider the analysis of two real-world

examples (Section 6.7.2 and Section 6.7.3).

6.7.1 Typing Slices-related suggestions

The localized analysis of Typing Slices dictates the correcting mechanism for each of the sub-

classes of the TypingSlice. We notice that many of the confusing type errors, for which we

would like to offer code modifications, appear as terminal or close-to-terminal TypingSlices.

This way they also identify the smallest code snippets to modify. The interface for the analysis

of the individual TypingSlices is summarized in Figure 6.22.

The SliceFixes trait presents an overview of the code modification infrastructure, which

consists of the three main parts:

• The sealed FixKind abstract class (lines 26-30) groups together possible kinds of code

modifications. For brevity, our selection lists only three classes, TypeAnnotationFix,

TypeArgFix, and MultiFix, corresponding to the low-level information that suggests

an explicit type annotation (at a location specified by the low-level ‘where’ parameter),

an explicit list of modified type arguments, or a collection of multiple modifications,

respectively. Other changes, not listed in the provided code snippet include: modifi-

cations to type signatures of the definitions, or modifications of the structure of the

expressions.

• The ‘FixForSlice’ abstract class (lines 7-16) defines the error correction handlers for

different subclasses of the TypingSlice (lines 8-13). The default implementation of the

FixForSlice class, and its handlers, will delegate to a regular TypingSlice expansion.

Depending on the code modification heuristic, the individual methods of the default

208

6.7. Code modifications

1 trait SliceFixes {
2 self: HighLevelRepr with TypesFocus with TypingSlices =>
3

4 val global: DebuggerGlobal
5 import global.{Tree, Type}
6

7 abstract class FixForSlice {
8 def forTParam(slice: SolveTParamSlice): Option[FixKind]
9 def forIfSlice(slice: InferLubForIfSlice): Option[FixKind]

10 def forLiteralSlice(slice: LiteralConstantSlice): Option[FixKind]
11 def forIdentSlice(slice: IdentSourceSlice): Option[FixKind]
12 ... // other slice handlers
13

14 def forSlice(slice: TypingSlice): Option[FixKind]
15 def forGoal(slice: Goal, tfocus: TypeFocus): Option[FixKind]
16 }
17

18 def sliceFixesOps: SliceFixesOps
19

20 abstract class SliceFixesOps {
21 def tpeMismatchFix(expected: Type): Option[FixForSlice]
22 def noImplEvidenceFix(iSearch: ImplicitSearch): Option[FixForSlice]
23 // .. other default correction techniques
24 }
25

26 sealed abstract class FixKind
27

28 case class TypeAnnotationFix(where: Tree, annotation: Type) extends FixKind
29 case class TypeArgFix(where: Tree, targs: List[Type]) extends FixKind
30 case class MultiFix(fixes: List[FixKind]) extends FixKind
31 }

Figure 6.22: An overview of the infrastructure for opportunistic code modifications.

implementation would need to be overridden.

The code modification analysis is triggered by one of the generic ‘forSlice’ or the

‘forGoal’ methods which dispatch to one of the TypingSlice handlers.

• The ‘sliceFixesOps’ member returns a default implementation of the correction mech-

anisms as implemented by the type debugger.

Different type checking circumstances and errors may dictate different strategies for

resolving conflicts, as represented by the methods of the SliceFixesOps class. For ex-

ample, the ‘tpeMismatchFix’ method will return a TypingSlice analysis, specialized for

type mismatch problems, such that the ‘expected’ parameter describes the intended

type of the modification, while the ‘noImplEvidenceFix’ method will return a Typing-

Slice analysis specialized for the failed implicit argument inference (the algorithm de-

scribed in Section 6.6.4 being one example).

209

Chapter 6. Type Debugger - the implementation details

The structure is sufficient to define surgically-precise code modifications associated with

TypingSlices, since it considers every instance individually. It can also be triggered at any

point during the navigation of the type derivation tree. In that sense, the code modifica-

tion mechanism combines seamlessly with any TypeFocus-based analysis, including the strict

TypingSlice-expansion.

To illustrate, we now consider two examples for the existing Scala programs.

6.7.2 Example: Overcoming the limitations of local type inference

The discussion in Chapter 4 has formally explained the source of type mismatch that oc-

curred within the motivating example of the foldRight application. In Scala we consider

two similarly looking function applications that are equivalent to the formal encoding:

val xs: List[Int] = // ...
xs.foldRight(Nil)((x: Int, ys: List[Int]) => (x + 1) :: ys)
xs.foldRight(List())((x: Int, ys: List[Int]) => (x + 1) :: ys)

Since the object value Nil in Scala extends the List[Nothing] class, the two function applica-

tions result in the same type mismatch between the List[Int] and List[Nothing] types. At

the same time since List() is a function application involving a polymorphic apply member

of List, the two examples lead to subtle, yet significant, differences in type checking.

With the presented type debugging infrastructure we can now take advantage of the type er-

ror and the typing context of where it occurs, to provide a unified solution for both of the

cases. In Figure 6.23a we define a heuristic that suggests code modifications based on the

TypingSlice values that identify the source of the error; the TypeMismatchFix class extends

the default code modification logic, the BaseFix, where the latter only defines the Typing

Slice expansion but no code modification. For the purpose of the above examples we provide

specialized handlers for: the SolveTParamSlice Typing Slice (line 2) representing the typing

decisions that infer the instantiation of some type parameter, and the IdentSourceSlice Typ-

ing Slice (line 24) representing the typing decisions that inferred the type of some identifier.

Later we describe the seamless integration of the opportunistic code modifications with the

regular TypeFocus-based analysis that is concerned only about finding the minimal program

locations for generating improved error feedback (Figure 6.23b).

The heuristic defining the analysis of the instantiation of the type parameter (line 2) comes

down to the retrieval of type constraints that affected it (line 3) and the analysis of the num-

ber and types of constraints (lines 4, 15, and 20). In particular, we consider scenarios where

either no constraint was involved, or one constraint, or more, respectively. The use of the

specialized analysis functions allows us to concentrate on defining properties necessary for

210

6.7. Code modifications

1 class TypeMismatchFix(val expected: Type) extends BaseFix {
2 override def forTApp(slice: SolveTParamSlice): Option[FixKind] = {
3 inferOps.constraints(slice.repr) match {

4 case Nil => // No constraints
5 val inferredTpe = slice.repr.instantiate.underlying.tpeInst
6 val expectedTpe = slice.tfocus.update(inferredTpe, expected).getOrElse(ErrorType)
7 if (isMinimal(slice.repr.underlying.tparam) && (inferredTpe <:< expectedTpe)) {
8 val (funTree, targs) =
9 codeModification.targs(slice.repr, expectedTpe, inferredTpe)

10 Some(TypeArgFix(funTree, targs))
11 } else {
12 // ... other heuristic
13 }
14 case cs :: Nil => // One constraint
15 val inferredTpe = slice.repr.instantiate.underlying.tpeInst
16 val expectedTpe = slices.tfocus.update(inferredTpe, expected).getOrElse(ErrorType)
17 if ((inferredTpe <:< expectedTpe)
18 if (slice.tfocus.head != IdTFocus)) default(slice)
19 else Some(TypeAnnotation(..., expectedTpe))
20 else // ...
21 case cs => // ... // Multiple constraints
22 }
23 }
24 override def forIdentSlice(slice: IdentSourceSlice): Option[FixKind] = {
25 val inferredTpe = slice.repr.underlying.identTpe
26 val expectedTpe = slice.tfocus.update(identTpe, expected).getOrElse(ErrorType)
27 if ((inferredTpe <:< expectedTpe))
28 Some(TypeAnnotation(slice.repr.underlying.tree, expectedTpe))
29 else // ...
30 }
31 }

(a) A fragment of the TypingSlice-based heuristics that suggests type mismatch corrections.

1 def tpeMismatchError(failedAdaptation: AdaptGoal): Option[ErrorFeedback] = {
2 failedAdaptation match {
3 case TypesNotConform(conf: ConformanceCheck, fallback: FallbackAdaptation) =>
4 for {
5 tfocus <- tfocusOps.toError(conf)

6 inferredTpe <- tfocus.focus(conf.underlying.tpe1)
7 expectedSrc <- analysis.expectedTypeSource(failedAdaptation, tfocus)

8 } yield {
9 val optionalFix = sliceFixesOps.tpeMismatchFix(inferredTpe).

10 flatMap(_.forSlice(expectedSrc))
11 val slices = expandUntilCompletion(expectedSrc)
12 val poss = slices.map(tslicesOps.extractPos)

13 ErrorFeedback(poss, optionalFix,
14 tslicesOps.extractType(expectedSrc), expectedSrc.tfocus)

15 } headOption
16 case ... =>
17 }
18 }
19 def expandUntilCompletion(slice: TypingSlice): List[TypingSlice] = slice.expand match {
20 case Nil => slice :: Nil
21 case expanded :: Nil => expandUntilCompletion(expanded)
22 case slices => slices.flatMap(slices)
23 }

(b) Example usage of the TypingSlice-based code modifications.

Figure 6.23: Explaining limitations of local type inference through code modifications.

211

Chapter 6. Type Debugger - the implementation details

our heuristic to apply: the ‘expected’ parameter (line 1) carries complete type information

about the conflicting type and we want to make sure that at each TypingSlice the inferred

type (inferredTpe) and the conflicting type (expectedTpe) are subtypes to avoid false posi-

tives (lines 7,17, and 27). While the ‘expected’ value, such as Int in our example, is not al-

ways comparable with the inferred type parameter instantiation (lines 5 and 15), such as Int

and List[Nothing], it is by design comparable with the part of the latter, represented by the

TypeFocus of the TypingSlice. This means that with the ‘update’ method of TypeFocus we

can reconstruct type List[Int] from the inferred type List[Nothing] and the expected con-

flicting type Int (line 16), and, using the same logic, type Int from the inferred type Nothing

and the expected conflicting type Int (line 6).

The code modification infrastructure does not enforce of how and when a modification should

be proposed, therefore a proposition to provide an explicit type annotation for a single type

constraint (line 19), e.g., List(): List[Int], is an acceptable solution for some circum-

stances. However, if the TypeFocus of the TypingSlice is not an identity, we can encode even

less invasive code changes by delaying the code modification to the expanded TypingSlice

(line 18, represented by the omitted default method). It is at this stage, where the analysis of

the two similar foldRight applications diverges because the TypeFocus-based expansion will

• Locate and explain the source of the selected part of the type of the Nil term through

the IdentSourceSlice slice (line 24), meaning that the target type Nothing originates

in the inferred type of the Nil identifier.

• Locate and explain the source of the selected part of the type of the List() application

through the SolveTParamSlice slice (line 2), meaning that the target type Nothing is a

result of type parameter instantiation in function application term.

The divergence is not problematic in our TypingSlice approach because we can consider

each of the cases individually, as presented in lines 25-29 and 4-13 of Figure 6.23a, and sug-

gest a TypingSlice-specific code modification, if possible. We summarize the key elements

of the (simplified) code modification analysis as:

• Reconstructing the complete expected types with the help of TypeFocus type selection

(lines 6 and 26) and comparing them with the type inferred originally by the compiler.

• The over-approximation of local type inference due to a lack of type constraints can be

easily identified through the retrieval of type constraints, or rather lack thereof, used in

instantiating the type parameters (line 4) and identifying the optimality of the solution

(the definition of the implicit function isMinimal returns a Boolean value true if the

inferred solution was minimal, is omitted for irrelevance).

• For code modifications proposing explicit type arguments, for completeness, we have

to take into account other local type parameters and their instantiations (lines 8-9).

212

6.7. Code modifications

Only with such information can we propose a complete set of explicit type arguments

that can potentially correct the type error.

• Since the identifier term does not accept type parameters, the code modification for

the Scala’s Nil term will propose an equivalent solution in terms of a type annotation

(line 29).

For completeness, Figure 6.23b illustrates the convenience of using such opportunistic mod-

ifications and their seamless integration with the regular erroneous type checking scenarios.

The combined analysis provides sufficient information to generate error messages such as

the one in Figure 6.24.

Expected type comes from the inferred
instantiation for the selected type parameter:
(z: B)(op: (Int, B) => B)B

~~

Locations that affected the inference of
the selected expected type:
xs.foldRight(Nil)((x: Int, ys: List[Int]) =>

~~~
You may try to annotate your code like:
Nil:List[Int]

Expected type comes from the inferred
instantiation for the selected type parameter:
(z: B)(op: (Int, B) => B)B

~~

The part of the selected type has been
instantiated due to lack of type constraints in:
xs.foldRight(List())((x: Int, ys: List[Int]) =>

~~~~
You may provide explicit type arguments like:
List[Int]()

Figure 6.24: An example of an improved type error message, explaining limitations of
local type inference.

In Figure 6.23b, the error handler method is invoked with an adaptation goal represented by

the failedAdaptation parameter. For simplicity, the example ignores the presence of other,

similarly looking, type mismatch errors and we use the TypesNotConform pattern of one of

the AdaptationGoal subclasses in order to gain access to the failed subtyping derivation tree

(the type annotations in line 3 are only for illustrative purposes). With such information in

place we are able to:

1. Construct a TypeFocus representation from a failed subtyping relation (line 5), which

is part of the TypesNotConform goal’s dependency.

2. Determine the part of the type assigned to the term that conflicts with the expected

type, based on the inferred TypeFocus value and its application (line 6). For example

type Int in List[Int].

3. Trigger a TypeFocus-driven analysis of the source of the expected type, given the infor-

mation from the failed subtyping relation (line 7). By definition, the ‘expectedTypeSource’

analysis performs only a shallow exploration of the type derivation tree.

For illustration purposes, we perform a simple expansion of the ‘expectedSrc’ slice

with the ‘expandUntilCompletion’ function (line 19-23) that expands Typing Slices un-

til completion, and returns only the terminal slices.

213

Chapter 6. Type Debugger - the implementation details

4. Perform a default, TypingSlice-based analysis of the conflict that opportunistically at-

tempts to find a possible code modification based on the synthesized type of type mis-

match, the ‘inferredTpe’ value, and the first TypingSlice explaining the source of the

expected type, the ‘expectedSrc’ value (lines 9-10). Importantly, the regular analysis of

the type mismatch, which focuses on finding the origin of the expected type, is inde-

pendent from the logic that determines the opportunistic code modification.

5. Provide a concise summary of the error, by including the detailed position information

on the source of the conflicting type as well as the optional code modification in the

form of the ErrorFeedback class (omitted for irrelevance). The latter will be used to

generate a succinct error message such as the one in Figure 6.24.

The algorithm that generates improved error feedback is generic, in the sense that it is en-

tirely driven by the TypeFocus inferred from a failed type mismatch. At the same time, the

innocuous subtype checking between the reconstructed expected type and the type of con-

straints (lines 7, 17, and 27 in Figure 6.23a), which takes into account the type selection, is

sufficient to prevent us from generating false-negatives, such as the one in Figure 6.25.

val xs: List[Int] = // ...
xs.foldRight(0)((x: Int, ys: List[Int]) => (x + 1) :: ys)
// error: type mismatch;
// found : List[Int]
// required : Int
// (x + 1) :: ys
// ^

...
You may try to annotate your code like:
0:List[Int]

Figure 6.25: An example of an invalid code modification suggestion that is avoided by
our algorithm.

For the example from Figure 6.25, the suggested code modification is precise, in a sense that

it located the source of the error, but is not type-safe because the type of the integer constant

is not a subtype of the expected type List[Int].

Debugging conditional constructs

Another classical example, where local type inference falls short of global type inference ap-

proach, includes the implications of calculating an over-approximated least upper bound

from the different branches of the conditional construct or pattern matching.

In Figure 6.26 we consider a case where two different case classes can be returned as a result

of the conditional computation in some local ‘flag’ function (line 4). The result is assigned

214

6.7. Code modifications

1 abstract abstract class Base; case class Foo(x: Int) extends Base
2 case class Bar(y: Int) extends Base
3

4 def flag(cond: Boolean) = if (cond) Foo(0) else Bar(0)
5 var store = flag(false)
6 ...
7 val modify1 = Foo(1)
8 val modify2: Base = Foo(2)
9 ...

10 store = modify1 // works
11 ...
12 store = modify2 // error: type mismatch;
13 // found : modify.type (with underlying type Base)
14 // required: Product with Serializable with Base
15 // store = modify2
16 // ^

Figure 6.26: An example of a type inference over-approximation for the conditional con-
struct.

to a mutable variable ‘store’, but a consecutive assignment yields a confusing type error. The

conflict is even more surprising for the ‘modify2’ assignment since it was initialized with an

explicit type annotation, and Base is a subtype the Foo and Bar classes. We first delve into the

details of how the type checking of the conditional construct is represented (Figure 6.27), and

later we show how with our approach it becomes trivial to overcome such type inference lim-

itations and propose a code modification algorithm that extends the one from the previous

example.

abstract class TypeIf extends TypeGoal {
type U <: EV.TypeIf

def condition: Typecheck
def thenP: Typecheck

}

abstract class TypeIfElse extends TypeIf {
def elseP: Typecheck
def lubCalc: CalculateLub

}

Figure 6.27: A high-level representation for type checking the conditionals.

The high-level representation of the conditional construct (Figure 6.27) is represented through

the TypeIf and TypeIfElse classes, corresponding to the conditional construct with and

without the else statement. The dependencies of the class describe the type checking of the

condition (method ‘condition’), the type checking of the then statement (method ‘thenP’),

the type checking of the else statement (method ‘elseP’) and the calculation of the least up-

per bound (method ‘lubCalc’). That information is sufficient for our use-case, because it

implicitly reveals the details of the approximation between the statements of the conditional

construct.

215

Chapter 6. Type Debugger - the implementation details

1 override def forIfSlice(slice: IfSlice): Option[FixKind] = slice.repr match {
2 case TypeIfElse(_, thenPart, elsePart, _) =>
3 val inferredTpe = thenPart.underlying.tpe
4 val expectedThenTpe = slice.tfocus.update(thenPartTpe, expected).gerOrElse(ErrorType)
5 if (thenPartTpe <:< expectedThenTpe) default(slice)
6 else None
7 case _: TypeIf => // ...
8 }

Figure 6.28: A fragment of the TypingSlice-based heuristics that suggest type mismatch
corrections when the origin of the error comes from type checking conditional con-
structs.

With the high-level representation we are able to present the extension of the code modifi-

cation algorithm from Figure 6.23a without sacrificing its integrity. Figure 6.28 illustrates an

extension to the TypeMismatchFix class that overrides a handler method for the TypingSlice

IfSlice. The IfSlice identifies the source of some target type in the type checking of the

conditional construct. In other words, the example makes use of the fact that the underlying

TypingSlice-based analysis is correct and will eventually expand to the source of the con-

flicting type, i.e., the conditional construct. The TypeFocus-substitution in line 4 allows us

to state, if the narrowing of the inferred is allowed. In our example, the <:< operation between

the two reconstructed types would verify that the inferred type Product with Serializable

with Base is a subtype of the expected Base type. By delegating the construction of the code

modification to the further expanded consecutive TypingSlice instance (line 5), we allow for

a more specialized error feedback, such as

You may try to annotate your code like:
if (cond) Foo(0):Base else Bar(0)

rather than

You may try to annotate your code like:
(if (cond) Foo(0) else Bar(0)): Base

The two examples illustrated the ease with which one can encode heuristics for improving

the local type inference limitations. Consequently, the TypingSlice-based code modifica-

tion approach is sufficient to overturn many of the long standing arguments describing the

limitations of local type inference with respect to its global counterpart, such as the ones

mentioned prominently in the work of Hosoya and Pierce [1999].

216

6.7. Code modifications

<T> void foo(a: T, b: T,
c: Map<? super T, ? super T>) {}

Number x = // ... ;
Map<Number, Double> y = // ... ;
foo(1, x, y);

// internal error; cannot instantiate
// <T>foo(T,T,Map<? super T,? super T>)
// to (int,java.lang.Number,
// Map<java.lang.Number,java.lang.Double>)
// foo(1,x,y);
// ^

(a) A Java version

def foo[T](a: T, b: T, c: Map[_ >: T, _ >: T]) {}

val x: Number = // ...
val y: Map[Number, Double] = // ...
foo(1, x, y)

// error: type mismatch;
// found : Map[Number,Double]
// required: Map[_ >: Any, _ >: Any]
// foo(1, x, y)
// ^

(b) A Scala version

Figure 6.29: A subtyping conflict for a polymorphic function application example taken
from [El Boustani and Hage, 2010, pg. 13].

6.7.3 Example: Java Generics

In this section we briefly compare the capabilities of our type debugger with the work of

El Boustani and Hage [2010], the only attempt at providing more informative error messages

for the set of problems close to ours, on the example of Java Generics. There, the authors

develop a separate constraint generation mechanism for the function application terms and

a number of heuristics that inform the user about the nature of the problem as well as offer

potential code modifications that might fix the type mismatch.

In Figure 6.29 we present two equivalent function applications written in Java and Scala, and

their corresponding type error messages produced by their reference compilers. The error

messages make it obvious that the type constraints and the inferred types differ significantly,

but the variant of Java’s corrective hints can still be implemented within the frames of our

TypeFocus-based analysis.

The original Java type error message in Figure 6.29a reveals little of the nature of the problem,

increasing the importance of any additional feedback that would help users to go back on

track. In [El Boustani and Hage, 2010, Section 5.4] the authors provide one of the suitable

heuristics for resolving the constraint set, {Integer <: T, Number <: T, T <: Double,

T <: Number}, generated from the function application. Being a heuristic, the approach

relaxes the strict optimality conditions. For example, it infers the instantiation from the con-

straint set by considering approximations of both type bounds of the type parameter, choos-

ing one that causes a least number of conflicts, and suggesting the modification of those that

do not conform to the inferred new instantiation (Figure 6.30a).

In our approach the expansion of the Typing Slices will by default only lead to an identifica-

tion of the involved type constraints, Int and Number, as shown in Figure 6.30b. In order to

217

Chapter 6. Type Debugger - the implementation details

Method <T>foo(T, T, Map<? super T, ? super T>)
is not applicable to the arguments of
type(int, Number, Map<Number, Double>), because:
[*] The type Double in Map<Number, Double> on
11:9(11:21) is not a supertype of the inferred
type for T: Number. However, replacing Double on
11:21 with Number may solve the type conflict.

(a) Improved error feedback in Java.

Expected type comes from the inferred
instantiation for the selected type parameter:
(a: T, b: T, c: Map[_ >: T, _ >: T])Unit

~
Locations that affected the inference of the
selected type parameter (directly or indirectly).
Location (1):

val x: Number = // ...
~~~~~~

Location (2):
val y: Map[Number, Double] = // ...

~~~~~~
Location (3):

foo(1, x, y)
~

You may try to annotate your code like:
1: Number

(b) Improved error feedback in Scala.

Figure 6.30: Error feedback for the erroneous examples from Figure 6.29.

provide a correction mechanism, on a par with the Java heuristics, we would have to define

the implementation of the algorithm for the case when the type parameter is instantiated

with multiple type constraints (line 21 in Figure 6.23a). We refrain from modifying the in-

volved optimality conditions that select the type constraints to avoid user confusion. Never-

theless, with a combination of the value of the expected type, that has led to the conflict, and

the detection of the appropriate TypingSlice slice in the TypeFocus-based analysis, we can

offer a higher confidence in the correctness of our code modification.

For example, we recall that the Scala example from Figure 6.29b will trigger a TypeFocus-

based analysis with an expected type Number. This allows us to immediately identify the single

conflicting type constraint (using the algorithm from Figure 6.23a) coming from the constant

value and suggest a local type annotation that in fact delivers a type-correct change.

6.8 Conclusions

We have presented an overview of the key elements of the type debugging infrastructure for

producing improved feedback. The compiler required only a small number operations to be

exposed in order to control the instrumentation. In practice, with programming languages

supporting some form of meta-programming (such as Burmako [2013a]) the ability to trigger

the low-level type checking operations is more likely to be already supported by the compiler

infrastructure.

The implementation reveals that the TypeFocus and the Typing Slice abstractions translate in

a straightforward way to Scala constructs. With the amount of high-level goals representing

218

6.8. Conclusions

a range of different type system features, the ability to navigate them in a controlled and still

generic way becomes even more important in the type debugging techniques. At the same

time the implementation reveals that for generating improved feedback for the real Scala

programs we need to have the ability to analyze the particular Typing Slices and relate them

to the actual source code. In our implementation of the type debugger we solve this duality by

exposing the Typing Slice-specialized analysis functions that are controlled by the TypeFocus

values. In practice, the TypingSlice expansion itself is largely implemented in terms of those

specialized analysis techniques as well.

The TypeFocus-based analysis is not only suitable for explaining errors but also defining code

modifications. The code modifications are local, meaning that it becomes possible to reject

other program locations that did not affect the inference of the desired type. This also means

that our changes may still be unsound in a global context and any inconsistencies in the

proposed modifications could only be revealed through complete type checking runs. With

the type errors being highly localized in languages using local type inference we believe that

the latter is an acceptable limitation of our approach.

219

Chapter 7

Applications

Our experience with developing the type debugging tool has shown that only the integration

of reconstructed high-level type derivation trees (Chapter 5) and the navigation techniques

that guide its exploration (Chapter 3) yields results that are useful for beginner and expert

users:

1. Interactive type derivation trees (Section 7.3), the nodes of which can be collapsed and

expanded at will, are visually appealing, but without any automatic guidance through

the type checking process, the non-experienced users can quickly get lost in the details

of the type checking process.

2. The complete Scala language integrates a number of type system features, and lan-

guage constructs. Rather than artificially limiting the already available language fea-

tures we chose to use them as a challenge that tests the capabilities of our guided

navigation analysis. The type checker implementation incorporates a number of ex-

ceptions and fallback mechanisms, that are often exploited by the language users and

become the integral part of the language ecosystem.

In this section, we present our experience of integrating the two approaches to explain ad-

vanced type system features, that have not been yet covered in the thesis. In Section 7.1 we

present a guided approach to explaining the combined decisions of local type inference and

implicit resolution. The specialized TypeFocus-based analysis allows us to reveal the links be-

tween the inferred returned types of function application terms and their function, type or

value arguments, when they are separated by non-trivial implicitly inferred and instantiated

arguments.

In Section 7.2 we discuss the application of the type debugging framework as a platform for

providing more informative type error messages, and potential error corrections, in the pres-

ence of real-world examples. In particular we illustrate how with the high-level representa-

tion we provide the possibility of explaining. Finally, we show that debugging the decisions

221

Chapter 7. Applications

1 import shapeless._

2

3 trait EmptySeqs[L <: HList, Out <: HList] {
4 def apply() : Out
5 }
6

7 {
8 implicit def hnilEmptySeqs: EmptySeqs[HNil, HNil] = // ...
9 implicit def hlistEmptySeqs[H, T <: HList, POut <: HList](

10 implicit est : EmptySeqs[T, Out]): EmptySeqs[H :: T, Seq[H] :: POut] = // ...
11

12 def emptySeqs[T <: HList, OutT <: HList](x: T)(implicit es: EmptySeqs[T, OutT]): OutT=
13 es.apply()
14

15 def foo[T](a: T): Unit = ()
16

17 def test {
18 val x = emptySeqs(1 :: "abc" :: true :: HNil)
19

20 foo[Seq[Int] :: Seq[String] :: Seq[Boolean] :: HNil](x) // ok
21 foo[Seq[Int] :: Seq[Boolean] :: Seq[Boolean] :: HNil](x) // error
22 }
23 }

Figure 7.1: Encoding type-safe collection construction using implicit parameters.

of local type inference in an interactive and controlled way fits perfectly with the analysis ap-

proach that analyzes the source of types in multiple stages, rather than giving a final answer

immediately.

7.1 Automatic explanation of the implicit resolution

The high-level representation of the implicit resolution mechanism (Section 6.6) has been pri-

marily used to explain the decision process behind the rejected expressions. Unfortunately, a

successful implicit resolution, i.e., one where the implicit argument is found, is often equally,

if not harder, to explain and can still lead at a later point to type errors. For example, in Scala

it is common for the inferred result type of function to be path-dependent on the value of

the inferred implicit argument (the principles of the design-pattern have been described for

example in Doenitz [2012], and lies at the foundation of for example the type-driven serial-

ization library, Scala Pickling in Miller et al. [2013]).

We illustrate the problem in Listing 7.1 with the program inspired by the popular Shapeless

library1 providing generic programming capabilities, and its implementation of the hetero-

geneous lists, HList. HList supports similar operations as the regular List collection, except

1shapeless.org

222

7.1. Automatic explanation of the implicit resolution

for being able also to statically define the type of the individual elements. For example,

val y: HList[Int :: String :: HNil] = 1 :: "a" :: HNil

assigns a two element list, constructed by prepending the integer value to another heteroge-

neous list, which in turn is constructed by prepending a string value to an empty list, HNil.

The :: notation defines an infix type constructor with two type parameters describing the

type of the head and the tail of the list, respectively.

Listing 7.1 constructs a heterogeneous list of empty sequences from another heterogeneous

list, such that the underlying type of each of the sequences corresponds to the type of the

elements of the initial heterogeneous list; in short, the initial heterogeneous list serves as a

schema for the encoding2. The type signature of the emptySeqs method asserts the encod-

ing from any heterogeneous list, of a generic type T, to an appropriate list of sequences, of

the inferred type OutT, through the type of the implicitly resolved parameter es. For exam-

ple, in line 17 of Listing 7.1 the emptySeqs method is applied to a list of 3 elements of types

Int, String and Boolean and returns a list of equal length, where its elements are of types

Seq[Int], Seq[String] and Seq[Boolean], respectively.

The individual elements of the initial list are disassembled and assembled one-by-one in a

generic head/tail fashion through the encoding involving the EmptySeqs data structure (lines

3-5); the type parameter L of the EmptySeqs trait represents the type of the unprocessed list,

and the Out type parameter represents the inferred type of the translation. The encoding is in-

ferred in a type-driven fashion, using the hlistEmptySeqs and hnilEmptySeqs implicit values;

the length and type of the translation is expressed through the function applications of a form

hlistEmptySeqs(hlistEmptySeqs(... hnilEmptySeqs)), where the size of the function ap-

plication is dependent upon the length of the initial heterogeneous list that undergoes the

translation. The purpose of the function applications in lines 19 and 20, involving a simple

generic function foo, is to illustrate explicitly the inference of a desired type or lack thereof.

As expected, the compiler agrees with the explicit argument of the first application but rejects

the latter, resulting in a non-trivial type error message in Figure 7.2.

The type mismatch message from Figure 7.2 is still readable for a Scala programmer and, with

the help of the TypeFocus highlighting inferred from the failed subtyping relation, it can now

be further improved to show the exact conflicting type elements. In practice, the type mis-

match errors often become arbitrarily long, and quickly lose the merit of any information

about the involved type constructors and their type arguments. The reason is that in func-

tion applications involving implicit arguments, the errors explain the internal details of the

libraries or domain-specific languages and, even when accompanied by the detailed descrip-

tion of the inferred implicit values, such as the one in Listing 7.3, they make little sense and

hardly relate to the explicit arguments or functions defined by the users.

2The problem is a simplification of a real example posted on the mailing list that led an obscure type error
message. While simpler, it still allows us to distill the challenging problems of the implicit resolution.

223

Chapter 7. Applications

type mismatch;
found : shapeless.::[Seq[Int],shapeless.::[Seq[String],shapeless.::[Seq[Boolean],

shapeless.HNil]]]
required: shapeless.::[Seq[Int],shapeless.::[Seq[Boolean],shapeless.::[Seq[Boolean],

shapeless.HNil]]]
foo[Seq[Int] :: Seq[Boolean] :: Seq[Boolean] :: HNil](x)

^

(a) Original type mismatch error.

type mismatch;
found : shapeless.::[Seq[Int],shapeless.::[Seq[String],shapeless.::[Seq[Boolean],

shapeless.HNil]]]
~~~~~~

required: shapeless.::[Seq[Int],shapeless.::[Seq[Boolean],shapeless.::[Seq[Boolean],
shapeless.HNil]]]

~~~~~~~
foo[Seq[Int] :: Seq[Boolean] :: Seq[Boolean] :: HNil](x)

^

(b) Enhanced type mismatch error with TypeFocus highlighting.

Figure 7.2: Basic type mismatch errors for the problematic application in Listing 7.1.

emptySeqs(1 :: "abc" :: true :: HNil)(
hlistEmptySeqs[Int, String :: Boolean :: HNil, Seq[String] :: Seq[Boolean] :: HNil](
hlistEmptySeqs[String, Boolean :: HNil, Seq[Boolean] :: HNil](
hlistEmptySeqs[Boolean, HNil, HNil](hnilEmptySeqs))))

Figure 7.3: An example from Listing 7.1 with the implicit arguments that are normally
elided.

We present a state-of-the-art TypeFocus-based approach to debugging the inferred values of

the implicit resolution; the analysis of the propagation of the expected type that instantiates

local type parameters allows us to identify links between the inferred types of type checked

function applications and the non-implicit elements of functions and arguments. Section

7.1.1 discusses a deterministic TypeFocus-based analysis, where the examination relies on

maintaining a type selection only on the local type parameters of the generic implicit values,

and keeping track of type propagation that instantiates them. Section 7.1.2 presents an ap-

proach with weaker guarantees where the parts of the inferred type do not only depend upon

the instantiations of local type parameters of the implicit values.

224

7.1. Automatic explanation of the implicit resolution

Expected type Inferred implicit
EmptySeqs[Int :: String :: Boolean :: HNil, ?] l1 = hlistEmptySeqs(l2)

EmptySeqs[String :: Boolean :: HNil, ?] l2 = hlistEmptySeqs(l3)

EmptySeqs[Boolean :: HNil, ?] l3 = hlistEmptySeqs(l4)

EmptySeqs[HNil, ?] l4 = hNilEmptySeqs

Inferred
implicit

Inferred type

l1 EmptySeqs[Int :: String :: Boolean :: HNil, Seqs[Int] :: Seqs[String] :: Seqs[Boolean] :: HNil]
l2 EmptySeqs[String :: Boolean :: HNil, Seqs[String] :: Seqs[Boolean] :: HNil]

l3 EmptySeqs[Boolean :: HNil, Seqs[Boolean] :: HNil]

l4 EmptySeqs[HNil, HNil]

Figure 7.4: A summary of the inputs and output parameters of the implicit resolution for
the example from Listing 7.1. The elements of the implicit search resolution are inferred
from the emptySeqs(1 :: "abc" :: true :: HNil)(l1) function application.

7.1.1 The deterministic analysis of the implicit resolution

Analysis of the chains of implicit values is reminiscent of analyzing type checking of non-

implicit function applications, modulo the presence of the search mechanism and the fact

that local type parameters can get partially instantiated. In both cases the propagation of the

partial expected type plays a crucial role in instantiating type parameters. In consequence,

the simplest, yet incomplete, form of the analysis of the implicit resolution is just a special

case of the shallow TypeFocus-based analysis. The analysis is incomplete because it will iden-

tify only the first nested implicit that introduced the part of the inferred type.

To illustrate the problem on our motivating example in Figure 7.4 we take apart the inferred

implicit values from Listing 7.3 and identify the expected type and the inferred type at every

step of the implicit resolution.

Based on the failed subtyping from the type mismatch error, the regular TypeFocus-based

analysis will locate the instantiation of the local type parameter that takes part of the implicit

value l2, as the source of the target type

hlistEmptySeqs[String, Boolean :: HNil, Seq[Boolean] :: HNil](
hlistEmptySeqs[Boolean, HNil, HNil](hnilEmptySeqs))))
:EmptySeqs[String :: Boolean :: HNil, Seq[String] :: Seq[Boolean] :: HNil]

∼∼∼∼

and identify the corresponding part of the implicit value definition

225

Chapter 7. Applications

Type parameter T has been instantiated using location(s):
val x = emptySeqs(1 :: "abc" :: true :: HNil)

~~~~~
Explicit type argument for type parameter T that was in conflict:

foo[Seq[Int] :: Seq[Boolean] :: Seq[Boolean] :: HNil](x)
~~~~~~~

Figure 7.5: Improved error feedback for the erroneous application in Listing 7.1

implicit def hlistEmptySeqs[H, T <: HList, POut <: HList](
implicit est : EmptySeqs[T, POut]):

EmptySeqs[H :: T, Seq[H] :: POut] = // ...
~

While correct, the locations are a far cry from the information desired by users, such as the

one in Figure 7.5, which describes exactly the conflicting type arguments and values. To re-

alize the improved error feedback, we first notice that the result of the shallow analysis rep-

resents a variant of the Prototype Typing Slice, and, from the formalization in Section 3.6, it

translates to an equivalent TypeFocus value. To make such a statement clearer, in our exam-

ple we compare side-by-side the type elements extracted by the TypeFocus selection in

• The declared result type of the same implicit value,

i.e., EmptySeqs[H :: T, Seq[H] :: POut],

• The part of the inferred type of the implicit value, identified through the shallow analy-

sis, i.e.,

EmptySeqs[String :: Boolean :: HNil, Seq[String] :: Seq[Boolean] :: HNil], and

• The expected type of the implicit search,

i.e., EmptySeqs[String :: Boolean :: HNil, ?], where ? represents the uncon-

strained type.

The TypeFocus value allows us to represent the type propagation information, specific to the

unique local type parameter, i.e., H in EmptySeqs[H :: T, Seq[H] :: POut]. For our ex-

ample, the type propagation is equivalent to a TypeFocus value of ‘TypeArgTFocus(0, ‘::’)

compose TypeArgTFocus(0, ‘EmptySeqs’)’, highlighted through the dark gray region and de-

noted as Θl2.

In essence, the main difference with the original prototype propagation technique from Sec-

tion 3.6 and its translation to TypeFocus values lies in the source of the type propagation -

there we translated the Prototype Propagation Path, while here we operate at a more fine-

226

7.1. Automatic explanation of the implicit resolution

grained level of the inferred types of the implicit values, the type signatures of their defini-

tions and types of formal implicit parameters.

The reconstructed TypeFocus value encapsulates sufficient information to perform a con-

trolled backtracking within the implicit context it was decided in. In the case of our example,

the context is illustrated as the grayed-out fragment of the full implicit argument in

hlistEmptySeqs[Int, String :: Boolean :: HNil, Seq[String] :: Seq[Boolean] :: HNil](
hlistEmptySeqs[String, Boolean :: HNil, Seq[Boolean] :: HNil](
hlistEmptySeqs[Boolean, HNil, HNil](hnilEmptySeqs)))

and the definition of the parent implicit

implicit def hlistEmptySeqs[H, T <: HList, POut <: HList](
implicit est : EmptySeqs[T, POut]): EmptySeqs[H :: T, Seq[H] :: POut] = // ...

where the grayed-out part represents the parameter of the previously considered implicit

value. The inferred Θl 2 TypeFocus encapsulates the type propagation for the expected type

of the implicit value l2. At the same time the Θl2 TypeFocus is well-formed with respect to the

inferred type of the implicit value l2 and the type of formal implicit parameter, EmptySeqs[T,

POut]. The application of TypeFOcus to type EmptySeqs[T, POut] results in a partial type

selection with

• The extracted local type parameter T of the hlistEmptySeqs method.

• The TypeArgTFocus(0, ‘::’) TypeFocus, denoted as the Θl3′ type selection, that could

not be applied to the local T type parameter.

The significance of such type extraction are three-fold:

• We have identified that the instantiation of the local type parameter T, defined in the

function hlistEmptySeqs, is the source of the type propagation.

• The partial type selection Θl3′ is well-formed with respect to the instantiation of the

local type parameter T.

• Similarly, as in the case of the implicit value l2 we can represent the type propagation

that instantiated type parameter T through a TypeFocus type selection on the return

type of the inferred l1 implicit value: Θl3′ compose TypeArgTFocus(1, ‘::’) compose

TypeArgTFocus(0, ‘EmptySeqs’).

227

Chapter 7. Applications

Through the interleaving backtracking and application of the TypeFocus extraction, the anal-

ysis will eventually reach the non-implicit function application and the inferred TypeFocus

value will represent a transformation from the initial type selection on the inferred type of

the complete function application

emptySeqs(1 :: "abc" :: true :: HNil) :Seq[Int] :: Seq[String] :: Seq[Boolean] :: HNil}

to a (partial) type selection on the type of the method with the implicit parameters

def emptySeqs[T <: HList, OutT <: HList](x: T)(implicit es : EmptySeqs[T , OutT]): OutT

The TypeFocus-based analysis of the extracted type parameter T (of the emptySeqs function)

leads to a regular analysis of the type constraints (as formalized in Section 3.7) and will infer

the appropriate type selection on the inferred type of the argument, i.e.,

(1 :: "abc" :: true :: HNil) : Int :: String :: Boolean :: HNil

This, in turn, provides sufficient information to trigger the regular TypeFocus-based analysis

on the argument and blame the "abc" literal as the source of the type mismatch conflict, as

we have shown in the improved error feedback in Figure 7.5.

Debugging alternative type parameter instantiations in implicit resolution

The local type parameters in the presented example were all instantiated through the type

propagation from the expected type of the implicit search. In general, the local type parame-

ters can also be instantiated through the usual means of type constraints or type propagation

from the inferred types of the implicit arguments of the same implicit parameter list. For ex-

ample, in the definition of the implicit combine value in

class TConst[A, B]; class Concat[A, B, C]; class Contained[A, B, C]

implicit def combine[A <: HList, B <: HList, T <: HList, S <: HLIst, Out <: HList](
implicit xs: TConst[A, T], ys: TConst[B, S], zs: Concat[T, S, Out]): Container[A, B, Out]

the analysis of the source of the instantiation of the type parameter Out depends on the type

arguments T and S in the type of the parameter zs, for some type constructor Concat. Since

the type parameters are not present in the return type Container[A, B, Out], their analysis

would not apply to our previous algorithm. Instead they are instantiated from the implicit

arguments of parameters xs and ys (the inference of the implicit arguments is sequential).

Knowing the types of the formal parameters, one can trivially construct TypeFocus values that

228

7.1. Automatic explanation of the implicit resolution

1 val x = emptySeqs(1 :: "abc" :: true :: HNil)
2

3 foo[Seq[Int] :: Boolean :: Seq[Boolean] :: HNil](x) // error

(a) A variant on the type mismatch example from Listing 7.1.

Type parameter T has been instantiated using locations:
implicit def hlistEmptySeqs[H, T <: HList, POut <: HList](
implicit est : EmptySeqs[T, POut]):
EmptySeqs[H :: T, Seq[H] :: POut] = // ...

~~~~~~
Explicit type argument for type parameter T that was in conflict:

foo[Seq[Int] :: Boolean :: Seq[Boolean] :: HNil](x)
~~~~~~~

(b) A result of an implicit-specific TypeFocus-based analysis of the error in Listing 7.6a.

Figure 7.6: An example of the failed attempt at explaining the implicit resolution using
the deterministic TypeFocus-based approach.

extract the instantiation of the desired type parameter, e.g., ‘TypeArgTFocus(1, ‘TConst’)’

for the type selection of type parameter S from type TConst[B, S], and guide the analysis of

the corresponding implicit argument. In short, the analysis has to take into account different

mechanisms that may have been used to instantiate the selected type parameters, but in our

type debugging framework all can be expressed through a unifying TypeFocus abstraction.

Limitations

The deterministic analysis of the inferred implicit arguments is guided by the continuous

type selection on the local type parameters of the implicit values. In general, one cannot

guarantee that the inferred TypeFocus value, when applied to the formal type of the definition

of the implicit value, extracts only local type parameters.

We illustrate the problem in Listing 7.6a, where we consider a function application involving

the emptySeqs method, identical to our motivating example from Listing 7.1, except for the

different type argument (grayed-out part of the source code); rather than expecting a type ar-

gument of type Seq[Booolean] the example uses type Boolean, which will be mirrored in the

failed subtyping derivation tree, and in the value of TypeFocus inferred from it. The modified

type selection information translates directly to the reduction in the precision of the analy-

sis, as shown in Figure 7.6b. There, the type selection extracts a complete type application,

Seq[H], rather than an individual type parameter.

In the next section we consider a variant of the deterministic technique which approximates

the results of the analysis when the above conditions are encountered.

229

Chapter 7. Applications

1 val x = emptySeqs(1 :: "abc" :: true :: HNil)
2 foo[Seq[Int] :: Seq[String] :: HNil](x)
3 // type mismatch;
4 // found : shapeless.::[Seq[Int],shapeless.::[Seq[String],
5 // shapeless.::[Seq[Boolean], shapeless.HNil]]]
6 // required: shapeless.::[Seq[Int],shapeless.::[Seq[String],shapeless.HNil]]

(a) The invalid construction of the heterogeneous list.

Type parameter T has been instantiated using location(s):
implicit def hlistEmptySeqs[H, T <: HList, POut <: HList](
implicit est : EmptySeqs[T, POut]): EmptySeqs[H :: T, Seq[H] :: POut] = // ...

~~~~~~~~~~~~~~
Explicit type argument for type parameter T that was in conflict:
foo[Seq[Int] :: Seq[String] :: HNil](x)

~~~~

(b) The result of the deterministic analysis

Figure 7.7: A variation of the heterogeneous list construction example from Listing 7.1.

7.1.2 The heuristic-based analysis of the implicit resolution

The deterministic TypeFocus-based analysis delivers accurate explanations for the implicit

resolution, when its requirements are satisfied. We propose a variant of the deterministic

analysis that reverts to the heuristic-based approach in situations when the source of the

target type does not involve directly the instantiation of a single local type parameter. The

heuristics provide less guarantees with respect to the program locations explaining the source

of the target type but still they ensure that a link to the non-implicit-related type element will

be identified, if possible

To elaborate on the possible heuristics, in Listing 7.7a we consider a variation of our moti-

vating example with heterogeneous lists, where the inferred type, and the encoded size, of

the heterogeneous list is larger than the expected one. Neither the accompanying type error

message, nor the deterministic analysis (presented in Figure 7.7b), delivers satisfying infor-

mation by only revealing the internal details of the encoding. In the following discussion

we consider two straightforward heuristics that approximate the dependencies between the

implicit arguments and the implicit parameters they are part of.

Dependencies from nested type parameters

The deterministic analysis of the function applications in Listings 7.6a and 7.7a extracted

parts of the implicit value type signature, Seq[H] and Seq[H] :: POut, respectively. Rather

than stopping the analysis, we continue it individually for each of the type parameters nested

within the type application, starting with an identity TypeFocus value, i.e., with no prior type

selection on their instantiations or the context in which they appear. The approach allows

230

7.1. Automatic explanation of the implicit resolution

Type parameter T has been instantiated
using location(s):
val x=emptySeqs(1 :: "abc" :: true :: HNil)

~~~~~ ~~~~

(a) Result of an analysis with heuristics

Type parameter T has been instantiated
using location(s):
val x=emptySeqs(1 :: "abc" :: true :: HNil)

~~~~~~~~~~~~

(b) Result of an analysis with a perfect knowl-
edge

Figure 7.8: A comparison of the analysis of the function application from Listing 7.7a
when a heuristic-based approach is used and when we have a perfect knowledge assump-
tion (the feedback tailored to the specific example).

1 val x = emptySeqs(1 :: "abc" :: true :: HNil)
2

3 foo[Seq[Int] :: Seq[String] :: Seq[Boolean] :: Seq[Boolean] :: HNil](x)
4 // type mismatch;
5 // found : shapeless.::[Seq[Int],shapeless.::[Seq[String],shapeless.::[Seq[Boolean],
6 // shapeless.HNil]]]
7 // required: shapeless.::[Seq[Int],shapeless.::[Seq[String],shapeless.::[Seq[Boolean],
8 // shapeless.::[Seq[Boolean],shapeless.HNil]]]]

Figure 7.9: Variation on the example from Listing 7.1 that cannot be explained with a
precise TypeFocus-based analysis.

us to resort to a plain, deterministic analysis that may potentially find a link with the non-

implicit arguments or the non-implicit part of the function definition.

For example, a fusion of the results of the deterministic analysis for the individual type pa-

rameters H and POut yields a type error message in Figure 7.8.

Non-parametric types as dependencies

The inferred TypeFocus value does not guarantee a type selection on a type with some nested

type parameters. To illustrate, we consider a different example of the application of the

emptySeqs method in Listing 7.9, where the inferred type of the heterogeneous list of empty

sequences is smaller than the expected one. The example is accompanied by a confusing

type mismatch error produced by the Scala compiler.

Figure 7.10a illustrates the result of the deterministic analysis, where the failed subtyping

derivation provides sufficient information only to identify the implicit value hnilEmptySeqs

and part of its inferred type, EmptySeqs[HNil, H Ni l], as the source of the conflict (we re-

call that the hnilEmptySeqs corresponds to the l4 implicit value in our type propagation sum-

mary in Figure 7.4). The part of the inferred type does not select any local type parameters

from the formal type of the implicit value and we are unable to continue the TypeFocus-based

analysis even with the previously proposed heuristic.

231

Chapter 7. Applications

Type parameter T has been instantiated using location(s):
implicit def hnilEmptySeqs: EmptySeqs[HNil, HNil] = // ...

~~~~
Explicit type argument for type parameter T that was in conflict:
foo[Seq[Int] :: Seq[String] :: Seq[Boolean] :: Seq[Boolean] :: HNil](x)

~~~~~~~~~~~~~~~~~~~~

(a) A result of a deterministic implicit-specific TypeFocus-based analysis of the error.

Type parameter T has been instantiated using location(s):
val x = emptySeqs(1 :: "abc" :: true :: HNil)

~~~~
Explicit type argument for type parameter T that was in conflict:

foo[Seq[Int] :: Seq[String] :: Seq[Boolean] :: Seq[Boolean] :: HNil](x)
~~~~~~~~~~~~~~~~~~~~

(b) A desired outcome of the TypeFocus-based analysis of the implicit values.

Figure 7.10: A comparison of a deterministic and a heuristic-based analysis of the im-
plicit resolution for Listing 7.7a.

To solve the problem, we treat the type of the whole implicit argument as a dependency on

the type of the formal parameter it is part of. In the case of our example, this implies that

the type of the argument EmptySeqs[HNil, HNil] is dependent upon the implicit parameter

est of the hlistEmptySeqs implicit value and its formal type, EmptySeqs[T, POut]. Knowing

that the implicit value l4 has been inferred with the expected type EmptySeqs[HNil, ?], and

the corresponding type of the formal parameter contains a local type parameter T, we can

trigger the deterministic TypeFocus-based analysis at the parent of the initial implicit value

hnilEmptySeqs, i.e., at the l3 implicit value, with the type selection on the local type param-

eter T.

The results of the heuristic-based approach are dependent upon the particular encoding of

the implicit values. In the worst case scenario, when the formal parameter of the implicit

value has no local type parameters, the heuristics can again identify a complete type of the

implicit value with the identity TypeFocus as the source of the target type. In practice we

found that the results of the heuristic-based approach are typically as encouraging and com-

plete as the one presented in Listing 7.10b.

Domain-specific heuristics

The deterministic and the heuristic-based analysis of the implicit resolution, and its results,

are exposed in the type debugging framework. Combined with the TypingSlice values that

identify the inference of function applications involving implicit parameters, we give the

power to users of the framework to further improve on our results and provide solutions that

are close to, or equivalent to, perfect-knowledge scenarios.

Depending on the complexity of the encoding of the implicit values, even the domain-specific

232

7.2. Improved error feedback

solutions may not be an ideal solution to explaining function applications involving the im-

plicit resolution process. On such occasions only the more time-consuming interactive ap-

proach to type debugging is likely to be the only option (Section 7.3).

7.2 Improved error feedback

In this section we turn our attention to the main application of the TypeFocus-based analysis

- generating succinct and precise type error messages. We do not define a guide to generating

them, a comprehensive study has been the subject of for example Heeren [2005]; rather we

aim to show a variety of scenarios, not only involving the type mismatch errors, where our

approach would significantly improve the rather disappointing status quo. We dismiss the

detailed technical discussion, in favor of practical applications that illustrate the advantages

and limitations of both, the short messages and our TypeFocus-based analysis.

7.2.1 Examples

Explaining member selection

When it comes type debugging, the role of member selection in the type checking process

has been silently omitted in the related work (El Boustani and Hage [2010], Chen and Erwig

[2014a], Pavlinovic et al. [2014]). The disclosure is surprising, because with an increasing

number of the newly introduced languages such as Dart (https://www.dartlang.org/), Kotlin

(http://kotlinlang.org/), or Rust (http://www.rust-lang.org/), we see a visible trend towards

introducing parametric polymorphism in object-oriented languages, and subsequently the

necessity to deal with non-local type parameters, i.e., the type parameters of class and trait

definitions. The universality of TypeFocus allows us to represent the instantiation of non-

local type parameters, while navigating the type derivation tree (Section 6.3.2). To illustrate

the importance and the precision of our approach, we will now examine a non-trivial exam-

ple involving not only the type checking of member selection but also their integration with

the implicit resolution mechanism or path-dependent types.

Listing 7.11 defines a synthetically constructed class hierarchy that will allow us to exhibit the

essence of some of the complex type errors linked to member selection terms, that are typ-

ically encountered in programming forums and mailing lists. The definitions of classes Foo,

Bar and TConst illustrate the increasing trend in the generic programming libraries that mix

the concepts of parametric polymorphism, abstract type members and the path-dependent

types in order to define reusable abstractions (Odersky and Zenger [2005]).

The key elements of the class hierarchy are:

233

Chapter 7. Applications

1 class Foo[A, B](x: A, y: B) {
2 def test[C](a: A, y: B, c: C): Int = // ...
3 }
4

5 class Bar[A1, B1](x: A1, y: B1) {
6 type T1 = TConst[Int, B1]
7 type T2 = TConst[A1, B1]
8 type T3
9 }

10 object Bar {
11 def create[A2, B2](x: A2, y: B2): Bar[A2, B2] { type T3 = TConst[Int, B2] } = // ...
12 def create[A2, B2](x: A2, y: B2, z: Int): Bar[A2, B2] = // ...
13 }
14

15 class TConst[+A, +B]
16 object TConst{
17 def apply[A, B](x: A, y: B): TConst[A, B] = // ...
18 }

Figure 7.11: An example of a class hierarchy that mixes the concepts of abstract type
members and parametric polymorphism.

1. The Foo class (lines 1-3) defines non-local type parameters, A and B, as well as local type

parameters C for its test member.

2. The Bar class (lines 5-9) defines non-local type parameters, as well as partially instan-

tiated type aliases, T1 and T2, and abstract type member, T3. The type declarations

combine different scenarios that a user might have to be able to understand.

The Bar values are constructed using the overloaded create methods, that are defined

in its companion object; the first of the overloaded methods returns a value with a re-

fined Bar type, where the abstract type member T3 is explicitly instantiated (line 11),

while in the second case (line 12) the type of the type member is not constrained.

3. The TConst class (line 15) defines two non-local type parameters, and is constructed

with a polymorphic apply method in its companion object.

The example highlights the mixture of Scala’s type system features. On its own, the definitions

do not pose particular problems in visually tracing the type parameters. The problem of

meaningless error messages becomes only apparent at the usage site.

The code snippet from Listing 7.12 illustrates one of the possible applications that has gone

unexpectedly wrong. In the example the inferred type of the x value (line 4) does not have

a member test, meaning that the member selection in line 5 has to be implicitly translated

to toFoo(x).test member selection, in a type-driven implicit resolution. While common,

the adaptation of the qualifier introduces another implicit layer of abstraction that has to be

understood by the programmers in order to discover the nature of the problem.

234

7.2. Improved error feedback

1 implicit def toFoo[X1, X2](f: Bar[X1, X2]): Foo[f.T3, X2] = // ...
2

3 def test {
4 val x = Bar.create(1,"abc")
5 x.test(TConst("abc", 2), "def", 2)
6 }
7 // type mismatch;
8 // found : String("abc")
9 // required: Int

10 // x.test(TConst("abc", 2), "def", 2)
11 // ^

(a) The invalid application of the function to the arguments and the succinct error message from
the Scala compiler

1 // Specialized error message:
2 // Expected type comes from the inferred type of the definition:
3 // val x = Bar.create(1,"abc")
4 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 // The conflicting part of the inferred type of the definition is:
6 // Bar[Int,String]{type T3 = TConst[Int,String]}
7 // ~~~
8 //
9 // Part of the conflicting expression that leads to an error:

10 // x.test(TConst("abc", 2), "def", 2)
11 // ~~~~~
12 // Locations affecting the inference of the part of the definition.
13 // Location (1):
14 // def create[A2, B2](x: A2, y: B2): Bar[A2, B2] { type T3 = TConst[Int, B2] } =// ...
15 // ~~~
16 // val x = Bar.create(1,"abc")
17 // ~~~~~~
18 // x.test(TConst("abc", 2), "def", 2)
19 // ~

(b) The improved error feedback

Figure 7.12: A member selection example involving the class hierarchy from Listing 7.11.

Without going into details of the application, we notice that:

1. The type mismatch error (lines 7-12) identified the location where the two types con-

flict. The error message lacks information about the source of the expected and the

source of the inferred type of the argument; in cases like this, it is not uncommon that

many of the values have similar types, such as Int and String, making them hard to

distinguish visually.

2. The improved error feedback (lines 1-19) locates the source of both of the conflicting

types, down to the level of the primitive values (lines 10-11) and type annotations (lines

14-15).

235

Chapter 7. Applications

3. The analysis had to take into account the decisions of the implicit resolution mech-

anism (Section 7.1), which allowed it to extract the part of the type signature of the

create method (lines 14-15). Lack of the analysis of the decisions of the implicit reso-

lution would only blame the application of the toFoo implicit value in toFoo(x).

4. The TypeFocus value inferred from the adapted toFoo(x) function application had to

also take into account the path-dependent type f.T3 (line 1) that is defined in the re-

turn type of the implicit function toFoo.

5. We display the intermediate non-implicit results of the TypeFocus-based analysis in

order to help with the orientation of the locates types and values (lines 12-19).

Due to the verbosity of the error, we postulate that the improved error feedback must not be

enabled by default. Rather, the comprehensive report of the problem should only be provided

on demand.

With the code snippet from Listing 7.13 we illustrate how subtle type signature changes in the

implicit values and function applications can lead to equivalent type mismatch errors. For ex-

ample, the return type of the implicit value (line 1) now involves a different path-dependent

type, f.T1, and we invoke a different overloaded method create to create an instance of Bar

(line 4). Our TypeFocus-based analysis is able to reflect such level of detail, because we infer

type selectors for type and value members (the TypeMemberTFocus class in Listing 6.6) and

overloaded method types (the OverloadTFocus class in Listing 6.6). Subsequently, without

any user input, we are able to deliver comprehensive error reports, such as the one in Listing

7.13.

In comparison to the previous example, we:

1. Identify the necessary details of the inferred type of the local value x, by listing not only

its type (lines 6-7), but also the conflicting parts of its type member which is a type alias

(lines 8-10).

2. Illustrate the complete path that inferred the conflicting expected type Int (lines 27-

35).

3. Infer an opportunistic source code modification (lines 25-26) that will fix the type mis-

match, based on the precise localization of the source of the error.

236

7.2. Improved error feedback

1 implicit def toFoo[X1, X2](f: Bar[X1, X2]): Foo[f.T1, X2] = // ...
2

3 def test {
4 val x = Bar.create(1,"abc", 2)
5 x.test(TConst("abc", 2), "def", 2)
6 }
7 // type mismatch;
8 // found : String("abc")
9 // required: Int

10 // x.test(TConst("abc", 2), "def", 2)
11 // ^

(a) The invalid application of the function to the arguments and the succinct error message from
the Scala compiler

1 // Specialized error message:
2 // Expected type comes from the inferred type of the definition:
3 // val x = Bar.create(1,"abc", 2)
4 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 // The conflicting part of the inferred type of the definition is:
6 // Bar[Int,String]
7 // ~~~~~~~~~~~~~~~
8 // (in type member T1):
9 // TConst[Int,String]

10 // ~~~
11 //
12 // Part of the conflicting expression that leads to an error:
13 // x.test(TConst("abc", 2), "def", 2)
14 // ~~~~~
15 // Locations affecting the inference of the part of the definition:
16 // Location (1):
17 // type T1 = TConst[Int, B1]
18 // ~~~
19 // def create[A2, B2](x: A2, y: B2, z: Int): Bar[A2, B2] = // ..
20 // ~~~
21 // val x = Bar.create(1,"abc", 2)
22 // ~~~~~~
23 // x.test(TConst("abc", 2), "def", 2)
24 // ~
25 // You may try to modify the existing type
26 // from Int to Any

(b) The improved error feedback

Figure 7.13: A member selection example involving the class hierarchy from Listing 7.11.

237

Chapter 7. Applications

1 abstract class ImplParam[+A, +B] { type C }
2

3 implicit def genImpl[A, B]: ImplParam[Int, B] { type C = Int } = // ...
4

5 implicit def toFoo[X1, X2](f: Bar[X1, X2])(
6 implicit p: ImplParam[X1, X2]): Foo[p.C, X2] = // ...
7

8 def test {
9 val x = Bar.create(1,"abc")

10 x.test("abc", "def", 2)
11 }
12

13 // type mismatch;
14 // found : String("abc")
15 // required: Int
16 // x.test("abc", "def", 2)
17 // ^

(a) The invalid application of the function to the arguments involving a number of implicit values
and the succinct error message from the Scala compiler

1 // Specialized error message:
2 // Part of the conflicting expression that leads to an error:
3 // x.test("abc", "def", 2)
4 // ~~~~~
5 // Locations affecting the inference of the part of the definition.
6 // Location (1):
7 // implicit def genImpl[A, B]: ImplParam[Int, B] { type C = Int } = // ...
8 // ~~~~~~~~~~~~
9 // implicit def toFoo[X1, X2](f: Bar[X1, X2])(

10 // ~~~~~
11 // x.test("abc", "def", 2)
12 // ~

(b) The improved error feedback

Figure 7.14: A member selection example involving the class hierarchy from Listing 7.11.

Finally, it is common for the type errors linked to member selection to originate from the

implicit values that adapted the type of the qualifier. Listing 7.14 defines another variation

involving the class hierarchy from Listing 7.11 and a function application (line 10) that results

in a type mismatch with the same type error message as before (lines 13-17). Similarly to

the previous examples, the inferred type of the qualifier x has no member test and will be

implicitly adapted using the implicit values to toFoo(x)(genImpl). This in turn means that

the TypeFocus-based analysis not only has to explain the role of the used implicit view, toFoo,

but also analyze the implicit resolution involving chains of implicits because of its implicit

parameter p.

The analysis of the implicit resolution takes into account the implicit argument (genImpl) of

the implicit view (toFoo) because the type extraction of the TypeFocus value (reconstructed

238

7.2. Improved error feedback

1 def test1[T <: Number](a: List[T], b: List[_ >: T]) = // ...
2 val x: List[_ >: Integer] = // ...
3 test1(x, x)
4

5 // inferred type arguments [_$2] do not conform to
6 // method test1’s type parameter bounds [T <: Number]
7 // test1(x, x)
8 // ^
9 // type mismatch;

10 // found : List[_$2] where type _$2 >: Integer
11 // required: List[T]
12 // test1(x, x)
13 // ^

1 def test2[T <: Number, S](a: Map[T,S], b: List[_ <: S]): List[T] = // ...
2 val x: Map[String, String] = // ...
3 val y: List[_ >: Number] = // ...
4 val z: List[Integer] = test2(x, y)
5

6 // inferred type arguments [String,Any] do not conform to
7 // method test2’s type parameter bounds [T <: Number,S]
8 // val z: List[Integer] = test2(x, y)
9 // ^

10 // type mismatch;
11 // found : Map[String,String]
12 // required: Map[T,S]
13 // val z: List[Integer] = test2(x, y)
14 // ^
15 // type mismatch;
16 // found : List[_$2] where type _$2 >: Number
17 // required: List[_ <: S]
18 // val z: List[Integer] = test2(x, y)
19 // ^
20 // type mismatch;
21 // found : List[T]
22 // required: List[Integer]
23 // val z: List[Integer] = test2(x, y)
24 // ^

Figure 7.15: Examples of the inferred type arguments that do not conform to the de-
clared formal bounds of the type parameters. The examples were translated to Scala
from El Boustani and Hage [2010].

as part of navigation process) discloses a link between the part of the inferred type of the

adapted qualifier toFoo(x)(genImpl), Foo[Int , String], and the formal return type of the

implicit value toFoo, Foo[p.C , X2].

The improved error feedback aims to provide a comprehensive analysis of the conflict by list-

ing elements of the path that inferred the conflicting types. With the TypeFocus abstraction

encapsulating the local type debugging information while stepping through the analyzed

terms, we ensure that the analysis considers only the typing decisions that directly or indi-

239

Chapter 7. Applications

Specialized error message:
Inferred type argument (_$2) for type parameter T
does not conform to the type parameter’s bound (<: Number).
Note the origin of type constraints that affected the inference:

val x: List[_ >: Integer] = // ...
~

test1(x, x)
~

Specialized error message:
Inferred type argument (String) for type parameter T
does not conform to the type parameter’s bound (<: Number).
Note the origin of type constraints that affected the inference:

val x: Map[String, String] = // ...
~~~~~~

val z: List[Integer] = test2(x, y)
~

Figure 7.16: Examples of the improved error feedback revealing the type constraints that
led to the inferred type arguments in Listing 7.15.

rectly affected the inference of the target type.

Explaining inference of the elided type arguments

Our examples of type debugging scenarios have covered a number of functions applications

where we were able to precisely investigate the type constraints behind the inferred type ar-

guments. For practical reasons languages like Java or Scala, do not always attempt to infer

optimal solutions. As a result, the inferred instantiations are always verified against the for-

mal bounds of type parameters which may lead to incomprehensible type errors.

We illustrate the problem of suboptimal type parameter instantiations that do not conform

to the formal type bounds with two examples in Listing 7.15. The examples not only provide

vague information about the inferred type arguments (lines 5-8 and lines 6-9, respectively)

but also add to the confusion by reporting incorrect type errors with the uninstantiated type

parameters. The type errors do not provide information about which type arguments were in

conflict, how were they inferred, or, more importantly, whether there exists an explicit type

argument that would resolve the error.

The instrumentation of the type checking process covers not only the collection of type con-

straints, but also the verification of the correctness of the inferred type arguments, or lack

thereof. With such high-level representation in place, we are capable of identifying the cul-

prit type arguments and type parameters that failed to conform to their bounds, and locate

the type constraints that led to the type error, as illustrated in Listing 7.16.

240



7.2. Improved error feedback

1 abstract class Activity[T] {
2 def apply (): T
3 }
4 object Count extends Activity[Int] {
5 def apply (): Int = 1
6 }
7 def run [T, A <: Activity[T]](activity: A) = ()
8

9 def test {
10 run(Count)
11 }
12 // inferred type arguments [Nothing,Count.type] do not conform to
13 // method run’s type parameter bounds [T,A <: Activity[T]]
14 // run(Count)
15 // ^
16 // type mismatch;
17 // found : Count.type
18 // required: A
19 // run(Count)
20 // ^

(a) A single type parameter T that appears in a higher-kinded position

1 def flattenBySum[U <: Iterable[T], T : Numeric](listOfLists: Iterable[U]) =
2 for (list <- listOfLists) yield list.sum
3

4 def test {
5 flattenBySum(Vector(List(1,2,3), List(10,11,12)))
6 }
7

8 // inferred type arguments [List[Int],Nothing] do not conform to
9 // method flattenBySum’s type parameter bounds [U <: Iterable[T],T]

10 // flattenBySum(Vector(List(1,2,3), List(10,11,12)))
11 // ^
12 // type mismatch;
13 // found : scala.collection.immutable.Vector[List[Int]]
14 // required: Iterable[U]
15 // flattenBySum(Vector(List(1,2,3), List(10,11,12)))
16 // ^
17 // could not find implicit value for evidence parameter of type Numeric[T]
18 // flattenBySum(Vector(List(1,2,3), List(10,11,12)))
19 // ^

(b) Flattening of collections example

Figure 7.17: Examples of limitations of type inference for type parameters in higher-
kinded position.

Our feedback refrains from providing source code modifications that alleviate the conflicts,

simply to avoid reporting false positives. Given that our high-level representation reveals not

only the type constraints but also the complete verification process, nothing stops us from

developing heuristics that would attempt to correct even such type errors.

241



Chapter 7. Applications

Specialized error message:
The current type signature of method run
(of type [T, A <: Activity[T]](activity: A): Unit)
limits the ability to infer an appropriate type argument for the type parameter T.
The inferred type argument, Count.type, is not within the upper bound Activity[Nothing].
In order to track appropriately the constraints for the type parameter T
you can modify the type signature to:
def run[T, A[_] <: Activity[_]](activity: A[T]): Unit

Specialized error message:
The current type signature of method flattenBySum
(of type [U <: Iterable[T],T: Numeric](listOfLists: Iterable[U]):Iterable[T])
limits the ability to infer an appropriate type argument for the type parameter T.
The inferred type argument, List[Int], is not within the upper bound Iterable[Nothing].
In order to track appropriately the constraints for the type parameter T
you can modify the type signature to:
def flattenBySum[U[T] <: Iterable[T],T: Numeric](listOfLists: Iterable[U[T]]):Iterable[T]

Figure 7.18: The generated improved error feedback for the examples from Listing 7.17
that proposes source code modifications while preserving the intended semantics.

In general, developing high-confidence source code modifications is not an easy task, even

with a complete knowledge that type derivation trees provide (we chose not to take the ap-

proach of El Boustani and Hage [2010] since many of the examples would still lead to type

errors). This is however different when we deal with known language implementation limita-

tions that affect the type inference process. As part of the evaluation of our type debugging

tool we have developed heuristics that specifically target such problems. We illustrate the

results using the code snippets from Listing 7.17, where the inferred type arguments limit the

programmers’ expressiveness.

In the first example, we define a generic Activity class and a subclass of it (Count) that pro-

vides an explicit type argument Int. The example also defines a run function with two local

type parameters; the intention of the declared bound on the type parameter A is to collect

type constraints sufficient to instantiate both of the type parameters in the function applica-

tion. It is therefore surprising to the programmer that the function application in line 10 is

being rejected by the type checker; after all the base type of the Count type is Activity, mean-

ing that T should be instantiated to Int as well.

In the second example, the type signature of the flattenBySum function encodes the flatten-

ing of a collection of collections to another collection. The function reduces the individual

collections to integer values by summing their elements; the latter requires the sum operation

to be available for the individual generic elements of the collection, as expressed through the

T: Numeric context bound. It may therefore be surprising to the programmer that the type

checker fails to infer valid type arguments from the simple argument which is a collection of

two integer integer lists.

242



7.2. Improved error feedback

1 val o1: Ordered[Int] = 1
2 val o2: Ordered[Int] = 2
3 println(o1 < o2)
4 // diverging implicit expansion for type scala.math.Ordering[Ordered[Int]]
5 // starting with method comparatorToOrdering in trait LowPriorityOrderingImplicits
6 // println(o1 < o2)
7 // ^

Figure 7.19: An example of a comparison between two values.

The two examples illustrate a problem that appears regularly on the programming forums

and mailing lists. What is more surprising, the examples encode the functionality in a correct

way, except that, due to the limitation of the implementation, the type inference fails to infer

type constraints for type parameters that appear in a higher-kinded position in the bounds

of other type parameters. In other words, the inferencer collects no type constraints for the

type parameter T in both of the examples, and selects a maximal solution instead, i.e., the

Scala’s bottom type Nothing. The limitations of the design pattern have been known to the

Scala experts for a long time, but it is unclear if and how any progress will be made for the

problem in the future.

Rather than improving the implementation of the algorithm, which inadvertently may lead

to new bugs, we make use of the fact that limitations like above can be precisely located by

pattern matching on the nodes of the high-level representation. The link between the high-

and low-level representations is sufficient to navigate not only to the appropriate high-level

goals, but also inspect their low-level data, such as the types of formal parameters of the

functions. With such information in place, we can provide more elaborate error messages

and propose type-safe modifications of type signatures that convey the same semantics of

the functions, as presented in Figure 7.18.

Explaining the diverging implicits

In Section 6.6 we have shown how the exposed decision process of the implicit resolution

allows us to provide better feedback for the ambiguous implicit values. The representation

allows us also to display chains of implicit values that fail abruptly with no implicit argument

matching the expected type, or when an infinite expansion of the same implicit values is

encountered (diverging implicit values).

In both cases the improved error feedback can at least inform about the implicit values that

were attempted as part of the implicit resolution process. To illustrate, in Listing 7.19 we

consider an innocuous example of two values of type Ordered that we want to compare and

print the result. When compared with a less than operation, the infix operation produces an

alarming error message that is not very revealing - the internal details, which in this particular

243



Chapter 7. Applications

Full implicit argument(s) expansion that led to the divergence is:
math.this.Ordered.orderingToOrdered[Ordered[Int]](o1)(
[comparatorToOrdering(*no-implicit-arg-of-type: java.util.Comparator[Ordered[Int]]*)|
ordered((x: Ordered[Int]) =>
orderingToOrdered(x)(*diverging-implicits-(comparatorToOrdering/ordered)*))])

Figure 7.20: An example of a simplified diverging implicit resolution decision process for
Listing 7.19. We use the [...|...|...] notation to list all the eligible implicit values that
have been tried and failed.

case would be useful, are scarce.

The analysis of the implicit resolution process delivers a comprehensive description of the

tried attempts of the implicit resolution in Listing 7.20.

In general, the sheer number of available implicit values makes it hard to provide error re-

ports that list all available implicits; an interactive approach that can incrementally list differ-

ent scopes and the types of the implicit values is much better suited for that purpose.

7.2.2 Library-specific plugins

The type selection inferred from the type mismatch conflicts, and the high-level representa-

tion of the type checking process grant the ability to generate error feedback that potentially

improves the error for a generic type error message. While correct, it does not provide any

means to incorporate domain-specific knowledge that is aware of the context of the error. For

example, in a situation where a complete implicit value derivation is still unsatisfactory, such

as in the case of the diverging implicit value in Listing 7.20, we could recognize the particular

context of the divergence involving the low-level types of Ordered and generate instead an

error message such as

// type mismatch;
// found : Ordered[Int]
// required: Int
// println(o1 < o2)
// ^

In this section we propose a convenient specialization of the type debugging process, in the

form of the plugins for the type debugging framework. To illustrate the application of domain-

specific knowledge to the exposed high-level type derivation trees, we discuss a few examples

inspired by problems reported by Scala users.

244



7.2. Improved error feedback

1 List(1, 2, 3)(1) // ok
2 (List(1, 2, 3) map identity)(1) // error
3

4 // type mismatch;
5 // found : Int(1)
6 // required: CanBuildFrom[List[Int],Int,?]
7 // (List(1, 2, 3) map identity)(1)
8 // ^

(a) A type mismatch revealing the internal details of the Scala collections

Specialized error message:
Full type signature of the defined ‘map’ method is
[B, That](f: A => B)(implicit bf: CanBuildFrom[This,B,That]): That
Argument ‘1’ is used for the parameter ‘bf’.
Did you mean
‘List(1, 2, 3).map(identity).apply(1)’
which compiles?

(b) A Scala collections-specific error message

Figure 7.21: An example of an erroneous function application involving the Scala collec-
tion library, and a customized error feedback, specific to the type error.

Examples

Explaing Standard Library errors

The Scala collection library uses an implicit resolution mechanism in order to avoid code

duplication and provide a more intuitive API for the users (Odersky and Moors [2009]). The

implicit parts of type signatures of the methods, which are hard to understand for a regular

programmer, have long been perceived as a blessing and a curse of the collections architec-

ture; the latter even triggered a separate line of research which sole purpose was to improve

the API documentation (Dubochet and Malayeri [2010]) and hide the implicit parameters

from the users. To illustrate the problem we consider a function application that extracts an

element of a list of integer values in Listing 7.21a.

The example presents a simple mapping of the elements of the function involving the identity

function, and a failed attempt at extracting a single element from the resulting collection. A

regular TypeFocus-based analysis would lead to improved error message such as:

// Expected type comes from the method ‘map’ declared in the ‘List’ class:
// [B, That](f: A => B)(implicit bf: CanBuildFrom[This,B,That]): That
// ~~~~~~~~~~~~~~~~~~~~~~~~~
// (List(1, 2, 3) map identity)(1) // error
// ~~~~~~~~~~~~~

245



Chapter 7. Applications

1 List(1,2).toSet.toList.sortBy(x => -x)
2

3 // missing parameter type
4 // List(1,2).toSet.toList.sortBy(x => -x)
5 // ^
6 // diverging implicit expansion for type scala.math.Ordering[B]
7 // starting with method Tuple9 in object Ordering
8 // List(1,2).toSet.toList.sortBy(x => -x)
9 // ^

(a) Lack of type propagation for the Set collection invariant in its type parameter

Specialized error message:
‘TraversableOnce’ defines a member ‘toSet’ of type
‘[B >: A]=> scala.collection.immutable.Set[B]’.
Type of the type parameter ‘A’, ‘Int’, which is a lower bound of type parameter ‘B’
is lost and type checker cannot infer the type of the parameter x.

List(1,2).toSet.toList.sortBy(x => -x)
~~~~~~~~~~~~~~~

You may provide explicit type arguments to fix the problem:
List(1,2).toSet[Int].toList.sortBy(x => -x)

(b) A Scala collections-specific error message

Figure 7.22: An example of an unexpected lack of type propagation when working with col-
lections from Standard Scala library.

The generic error message is correct but also unsatisfying.

Instead, with a library-specific error analysis, we have the ability to exploit the internal knowl-

edge of the collections infrastructure and even propose a type-correct solution to the prob-

lem, as illustrated in Figure 7.21b.

The second example illustrating customizable error messages for Standard Scala Library con-

cerns the Set collections. Unlike most of the collections, sets are invariant in the type of

its elements. This fact limits Scala’s ability to propagate type information, manifesting itself

through incomprehensible error messages. The example in Listing 7.22a illustrates how an

innocuous transformation of the list of integer values (from the list to a set, and later from the

set to a list) loses type information about its elements, an operation that the Colored Local

Type Inference was designed to prevent. The resulting type errors are not only misleading

but also do not provide any indication on how to correct the program.

Because the type information is missing in the parameter of the function we cannot apply

the regular TypeFocus-based analysis to identify the source of the problem. At the same time,

the example is a perfect use-case for defining a problem-specific analysis that:

• Navigates the type derivation tree.

• Uses TypeFocus values, constructed in a problem-specific way, to guide the navigation.

246

7.2. Improved error feedback

To illustrate a custom application of the TypeFocus values, we will now delve into the details

of the analysis of the problematic function application from Listing 7.22.

The type of the sortBy method defined in a SeqLike[A , Repr] class is [B](f: (A) =>

B)(implicit ord: math.Ordering[B]): List[A], and the ‘missing parameter type’ error

relates to the type of the formal parameter f. Therefore the reconstructed TypeFocus value,

represented visually through a grayed-out selection, will guide the analysis of the inferred

type of the qualifier ‘List(1,2).toSet.toList’.

Similarly, the toList method defined in a TraversableOnce[A] class3 is of type List[A],

and the non-local type parameter can again be represented through a grayed-out part in or-

der to analyze the inferred type of the qualifier ‘List(1,2).toSet’.

Finally, the toSet method defined in the List[A] class is of type [B >: A]Set[B], and the

toSet method, as a member of the List(1,2) qualifier is of type [B >: Int]Set[B]. The

application of the reconstructed TypeFocus value to the [B >: Int]Set[B] type will yield

the type parameter with a delayed instantiation (thus no type propagation involved), i.e., B.

However, the local type parameter of the toSet method defines is defined with a lower bound

that in our example is a known value type, namely the Int type that was not propagated.

The careful reconstruction and application of the TypeFocus values is at the core of the anal-

ysis of the delayed instantiation of non-local type parameters. It permits us to deterministi-

cally decide when to stop the analysis of the nodes of the type derivation tree and decides

which type elements of the formal and the inferred types are relevant for the purpose of the

problem.

In consequence the domain-specific analysis of the problem not only identifies the smallest

expression where the complete type information of the collection is available but can also

deliver a type-safe source code modification, as indicated in Figure 7.22b.

Explaining errors involving overloaded methods

Operator overloading is a common technique for a linguistic reuse of library or DSL con-

structs (Rompf et al. [2012]). The definition of a convenient API comes at a cost of error

messages involving all the available alternatives of the overloaded methods. As an example,

we consider a declaration of a simple test specification in the ScalaTest library (Listing 7.23),

where we want to define an expectation regarding the value of one of the members of the

nested class Foo. The details of the ExampleSpec class (line 3), defining the specification, and

the human-readable declaration of the test case (line 7) can be ignored by reader. The in-

nocuously looking statement in line 9 is rejected with an incomprehensible and an extremely

long error message.

The simple property check leads to a rather elaborate error message involving a number of

3For simplicity, the reader can assume that the List collection is defined as class List[+A] extends Seq[A]

and class Seq[+A] extends SeqLike[A, Seq], and our TypeFocus mechanism, being owner-aware, will always
extract the correct type argument.

247

Chapter 7. Applications

1 import org.scalatest._

2

3 class ExampleSpec extends FlatSpec with Matchers {
4 class Foo {
5 def status: String = "ABC"
6 }
7 it should "report sth" in {
8 val id = new Foo
9 id should (’status("ABC1"))

10 }
11 }
12

13 // overloaded method value should with alternatives:
14 // (notExist: org.scalatest.words.ResultOfNotExist)(implicit existence:
15 // org.scalatest.enablers.Existence[ExampleSpec.this.Foo])Unit <and>
16 // (existWord: org.scalatest.words.ExistWord)(implicit existence:
17 // org.scalatest.enablers.Existence[ExampleSpec.this.Foo])Unit <and>
18 // (containWord: org.scalatest.words.ContainWord)
19 // org.scalatest.words.ResultOfContainWord[ExampleSpec.this.Foo] <and>
20 <elided for lack of space...>
21 // <and>
22 // [TYPECLASS1(in method should)[_]](rightMatcherFactory1:
23 // org.scalatest.matchers.MatcherFactory1[
24 // ExampleSpec.this.Foo,TYPECLASS1(in method should)])(implicit typeClass1:
25 // TYPECLASS1(in method should)[ExampleSpec.this.Foo])Unit
26 // cannot be applied to (org.scalatest.matchers.HavePropertyMatcher[AnyRef,Any])
27 // id should (’status("ABC1"))
28 // ^

Figure 7.23: An example of a type error message that leaks the details of the overloaded
method definition.

Specialized error message:
‘should’ is missing a concrete operator to handle a property
’status("ABC1")
Providing one of the explicit operators like:
‘should have’, ‘should be’, ‘should ===’, ‘should not’
might fix the problem.

Figure 7.24: An example of a human readable error message generated by the library-
specific plugin for the program in Listing 7.23.

248

7.2. Improved error feedback

1 import org.specs2.mutable._

2 import org.specs2.matcher._

3

4 class Issue { def status: String = "ABC" }
5

6 class ExampleSpec extends Specification {
7 "Retrieving open issues" should {
8 "return expected properties with expected data" in {
9 val issue = new Issue()

10

11 issue must not beNull
12 issue.status must beEqualTo("ABC")
13 }
14 }
15 }
16 // method apply in trait MatchResult cannot be accessed in
17 // org.specs2.matcher.MatchResult[Issue]
18 // issue must not beNull
19 // ^

(a) Simple specification defined in the Spec library

Specialized error message:
Note that ’issue.must(not).beNull’
is put in the context of application.
’issue.number’ is applied to it and therefore creates a confusing error message
The easiest is to wrap ’(issue.must(not).beNull)’ so that it
correctly parsers whitespace, or leave an empty line between the statements.

(b) A library-specific error message

Figure 7.25: An example of an overzealous parsing of a postfix operator leading to an
unrelated type error message.

alternatives for the overloaded should method. The detailed message reveals a lot of internal

details of the testing framework, none of which are particularly useful for the programmers

who wrote the test. The scenario is not uncommon and is known to the authors of the testing

framework. Due to the encoding of the methods that ensures human-readable names, an ap-

plication of a generic TypeFocus-based analysis is unlikely to provide a comparable, human-

readable, error message.

With a library-specific plugin it is, however, possible to define properties that characterize the

problem, necessary for its identification. The type debugging tool instruments not only reg-

ular function applications but also the selection process of the individual alternatives. Based

on the low-level data of the high-level goals, one can exploit the knowledge of the internal

details of the library, and provide a human readable type error message, such as the one pre-

sented in Figure 7.24.

Explaining errors involving a postfix operator

249

Chapter 7. Applications

The library-specific plugins not only can provide improved feedback to classical type mis-

match errors, but also those which are indirectly caused by the overzealous parsing. Postfix

and infix operators are, next to overloaded operators, a common technique for defining in-

tuitive an API. At the same time statements involving such operators are not always easy to

parse and may result in ill-defined ASTs. To illustrate the problem we consider a program

written using the Specs testing framework (https://etorreborre.github.io/specs2/) in Listing

7.25a.

The specification ExampleSpec defines a human-readable test case where the member of the

Issue class has to satisfy certain basic properties. Due to the overzealous parsing the type

checking of the program returns a confusing type error that reveals the insignificant internal

details of how the DSL is constructed.

Because the error is reported during type checking and thus is exposed in our high-level rep-

resentation, a library-specific analysis of the type derivation tree is possible. Without going

into the details of the high-level representation, we notice that a library-specific plugin can

define properties that uniquely identify the problem, based on both the high-level derivation

tree and the low-level information, and generate a library-specific error message such as the

one in Listing 7.25b.

7.2.3 Infrastructure for error plugins

The library-specific error analyzers are defined through separate plugins. The plugins are

defined in a separate namespace, preferably associated with the library or the DSL itself, and

can be loaded on demand in a similar style to regular Scala compiler plugins4.

Listing 7.26 defines a base class of the plugins, DebuggerPlugin, which contains a reference

to the main type debugging tool (the framework member in line 3) that through the path-

dependent types gives it access to its infrastructure, such as the high-level representation or

the TypeFocus representation and operations on them. The handling is fully represented by

the analyze method (line 8), which takes a high-level goal representing the reported error in

the type derivation tree and its source code position. The method delegates to the plugin-

specific definedFor partial function (line 5 in 7.26b, which defines a two-part selection pro-

cess:

1. The first step (definedFor.lift) allows for the preliminary acceptance or rejection of

the high-level goal representing the error, based on for example the low-level error mes-

sage generated by the Scala compiler.

2. The high-level goal, for which the partial function is defined, returns the error specific

handling function (the f parameter in line 10 in Listing 7.26a) that returns an optional

4http://www.scala-lang.org/old/node/140, the basic usage involves adding compiler options that specify the
name of the plugin class and the classpath to its compiled sources.

250

7.2. Improved error feedback

1 abstract class DebuggerPlugin {
2

3 val framework: TypeDebugger
4

5 protected def definedFor: PartialFunction[framework.Goal,
6 (framework.Goal, framework.global.Position) => Option[ErrorFeedback]]
7

8 def analyze(err: framework.Goal, pos: framework.global.Position):
9 Option[ErrorFeedback] =

10 definedFor.lift(err).flatMap(f => f(err, pos))
11 }

(a) Plugin base class

1 class SpecsPlugin(val framework: TypeDebugger) extends DebuggerPlugin {
2

3 import framework._

4

5 val definedFor: PartialFunction[Goal,
6 (Goal, global.Position) => Option[ErrorFeedback]] = {
7 case ErrorGoal(errMsg, errPos) =>
8 // ...
9 }

10 }

(b) A fragment of the plugin for the Specs library

Figure 7.26: A fragment of the infrastructure of plugins for the type debugging tool.

error feedback (the definition of the ErrorFeedback class is omitted for irrelevance).

Since the return value is optional, it gives the authors of the plugin a chance to perform

a low-level verification of the problem and more involved patter matching, to make

sure that the plugin truly applies to the desired error.

Listing 7.26b gives an example of the plugin that is specific to a Specs testing framework. The

plugin class has to define a single parameter constructor with a parameter of type TypeDebugger.

This way our tool can reflectively instantiate any plugin classes that has been registered through

a separate, runtime configuration, and pass the correct instance of the type debugging frame-

work as a dependency.

The infrastructure of the type debugging tool loads any registered error plugins in sequence,

and passes the high-level goal representing the error to each of them, respecting the order of

loading, until a non-empty error feedback value is returned. If no feedback is generated as

a result, the goal is handled by any of the generic error handlers some of which have been

presented in this thesis, if possible.

The complementary plugin infrastructure does not provide any guarantees regarding the

loaded plugin classes, meaning that there can be potentially many plugins being able to han-

251

Chapter 7. Applications

dle a single error and their order matters, and that their identification of the problem is not

statically verified. It is then the responsibility of the plugin author to ensure that the error they

handle is specific to the library or the DSL itself, but they can rely on the high-level nodes of

type derivation trees, their link to the low-level definitions, and any of the specialized high-

level analysis functions. While limited in a sense of control, the types of type errors typically

belong to different namespace and can be distinguished based on that low-level information.

7.2.4 Limitations

The range of issues for which a type debugging analysis is able to generate improved error

feedback highlights the power of the TypeFocus abstraction and the high-level representation.

At the same time we have to remember that the error messages themselves come with their

own limitations:

• Users are unable to control the type debugging process, and are typically given ready

solutions. Such approach is acceptable for languages with limited type system features,

or simple examples, but for more complex examples a more in-depth analysis may be

necessary.

• The programmers come with a different background and varying level of experience

and understanding of the language.

• Programmers cannot better understand the type checking/type inference mechanism

because they are unable to debug error-free programs.

• Programmers are unable to steer away from the primary error problem in an attempt

to better understand the nature of the type checking context in which it occurred.

• Some type checking decisions, such as an implicit resolution, are impossible to fully

explain with simple error messages.

To bring back the control of the type debugging analysis to the programmers and at the same

time preserve the guided nature of the process, we notice that with our approach it is suffi-

cient to satisfy two conditions:

1. We need to provide the ability to infer type selections on-the-fly, from the low-level

data associated with the TypingSlices.

2. We need to provide a detailed list of possible expansion directions based on the located

high-level goals and/or TypingSlices.

With such restrictions in mind we elaborate on the possible interactive type debuggers in the

next section.

252

7.3. Interactive type debugging

7.3 Interactive type debugging

We propose two approaches to interactive type debugging, both based on the inferred high-

level representation representing the type checking of some source code:

• A visual interpretation of the type derivation tree, available in a form of a GUI (Section

7.3.1).

• A controlled way of navigating TypingSlice values, available through a console (Sec-

tion 7.3.2). In a sense, the approach is similar to the solution of Sulzmann [2002] with

an exception that we do not limit ourselves to just locating the source of the error.

Both of the strategies attempt to explain the type inference process for erroneous as well as

error-free programs. As it turned out, the two approaches appeal to different audiences; with

the visual interpretation, focused more on the ability to freely navigate through the nodes of

the trees, the compiler programmers are able to discover patterns that later translate to pro-

grammable type debugging techniques, while the controlled navigation using typing slices

brings a much needed order and guidance, for a regular user.

7.3.1 Visual exploration

In our formalization of the TypeFocus-based approach we postulate that the natural way to

explaining the type checking process is through the type derivation trees themselves. Unfor-

tunately, the related work, such as Duggan and Bent [1996], has either focused on displaying

complete derivations upfront or just specific fragments, which is either unrealistic or incom-

plete when dealing with real-world programs.

We propose a visualization of the type checking process, described in more detail in Plociniczak

[2013] and Plociniczak and Odersky [2012], where:

1. The type derivation tree is represented through an inverted tree structure, where the

nodes correspond to the high-level goals, and the undirected edges between them rep-

resent the values of the declared members (or, in our notation, dependencies).

2. For orientation purposes, each of the nodes has to be accompanied with a short de-

scription of its role.

3. The visualization is accompanied by a source code editor on the side. The editor allows

for selecting fragments of programs which trigger an instrumented compilation and,

later, their visualizations.

253

Chapter 7. Applications

4. For a complete understanding of the nodes of the type derivation tree, each has to be ac-

companied by a full description of its purpose, and its low-level data. The information

is not essential for navigating every node of the tree, therefore will only be displayed on

demand.

We tame the exploration of the reconstructed type derivation trees by reducing the amount

of information that has to be considered at once and providing visual clues:

1. A selection of a fragment of the source code reconstructs a complete type derivation

tree representing it, but we never display it in full. Instead, we initially only display

a fragment of the tree that corresponds to type checking the smallest enclosing AST

node.

2. Nodes of the type derivation tree are allowed to be expanded and collapsed at will.

3. Hovering over the nodes with a mouse pointer highlights the corresponding source

code fragment it refers to. We found out that maintaining a visual link between the ab-

stract interpretation of the type checking process and the tangible source code, whether

through means of highlighting the source code fragments or printing them in a user’s

console, is crucial for keeping control of the exploration process and not losing the ori-

entation in the type debugging process.

To illustrate the application of the above clues we delve into the details of the visualization

that represents the type checking of our motivating foldRight function application example

from Section 3.1.

Explaining foldRight visually

The result of the initial targeted compilation of the fragment of the erroneous foldRight ap-

plication is visible in Figure 7.27a. To explain the dependencies of the individual goals we

added auxiliary selection boxes (with dashed lines), not present in a real visualization.

The reported type error (goal 2) occurred while type checking the last statement of an anony-

mous function (selection 3). Its immediate subgoals consist of typing and adaptation. Typing

involves type checking all the components of the abstract syntax tree (AST), and then assign-

ing the type based on its kind and context. The typing goal (4) verifies the application (x +

1)::ys. The adaptation stage makes sure that the inferred type conforms to the expected one.

This may involve inferring still undetermined type parameters, applying implicit arguments

or performing necessary conversions. Therefore (goal 5) involves adapting List[Int] to Nil.

The error occurred as List[Int] does not conform to Nil (goal 6) and the implicit conversion

fallback was unsuccessful (goal 7). One understands the context of the error by tracking back

the type checking process, starting with Typechecking the last statement, Typechecking func-

tion body (goal 8) and arriving at Typechecking argument with expected type (Int, Nil) => Nil

254

7.3. Interactive type debugging

(a) A fragment of the visual interpretation of the type checking of the foldRight function applica-
tion (part 1)

(b) A fragment of the visual interpretation of the type checking of the foldRight function applica-
tion (part 2)

255

Chapter 7. Applications

(goal 9). At that point, we reached type checking the full application x.foldRight(Nil)(...)

(selection 10). Its function part has already been typechecked and has a concrete instance

of a method type (op: (Int, Nil) => Nil)Nil (goal 11). Since the searched type Nil is

clearly related to the type of the function part, the user would expand the goal responsible

for type checking x.foldRight(Nil) (goal 12, Figure 7.27b) for which the compiler poses the

question Can we type application?. Since we are again in the application context (selection

13), the derivation tree involves verifying the function part x.foldRight which ends up with

a generic method type (z: B)(op: (Int, B) => B)B (goal 14). Hence the user can reason-

ably expect that the type inference will take place in the next subgoal [...]can we type argu-

ments and verify the application?. Further expansion proves the existence of type inference:

Can we infer precise type argument for method instance? (selection 15). The latter contains

two interesting subgoals: Is the type of the argument compatible with the type of the formal

parameter? and Can unresolved type variables be finally inferred...?. Both reveal the internal

details of the process that instantiates type parameters, including of the type parameter B.

The succinct messages of the individual nodes are accompanied by the more elaborate de-

scriptions, such as the ones above, by clicking on the goals of the type derivation tree in the

GUI.

Limitations

Since the interactive type derivation tree exploration directly relates to the high-level repre-

sentation, it becomes possible to apply the TypeFocus-based analysis to the underlying goals.

This way we can avoid tedious manual inspection of nodes, and can provide interactive ac-

tions that explain the source of types by automatically expanding the nodes of the type deriva-

tion tree.

The visual type debugger provides an attractive way of presenting a complex process of type

checking. For example, the tool has been used extensively in finding bugs within the im-

plementation of the compiler or as a support tool for the experienced compiler hackers in

explaining type errors to other programmers. At the same time, sheer number of the possible

nodes, and implicit connections between their low-level data, make it hard for regular users

to apply it in every day programming, even if the tool is accompanied by the necessary tuto-

rials or documentation. The learning curve is particularly steep for programmers with little,

or no, prior exposure to formal type systems.

The user studies with the visual type debugger have clearly indicated that the main reason for

lack of adoption of the tool by the regular Scala programmers is its overwhelming freedom

of navigation. The finding has led to the development of an interactive type debugger, that

lacks the visual appeal of type derivation trees, but promotes type debugging in a form Q/A

sessions that behind the scenes step through the nodes of trees without users realizing it.

256

7.3. Interactive type debugging

7.3.2 Guided type debugging with Typing Slices

In this section we propose a debugging approach to navigating the decisions of type deriva-

tion trees, that does not require from the end-users to be aware of the derivations or knowl-

edge of the dependencies of the applied typing rules. Instead, the guided navigation is imple-

mented in terms of a limited number of questions, that are associated with the Typing Slices.

In this interactive approach:

• Each Typing Slice kind is as associated with a template, but the questions themselves

are dynamically generated. This means that the information about the types or pro-

gram locations is specific to the underlying high-level goal and their low-level data,

and, indirectly, the source code.

• The questions can take input from the users that will allow for modifying the direction

of the analysis on-the-fly.

The difference with the visual type debugger lies in the navigation technique; rather than

trying to explain the type checking process with an unfamiliar and abstract concept of high-

level goals, and their dependencies, the interactive sessions are controlled only with the use

of types, e.g., types of type constraints, expressions, type signatures.

The key concept for such a platform-agnostic approach lies again in Typing Slices, or rather

values that they represent; we recall that every TypingSlice value is associated with a high-

level goal and a TypeFocus value. This implies that every TypingSlice-related decision can

provide an interpretation that is both human-readable, and relates to the source code frag-

ment. Furthermore, we notice that the high-level representation, and inference judgments it

represents, is fixed with respect to source code, by design. Therefore the only means of con-

trolling the direction of the analysis of the type checking process is through the TypeFocus

values. By providing means to the end-users to construct the TypeFocus values on-the-fly

from the existing low-level types, we allow them to change the course of the navigation at

every TypingSlice step.

The answers of the debugging sessions are grouped into three kinds of actions:

1. Informative - explaining the low-level information associated with the TypingSlice

value, such at the type of the term or the type of the method as a member of the quali-

fier. In that sense the action is static because it does not involve any kind of analysis of

the high-level goal, or its role in the type derivation tree.

For example, given a TypingSlice value representing the instantiation of a single type

parameter, the possible questions would be: "Show the type of the instantiated type

parameter, and its type selection", "List all local type parameters of the function appli-

cation and their inferred type arguments", or "Show the complete type of the function

257

Chapter 7. Applications

application". In other words, we can provide a broad spectrum of questions and an-

swers that would typically be associated with a given code fragment.

2. An analysis of the TypingSlice and its decision without modifying the identity of the

TypingSlice (or taking a step).

For example, given a TypingSlice value representing the instantiation of a single type

parameter, say A, the possible action might be: "List all lower bound type constraints

collected for the type parameter A", or "List all type constraints that conflict with the

instatiation to the expected type [...]", where the "[...]" parts represents the input given

by the users.

The result of such query will perform a shallow expansion in place and retrieve the low-

level data necessary to answer the question (in terms of types or source code locations),

but will not step into a TypingSlice representing any of the type constraints.

3. An analysis of the TypingSlice that will take a step to a single TypingSlice based on

the included or the inferred TypeFocus value.

For example, the question "Explore the inferred instantiation of type parameter A"

would be ambiguously formulated because it implicitly assumes the possibility of step-

ping into multiple TypingSlice values. Instead, the questions would be formed in a

way that avoids the ambiguous expansion: "Explore the source of type constraint num-

ber [...]", "Explore the type constraint number [...] with the expected type [...]", or "Ex-

plore the instantiation of the type parameter [...]", where "[...]" stands for the input

required from the user, such as the index of the type constraint, its expected type value,

or the name of the other local type parameter instantiated for the same function appli-

cation, respectively.

The query side-effects by internally triggering a shallow TypeFocus-based analysis that

results in a new TypingSlice value, that will serve as a basis for future queries.

The intermediate steps of the type debugger are not forgotten, and the user can always step

back and change the direction of the process, without restarting the type debugging session.

To guide the exploration we notice that the two non-static types of questions can take as input

user-provided types. We make use of the fact that the type debugger infrastructure already

provides ways to construct subtyping derivations from the low-level data and translate the

potentially failed subtyping derivations to TypeFocus values. For convenience, we define two

ways to infer the user-provided TypeFocus values:

• The type (known as the expected type) provided by the user is compared to thg type as-

sociated with the TypingSlice (or any other low-level type, source of which we want to

analyze) in a subtype check. If the two types are not comparable we can simply trans-

late the failed subtyping derivation to a TypeFocus value. Since the resulting TypeFocus

is well-formed with respect to the TypingSlice, we can trigger a shallow TypingSlice

expansion with the inferred TypingSlice value.

258

7.3. Interactive type debugging

• To reflect the type elements that the end-user might be interested in (or not) we allow

the user-provided types to contain special ? and ! type constants, where ? represents

a ‘don’t care’ type element and ! stands for the part that she is interested in, while still

preserving the regular subtyping rules.

For example, when the expected type Map[?, !] is compared with the type of some

expression, say Map[Int, Int], the resulting TypeFocus value will indicate a type selec-

tion extracting the second type argument of the map collection, i.e., the end-user is

interested only in how the type of the values of the map collection was inferred. On

the other hand, if the user-provided expected type List[!] is compared with Map[Int,

Int] type, the TypeFocus value will be equivalent to an identity type selection, accord-

ing to the algorithm that implements the subtyping check.

The user-provided types are parsed and reconstructed in the same typing context as the orig-

inal type, in order to define types that can be compared. After the TypeFocus translation the

provided types can be discarded.

In that sense, our interactive approach provides more type debugging control than the one

presented in the related work (Chen and Erwig [2014a] and Sulzmann [2002]), where the nav-

igation through the inferred types and their sources is only performed by means of yes/no

answers, such as "Is the expected type of expression x, Int?", and complete types. The inter-

active type debugger does not require any special infrastructure changes since the expansion

of TypingSlice values representing the intermediate typing decisions is already TypeFocus-

driven. At the same time the programmers using the interactive type debugger do not have

to understand the abstract concepts of TypeFocus, high-level representation or TypingSlice,

and can control the navigation only using types, i.e., the abstractions that they have to com-

prehend in every day programming.

We illustrate the process of controlled type debugging session with the simplified transcripts

of the two small programs involving the foldRight function application and the implicit reso-

lution. The interactive sessions will be presented in a form of Q/A sessions where we provide

a selection of the possible questions (due to space limitations). The output from the type

debugger is preceded by the ‘>’ symbol and the input from the user is preceded with the ‘<’

symbol. For the presentation reasons all source code fragments and type values are high-

lighted.

Example: Debugging foldRight application

In the first interactive type debugging session we consider an erroneous function application

of foldRight from Section 3.1.2. For reference, we recall the corresponding code snippet

below.

259

Chapter 7. Applications

1 val xs = List(1, 2, 3)
2 xs.foldRight(Nil)((x: Int, ys: List[Int]) =>
3 (x + 1) :: ys)
4 // error: type mismatch;
5 // found : List[Int]
6 // required: Nil.type
7 // (x + 1) :: ys)
8 // ^

Figure 7.28 illustrate a two-part transcript of an interactive type debugging session exploring

the type checking decisions of the above code snippet. The debugging starts with a statement

of the problem and listing all possible actions possible for the given type checking decisions,

with Typing Slice serving as a source of the possible actions. User control the execution by

issuing commands of a format ‘< [action index] [show/explore] [...]’ with the index of

the requested action, whether it should expand the Typing Slice or not, and any additional

input parameters, such as types.

With the additional type parameter, the users can change the direction of the debugging ses-

sion and, for example explore why the type assigned to the ‘(x+1) :: ys’ expression was

not ‘List[String]’. The TypeFocus value reconstructed from the subtyping check between

the two types will trigger a TypeFocus-based analysis that either takes a step to a resulting Typ-

ing Slice or returns a human-readable representation of it, depending on the user-provided

command.

The set of actions associated with each of the Typing Slices is limited, in a sense that they only

concern the decisions of the individual Typing Slice and not of the entire type derivation tree.

It is also verbose, because the amount of information necessary to explain the typing deci-

sions and its underlying low-level data is non-trivial. At the same time, the users are able to

modify the TypeFocus value and step through the multiple type checking decisions in a quick

succession, without having to deal with the details of the actions at each point. The format

is sufficient to compare the previously elided information about the types with instantiated

and not-yet instantiated type variables while also providing a necessary guidance with the

included type selection.

260

7.3. Interactive type debugging

> The type of the expression
(x + 1) :: ys
~~~~~~~~~~~~~~
is of type List[Int] and
does not match the type of the formal parameter
Nil.type
1) Explore/show the source of the expected type Nil.type.
2) Explore/show the source of the type of the expression.
3) Explore/show the source of the expected type with the user-provided type [type]
4) Explore/show the source of the type of the expression with

the user-provided type [type].
....

< 4 show List[String]
> The selected user-provided type

List[String]
~~~~~~~

conflicts with the location(s):
xs.foldRight(Nil)((x: Int, ys: List[Int]) =>

~~~~

> // (The message repeated from the previous question)
< 1 explore

> The requested type has been instantiated in the function application
xs.foldRight(Nil)((x: Int, ys: List[Int]) =>
~~~~~~~~~~~~~~~~~~

1) Show the type of the function and the inferred type of the function application.
2) Show type constraints that instantiated the type of the type parameter.
3) Explore/show the source of the type constraint with

the expected type ([index] [type]).
4) Explore/show the source of the function with the user-provided type.
...

< 1 show
> The function

xs.foldRight(Nil)((x: Int, ys: List[Int]) =>
~~~~~~~~~~~~~

is of type
[B](z: B)(op: (Int, B) => B)B

~
The inferred type of the function application is
(op: (Int, Nil.type) => Nil.type)Nil.type

~~~~~~~~~

> // (The message repeated from the previous question)
< 4 show [B](z: B)(op: (!, B) => B)B
> The user-provided type

[B](z: B)(op: (Int, B) => B)B
~~~

has been inferred with the location(s):
val xs = List(1, 2, 3)

~ ~ ~

Figure 7.28: (Part 1) An illustration of a transcript from an interactive debugging session
for the foldRight function application.

261



Chapter 7. Applications

> The requested type has been instantiated in the function application
xs.foldRight(Nil)((x: Int, ys: List[Int]) =>
~~~~~~~~~~~~~~~~~~

1) Show the type of the function and the inferred type of the function application.
2) Show type constraints that instantiated the type of the type parameter.
3) Explore/show the source of the type constraint with

the expected type ([index] [type]).
4) Explore/show the source of the function with the user-provided type.
...

< 4 show !
> The user-provided type

[B](z: B)(op: (Int, B) => B)B
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

has been inferred with the location(s):
xs.foldRight(Nil)((x: Int, ys: List[Int]) =>
~~~~~~~~~~~~~

> // (The message repeated from the previous question)
< 2 explore
> Internal Error: Cannot explore that question.

> // (The message repeated from the previous question)
< 2 show
> Type parameter

[B](z: B)(op: (Int, B) => B)B
~

has been instantiated using the following location(s):
(0) xs.foldRight(Nil)((x: Int, ys: List[Int]) =>

~~~
of type Nil.type

> // (The message repeated from the previous question)
< 3 explore 0

> The requested type has been instantiated in the identifier
xs.foldRight(Nil)((x: Int, ys: List[Int]) =>

~~~
1) Show the type of the identifier.
2) Explore/show the source of the identifier with the user-defined expected type.

< 1 show
> The inferred type of the identifier is

List[Nothing]
~~~~~~~~

> // (The message repeated from the previous question)
< 2 explore Int
> The selected user-provided type

List[String]
~~~~~~~~~~~~

Cannot further explore the source of the inferred type of the identifier.
(source of the identifier is unknown).

> // (The message repeated from the previous question)
... // (the type debugging session continued by the user)

Figure 7.28: (Part 2) An illustration of a transcript from an interactive debugging session
for the foldRight function application.

262

7.3. Interactive type debugging

Example: Debugging implicit resolution

In the second interactive type debugging session we consider the encoding of the generic

comparison function and its application, as already discussed in Section 6.6.4. For reference,

we recall the corresponding code snippet below.

1 abstract class A { def f: Any }
2 class B extends A { def f: Int = 5 }
3 class C extends A { def f: Long = 5L }
4

5 def universalCompare[T: Ordering](t1: T, t2: T): Int = // ...
6 object Test {
7 implicit val AOrdering: Ordering[A] = // ...
8 universalCompare(new B, new C) // No implicit Ordering defined for A{def f: AnyVal}.
9 // universalCompare(new B, new C)

10 // ^
11 }

The opportunistic algorithm from Section 6.6.4 defined a generic way to identify the source of

the rejected implicit resolution. In reality, it is not always possible to define a set of properties

that define the problem or provide improved feedback that satisfies all users.

Figure 7.29 illustrates a three-part transcript of an interactive type debugging session explor-

ing the type checking decisions of the above code snippet. The debugging starts with a state-

ment of the problem and listing all possible actions possible for the failed implicit resolution

as well as the partially inferred type of the universalCompare(new B, new C) function appli-

cation.

By default the interactive debugging session does not attempt to trigger any domain-specific

analysis and the reconstructed TypeFocus value will only extract the complete formal type of

the implicit parameter. With the user-defined types, the type debugging session is not only

limited to the analysis of the implicit resolution. The actions and their type parameters can

steer the exploration of underlying type derivation tree to any of the previous typing deci-

sions, as we illustrate in Figure 7.29.

The Typing Slices representing the decisions of the implicit resolution provide now a con-

trolled way of exploring, for the first time, the internal details of the implementation (part

(2) and part (3)). The analysis is constrained by the type checking context where the implicit

resolution was triggered. Because the interactive Type Debugger is built on top of the existing

high-level representation, the actions and their results return information that is specific to

the particular node in the type derivation tree. This implies for example that different implicit

parameters will only list their own implicit resolution scopes, as presented in the scenario.

263

Chapter 7. Applications

> The inferred type of the function application involved an implicit parameter.
The type checker failed to infer the implicit argument.
universalCompare(new B, new C)

~
1) Show the inferred type of the function and the function application.
2) Explore/show the source of type of the function application

with the user-provided type.
3) Show all the eligible implicit arguments for the [parameter name] [expected type].
4) Explore the implicit resolution for the parameter of name [parameter name].

< 1 show
> The inferred type of the function

universalCompare(new B, new C)
~~~~~~~~~~~~~~~~~

is
[T](t1: T, t2: T)(implicit evidence$1: Ordering[T])T

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The inferred type of the function application is
(implicit evidence$1: Ordering[A { def f: AnyVal }])A { def f: AnyVal }
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

> // (The message repeated from the previous question)
< 2 show (implicit evidence$1: Ordering[A { def f: ! }])?
> The user-provided type

(implicit evidence$1: Ordering[A { def f: AnyVal }])A { def f: AnyVal }
~~~~~~~

has been inferred with the location(s):
(0)
universalCompare(new B, new C)

~~~~~
(1)
universalCompare(new B, new C)

~~~~~~

> // (The message repeated from the previous question)
< 3 show evidence$1 A
> The eligible implicit values that conform to the user-provided type A:
None.

> // (The message repeated from the previous question)
< 3 show evidence$1 Ordering[A]
> The eligible implicit values that conform to the user-provided type Ordering[A]:

(0) AOrdering of type => Ordering[A]

> // (The message repeated from the previous question)
< 4 explore evidence$1

Figure 7.29: (Part 1) An illustration of a transcript from an interactive debugging session
for the generic universalCompare function.

264

7.3. Interactive type debugging

> The debugging has identified the implicit resolution with the expected type:
Ordering[A { def f: AnyVal }]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

at location
universalCompare(new B, new C)

~
The type checking has failed to infer a unique implicit value of the given type.
1) Show all locations where the implicit values are taken from.
2) Show all the implicit values in the user-selected locations [scope index].
3) Find and show all the implicit values that are eligible for the expected type [type].
4) Show all accepted implicit values matching the expected type.
5) Explore the implicit value matching the expected type [value index].

< 1 show
> Locations of the implicit values:
(1) Implicit members of the object Test
(2) Explicitly imported implicits from object Predef
(3) (Companion implicits) Implicit members of the object Ordering
(4) (Companion implicits) Implicit members of the trait LowPriorityEquiv

> // (The message repeated from the previous question)
< 2 show 1
> Implicit value of the object Test:
(1) AOrdering: Ordering[A { def f: Any } ]

[rejected] ~~~

> // (The message repeated from the previous question)
< 2 show 3
> Implicit value of the trait LowPriorityEquiv:
(1) universalEquiv: [T] => scala.math.Equiv[T]

> // (The message repeated from the previous question)
< 4 show
> Eligible implicit values matching the expected type:
(1) comparatorToOrdering:[A](implicit cmp: java.util.Comparator[A])Ordering[A]
(2) ordered:[A](implicit evidence$1: A => Comparable[A])Ordering[A]

> // (The message repeated from the previous question)
< 5 explore 1

> The implicit resolution mechanism selected value
comparatorToOrdering

of type
(implicit cmp: Comparator[A { def f: AnyVal }])Ordering[A { def f: AnyVal }]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
at location
universalCompare(new B, new C)

~
1) Explore the implicit resolution for the implicit parameter [parameter index].
2) Show all inferred implicit arguments for the implicit parameters.

< 1 explore 1

Figure 7.29: (Part 2) An illustration of a transcript from an interactive debugging session
for the generic universalCompare function.

265

Chapter 7. Applications

> The debugging has identified the implicit resolution with the expected type:
java.util.Comparator[A { def f: AnyVal }]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

at location
universalCompare(new B, new C)

~
The type checking has failed to infer a unique implicit value of the given type.
1) Show all locations where the implicit values are taken from.
2) Show all the implicit values in the user-selected locations [scope index].
3) Find and show all the implicit values that are eligible for

the expected type [type].
4) Show all accepted implicit values matching the expected type.
5) Explore the implicit value matching the expected type [value index].

< 4 show
> Eligible implicit values matching the expected type:

> // (The message repeated from the previous question)
< 1 show
> Locations of the implicit values:
(1) Implicit members of the object Test
(2) Explicitly imported implicits from object Predef

> // (The message repeated from the previous question)
... // (the type debugging session continued by the user)

Figure 7.29: (Part 3) An illustration of a transcript from an interactive debugging session
for the generic universalCompare function.

The current prototype of the interactive type debugger is entirely console-based. Therefore

all the debugging sessions are available only for programs that report some type errors. The

location in the type derivation tree, where the selected type error is reported, serves then as

a starting point for the user-directed type debugging sessions. With the IDE-integration the

users will be able to select a fragment of the program that they want to debug, and the type

checking goal that encloses the given fragment and the identity type selection will then serve

as a starting point to any user-directed type debugging session.

The user-defined types do not modify the type checking of the programs. Instead, we only

use them to modify the direction of the exploration. This limitation is strictly dictated by the

backtracking mode of operation of the Type Debugger. To persist the changes proposed by

the users the Type Debugger would have to trigger a separate type checking run, that would

construct a separate type derivation tree. The two derivation could be potentially merged in

order to continue the analysis with the persisted type changes, but the topic is left as a subject

for future work.

266



7.4. Conclusions

7.4 Conclusions

We explored a number of possible applications of the TypeFocus-based analysis of the type

checking decisions. All of the examples have been implemented for the existing Scala imple-

mentation (versions 2.10.x and 2.11.x) which we believe to be a good indication the validity of

the approach; the type system of Scala presents non-trivial challenges in terms of the number

and complexity of type features, as well as their implementation in the compiler. Importantly,

the analysis of all of the presented features was possible only with the TypeFocus instances,

appropriately defined Typing Slices and the specialized functions associated with the latter.

The novelty of the interactive approach lies not in the approach (it has been explored before

in for example Sulzmann [2002] and Chen and Erwig [2014a]) but our ability to implement

them with minimal effort and no changes to the core analysis algorithm. The examples and

the improved feedback have been either verified with the original posters of the problems

or with the regular Scala programs; a complete user-study that would empirically test the us-

ability of type debugger on the larger audience in the controlled environment requires further

work.

267





Chapter 8

Conclusions

This thesis addresses an important subject of local type inference and the problem of lack

of understanding of its limitations and the decision process by the programmers. The thesis

does not seek to improve the existing type checking algorithm so that it would for example ac-

cept more unannotated programs by employing more sophisticated constraints and solving

techniques. Instead we show that it is possible to take an existing type inference algorithm

and its implementation, with all its imperfections, and workaround the problems by gener-

ating error messages that educate programmers. In a sense we provide the type checking

history that is otherwise lost during compilation in a format that is possible to understand to

regular programmers. Improved feedback involves listing minimal program fragments that

determine the inference of types, providing more elaborate errors that identify and inform

about the limitations of type inference or the implementation, and code modifications that

can immediately correct the encountered type errors. This way we provide a key to decrypt-

ing local type inference. Our work has identified two key components necessary to debug the

decisions of local type inference.

We presented a lightweight approach to extracting the details of the existing type checking

process by instrumenting its implementation. The process is manual and complete, in a

sense that the proposed instrumentation infrastructure does not artificially limit the kind of

language features it can handle. On the example of Scala, we have shown how to extract in-

formation from the regular language constructs such as function applications or anonymous

functions, as well as more more involving and vulnerable to any code changes, the imple-

mentations of the subtyping algorithm and implicit resolution.

The instrumentation on its own provides access to the low-level type checking data but, as

we discovered, it is too basic to define rules that can navigate it. It is essentially impractical

to model different type checker executions using only such low-level representation, not to

mention defining any rules that analyze it. That is why we developed a high-level representa-

tion that models the decisions process of type checking and using the deterministic mapping

269



Chapter 8. Conclusions

strategy we can map between the two entities. The mapping ensures that the exposed high-

level representation models an existing type checker execution, rather than some simplified

or inaccurate version of it. The mapping is not an approximation in a sense that if there ex-

ists no high-level interpretation of the low-level execution, the debugging process is rejected.

Lack of sufficient instrumentation or an appropriate high-level representation that models

the type checkers execution can be fixed with relatively little effort. With such guarantees our

proposed technique differs from the related work that is either based on separate, approxi-

mated models of the type checking process that do not maintain the link with the compiler

execution, or a subset of the language.

We are the first to show a feasible solution to discovering the long distance relations between

the type checking decisions that can frequently occur in the process of local type inference.

We have shown that the approximations that take place in the case of local type inference do

not necessarily limit our debugging capabilities. By providing a complete formalization of

the analysis that is not tied to any particular implementation of the type checking process,

we can navigate the decisions in a controlled way and only focus on and explain to the users

the relevant parts.

The main challenge of debugging the type derivation trees inferred using local type inference,

the amount and complexity of typing decisions that take place for each of the involved terms,

was solved by maintaining the type propagation information while we traverse the nodes of

the derivations. We proposed a lightweight abstraction that encapsulates not only the details

of the type that we investigate but also allows us to deterministically guide the navigation

through the complicated type derivation trees without the external help from the users. With

clear rules on how to infer the lightweight abstraction and construct we are able to decrypt

the type errors, i.e., we are able to find the minimal type checking decisions and the minimal

program locations that define it, with complete confidence.

We have shown a formal approach on how to apply the ability to discover the minimal pro-

gram locations that define the source of the types that participate in type conflicts. But our

approach is not just limited to explaining the type errors through more elaborate error mes-

sages. We have shown examples where with the intermediate results of the analysis we are

able to swiftly navigate to the desired elements of the type checking process and define more

precise heuristics for the domain-specific problems as well as to serve as a convenient ab-

straction that controls the interactive mode of our tool.

Our approach has been implemented in Scala, an industry-accepted programming language

that exercises a number of advanced type systems. We evaluate our technique on a number of

those complex features, including the analysis of implicit resolution, subtyping, polymorphic

polymorphism, overload resolutions and path-dependent types, giving us confidence in its

capabilities, especially since some of them have not been tackled before at all.

The type errors are here to stay, but with our work we have provided a foundation for gener-

ating better feedback that minimizes the effort to understand them.

270



Appendix A

Encoding of lists in Colored Local Type
Inference

Using the external language of Odersky et al. [2001] we can provide intuitive definitions for

lists using records with a single, match, member that uses the visitor pattern for inspection.

type List[a] = { match: (ListVis[a,b])
b−→ b }

type ListVis[a,b] = { caseNil: () → a, caseCons: (a, List[a]) → b }

Type constructor List takes a single type parameter, a, that represents the elements of the

list, while the local type parameter of match, b, represents the type of the result of matching

on such a list with a list visitor. The ListVis type constructor is a record type requiring two

functions that are called either when an underlying list is empty (caseNil) or when it is not

(caseCons). Instances of list constructors - for an empty, Nil, and a non-empty Cons, lists -

can then be expressed in a following way:

Cons = fun[a](x:a, xs:List[a]):List[a] = { match = fun(v) v.caseCons(x,xs) }

Consider the following definition of the foldRight function mentioned in the introduction

and semantically identical to Scala’s foldRight operator in List collections:

foldRight = fun[a](elems: List[a]) fun[b](acc: b) fun(f: (a, b) -> b)
elems.match { caseNil() = acc, caseCons(x, ys) = f(x, foldRight(ys)(acc)(f)) }

271



Appendix A. Encoding of lists in Colored Local Type Inference

This definition uses a straightforward encoding of lists defined above.

foldRight simply traverses the initial list of elements, elems, until an end is reached, caseNil,

where it returns the initial accumulator. Then it applies function f to the head of the list and

the result of the recursive call on the suffix of the list. Using the typing rules from [Odersky

et al., 2001, pg. 6], function foldRight has type, ∀a. Li st [a]→ (∀b. Li st [b]→ ((a,b)→ b)→
b). Type variables above are treated separately only in an effort for the encoding to be syntac-

tically more closely to Scala’s type inference limitation, however they could equally be placed

in the first function type.

272



Appendix B

Auxiliary functions used in the
TypeFocus-driven algorithm

This chapter provides implementation details for functions used in the definition of the Type-

Focus-driven algorithm in Section 3.5.

is-hole : P → Bool

is-hole(?) = true

is-hole(⊥) = false

is-hole(�) = false

is-hole(a) = false

is-hole(∀a.A→B) = false

is-hole({x1 : T1, ... , xn : Tn}) = false

is-tvar : (T, a)→ Bool

is-tvar(?, a) = false

is-tvar(⊥, a) = false

is-tvar(�, a) = false

is-tvar(a, a) = true if a ∈ a
is-tvar(a, a) = false if a �∈ a
is-tvar(∀a.A→B , a) = false

is-tvar({x1 : T1, ... , xn : Tn}, a) = false

Figure B.1: (Part 1) Complete implementations of auxiliary functions introduced in Sec-
tion 3.5.

273



Appendix B. Auxiliary functions used in the TypeFocus-driven algorithm

shape-match : (T, P, Θ)→ Bool

shape-match(T, ?,Θ) = true

shape-match(T,⊥,Θ) =
{

true if T =⊥
false else

shape-match(T,�,Θ) =
{

true if T =�
false else

shape-match(T, a,Θ) =
{

true if T = a
false else

shape-match(T,∀a.S →R,Θ) = false if T �= ∀a.S′ →R ′

shape-match(∀a.A→B ,∀a.C →D,Θ)=⎧⎨
⎩

shape-match(A, C , tail(Θ)) if head(Θ) = [φfun-param]
shape-match(B , D, tail(Θ)) if head(Θ) = [φfun-res]
shape-match(A, C , [ ]) ∧ shape-match(B , D, [ ]) else

shape-match(T, {x1 : S1, ... , xn : Sn},Θ) = false if T �= {x1 : R1, ... , xn : Rn}
shape-match({x1 : T1, ... , xn : Tn}, {x1 : S1, ... , xn : Sn},Θ)=⎧⎨
⎩ shape-match(Ti ,Si ,tail(Θ)) if

head(Θ) = [φseli]
and 1≤ i ≤ n

shape-match(T1,S1, [ ]) ∧ ... ∧ shape-match(Tn ,Sn , [ ]) else

head : Θ→Θ

head([ ]) = [ ]
head(φfun-param ::Θ

’) = [φfun-param]
head(φfun-res ::Θ

’) = [φfun-res]
head(φseli ::Θ

’) = [φseli ] for any i

tail : Θ→Θ

tail([ ]) = [ ]
tail(φfun-param ::Θ

’) = Θ’

tail(φfun-res ::Θ
’) = Θ’

tail(φseli ::Θ
’) = Θ’ for any i

normalize : (Θ, P, a)→Θ

normalize([ ], T, a) = [ ]
normalize(Θ, T, a) if Θ �= [ ] =

case (head(Θ))(T ) of∣∣∣∣∣∣∣∣∣

inl T ′ ⇒ head(Θ) ::: normalize(tail(Θ),T ′, a)
inr

〈
T ′, Θ’

〉
if is-tvar(T ′, a) ⇒ Θ

inr
〈

T ′, Θ’
〉

if is-hole(T ′) ⇒ Θ

inr
〈

T ′, Θ’
〉

else ⇒ [ ]

prefix : (Θ,Θ)→ Bool

prefix(Θ1,Θ2) =
⎧⎨
⎩

true if head(Θ1) == [ ]
prefix(tail(Θ1),tail(Θ2)) if head(Θ1) == head(Θ2) �= [ ]
false else

Figure B.2: (Part 2) Complete implementations of the auxiliary functions introduced in
Section 3.5.

274



B.1. Definition of the free variables function

B.1 Definition of the free variables function

The fv function extracts the set of free variables from the types of the core language.

fv : T → a
fv(T ) = fvaux (T,�)

fvaux : (T, a)→ a
fvaux (b, a) = � if b ∈ a
fvaux (b, a) = { b } if b �∈ a
fvaux (�, a) = �
fvaux (⊥, a) = �
fvaux (∀b.S →U , a) = fvaux (S, a∪ { b })∪fvaux (U , a∪ { b })
fvaux ({x1 : P1, ... , xn : Pn}, a) = fvaux (P1, a)∪ ...∪fvaux (Pn , a)

Figure B.3: Definition of the fv function.

B.2 Definition of the bound variables function

The bv function extracts the set of bound variables from the types of the core language.

bv : T → a
bv(b) = �
bv(�) = �
bv(⊥) = �
bv(∀b.S →U )a = { b } ∪ bv(S) ∪ bv(U )
bv({x1 : P1, ... , xn : Pn}) = bv(P1) ∪ ... ∪ bv(Pn)

Figure B.4: Definition of the bv() function.

275





Appendix C

Proof of Theorem 1 on the prototype
propagation

In Section 3.1.2 we have defined the implications of propagating partial type information

along the adjacent nodes of the type derivation tree. In the process we have also identified

Theorem 1 which states that for every type inference judgment of a form (P, Γ �w E : T )

for any P , Γ, E and T where P �= ?, we can identify the source of the prototype by traversing

towards the root of the type derivation tree.

Proof.

The proof of Theorem 1 follows directly from the definition of type inference

rules for Colored Local Type Inference. which propagate parts of the prototype

in the conclusion of the rule to its premises.

The proof relies on the fact that the root of any type derivation tree, (P, ε�w E : T ),

has a prototype P = ?. If the root of the type derivation tree was given a proto-

type P such that P �= ?, then it can always be translated to the former one through

an equivalent function application encoding, (?, ε�w (fun[a](x : P )x)E : T ) such

that each ? in P is substituted with a fresh type variable from a.

We prove the Theorem by induction on the type inference rule of the parent of

the �w judgment.

• Case (abst p,?) : The only premise of the rule has P = ?, by contradiction

trivially satisfied.

• Case (abst p,�) : The only premise of the rule, (�,Γ, a, x : T �w E : S), has

its prototype� propagated from the parent. Trivially satisfied.

• Case (abst p) : The only premise of the rule, (P ′, Γ, a, x : T �w E : S), has its

prototype propagated from the rule because P ′ is part of the prototype in

the conclusion of the rule: ∀a.P → P ′.

277



Appendix C. Proof of Theorem 1 on the prototype propagation

• Case (abs) : - The only premise of the rule, (P, Γ, a, x : T �w E : S), has its

prototype propagated from the rule because P is part of the prototype in

the conclusion of the rule: ∀a.T → P .

• Case (appt p) : - The first premise of the rule, (?, Γ �w F : ∀a.S → T ), has

a wildcard constant type as a prototype, therefore, by contradiction, it is

trivially satisfied. The second premise of the rule [R/a]S, Γ �w E : [R/a]S has

a prototype [R/a]S, where [R/a]S is not part of the rule’s prototype P . Since

all elements of the premise’s prototype, i.e., S, R and a, are introduced as

part of the rule’s typing decisions, then (appt p) is a Propagation Root for

prototype [R/a]S.

• Case (appt p,⊥) : - The first premise of the rule, (?, Γ,�w F :⊥), has a wild-

card constant type as a prototype, therefore, by contradiction, it is trivially

satisfied. The second premise of the rule, (�, Γ�w E : S), has a non-? proto-

type which is not simply propagated from the prototype of the parent of the

premise. While the � prototype is not directly part of any other type deci-

sion of the rule, by definition of rule (appt p,⊥) it is indirectly implied by the

inferred type of the function,⊥. Hence, (appt p,⊥) is a Propagation Root.

• Case (app) : - Satisfied by the same argument as for rule (appt p).

• Case (app⊥) : - Satisfied by the same argument as for rule (appt p,⊥).

• Case (sel) : - The premise of the rule, ({x : P }, Γ,�w F : {x : T }), uses the

{x : P } prototype. The record type is first introduced by the type inference

judgment, therefore (sel) is trivially the Propagation Root.

• Case (rec?) : - The only premise of the rule has P = ?, by contradiction,

trivially satisfied.

• Case (rec�) : - Satisfied by the same argument as for rule (abst p,�).

• Case (rec) : - If the considered premise of the rule is (Pk , Γ �w Fk : Tk ),

where 1 ≤ k ≤ m, then the prototype of the premise, Pk , is simply propa-

gated from the parent because Pk is part of the rule’s prototype {x1 : P1, ..., xm :

Pm}. If the premise of the rule is (�, Γ �w Fk :�), then (rec) becomes the

Propagation Root because� is not part of the rule’s prototype {x1 : P1, ..., xm :

Pm}.

278



Appendix D

Proofs for the TypeFocus properties

The TypeFocus instance that is well-formed with respect to some type can be safely applied

to the type to extract its type elements. The well-formed TypeFocus instance also offers a

number of important properties that makes it particularly suitable for driving the navigation

through the type derivation tree.

D.1 Proof of Lemma 3.4 on the well-formedness of TypeFocus with

respect to the prototype

Lemma 3.4 states that a TypeFocus value that is well-formed with respect to the inferred type,

then also has to be well-formed with respect to the prototype that helped to infer it:

If (P, Γ�w E : T ) and (Θ, a �WF T ) for fv(T )⊆ a, then (Θ, a �WF P ).

Proof.

The proof for Lemma 3.4 follows directly from the invariant of Colored Local Type

Inference in [Odersky et al., 2001, 8.1], which states that the inferred type in the

type inference judgment has to match the shape of the prototype with respect to

structural adaptation of the↗ operation.

The proof follows by induction on the structure of the TypeFocus instance. We

also make use of the well-formedness inversion lemma in Lemma 3.2. We use a

T↗ notation for the result of type adaptation T ↗ P , and f v for fv(T ↗ P ).

• Case [ ] : Since [ ] returns a left tagged value for any type or prototype, the

lemma is trivially satisfied.

• Case φ ::Θ’ :

We consider the individual type selectors first and later the tail of Θ.

279



Appendix D. Proofs for the TypeFocus properties

– Case φfun-param : If (φfun-param, f v �WF T↗), then:

* Case φfun-param(T↗)= inl T ′ for some T ′.
By the inversion on theφfun-param definition, T↗ is of shape∀a.T ′

↗ → T ′′
↗.

Hence, from the invariant of Colored Local Type Inference either

P =∀a.P ′ → P ′′, for some P ′ and P ′′, and (φfun-param, f v �WF P ′), or

P = ?, meaning that (φfun-param, f v �WF P ).

* Case φfun-param(T↗)= inr
〈

T ′, Θ′
〉

.

By the inversion Lemma, T ′ is a type variable. Since T has to be of

the same structural shape as P , the application of the same Type-

Focus will extract the corresponding part of P . Therefore from the

invariant of Colored Local Type Inference P = ? or P = T ′.
– Case φfun-res :: Analogous argument as for φfun-param.

– Case φselx :: Analogous argument as for φfun-param.

From the assumption we know that (φ :: Θ’, f v �WF T↗). Also from the

definition of TypeFocus, φ :: Θ’ is equivalent to [φ] ::: Θ’ for any Θ’ and φ.

Therefore for the application of φ ::Θ to type T↗:

– Case ([φ])(T↗)= inl T ′
↗.

By the application of [φ] to P :

* ([φ])(P ) = inl P ′ for some P ′ -

By the invariant of Colored Local Type Inference an application of

the same φ to the type and the prototype yields the correspond-

ing type selection. Therefore P ′ becomes a prototype correspond-

ing to the selected type T ′
↗. From the assumption, we know that

(Θ’,fv(T↗)�WF T ′
↗).

By I.H. we have that (Θ’,fv(T↗) �WF P ′). Since P ′ is constructed

from a well-formed selection of [φ], we have that ((φ ::Θ’), f v �WF

P ).

* ([φ])(P ) = inr
〈

P ′′, [φ]
〉

for some P ′′ -

From the invariant of Colored Local Type Inference, P ′′ = ? or P ′′ ∈
f v , since a non-wildcard, non-type variable prototype has to be

of the same shape as the inferred type. This in turn implies that

(Θ’,fv(T↗) �WF P ′′) by the definition of the application of TypeFo-

cus to a wildcard or a type variable, and φ ::Θ’,fv(T↗)�WF P .

– Case ([φ])(T↗)= inr
〈

T ′
↗,Θ”

〉
.

From the definition of the partial type selection we know that T↗ = T ′
↗

and T ′
↗ ∈ fv(T↗). By the application of [φ] to P :

* inl P ′ -

By the invariant of Colored Local Type Inference, where the shape

of the prototype is the same as the shape of the inferred type, the

application should have selected a right tagged value as well. Case

is impossible.

280



D.1. Proof of Lemma 3.4 on the well-formedness of TypeFocus with respect to the
prototype

* inr
〈

P ′′, [φ]
〉

-

By the invariant of Colored Local Type Inference and the inversion

lemma, we know that P ′′ = ? or P ′′ ∈ f v . An application of TypeFo-

cus to a wildcard type or a type variable always yields the same type

and TypeFocus in a right tagged value. Hence, (Θ’,fv(T↗) �WF P ′′).

Since P ′′ is constructed from a well-formed type selection of [φ] we

have that ((φ ::Θ’),fv(T↗)�WF P ).

281



Appendix D. Proofs for the TypeFocus properties

D.2 Proof of the distribution of well-formedness over head and tail

of TypeFocus

Lemma D.1 The distribution of well-formedness of TypeFocus selection over head and

tail For any TypeFocus Θ and any type T , if (Θ, a �WF T ), then (Θhead, a �WF T ) and

(tail(Θ), a �WF T ′), where head(Θ)=Θhead, Θhead(T )tpe = T ′ and fv(T )⊆ a.

In order to prove the distribution of well-formedness we will first have to state one straight-

forward technical lemma. Lemma D.2 establishes that if the head of any TypeFocus returns

an empty TypeFocus, it implies that the input TypeFocus is an identity [ ] TypeFocus as well.

Lemma D.2 head of the identity TypeFocus.

For any TypeFocus Θ, if head(Θ)= [ ] then Θ is [ ].

Proof.

Straightforward. From the specification of the head function.

Proof of Lemma D.1.

Proof.

Proof by induction on the structure of T :

Case T =⊥ :

By canonical forms, head(Θ)= [ ]. From the definition of well-formedness

head(Θ), a �WF ⊥. By Lemma D.2, Θ = [ ]. Therefore [ ](⊥)= inl⊥, and tail(Θ)=
tail([ ])= [ ]. Therefore tail(Θ), a �WF ⊥.

Case T =� :

Analogous argument as in the case of type⊥.

Case T =∀b.T1 → T2 :

By canonical forms lemma head(Θ) can be any of the three cases:

• Case [ ] -

From the definition of [ ], ∀T ′′. [ ](T ′′)= inl T ′′, therefore [ ](∀b.T1 → T2)=
inl ∀b.T1 → T2.

From the definition of tail, tail(Θ)= tail([ ])= [ ].

282



D.2. Proof of the distribution of well-formedness over head and tail of TypeFocus

Therefore (Θhead, a �WF T ) and (tail(Θ), a �WF T ), from the definition of well-

formedness property.

• Case [φfun-param] -

By definition of [φfun-param], head(Θ)(T )= inl T1.

By definition of composition of TypeFocus instances, tail(Θ) is only ap-

plied to a left tagged value. Therefore the (Θ, a �WF T ) assumption and Defi-

nition 8 imply (tail(Θ), a �WF T1).

• Case [φfun-res] -

By definition of [φfun-res], head(Θ)(T )= inl T2.

By definition of composition of TypeFocus instances, tail(Θ) is only ap-

plied to a left tagged value. Therefore the (Θ, a �WF T ) assumption and Defi-

nition 8 imply (tail(Θ), a �WF T2).

Case T = {x1 : T1, ... , xn : Tn} :

(Using the analogous argument as in the case of the polymorphic function type)

By canonical forms, head(Θ) can be any of the two cases:

• Case [ ] - From the definition of [ ], ∀T ′′. [ ](T ′′)= inl T ′′, therefore [ ]({x1 :

T1, ... , xn : Tn})= inl {x1 : T1, ... , xn : Tn}.

By Lemma D.2, head(Θ) = [ ] implies Θ = [ ], and tail(Θ) = [ ]. Therefore

(Θhead, a �WF T ) and (tail(Θ), a �WF T ), from the definition of well-formedness

property.

• Case φselxi
for 1≤ i ≤ n-

By definition of [φselxi
], head(Θ)(T )= inl Ti .

By definition of composition of TypeFocus instances, tail(Θ) is only ap-

plied to a left tagged value. Therefore the (Θ, a �WF T ) assumption and Defi-

nition 8 imply tail(Θ), a �WF Ti .

Case T = a :

From the definition of the well-formedness property ∀Θ’. (Θ’, a �WF a) if a ∈ a.

From the assumption a ∈ a. Therefore (head(Θ), a �WF a) and (tail(Θ), a �WF a).

283



Appendix D. Proofs for the TypeFocus properties

D.3 Proof of Lemma 3.8 on the well-formedness of TypeFocus over

type substitution.

Well-formedness of TypeFocus over type substitution

For any TypeFocus Θ, and any type T , such that (Θ,��WF T ), if T results from a type substitu-

tion, σ, on some type S, such that T =σS and dom(σ)= a, then (Θ, a �WF S).

Proof.

Proof by induction on the structure of T :

Case T =σ⊥ :

Since σ⊥=⊥, the result is immediate.

Case T =σ� :

Since σ�=�, the result is immediate.

Case T =σ(∀b.T1 → T2) :

From the definition of σ, σ(∀b.T1 → T2) = ∀b.σT1 → σT2. By canonical forms,

head(Θ) can be any of the three cases:

• Case [ ] -

By definition of [ ], we known that [ ](∀b.σT1 →σT2)= inl ∀b.σT1 →σT2.

By Lemma D.2, head(Θ)= [ ] implies Θ = [ ] and tail(Θ)= [ ].

From the definition of the well-formedness property (Θ, a �WF ∀b.T1 → T2)

for any a, because [ ](∀b.T1 → T2)= inl ∀b.T1 → T2.

• Case [φfun-param] -

By definition of [φfun-param], head(Θ)(T )= inl σT1. By definition of compo-

sition of TypeFocus instances, tail(Θ) is only applied to a left tagged value,

as shown.

Assumption (Θ,��WF σ(∀b.T1 → T2)) implies (Θ,��WF ∀b.σT1 →σT2) which

implies (tail(Θ),��WF σT1).

By I.H., (tail(Θ), a �WF T1).

By definition of [φfun-param], ∀S. [φfun-param](∀b.T1 → S)= inl T1, including

when S = T2, and ((head(Θ) ::: tail(Θ)), a �WF ∀b.T1 → T2).

By Definition 8 and Lemma D.1, we have that (Θ, a �WF ∀b.T1 → T2).

• Case [φfun-res] -

By definition of [φfun-res], head(Θ)(T ) = inl σT2. By definition of compo-

sition of TypeFocus instances, tail(Θ) is only applied to a left tagged value,

as shown.

Assumption (Θ,��WF σ∀b.T1 → T2) implies (Θ,��WF ∀b.σT1 →σT2) which

implies (tail(Θ),��WF σT2).

By I.H., tail(Θ), a �WF T2.

284



D.3. Proof of Lemma 3.8 on the well-formedness of TypeFocus over type substitution.

By definition of [φfun-param], ∀S. [φfun-param](∀b.S → T2)= inl T1, including

when S = T1, and ((head(Θ) ::: tail(Θ)), a �WF ∀b.T1 → T2).

By Definition 8 and Lemma D.1, we have that (Θ, a �WF ∀b.T1 → T2).

Case T =σ({x1 : T1, ... , xn : Tn}) :

(Using the analogous argument as in the case of the polymorphic function type)

From the definition of σ, σ({x1 : T1, ... , xn : Tn}) = {x1 : σT1, ... , xn : σTn}. By

canonical forms, head(Θ) can be any of the two cases:

• Case [ ] -

By definition of [ ], we known that [ ]({x1 : σT1, ... , xn : σTn}) = inl {x1 :

σT1, ... , xn : σTn}.

By Lemma D.2, head(Θ)= [ ] implies Θ = [ ] and tail(Θ)= [ ].

Therefore, directly from the definition of the well-formedness property (Θ, a �WF

{x1 : T1, ... , xn : Tn}) for any a because [ ]({x1 : T1, ... , xn : Tn}) = inl {x1 :

T1, ... , xn : Tn}.

• Case [φselxi
] for 1≤ i ≤ n-

By definition of [φselxi
], head(Θ)(T ) = inl σTi . By definition of composi-

tion of TypeFocus instances, tail(Θ) is only applied to a left tagged value,

as shown. Assumption (Θ,� �WF σ({x1 : T1, ... , xn : Tn})) implies (Θ,� �WF

{x1 : σT1, ... , xn : σTn}), which in turn implies (tail(Θ),��WF σTi ).

By induction hypothesis, (tail(Θ), a �WF Ti .

By definition of [φselxi
], [φselxi

]({x1 : S1, ... , xi : Si , ... , xn : Sn})= inl Si for

any S1, ... , Si−1, Si+1, ... , Sn , including T1, ... , Ti−1, Ti+1, ... , Tn , respec-

tively. Therefore, (head(Θ) ::: tail(Θ), a �WF {x1 : T1, ... , xn : Tn}).

By Definition 8 and Lemma D.1, we have that (Θ, a �WF {x1 : T1, ... , xn : Tn}).

Case T =σa :

By definition of the well-formedness property in (Θ,��WF σa), (Θ,dom(σ)�WF a).

Since dom(σ)= a and a ∈ dom(σ), we have immediately that (Θ, a �WF a).

285





Appendix E

Proofs on the translation of type
constraints to type selectors

In Section 3.7.1 we define the translation of type constrains that are inferred from a subtype

relation between some types S and T , (W �a S <: T ⇒C ), to sequences of TypeFocus, defined

as (ai , ψ±,W �g en S <: T � Θ). The inferred TypeFocus instances extract individual type

bounds for the type variable ai such that ai ∈ a.

A number of properties of the translation ensures that the inferred TypeFocus instances can

faithfully represent type constraints that are used in the inference of type variable substitu-

tion.

E.1 Proof of the well-formedness of the TypeFocus sequences inferred

from the subtyping relation

The rules that govern the translation, ensure that every individual TypeFocus can be applied

to the types that participate in the subtyping relation and extract either a type bound or a

type variable, as formally defined in Lemma 3.9.

We provide an additional, technical lemma that will be used in the main proof.

Lemma E.1 Lack of TypeFocus instances from type variable-free types.

Let a be some type variable, V a set of bounded type variables, such that a �∈ V , and

some types S and T . If a �∈ (fvaux (S,V )∪fvaux (T,V )) then (a, ψ±,V �g en S <: T � Θ),

where Θ = ε.

287



Appendix E. Proofs on the translation of type constraints to type selectors

Proof.

Straightforward, by induction on the last ΘG rule used.

Proof of Lemma 3.9.

Proof.

By induction on the last ΘG rule used:

• Case ΘG(-, <) : We have to consider only a single TypeFocus, [ ], since a, -�g en

a <: T � { [ ] }. From the definition of [ ], ∀S. [ ](S) = inl S. Therefore

[ ](a)= inl a and [ ](T )= inl T and a ∈ a.

• Case ΘG(+, <) : Since Θ = ε, the result is immediate.

• Case ΘG(-, >) : Since Θ = ε, the result is immediate.

• Case ΘG(+, >) : We have to consider only a single TypeFocus, [ ], since a, -�g en

T <: a � { [ ] }. From the definition of [ ], ∀S. [ ](S) = inl S. Therefore

[ ](T )= inl T and [ ](a)= inl a and a ∈ a.

• Case ΘG� : Since Θ = ε, the result is immediate.

• Case ΘG( TOP) : Since Θ = ε, the result is immediate.

• Case ΘG(BOT ) : Since Θ = ε, the result is immediate.

• Case ΘGFUN : By the definition of the rule, we will consider its two premises

separately:

– a, ψ±,W �g en T <: R � Θ
′

-

If a �∈ (fvaux (T,W ∪ b)∩ fvaux (T,W ∪ b)), then by Lemma E.1, Θ
′ = ε

and the result is immediate.

Otherwise, by I.H.,

∀Θj.∃T ′.∃R ′. Θj ∈Θ′ =⇒
Θj(T )= inl T ′ ∧ Θj(R)= inl R ′ ∧ (T ′ = a∨S′ = a).

From the definition of the application of [φfun-param],

∀T. [φfun-param](∀b.S → T )= inl S.

By the application of the TypeFocus composition

∀Θj.∃T ′.∃R ′. Θj ∈Θ′ =⇒
((φfun-param ::Θ

j)(∀a.R → S)=Θj(R)= inl R ′

∧ (φfun-param ::Θ
j)(∀a.T →U )=Θj(T )= inl T ′)

as required for the particular subcase.

– a, ψ±, W �g en S <:U � Θ
′′

-

If a �∈ (fvaux (S,W ∪b)∩fvaux (U ,W ∪b)), then by Lemma E.1, Θ
′′ = ε

and the result is immediate.

288



E.1. Proof of the well-formedness of the TypeFocus sequences inferred from the
subtyping relation

Otherwise, by I.H.,

∀Θj.∃S′.∃U ′. Θj ∈Θ′′ =⇒
Θj(S)= inl S′ ∧ Θj(U )= inlU ′ ∧ (S′ = a∨U ′ = a).

From the definition of the application of [φfun-res],

∀S. [φfun-res](∀b.S → T )= inl T .

By the application of the TypeFocus composition, similarly to the previ-

ous subcase we have that

∀Θj.∃S′.∃U ′. Θj ∈Θ′′ =⇒
((φfun-res ::Θ

j)(∀a.R → S)=Θj(S)= inl S′

∧ (φfun-res ::Θ
j)(∀a.T →U )=Θj(U )= inlU ′)

as required for the particular subcase.

Since the head of each of the instances of the
{
φfun-param ::Θ

′ }
and

{
φfun-res ::Θ

′′ }
sequences ensures that respective parameter and result type elements of

the function type are extracted, the case condition is satisfied for the con-

sidered rule.

• Case ΘGREC :

– Base case (for m = 0):

(a, ψ± �g en {x1 : S1, ..., xn : Sn} <: {} � Θ). Trivially satisfied, since

Θ = ε.

– For 1≤ k ≤m, where m ≥ 1:

If a �∈ (fvaux (Sk ,W )∩fvaux (Tk ,W )), then by Lemma E.1, Θ
k = ε and the

result is immediate.

Otherwise, by I.H.,

∀Θj.∃S′.∃T ′. Θj ∈Θk =⇒
Θj(Sk )= inl S′ ∧ Θj(Tk )= inl T ′ ∧ (S′ = a∨T ′ = a).

By definition of [φselxi
], [φselxi

]({x1 : C1, ... , xi : Ci , ... , xn : Cn})= inlCi

for all C1, ... , Ci−1, Ci , Ci+1, ... , Cn .

By the application of the TypeFocus composition

∀Θj.∃S′.∃U ′. Θj ∈Θk =⇒
((φselk ::Θ

j)({x1 : T1, ..., xm : Tm , ..., xn : Tn})=Θj(T ′
k )= inl Tk

∧ ((φselk ::Θ
j)({x1 : S1, ..., xm : Sm})=Θj(Sk )= inl S′k

as required for 1≤ k ≤m.

Since the head of each of the instances of the
{
φselxk

::Θ
k
}

sequences

ensures that respective type parts of the record type are extracted, the case

condition is satisfied for the considered rule.

289



Appendix E. Proofs on the translation of type constraints to type selectors

E.2 Proof of the soundess of the TypeFocus sequences inferred from

the subtyping relation

Lemma 3.10 states a soundness property of the translation - the application of the inferred

TypeFocus instances to the two types of the subtyping relation extracts lower and upper type

bounds, respectively. Additionally, when approximated using the least upper bound and

greatest lower bound operations, they infer type bounds that are identical to the ones that

were inferred in the corresponding a-constraint set.

The constraint generation rules in Pierce and Turner [2000] lack a formal rule that defines

collecting type constraints between two record types in a subtyping relation. Neither does

the formalization of the Colored Local Type Inference in Odersky et al. [2001] provide one.

For reference, the (CG-Rec) rule below, implements the necessary constraint generation for

such types without compromising the whole system.

(CG-REC)

V �x P1 <: R1 ⇒C1 ... V �x Pm <: Rm ⇒Cm

x∩V =�
V �x {x1 : P1, ..., xm : Pm , ..., xn : Pn}<: {x1 : R1, ..., xm : Rm}⇒C1

∧
...
∧

Cm

We provide additional, technical lemmas that will be used in the main proof.

Lemma E.2 Preservation of least upper bound and greatest lower bound under well-

formed type selection.

∀Θ,Θ’,T,S. Θ ∈Θ ∧ (Θ,��WF S) ∧ Θ’(T )= inl S =⇒ ∨
Θ(S)=∨(

{
Θ’ ::: Θ

}
)(T ) and

∀Θ,Θ’,T,S. Θ ∈Θ ∧ (Θ,��WF S) ∧ Θ’(T )= inl S =⇒ ∧
Θ(S)=∧(

{
Θ’ ::: Θ

}
)(T ).

Proof.

Straightforward. By induction on the TypeFocus structure. The
{
Θ’ ::: Θ

}
notation is equivalent to

{
Θ’ ::: Θ

}
for all Θ’ where Θ ∈Θ.

Lemma E.3 Lack of constraints for type variable-free types.

Let S and T be some types, ai be a type variable, a be a set of type variables, and W a

set of bounded type variables, such that a∩W =�.

If ai �∈ (fvaux (S,W )∪fvaux (T,W )) then

W �a S <: T ⇒C for some C , such that {⊥ <: ai <:�} ∈C .

290



E.2. Proof of the soundess of the TypeFocus sequences inferred from the subtyping
relation

Proof.

Straightforward. Induction on the CG constraint generation rules. In Pierce

and Turner [2000] it is clearly stated that a type variable-free subtyping rela-

tion S <: T resolves to subtype checking.

Proof of Lemma 3.10.

Proof.

By induction on the last inference rule used in the (ai , ψ±,W �g en S <: T � Θ)

judgment.

We note that the CG constraint generation rules keep track of the bounded type

variables that can be promoted, ⇑W , or demoted, ⇓W . The corresponding rules of

ΘG also carry the information about a set of bounded type variables, W . This al-

lows for using the application of the A ⇑W B and C ⇓W D operations to implicitly

promote and demote bound type variables in the least upper bound and greatest

lower bound approximations.

Similarly to the formalization of Odersky et al. [2001], we assume that W is pro-

vided implicitly to both operations and the fv function (for example fv(S) means

fvaux (S,W )).

The soundness lemma is proved by proving the soundness of the translation for

lower and upper bounds separately for each type variable ai , where ai ∈ a.

Soundness of lower type bounds:

Case ΘG(+, <) ai , +, W �g en ai <: T � ε :

By definition of the constraint generation judgment, only the (CG-Upper) rule

could apply for the ai <: T relation.

By definition of the (CG-Upper) rule, W �a ai <: T ⇒C and {⊥ <: ai <: R} ∈C .

Since, fvaux (ai ,W )∩a �= �, the subcase is trivially satisfied.

If fvaux (T,W )∩a =�, then
∨
Θ(T )=⊥ by definition of the

∨
approximation for

Θ = ε.

Case ΘG(+, >) ai , +, W �g en T <: ai � { [ ] } :

By definition of the constraint generation judgment, only the (CG-Lower) rule

could apply for the T <: ai relation.

By definition of the (CG-Lower) rule, W �a T <: ai ⇒C and {R <: ai <: �} ∈C ,

where T ⇑w R.

If fvaux (T,W )∩a =�, then
∨
Θ(T )= [ ](T )tpe ⇑W=R.

Since, fvaux (ai ,W )∩a �= �, the subcase is trivially satisfied.

291



Appendix E. Proofs on the translation of type constraints to type selectors

Case ΘG( TOP) ai , +, W �g en S <:� � ε :

By definition of the constraint generation judgment, rules (CG-Top) and (CG-Upper)

could apply for the S <:� relation.

By definition of the (CG-Top) rule, (W �a S <:�⇒C ) and {⊥ <: ai <:�} ∈C .

If fvaux (S,W )∩a =�, then
∨
Θ(S)=⊥ by definition of the

∨
approximation for

Θ = ε.

Since, fv(�)∩a =�, the subcase is trivially satisfied by the same argument as the

previous subcase.

By definition of the (CG-Upper) rule, (W �a S <: �⇒ C ) for {⊥ <: ai <: T} ∈ C

and T = �. The condition is trivially satisfied by the same argument as for the

(CG-Top) rule.

Case ΘG(BOT ) ai , +, W �g en ⊥ <: S � ε :

By definition of the constraint generation judgment, rules (CG-Bot) and (CG-Lower)

could apply for the⊥ <: S relation.

By definition of the (CG-Bot) rule, (W �a ⊥<: S ⇒C ) and {⊥ <: ai <:�} ∈C .

If fvaux (S,W )∩a =�, then
∨
Θ(S)=⊥ by definition of the

∨
approximation for

Θ = ε.

Since, fv(⊥)∩a =�, the subcase is trivially satisfied by the same argument as the

previous subcase.

By definition of the (CG-Lower) rule, (W �a ⊥ <: S ⇒ C ) for {T <: ai <: �} ∈ C

and T = ⊥. The condition is trivially satisfied by the same argument as for the

(CG-Bot) rule.

Case ΘG(�) ai , +, W �g en S <: T � ε :

where ai �∈ (fvaux (S,W )∪fvaux (T,W )).

By defininition of the constraint generation judgment, only rules (CG-Top), (CG-Bot),

(CG-Refl), (CG-Fun) and (CG-Rec) could apply for the subtyping relation. Out of

the 5 rules, only (CG-Fun) and (CG-Rec) could potentially return a non-default

constraint set. By Lemma E.3, {⊥ <: ai <:�} ∈C for all the rules.

The result from such default constraint set is immediate, using the analogous

argument to the previous cases:

• If fvaux (S,W )∩a =�, then
∨
Θ(S)=⊥ by definition of the

∨
approximation

for Θ = ε.

• If fvaux (T,W )∩a =�, then
∨
Θ(T )=⊥by definition of the

∨
approximation

for Θ = ε.

Case ΘG(FUN) ai , +,W �g en ∀b.R → S <: ∀b.T →U � {
φfun-param ::Θ

′ }∪{
φfun-res ::Θ

′′ }
:

292



E.2. Proof of the soundess of the TypeFocus sequences inferred from the subtyping
relation

where ai , +,W ∪b �g en T <: R � Θ
′

and ai , +,W ∪b �g en S <: U � Θ
′′

and

ai ∈ (fvaux (∀b.R → S,W )∪fvaux (∀b.T →U ,W )).

By defininition of the constraint generation judgment, only the (CG-Fun) rule can

apply, such that (W �a ∀b.R → S <:∀b.T →U ⇒C ) where {A <: ai <: B} ∈C .

From the premises of the (CG-Fun) rule:

• (W ∪b �a T <: R ⇒C ′) and {A′ <: ai <: B ′} ∈C ′.

• (W ∪b �a S <: U ⇒C ′′) and {A′′ <: ai <: B ′′} ∈C ′′.

Therefore, {A′ ∨ A′′ <: ai <: B ′ ∧B ′′} ∈ (C ′ ∧C ′′)=C .

By I.H. (twice) on the premises of the ΘG(FUN) rule:

ai , +,W ∪b �g en T <: R � Θ
′ =⇒

W ∪b �a T <: R ⇒C ′ ∧ {A′ <: ai <: B ′} ∈C ′ ∧
(fvaux (T,W ∪b)∩a =� =⇒ ∨

Θ
′
(T )= A′) ∧

(fvaux (R,W ∪b)=� =⇒ ∨
Θ
′
(R)= A′)

ai , +,W ∪b �g en S <:U � Θ
′′ =⇒

W ∪b �a S <: U ⇒C ′′ ∧ {A′′ <: ai <: B ′′} ∈C ′′ ∧
(fvaux (S,W ∪b)∩a =� =⇒ ∨

Θ
′′

(S)= A′′) ∧
(fvaux (U ,W ∪b)=� =⇒ ∨

Θ
′′

(U )= A′′)

From the precondition of (ai , ψ± �g en ∀b.R → S <: ∀b.T →U � Θ), we know

that either fv(∀b.R → S)∩a =� or fv(∀b.T →U )∩a =�, as well as fv(∀b.R →
S)∩ a = � and fv(∀b.T → U )∩ a = �. By Lemma E.3, the latter case leads to

{⊥ <: ai <:�} ∈C , which is trivially satisfied.

Therefore, we consider the two subcase where

• either fvaux (∀b.R → S,W )∩a =�
• or fvaux (∀b.T →U ,W )∩a =�.

Furthermore, by a property of free variables:

∀A,B. fvaux (∀a.A→B ,W )=� ⇐⇒
fvaux (A,W ∪a)∩a =� ∧ fvaux (B ,W ∪a)∩a =�

we have that

fvaux (∀b.R → S,W )∩a =� =⇒ fvaux (R,W ∪b)∩a =� ∧ fvaux (S,W ∪b)∩a =�
fvaux (∀b.T →U ,W )∩a =� =⇒ fvaux (T,W∪b)∩a =�∧ fvaux (U ,W∪b)∩a =�

Subcase fvaux (∀b.R → S,W )∩a =�:

By Lemma E.2,∨
Θ
′
(R)= A′ =⇒ ∨{

φfun-param ::Θ
′ }

(∀b.R → X )= A′ for any type X . Similarly,

293



Appendix E. Proofs on the translation of type constraints to type selectors

∨
Θ
′
(S)= A′′ =⇒ ∨{

φfun-res ::Θ
′ }

(∀b.Y → S)= A′′ for any type Y .

In particular, for X = S and Y =R:

•
∨
Θ
′
(R)= A′ =⇒ ∨{

φfun-param ::Θ
′ }

(∀b.R → S)= A′.

•
∨
Θ
′
(S)= A′′ =⇒ ∨{

φfun-res ::Θ
′ }

(∀b.R → S)= A′′.

A′ ∨ A′′ = ∨{ φfun-param ::Θ
′ }

(∀b.R → S)∨∨{ φfun-res ::Θ
′ }

(∀b.R → S). By

the disjoint type selection of φfun-param and φfun-res the latter is equivalent to∨
(
{
φfun-param ::Θ

′ }∪{ φfun-res ::Θ
′ }

)(∀b.R → S)= A,

as required for the fvaux (∀b.R → S,W )∩a =� case.

Subcase fvaux (∀b.T →U ,W )∩a =�:

By the analogous argument as for fvaux (∀b.R → S,W )∩a =� subcase:∨{
φfun-param ::Θ

′ }
(∀b.T →U ) = A′ and

∨{
φfun-res ::Θ

′ }
(∀b.T →U ) = A′′

and

A′ ∨ A′′ =∨{ φfun-param ::Θ
′ }

(∀b.T →U )∨∨{ φfun-res ::Θ
′ }

(∀b.T →U ) =∨{
φfun-param ::Θ

′ }∪{ φfun-res ::Θ
′ }

(∀b.T →U )= A.

Since by the previous argument only the two options had to be considered, the

case for the ΘG(FUN) rule is satisfied.

Case ΘG(REC) ai , +,W �g en {x1 : P1, ..., xm : Pm , ..., xn : Pn} <:

{x1 : R1, ..., xm : Rm} � {
φselx1

::Θ
1
}
∪ ... ∪

{
φselxm

::Θ
m
}

:

where ai , +,W �g en P1 <: R1 � Θ
1

and ... and ai , +,W �g en Pm <: Rm � Θ
m

and ai ∈ (fvaux ({x1 : P1, ..., xm : Pm , ..., xn : Pn},W )∪ fvaux ({x1 : R1, ..., xm :

Rm},W )).

By defininition of the constraint generation judgment, only the (CG-Rec) rule

can apply. By definition of the (CG-Rec) rule,

(W �a {x1 : P1, ..., xm : Pm , ..., xn : Pn} <: {x1 : R1, ..., xm : Rm} ⇒ C ) where

{A <: ai <: B} ∈C .

From the premises of the rule

(W �a P1 <: R1 ⇒C 1) where {A1 <: ai <: B 1} ∈C 1 and ... and

(W �a Pm <: Rm ⇒C m) where {Am <: ai <: B m} ∈C m .

Therefore, {A1∨ ... ∨ Am <: ai <: B 1∧ ... ∧B m} ∈ (C 1∧ ... ∧C m)=C .

By I.H. on the premises of the ΘG(REC) rule for the record element xk , where 1 ≤
k ≤m:

ai , +,W �g en Pk <: Rk � Θ
k =⇒

(W �a Pk <: Rk ⇒C k ) ∧ {Ak <: ai <: B k} ∈C k ∧
(fvaux (Pk ,W )∩a =� =⇒ ∨

Θ
k

(Pk )= Ak ) ∧
(fvaux (Rk ,W )∩a =� =⇒ ∨

Θ
k

(Rk )= Ak )

From the pre-condition of (ai , ψ± �g en S <:T � Θ), we know that either fv(S)∩
a =� or fv(T )∩a =�, as well as fv(S)∩a =� and fv(T )∩a =�. By Lemma E.3,

294



E.2. Proof of the soundess of the TypeFocus sequences inferred from the subtyping
relation

the latter case leads to {⊥ <: ai <: �} ∈C , which is trivially satisfied. Therefore,

we describe in detail only the cases when:

• either fvaux ({x1 : P1, ..., xm : Pm , ..., xn : Pn},W )∩a =�,

• or fvaux ({x1 : R1, ..., xm : Rm},W )∩a =�.

By a property of free variables:

∀S,T. fvaux ({x1 : S1, ..., xn : Sn},W )∩a =� ⇐⇒
fvaux (S1,W )∩a =� ∧ ... ∧ fvaux (Sn ,W )∩a =�

we know that

• fvaux ({x1 : P1, ..., xm : Pm , ..., xn : Pn},W )∩a =� =⇒
(∀k. 1≤ k ≤ n =⇒ fvaux (Pk ,W )∩a =�).

• fvaux ({x1 : R1, ..., xm : Rm},W )∩a =� =⇒
(∀k. 1≤ k ≤m =⇒ fvaux (Rk ,W )∩a =�).

Case fvaux ({x1 : P1, ..., xm : Pm , ..., xn : Pn},W )∩a =�:

By Lemma E.2,∨
Θ

k
(Pk ) = Ak =⇒ ∨{

φselxk
::Θ

′ }
({x1 : P1, ..., xk : Pk , ..., xm : Pm , ..., xn :

Pn})= Ak .

For fvaux (Sk ,W )∩a =�, where Sk = {x1 : P1, ..., xm : Pm , ..., xn : Pn}:∨{
φselx1

::Θ
1
}

(S1)= A1 and ... and
∨{

φselxm
::Θ

m
}

(Sk )= Am and

A1∨ ... ∨ Am =∨{ φselx1
::Θ

1
}

(Sk )∨ ... ∨∨{ φselxm
::Θ

m
}

(Sk ) =∨{
φselx1

::Θ
1
}
∪ ... ∪

{
φselxm

::Θ
m
}

(Sk )= A.

Case fvaux ({x1 : R1, ..., xm : Rm},W )∩a =�:

Analogous argument as for the fvaux ({x1 : P1, ..., xm : Pm , ..., xn : Pn},W )∩a =�
case.

As required by the ΘG(REC) rule.

Soundness of upper type bounds:

(Omitted. Proof by the analogous argument as for the lower type bounds modulo

the greatest lower bound approximation.)

295



Appendix E. Proofs on the translation of type constraints to type selectors

E.3 Proof of the completeness of the TypeFocus sequences inferred

from the subtyping relation

Lemma 3.11 states a completness property for lower and upper bounds of the translation.

The completeness properly states that the inferred TypeFocus instances extract only those

lower type bounds which are present in the a-constraint set inferred from the same subtyping

relation, modulo the meet operation involving the least upper bound approximation of the

lower type bounds. Similarly the inferred TypeFocus instances extract only those upper type

bounds which are present in the a-constraint set inferred from the same subtyping relation,

modulo the meet operation involving the greatest lower bound approximation of the upper

type bounds.

We first provide a technical Lemma E.4 that will be used in the main proof.

Lemma E.4 TypeFocus inclusion for the well-behaved, extended TypeFocus sequences.

Let Θ and Θ
′

be two sequences of TypeFocus instances.

If (∀Θ. Θ ∈Θ =⇒ Θ ∈Θ′) then (∀Θ,Θ’. Θ ∈
{
Θ’ ::Θ

}
=⇒ Θ ∈

{
Θ’ ::Θ

′ }
)

Proof.

Straightforward from the definition of TypeFocus composition.

Proof of Lemma 3.11:

Proof.

We will define the proof for the analysis of the lower type bounds in the (ai , +�g en

S <: T � Θ
+
) implication. The case for upper type bounds in the (ai , - �g en

S <: T � Θ
-
) implication is analogous, and omitted for space reasons.

By induction on the structure of S and T .

Case S = a where a ∈ a and ai = a :

• T = b where b ∈ a

From the assumption that either fv(S)∩a =� or fv(T )∩a =�, the case is

invalid.

296



E.3. Proof of the completeness of the TypeFocus sequences inferred from the subtyping
relation

• T =⊥
For fv(a)∩a �= �: the result for the case is immediate.

For fv(⊥)∩a =�: by strict canonical forms∀Θ’.Θ’(a)= inl a =⇒ (Θ’ == [ ]).

Since posa(a) = + we have a contradiction and the result for the case is im-

mediate.

• T =�
Satisfied by the same argument as in the previous subcase.

• T =∀b.P →R

Satisfied by the same argument as in the previous subcase.

• T = {x1 : P1, ..., xn : Pn}

Satisfied by the same argument as in the previous subcase.

Case S = a where a ∈ a and ai �= a :

• T = b where b ∈ a

From the assumption that either fv(S)∩a =� or fv(T )∩a =�, the case is

invalid.

• T =⊥
For fv(a)∩a �= �: the result for the case is immediate.

For fv(⊥)∩a =�: since � ∃Θ’.Θ’(⊥)= inl ai the result for the case is imme-

diate.

• T =�
Satisfied by the same argument as in the previous subcase.

• T =∀b.P →R

Satisfied by the same argument as in the previous subcase.

• T = {x1 : P1, ..., xn : Pn}

Satisfied by the same argument as in the previous subcase.

Case S =⊥ :

• T = b where b ∈ a ∧ ai = b

For fv(⊥)∩a =�:

By strict canonical forms∀Θ’.Θ’(b)= inl ai =⇒ (Θ’ == [ ]) and posai
(b)=

+.

By the ΘG(+, >) rule Θ
+ = { [ ] } and the result of the subcase is immediate

(Θ’ ∈Θ+
).

For fv(b)∩a �= �: the result for the case is immediate.

• T = b where b ∈ a ∧ ai �= b For fv(⊥)∩a =�:

since � ∃Θ’.Θ’(T )= inl ai the result for the case is immediate. For fv(b)∩a �=
�: the result for the case is immediate.

297



Appendix E. Proofs on the translation of type constraints to type selectors

• T =⊥
For both implications � ∃Θ’.Θ’(S) = inl ai and � ∃Θ’.Θ’(T ) = inl ai and re-

sult for the case is immediate.

• T =�
Satisfied by the same argument as in the previous subcase.

• T =∀b.P →R

Satisfied by the same argument as in the previous subcase.

• T = {x1 : P1, ..., xn : Pn}

Satisfied by the same argument as in the previous subcase.

Case S =� :

• T = b where b ∈ a ∧ ai = b

For fv(�)∩a =�:

By strict canonical forms∀Θ’.Θ’(b)= inl ai =⇒ (Θ’ == [ ]) and posai
(b)=

+.

By the ΘG(+, >) rule Θ
+ = { [ ] } and the result of the subcase is immediate

(Θ’ ∈Θ+
).

For fv(b)∩a �= �: the result for the case is immediate.

• T = b where b ∈ a ∧ ai �= b

For fv(�)∩a =�:

since � ∃Θ’.Θ’(T )= inl ai the result for the case is immediate. For fv(b)∩a �=
�: the result for the case is immediate.

• T =⊥
No ΘG rule applies. The result is immediate.

• T =�
For both implications � ∃Θ’.Θ’(S) = inl ai and � ∃Θ’.Θ’(T ) = inl ai and re-

sult for the case is immediate.

• T =∀b.P →R

No ΘG rule applies. The result is immediate.

• T = {x1 : P1, ..., xn : Pn}

No ΘG rule applies. The result is immediate.

Case S =∀b.P →R :

• T = b where b ∈ a ∧ ai = b

For fv(∀b.P →R)∩a =�:

By strict canonical forms∀Θ’.Θ’(b)= inl ai =⇒ (Θ’ == [ ]) and posai
(b)=

+.

298



E.3. Proof of the completeness of the TypeFocus sequences inferred from the subtyping
relation

By the ΘG(+, >) rule Θ
+ = { [ ] } and the result of the subcase is immediate

(Θ’ ∈Θ+
).

For fv(b)∩a �= �: the result for the case is immediate.

• T = b where b ∈ a ∧ ai �= b

For fv(∀b.P →R)∩a =�:

since � ∃Θ’.Θ’(T )= inl ai the result for the case is immediate. For fv(b)∩a �=
� the result for the case is immediate.

• T =⊥
No ΘG rule applies. The result is immediate.

• T =�
By definition of theφfun-param andφfun-res � ∃Θ’.Θ’(S)= inl ai and (Θ’,��WF

�) and � ∃Θ’.Θ’(T )= inl ai and result for the case is immediate.

• T =∀b.Q → Z

For (ai , +�g en ∀b.P →R <: ∀b.Q → Z � Θ
+
).

From the premises of the ΘG(FUN) rule and by I.H. (twice):

If ai , +�g en Q <: P � Θ
+′

then

By I.H.
(fv(Q)∩a =�) =⇒

(∀Θ’. (Θ’(P )= inl ai ) and (Θ’,ε�WF Q) and (posai
(P )= +) =⇒ Θ’ ∈Θ+′

)

and

(fv(P )∩a =�) =⇒
(∀Θ’. (Θ’(Q)= inl ai ) and (Θ’,ε�WF P ) and (posai

(Q)= -) =⇒ Θ’ ∈Θ+′
)

If ai , +�g en R <: Z � Θ
+′′

then

By I.H.
(fv(R)∩a =�) =⇒

(∀Θ’. (Θ’(Z )= inl ai ) and (Θ’,ε�WF R) and (posai
(Z )= +) =⇒ Θ’ ∈Θ+′′

)

and

(fv(Z )∩a =�) =⇒
(∀Θ’. (Θ’(R)= inl ai ) and (Θ’,ε�WF Z ) and (posai

(R)= -) =⇒ Θ’ ∈Θ+′′
)

We will now consider the two (covariant) implications separately.

The first implication.

From the first implication we know that fv(∀b.P →R)∩a =� and fv(∀b.Q →
Z )∩a �= �.

It is now sufficient to consider just the three possible cases of the free vari-

ables sets, where the nested TypeFocus can extract type variable ai :

1. fv(Q)∩a �= � and fv(Z )∩a =� and fv(P )∩a =� and fv(R)∩a =�:

299



Appendix E. Proofs on the translation of type constraints to type selectors

For Q <: P :

From the I.H. implication

(∀Θ’. (Θ’(Q)= inl ai ) and (Θ’,ε�WF P ) and (posai
(Q)= -) =⇒

Θ’ ∈Θ+′
)

By Lemma E.4,

(∀Θ’. (Θ’(Q)= inl ai ) and (Θ’,ε�WF P ) and (posai
(Q)= -) =⇒

(φfun-param ::Θ
’) ∈

{
φfun-param ::Θ

+′ }
)

For R <: Z :

Since type ai is not present in either R or Z ,

� ∃Θ’.Θ’(R)= inl ai ∨Θ’(Z )= inl ai and Θ
+′′ = ε.

By Lemma E.4,

(∀Θ’. (Θ’(Z )= inl ai ) and (Θ’,ε�WF R) and (posai
(Z )= +) =⇒

(φfun-res ::Θ
’) ∈

{
φfun-res ::Θ

+′′ }
)

By combining the implications for the two subcases we have that{
φfun-param ::Θ

+′ }∪{ φfun-res ::Θ
+′′ }=Θ

+
.

2. fv(Q)∩a =� and fv(Z )∩a �= � and fv(P )∩a =� and fv(R)∩a =�:

For Q <: P :

Since type ai is not present in either Q or P ,

� ∃Θ’.Θ’(Q)= inl ai ∨Θ’(P )= inl ai and Θ
+′′ = ε.

By Lemma E.4,

(∀Θ’. (Θ’(Q)= inl ai ) and (Θ’,ε�WF P ) and (posai
(Q)= -) =⇒

(φfun-param ::Θ
’) ∈

{
φfun-param ::Θ

+′′ }
)

For R <: Z :

From the I.H. implication

(∀Θ’. (Θ’(Z )= inl ai ) and (Θ’,ε�WF R) and (posai
(Z )= +) =⇒

Θ’ ∈Θ+′′
)

By Lemma E.4,

(∀Θ’. (Θ’(Z )= inl ai ) and (Θ’,ε�WF R) and (posai
(Z )= +) =⇒

(φfun-res ::Θ
’) ∈

{
φfun-res ::Θ

+′′ }
)

By combining the implications for the two subcases we have that{
φfun-param ::Θ

+′ }∪{ φfun-res ::Θ
+′′ }=Θ

+
.

3. fv(Q)∩a �= � and fv(Z )∩a �= � and fv(P )∩a =� and fv(R)∩a =�:

For Q <: P :

From the I.H. implication

(∀Θ’. (Θ’(Q)= inl ai ) and (Θ’,ε�WF P ) and (posai
(Q)= -) =⇒

Θ’ ∈Θ+′
)

300



E.3. Proof of the completeness of the TypeFocus sequences inferred from the subtyping
relation

By Lemma E.4,

(∀Θ’. (Θ’(Q)= inl ai ) and (Θ’,ε�WF P ) and (posai
(Q)= -) =⇒

(φfun-param ::Θ
’) ∈

{
φfun-param ::Θ

+′ }
)

For R <: Z :

From the I.H. implication

(∀Θ’. (Θ’(Z )= inl ai ) and (Θ’,ε�WF R) and (posai
(Z )= +) =⇒

Θ’ ∈Θ+′′
)

By Lemma E.4,

(∀Θ’. (Θ’(Z )= inl ai ) and (Θ’,ε�WF R) and (posai
(Z )= +) =⇒

(φfun-res ::Θ
’) ∈

{
φfun-res ::Θ

+′′ }
)

By combining the implications for the two subcases we have that{
φfun-param ::Θ

+′ }∪{ φfun-res ::Θ
+′′ }=Θ

+
.

By Canonical Forms Lemma and fv(∀b.Q → Z )∩a �= �:

∀Θ’. Θ’(∀b.Q → Z )= inl ai =⇒ head(Θ)= [φfun-param] ∨ head(Θ)=
[φfun-res]

As a result, Θ
+

is equivalent to
{
φfun-param ::Θ

+′ }∪{ φfun-res ::Θ
+′′ }

.

Since posai
(∀b.Q → Z ) = + iff posai

(Q) = - and posai
(Z ) = + and we have

shown that for all the possible combinations of the ai type variable

(∀Θ’. (Θ’(Q)= inl ai ) and (Θ’,ε�WF P ) and (posai
(Q)= -) =⇒

(φfun-param ::Θ
’) ∈

{
φfun-param ::Θ

+′ }
) and

(∀Θ’. (Θ’(Z )= inl ai ) and (Θ’,ε�WF R) and (posai
(Z )= +) =⇒

(φfun-res ::Θ
’) ∈

{
φfun-res ::Θ

+′′ }
)

then for any types X and Y

(∀Θ’. ((φfun-param ::Θ
’)(∀b.Q → X )= inl ai ) and

((φfun-param ::Θ
’),ε�WF ∀b.P → Y ) and (posai

(Q → X )= +) =⇒
(φfun-param ::Θ

’) ∈
{
φfun-param ::Θ

+′ }
)

and for any types X and Y

(∀Θ’. ((φfun-res ::Θ
’)(∀b.X → Z )= inl ai ) and

((φfun-res ::Θ
’),ε�WF ∀b.Y →R) and (posai

(∀b.X → Z )= +) =⇒
(φfun-res ::Θ

’) ∈
{
φfun-res ::Θ

+′′ }
)

as required for the first implication.

The second implication.

301



Appendix E. Proofs on the translation of type constraints to type selectors

(By the analogous argument as in the previous case)

From the first implication we know that fv(∀b.P →R)∩a �= � and fv(∀b.Q →
Z )∩a =�.

It is now sufficient to consider just the three possible cases of the free vari-

ables sets, where the nested TypeFocus can extract type variable ai :

1. fv(Q)∩a =� and fv(Z )∩a =� and fv(P )∩a �= � and fv(R)∩a =�:

For Q <: P :

From the I.H. implication

(∀Θ’. (Θ’(P ) = inl ai ) and (Θ’,ε �WF Q) and (posai
(P ) = +) =⇒ Θ’ ∈

Θ
+′

)

By Lemma E.4,

(∀Θ’. (Θ’(P )= inl ai ) and (Θ’,ε�WF Q) and (posai
(P )= +) =⇒ (φfun-param ::Θ

’)) ∈{
φfun-param ::Θ

+′ }
)

For R <: Z :

Since type ai is not present in either R or Z ,

� ∃Θ’.Θ’(R)= inl ai ∨Θ’(Z )= inl ai and Θ
+′′ = ε.

By Lemma E.4,

(∀Θ’. (Θ’(R)= inl ai ) and (Θ’,ε�WF Z ) and (posai
(R)= -) =⇒ (φfun-res ::Θ

’) ∈{
φfun-res ::Θ

+′′ }
)

By combining the implications for the two subcases we have that{
φfun-param ::Θ

+′ }∪{ φfun-res ::Θ
+′′ }=Θ

+
.

2. fv(Q)∩a =� and fv(Z )∩a =� and fv(P )∩a =� and fv(R)∩a �= �:

For Q <: P :

Since type ai is not present in either Q or P ,

� ∃Θ’.Θ’(Q)= inl ai ∨Θ’(P )= inl ai and Θ
+′′ = ε.

By Lemma E.4,

(∀Θ’. (Θ’(P )= inl ai ) and (Θ’,ε�WF Q) and (posai
(P )= +) =⇒

(φfun-param ::Θ
’) ∈

{
φfun-param ::Θ

+′′ }
)

For R <: Z :

From the I.H. implication

(∀Θ’. (Θ’(R)= inl ai ) and (Θ’,ε�WF Z ) and (posai
(R)= -) =⇒

Θ’ ∈Θ+′′
)

By Lemma E.4,

(∀Θ’. (Θ’(R)= inl ai ) and (Θ’,ε�WF Z ) and (posai
(R)= -) =⇒

(φfun-res ::Θ
’) ∈

{
φfun-res ::Θ

+′′ }
)

302



E.3. Proof of the completeness of the TypeFocus sequences inferred from the subtyping
relation

By combining the implications for the two subcases we have that{
φfun-param ::Θ

+′ }∪{ φfun-res ::Θ
+′′ }=Θ

+
.

3. fv(Q)∩a =� and fv(Z )∩a =� and fv(P )∩a �= � and fv(R)∩a �= �:

For Q <: P :

From the I.H. implication

(∀Θ’. (Θ’(P )= inl ai ) and (Θ’,ε�WF Q) and (posai
(P )= +) =⇒

Θ’ ∈Θ+′
)

By Lemma E.4,

(∀Θ’. (Θ’(P )= inl ai ) and (Θ’,ε�WF Q) and (posai
(P )= +) =⇒

(φfun-param ::Θ
’) ∈

{
φfun-param ::Θ

+′ }
)

For R <: Z :

From the I.H. implication

(∀Θ’. (Θ’(R)= inl ai ) and (Θ’,ε�WF Z ) and (posai
(R)= -) =⇒

Θ’ ∈Θ+′′
)

By Lemma E.4,

(∀Θ’. (Θ’(R)= inl ai ) and (Θ’,ε�WF Z ) and (posai
(R)= -) =⇒

(φfun-res ::Θ
’) ∈

{
φfun-res ::Θ

+′′ }
)

By combining the implications for the two subcases we have that{
φfun-param ::Θ

+′ }∪{ φfun-res ::Θ
+′′ }= -Θ+.

By Canonical Forms Lemma and fv(∀b.P →R)∩a �= �:

∀Θ’. Θ’(∀b.P →R)= inl ai =⇒ head(Θ)= [φfun-param] ∨ head(Θ)=
[φfun-res]

As a result,Θ
+

is equivalent to
{
φfun-param ::Θ

+′ }∪{ φfun-res ::Θ
+′′ }

, where

Θ
+′

and Θ
+′′

result from the application of the tail function by Definition 8.

Since posai
(∀b.P → R) = - iff posai

(P ) = + and posai
(R) = - and we have

shown that for all the possible combinations of the ai type variable

(∀Θ’. (Θ’(P )= inl ai ) and (Θ’,ε�WF Q) and (posai
(P )= +) =⇒

(φfun-param ::Θ
’) ∈

{
φfun-param ::Θ

+′ }
)

and

(∀Θ’. (Θ’(R)= inl ai ) and (Θ’,ε�WF Z ) and (posai
(R)= -) =⇒

(φfun-res ::Θ
’) ∈

{
φfun-res ::Θ

+′′ }
)

303



Appendix E. Proofs on the translation of type constraints to type selectors

Then for all types X and Y

(∀Θ’. ((φfun-param ::Θ
’)(∀b.P → X )= inl ai ) and

((φfun-param ::Θ
’),ε�WF ∀b.Q → Y ) and (posai

(P → X )= -) =⇒
(φfun-param ::Θ

’) ∈
{
φfun-param ::Θ

+′ }
)

and for all types X and Y

(∀Θ’. ((φfun-res ::Θ
’)(∀b.X →R)= inl ai ) and

((φfun-res ::Θ
’),ε�WF ∀b.Y → Z ) and (posai

(∀b.X →R)= -) =⇒
(φfun-res ::Θ

’) ∈
{
φfun-res ::Θ

+′′ }
)

as required for the second implication.

We note that for fvaux (∀b.P →R,W )∩a =� and fvaux (∀b.Q → Z ,W )∩a =
�, the case is trivial since ∀Θ’. Θ’ ∈Θ =⇒ Θ’(S)= inl ai ⇐⇒ Θ = ε.

Then the case is satisfied immediately for Θ = ε.

• T = {x1 : P1, ..., xn : Pn}

No ΘG rule applies. The result is immediate.

Case S = {x1 : P1, ..., xm : Pm , xn : Pn} :

• T = b where b ∈ a ∧ ai = b

For fv({x1 : P1, ..., xm : Pm , xn : Pn})∩a =�:

By strict canonical forms∀Θ’.Θ’(b)= inl ai =⇒ (Θ’ == [ ]) and posai
(b)=

+.

By the ΘG(+, >) rule Θ
+ = { [ ] } and the result of the subcase is immediate

(Θ’ ∈Θ+
).

For fv(b)∩a �= �: the result for the case is immediate.

• T = b where b ∈ a ∧ ai �= b

For fv({x1 : P1, ..., xm : Pm , xn : Pn})∩a =�:

since � ∃Θ’.Θ’(T )= inl ai the result for the case is immediate.

For fv(b)∩a �= � the result for the case is immediate.

• T =⊥
No ΘG rule applies. The result is immediate.

• T =�
By definition of theφselxk

� ∃Θ’.Θ’(S)= inl ai and (Θ’,��WF �) and � ∃Θ’.Θ’(T )=
inl ai and result for the case is immediate.

• T =∀b.Q → Z

No ΘG rule applies. The result is immediate.

304



E.3. Proof of the completeness of the TypeFocus sequences inferred from the subtyping
relation

• T = {x1 : R1, ..., xm : Rm}

For ai , +�g en {x1 : P1, ..., xm : Pm , xn : Pn} <: {x1 : R1, ..., xm : Rm} � Θ
+
.

From the premises of the ΘG(REC) rule and by I.H. (m-times):

For 1≤ k ≤m:

If ai , +�g en Pk <: Rk � Θ
+′

then

By I.H.
(fv(Pk )∩a =�) =⇒

(∀Θ’. (Θ’(Rk )= inl ai ) and (Θ’,ε�WF Pk ) and (posai
(Rk )= +) =⇒
Θ’ ∈Θ+′

)

and

(fv(Rk )∩a =�) =⇒
(∀Θ’. (Θ’(Pk )= inl ai ) and (Θ’,ε�WF Rk ) and (posai

(Pk )= -) =⇒
Θ’ ∈Θ+′

)

The proof for the case follows the same argument as for the two polymor-

phic function types and is omitted for brevity.

305



Appendix E. Proofs on the translation of type constraints to type selectors

E.4 Proof of the completeness of the�sub judgment

Proof of Lemma 4.3:

Proof.

By induction (twice) on the structure of types S and T . The proof omits an ex-

tension of the rules for the wildcard constant type for simplicity; the grayed-out

conditions in the ΘSub rules apply to this proof in a straightforward manner.

Case S = a :

• T = a: Since a <: a by the (Var) rule, the result is immediate.

• T = ⊥: Only the rule ΘSub(var 1) applies, and by definition of [ ], [ ](S) =
inl a and [ ](T )= inl⊥ and a �<:⊥.

• T =�: By the (Top) rule, the result is immediate.

• T =∀a. A→ B : Only the rule ΘSub(var 1) applies, and the argument is anal-

ogous as for T =⊥.

• T = {x1 : P1, ... , xm : Pm}: Only the rule ΘSub(var 1) applies, and the argu-

ment is analogous as for T =⊥.

Case S =⊥ :

By the (Bot) rule,⊥<: T for any T , and the result is immediate.

Case S =� :

• T = a: Only the ΘSub(var 2) applies, and by definition of [ ], [ ](S) = inl �
and [ ](T )= inl a, and� � <: a.

• T = ⊥: Only ΘSub(top−bot ) applies, and by definition of [ ], [ ](S) = inl �
and [ ](T )= inl⊥, and� � <:⊥.

• T =�: Since� <:� by the (Top), the result is immediate.

• T = ∀a.A → B : Only the rule ΘSub( f un1) applies, and by definition of [ ],

[ ](S)= inl� and [ ](T )= inl ∀a.A→B , and� � <: ∀a.A→B .

• T = {x1 : P1, ... , xm : Pm}: Only the rule ΘSub(r ec2) applies, and the argu-

ment is analogous as for the previous case.

Case S =∀a.A→B :

• T = a: Only the rule ΘSub( f un2) applies, and by definition of [ ], [ ](S) =
inl ∀a.A→B and [ ](T )= inl a, and ∀a.A→B � <: a.

306



E.4. Proof of the completeness of the�sub judgment

• T =⊥: Only the rule ΘSub( f un2) applies, and the argument is analogous as

for the T = a case.

• T =�: By the (Top) rule, the result is immediate.

• T =∀a. C →D : Only the rule ΘSub( f un) applies.

∀a.A → B � <: ∀a.C →D implies that either C � <: A or B � <: D , by defini-

tion of the (Fun) rule.

By I.H. (twice) on the parameter and result type of the function.

– For �sub C �<: A→Θ:

By I.H.

(∀Θ. Θ ∈Θ =⇒
∃C ′, A′. Θ(C )= inl C ′ ∧Θ(A)= inl A′ ∧ (C ′ �<: A′ ∨ A′ �<: C ′)).

By definition of [φfun-param],

∀Θ. Θ ∈Θ =⇒
∃C ′, A′. (φfun-param ::Θ)(∀a.C → X )= inl C ′∧

(φfun-param ::Θ)(∀a.A→ Y )= inl A′
for any types X and Y .

In particular, for X = B and Y =D and by definition of TypeFocus com-

position, where Θ
′ =
{
φfun-param ::Θ

}
,

�sub ∀a.A→B �<: ∀a.C →D →Θ
′ =⇒

(∀Θ. Θ ∈Θ′ =⇒
∃C ′, A′. Θ(∀a.A→B)= inl A′ ∧Θ(∀a.C →D)= inl C ′ ∧

(C ′ �<: A′ ∨ A′ �<: C ′)
– For �sub B �<: D →Θ:

By I.H.

(∀Θ. Θ ∈Θ =⇒
∃B ′,D ′. Θ(B)= inl B ′ ∧Θ(D)= inl D ′ ∧ (B ′ �<: D ′ ∨ D ′ �<: B ′)).

By definition of [φfun-res],
∀Θ. Θ ∈Θ =⇒
∃B ′,D ′. (φfun-res ::Θ)(∀a.X →B)= inl B ′∧

(φfun-res ::Θ)(∀a.Y →D)= inl D ′
for any types X and Y .

In particular, for X = A and Y =C and by definition of TypeFocus com-

position, where Θ
′′ =
{
φfun-res ::Θ

}
,

�sub ∀a.A→B �<: ∀a.C →D →Θ
′′ =⇒

(∀Θ. Θ ∈Θ′′ =⇒
∃B ′,D ′. Θ(∀a.A→B)= inl B ′ ∧Θ(∀a.C →D)= inl D ′ ∧

(B ′ �<: D ′ ∨ D ′ �<: B ′)

By the definition of head, Θ
′

and Θ
′′

extract distinct type elements of the

∀a.A → B and ∀a.C →D function types, and their composition makes the

307



Appendix E. Proofs on the translation of type constraints to type selectors

result immediate.

• T = {x1 : P1, ... , xm : Pm}: Only the rule ΘSub( f un2) applies, and the argu-

ment is analogous as for the T = a case.

Case S = {x1 : P1, ... , xm : Pm , ... , xn : Pn} :

• T = a: Only the rule ΘSub(r ec1) applies, and by definition of [ ], [ ](S) =
inl {x1 : P1, ... , xm : Pm , ... , xn : Pn} and [ ](T )= inl a, and {x1 : P1, ... , xm :

Pm , ... , xn : Pn} � <: a.

• T =⊥: Only the rule ΘSub(r ec1) applies, and the argument is analogous as

for the T = a case.

• T = �: Since {x1 : P1, ... , xm : Pm , ... , xn : Pn} <: � Only ΘSub(top), the

result is immediate.

• T =∀a. A → B : Only the rule ΘSub(r ec1) applies, and the argument is anal-

ogous as for the T = a case.

• T = {x1 : R1, ... , xk : Rk } where k > n: Only the ΘSub(r ec1) applies, and the

argument is analogous as for the T = a case.

• T = {x1 : R1, ... , xm : Rm} where n ≥m:

– For m = 0: The condition trivially holds for Θ = ε.

– For i , where 1≤ i ≤m:

{x1 : P1, ... , xm : Pm , ... , xn : Pn} � <: {x1 : R1, ... , xm : Rm} implies that

for at least one record member Pi � <: Ri , by definition of the (Rec)

rule.

By I.H. and the definition of [φselxi
],

∀Θ. Θ ∈Θ =⇒
∃P ′,R ′. (φselxi

::Θ)({x1 : X1, ... , xm : Xm , ... , xn : Xn})= inl P ′∧
(φselxi

::Θ)({x1 : Y1, ... , xn : Yn}= inl R ′

for any type X j and Y j where 1≤ j ≤m and j �= i .

In particular for X1 = P1, ..., Xm = Pm , ..., Xn = Pn and Y1 =R1, ..., Ym =
Rm and by definition of TypeFocus composition,

where Θ
i =
{
φselxi

::Θ
}

,

�sub S �<: T →Θ
i =⇒

(∀Θ. Θ ∈Θi =⇒ ∃P ′,R ′. Θ(S)= inl P ′ ∧Θ(T )= inl R ′ ∧
(P ′ �<: R ′ ∨ R ′ �<: P ′)

By the definition of head, Θ
1

, ..., Θ
m

extract distinct type elements of

the record types, and their composition makes the result immediate.

308



Appendix F

Proofs on mapping between the
low-level instrumentation data and its
high-level representation

A translation between a low-level instrumentation data and its high-level representation in-

volves designing a class hierarchy that correctly reflects the individual dependencies of the

typing decisions as well as different type checker executions. The ability to support the map-

ping in a one-to-many fashion allows to reduce the boilerplate of both of the representations

but at the same time introduces the possibility of ambiguous mappings. Lemma 5.1 formally

states the guarantee of inferring a unique mapping from a number of possible definitions,

under certain circumstances.

Before we provide the main proof, we first state a few technical definitions.

The 20 condition ensures that the correct, order-preserving matching assigns a high-level

instance to the member if and only if the latter is not preceded by some other non-optional

member.

Definition 20 Finding a match between an instance of a high-level representation and some

high-level specification that respects the order of the specification

Let T1 represent an instance of a high-level class hierarchy, such that sub(runtimeTpe(T1),Goal ),

and let MC represent a fragment of the specification for some high-level representation of

type C , in which a mapping for T1 is to be found.

Any inferred mapping, σT
A , that respects the order of the specification and assigns T1, where

T = { T1, ..., Tn } for some n, to one of the members of the provided specification, say Mx =
〈x,Sx〉, such that Mx ∈MC and T1 ∈σT

A(x), then

sub(runtimeTpe(T1),underlying(Sx ))∧ Sx ∈ SC ∧ (∀Sy . Sy ∈ SC ∧ idx(Sy ,SC )< idx(Sx ,SC ) =⇒
opt(Sy )).

309



Appendix F. Proofs on mapping between the low-level instrumentation data and its
high-level representation

Lemma F.1 Uniqueness of matching against a single high-level representation

Let T
′

represent a sequence of high-level instances, which have been already mapped from

low-level instrumentation data, E be the low-level instrumentation event representing an

instrumentation block they are part of, and Z a possible, safe, high-level type to which E

can map to, i.e., Z =
〈

E , Zsuper , M Z

〉
.

If σT
′

Z represents some inferred mapping, then

∀σ′T
′

Z . σ
′T

′

Z is defined ∧ dom(σ
′T

′

Z )= dom(σT
′

Z ) =⇒ ∀x. σT
′

Z (x)=σ
′T

′

Z (x)

Proof.

Sketch.

Proof by contradiction. We assume that it is possible to infer two different, but

still correct, mappings that satisfy the same context, consisting of the same se-

quence of high-level instances, for the same high-level type.

By the order-preservation property of the inferred mapping and Definition 20, we

notice that the different mappings can only occur in the presence of members,

either of which is optional, which share the same type and are only separated

by a zero or more optional members. By the uniqueness property, the latter are

prohibited, hence contradiction.

The single inheritance nature of the high-level class hierarchy allows to state a subtyping rela-

tion between the two, different, types that are super types of the same, third type, as formally

stated in Lemma F.2. We notice that our approach of defining the high-level representation

implicitly limits Scala’s capabilities - the language allows for the multiple inheritance of traits.

Lemma F.2 A relation between the two high-level types that are subtypes of the same type.

Let Ti represent a type of an instance of a high-level class, in some high-level representation

hierarchy, and Tx and Ty stand for two, potentially distinct, types of two high-level classes

in the same high-level representation hierarchy.

If sub(Ti ,Tx ) ∧ sub(Ti ,Ty ) =⇒ sub(Tx ,Ty ) ∨ sub(Ty ,Tx )

Proof.

Sketch

From the definition of the linearization and the definition of subtyping for types

of the high-level class hierarchy, we have that:

• linearization(Ti ,Goal )= { Goal , ..., Tx , ..., Ti }

• linearization(Ti ,Goal )= {Goal , ..., Ty , ..., Ti
}

In order for both of the subtyping relations to be satisfied at the same time, we

have to have that linearization(Ti ,Goal ) is either
{

Goal , ..., Ty , ..., Tx , ..., Ti
}

or
{

Goal , ..., Tx , ..., Ty , ..., Ti
}
, which is sufficient to satisfy the right hand side

of the stated implication.

310



Proof of Lemma 5.1 on the correctness of the unique one-to-many mapping.

Proof.

Proof by contradiction.

We assume the existence of a pair of high-level safe types, A and B , the low-level

event E can map to, for a context sequence T , and the corresponding, correct, in-

ferred mappings σT
A and σT

B , respectively, that completely matched the provided

context.

Case sub(A,B) :

By Lemma F.1 we notice that the shared members of A and B , i.e., in the case

of sub(A,B) the members of B , are matched with some sequence of members T
′
,

such that T
′′ = T \ T

′
and T

′ ⊆ T .

By the non-ambiguity property, there exists a non-optional member that is de-

clared in A.

If T
′′ = ε, then σT

A does not represent a complete matching, since the declared,

non-optional member of A can be satisfied, and if T
′′ �= ε then σT

B does not repre-

sent a complete matching since T
′′

instances are not represented in the mapping.

A contradiction.

The case of sub(B, A) is analogous to the above argument.

Case ¬sub(A,B) :

We notice that the least upper bound of the two possible high-level types,

i.e., lub(A,B) = C , always exists. Moreover, by Lemma F.1 the shared members

of C are matched with the same sequence of high-level instances of the context,

denoted as T A,B . Hence, the difference in the inferred mappings σT
A and σT

B can

only occur in the matching of the remaining sequence T
′
, such that T

′ = T \T A,B ,

against the specifications of spec(A,C ) and spec(B ,C ).

By the (double) induction on the possible types of members of the remaining

specifications, spec(A,C ) and spec(B ,C ), with the same remaining T
′

sequence,

we show that mappings from high-level types A and B cannot be both satisfied

at the same time.

For T
′ = ε:

Since the inferred mapping preserves the order of the matching with respect to

the T
′

sequence, it is sufficient to show that none of the possible combinations

of heads of the remaining specifications, i.e., spec(A,C ) and spec(B ,C ), can be

satisfied with it at the same time (thus violating the completeness property):

• spec(A,C )= 〈x, X 〉 and spec(B ,C )= 〈y,Y
〉

for some x, X , y , and Y :

Both of the remaining specifications have at least one, non-optional mem-

ber, and both cannot satisfy the completeness property of the mapping with

the remaining empty sequence T
′
. A contradiction.

311



Appendix F. Proofs on mapping between the low-level instrumentation data and its
high-level representation

• spec(A,C )= 〈x, X 〉 and spec(B ,C )= 〈y, LIST[Y ]
〉

for some x, X , y , and Y :

spec(A,C ) has a non-optional member. The mapping for A cannot be de-

fined, because it will not be possible satisfy the required completeness prop-

erty with the remaining sequence T
′
. A contradiction.

• spec(A,C ) = 〈x, LIST[X ]〉 and spec(B ,C ) = 〈y, LIST[Y ]
〉

for some x, X , y ,

and Y :

By the analogous argument as in the previous case.

• spec(A,C ) = 〈x, LIST[X ]〉 and spec(B ,C ) = 〈y, LIST[Y ]
〉

for some x, X , y ,

and Y :

The matching for members x and y is satisfied in both cases through an

empty sequence. By induction, on the tails of the specifications, a contra-

diction.

• spec(A,C )= 〈x, X 〉 and spec(B ,C )= ε for some x, X :

spec(A,C ) has a non-optional member. The mapping for A cannot be de-

fined, because it will not satisfy the required completeness property with

the remaining empty sequence T
′
. A contradiction.

• spec(A,C )= ε and spec(B ,C )= 〈y,Y
〉

for some y , Y :

By the analogous argument as in the previous case.

• spec(A,C )= 〈x, LIST[X ]〉 and spec(B ,C )= ε for some x, and X :

By the non-ambiguity property, spec(A,C ) has to have at least a single non-

optional member. The latter can never be satisfied with an empty sequence

T
′
, therefore at least one of the inferred mappings will never satisfy the com-

pleteness property. A contradiction.

• spec(A,C )= ε and spec(B ,C )= 〈x, LIST[X ]〉 for some y , and Y :

By the analogous argument as in the previous case.

• spec(A,C )= ε and spec(B ,C )= ε:

A case is not possible by the non-ambiguity property and ¬sub(A,B).

For T
′ = { T ′

1, ..., T ′
n

}
:

Since the inferred mapping preserves the order of the matching for sequence

T
′
, it is sufficient to show that none of the possible combinations of heads of the

remaining specifications, i.e., spec(A,C ) and spec(B ,C ), can be matched against

it at the same time:

• spec(A,C )= 〈x, X 〉 and spec(B ,C )= ε for some x, X :

Since spec(B ,C ) has no further required, or optional members, the map-

ping for B will never represent the required complete matching. A contra-

diction.

• spec(A,C )= ε and spec(B ,C )= 〈y,Y
〉

for some y , Y :

By the analogous argument as in the previous case.

312



• spec(A,C )= 〈x, LIST[X ]〉 and spec(B ,C )= ε for some x, X :

By the analogous argument as in the previous case.

• spec(A,C )= ε and spec(B ,C )= 〈y, LIST[Y ]
〉

for some y , Y :

By the analogous argument as in the previous case.

• spec(A,C )= ε and spec(B ,C )= ε:

By the analogous argument as in the previous case.

• spec(A,C )= 〈x, X 〉 and spec(B ,C )= 〈y,Y
〉

for some x,y , X , and Y :

We now consider four possible subcases, based on the type of T1:

– sub(T ′
1, X ) and sub(T ′

1,Y ):

By Lemma F.2, either sub(X ,Y ) or sub(Y , X ). By the non-ambiguity

property, the remaining specifications cannot coincide on their pre-

fixes, so the class hierarchy is not possible. A contradiction.

– sub(T ′
1, X ) and ¬sub(T ′

1,Y ):

Since both required members are non-optional, and the mapping has

to represent a complete, order-preserving matching, a contradiction.

– ¬sub(T ′
1, X ) and sub(T ′

1,Y ):

By the analogous argument as in the previous case.

– ¬sub(T ′
1, X ) and ¬sub(T ′

1,Y ):

By the analogous argument as in the previous case.

• spec(A,C )= 〈x, X 〉 and spec(B ,C )= 〈y, LIST[Y ]
〉

for some x,y , X , and Y :

We now consider four possible subcases, based on the type of T1:

– sub(T ′
1, X ) and sub(T ′

1,Y ):

By Lemma F.2, either sub(X ,Y ) or sub(Y , X ). This in turn violates the

non-ambiguity property, since ∃y. y ∈ prefix(spec(B ,C )) ∧sub2(x, y).

A contradiction.

– sub(T ′
1, X ) and ¬sub(T ′

1,Y ):

By Definition 20, in order for the matching to be complete, there exists

at least one member
〈

y ′,S′y
〉

such that underlying(S′y )= T ′
y , sub(T ′

1,T ′
y ).

This in turn means that y ′ belongs to the prefix of spec(B ,C ) and that

violates the non-ambiguity because either sub(X ,Y ′) or sub(Y ′, X ) (by

Lemma F.2). A contradiction.

– ¬sub(T ′
1, X ) and sub(T ′

1,Y ):

Since ¬sub(T ′
1, X ), the completeness property of the inferred mapping

σT
A can never be satisfied, given that the inferred mappings always rep-

resent a complete matching.

– ¬sub(T ′
1, X ) and ¬sub(T ′

1,Y ):

Since neither sub(T ′
1, X ) nor sub(T ′

1,Y ), the case can be simply ignored,

as no matching will take place for both types, and by induction on

their tails both remaining specifications cannot be satisfied at the same

time.

313



Appendix F. Proofs on mapping between the low-level instrumentation data and its
high-level representation

• spec(A,C )= 〈x, LIST[X ]〉 and spec(B ,C )= 〈y,Y
〉

for some x,y , X , and Y :

By the analogous argument as in the previous case.

• spec(A,C ) = 〈x, LIST[X ]〉 and spec(B ,C ) = 〈y, LIST[Y ]
〉

for some x,y , X ,

and Y :

We now consider four possible subcases, based on the type of T1:

– sub(T ′
1, X ) and sub(T ′

1,Y ):

Since sub(T ′
1, X ) and sub(T ′

1,Y ), the case can be simply ignored, as match-

ing will take place in both cases, and by induction on the same specifi-

cations, but the tail of T
′
, both specifications cannot be satisfied at the

same time.

– ¬sub(T ′
1, X ) and sub(T ′

1,Y ):

By Definition 20, in order for the matching to be complete, there exists

at least one member
〈

x ′,S′x
〉

such that underlying(S′x )= T ′
x , sub(T ′

1,T ′
x ).

If S′x = LIST[T ′
x], then by the analagous argument as in the previous

case, a contradiction. If S′x = T ′
x , then by Lemma F.2, either sub(T ′

x ,Y )

or sub(Y ,T ′
x ). The latter, in turn, violates the non-ambiguity property

since Y appears in the prefix of spec(B ,C ). A contradiction.

– sub(T ′
1, X ) and ¬sub(T ′

1,Y ):

By the analogous argument as in the previous case.

– ¬sub(T ′
1, X ) and ¬sub(T ′

1,Y ):

Since neither sub(T ′
1, X ) nor sub(T ′

1,Y ), the case can be simply ignored,

as no matching will take place for both types, and by induction on

their tails both remaining specifications cannot be satisfied at the same

time.

The case of ¬sub(B , A) is analogous to the above argument.

314



Bibliography

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future safe

for the past: Adding genericity to the java programming language. In Proceedings of the

13th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications, OOPSLA ’98, pages 183–200, New York, NY, USA, 1998. ACM. ISBN 1-58113-

005-8.

Eugene Burmako. Scala macros: Let our powers combine!: On how rich syntax and static

types work with metaprogramming. In Proceedings of the 4th Workshop on Scala, SCALA

’13, pages 3:1–3:10, New York, NY, USA, 2013a. ACM. ISBN 978-1-4503-2064-1.

Eugene Burmako. Applied materialization, 06 2013b. URL http://scalamacros.org/

paperstalks/2013-06-13-AppliedMaterialization.pdf.

Sheng Chen and Martin Erwig. Guided type debugging. In Michael Codish and Eijiro Sumii,

editors, Functional and Logic Programming, volume 8475 of Lecture Notes in Computer

Science, pages 35–51. Springer International Publishing, 2014a.

Sheng Chen and Martin Erwig. Counter-factual typing for debugging type errors. In Pro-

ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’14, pages 583–594, New York, NY, USA, 2014b. ACM.

Olaf Chitil. Compositional explanation of types and algorithmic debugging of type errors. In

Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Program-

ming, ICFP ’01, pages 193–204, New York, NY, USA, 2001. ACM. ISBN 1-58113-415-0.

Maurizio Cimadamore. Jep 101: Generalized target-type inference, 02 2015. URL http://

openjdk.java.net/jeps/101.

Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Pro-

ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’82, pages 207–212, New York, NY, USA, 1982. ACM. ISBN 0-89791-065-6.

Mathias Doenitz. Magnet pattern, 12 2012. URL http://spray.io/blog/

2012-12-13-the-magnet-pattern/.

315



Bibliography

Iulian Dragos. Optimizing Higher-Order Functions in Scala. In Third International Workshop

on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs

and Systems, 2008.

Gilles Dubochet and Donna Malayeri. Improving api documentation for java-like languages.

In Evaluation and Usability of Programming Languages and Tools, PLATEAU ’10, pages

3:1–3:1, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0547-1.

Dominic Duggan and Frederick Bent. Explaining type inference. Science of Computer Pro-

gramming, 27:37–83, July 1996.

Nabil El Boustani and Jurriaan Hage. Corrective hints for type incorrect generic java pro-

grams. In Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Pro-

gram Manipulation, PEPM ’10, pages 5–14, New York, NY, USA, 2010. ACM. ISBN 978-1-

60558-727-1.

Nabil el Boustani and Jurriaan Hage. Improving type error messages for generic java. Higher-

Order and Symbolic Computation, 24(1-2):3–39, 2011. ISSN 1388-3690.

Burak Emir, Martin Odersky, and John Williams. Matching objects with patterns. In Erik

Ernst, editor, ECOOP 2007 Object-Oriented Programming, volume 4609 of Lecture Notes

in Computer Science, pages 273–298. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-

73588-5.

J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. Quotient lenses. In Proceed-

ings of the 13th ACM SIGPLAN International Conference on Functional Programming, ICFP

’08, pages 383–396, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-919-7.

Tihomir Gvero and Viktor Kuncak. Interactive synthesis using free-form queries (tool demon-

stration). In International Conference on Software Engineering (ICSE), 2015.

Christian Haack and J. B. Wells. Type error slicing in implicitly typed higher-order languages.

Sci. Comput. Program., 50(1-3):189–224, March 2004. ISSN 0167-6423.

Jurriaan Hage and Bastiaan Heeren. Heuristics for type error discovery and recovery. In Pro-

ceedings of the 18th International Conference on Implementation and Application of Func-

tional Languages, IFL’06, pages 199–216, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN

978-3-540-74129-9.

Cordelia V. Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type classes in

haskell. In Proceedings of the 5th European Symposium on Programming: Programming

Languages and Systems, ESOP ’94, pages 241–256, London, UK, UK, 1994. Springer-Verlag.

ISBN 3-540-57880-3.

Thomas Hallgren. Fun with functional dependencies. In Proc. of the Joint CS/CE Winter Meet-

ing, 2000.

316



Bibliography

Bastiaan Heeren, Jurriaan Hage, and S Doaitse Swierstra. Constraint based type inferencing

in helium. Workshop Proceedings of Immediate Applications of Constraint Programming,

pages 59–80, 2003a.

Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the type inference pro-

cess. In Proceedings of the Eighth ACM SIGPLAN International Conference on Functional

Programming, ICFP ’03, pages 3–13, New York, NY, USA, 2003b. ACM. ISBN 1-58113-756-7.

Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for learning haskell. In

Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell, Haskell ’03, pages 62–71, New

York, NY, USA, 2003c. ACM. ISBN 1-58113-758-3.

Bastiaan J. Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, The

Netherlands, 09 2005. URL http://www.cs.uu.nl/people/bastiaan/phdthesis.

Haruo Hosoya and Benjamin C. Pierce. How good is local type inference? Technical report,

University of Pennsylvania, 1999.

Alan Jeffrey. Generic java type inference is unsound. note sent to the types mailing list., 2001.

URL http://www.cis.upenn.edu/~bcpierce/types/archives/current/msg00849.html.

Yang Jun, Greg Michaelson, and Phil Trinder. Explaining polymorphic types. The Computer

Journal, 45:2002, 2002.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and WilliamG. Gris-

wold. An overview of aspectj. In JørgenLindskov Knudsen, editor, ECOOP 2001 Object-

Oriented Programming, volume 2072 of Lecture Notes in Computer Science, pages 327–354.

Springer Berlin Heidelberg, 2001. ISBN 978-3-540-42206-8.

Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type functions. In

A.W. Roscoe, Cliff B. Jones, and Kenneth R. Wood, editors, Reflections on the Work of C.A.R.

Hoare, pages 301–331. Springer London, 2010. ISBN 978-1-84882-911-4.

Etienne Kneuss, Philippe Suter, and Viktor Kuncak. Phantm: Php analyzer for type mismatch.

In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations

of Software Engineering, FSE ’10, pages 373–374, New York, NY, USA, 2010. ACM. ISBN

978-1-60558-791-2.

Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. Searching for

type-error messages. In Proceedings of the 28th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’07, pages 425–434, New York, NY, USA, 2007.

ACM. ISBN 978-1-59593-633-2.

Ingo Maier and Martin Odersky. Deprecating the Observer Pattern with Scala.React. Techni-

cal report, EPFL, 2012. URL http://infoscience.epfl.ch/record/176887/.

317



Bibliography

Bruce McAdam. Trends in functional programming. In Kevin Hammond and Sharon Cur-

tis, editors, TFP, chapter How to Repair Type Errors Automatically, pages 87–98. Intellect

Books, Exeter, UK, UK, 2002. ISBN 1-84150-070-4.

Bruce J. McAdam. Generalising techniques for type debugging. In Selected Papers from the

1st Scottish Functional Programming Workshop (SFP99), SFP ’99, pages 50–58, Exeter, UK,

UK, 2000. Intellect Books. ISBN 1-84150-024-0.

Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. Instant pickles: Gener-

ating object-oriented pickler combinators for fast and extensible serialization. In Proceed-

ings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming

Systems Languages &#38; Applications, OOPSLA ’13, pages 183–202, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-2374-1.

Adriaan Moors, Frank Piessens, and Martin Odersky. Generics of a higher kind. In Proceedings

of the 23rd ACM SIGPLAN Conference on Object-oriented Programming Systems Languages

and Applications, OOPSLA ’08, pages 423–438, New York, NY, USA, 2008. ACM. ISBN 978-

1-60558-215-3.

Martin Odersky. Inferred type instantiation for GJ, 2002. URL http://lampwww.epfl.ch/$\

sim$odersky/papers/localti02.html.

Martin Odersky. The Scala language specification, 2015. URL http://www.scala-lang.org/

docu/files/ScalaReference.pdf.

Martin Odersky and Adriaan Moors. Fighting bit rot with types (experience report: Scala

collections). In FSTTCS, 2009.

Martin Odersky and Matthias Zenger. Scalable component abstractions. In Proceedings of

the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA ’05, pages 41–57, New York, NY, USA, 2005. ACM. ISBN

1-59593-031-0.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained types.

Theor. Pract. Object Syst., 5(1):35–55, January 1999.

Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored local type inference. In

Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’01, pages 41–53, New York, NY, USA, 2001. ACM. ISBN 1-58113-336-7.

Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal theory

of objects with dependent types. In Luca Cardelli, editor, ECOOP 2003 Object-Oriented

Programming, volume 2743 of Lecture Notes in Computer Science, pages 201–224. Springer

Berlin Heidelberg, 2003. ISBN 978-3-540-40531-3.

Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubochet, Burak

Emir, Sean McDirmid, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Lex Spoon,

318



Bibliography

Erik Stenman, and Matthias Zenger. An Overview of the Scala Programming Language (2.

edition). Technical report, EPFL, 2006.

Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and implic-

its. In Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications, OOPSLA ’10, pages 341–360, New York, NY, USA, 2010.

ACM. ISBN 978-1-4503-0203-6.

Bruno C.d.S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi. The

implicit calculus: A new foundation for generic programming. In Proceedings of the 33rd

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’12, pages 35–44, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9.

Zvonimir Pavlinovic, Tim King, and Thomas Wies. Finding minimum type error sources. In

Proceedings of the 2014 ACM International Conference on Object Oriented Programming

Systems Languages &#38; Applications, OOPSLA ’14, pages 525–542, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-2585-1.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA, USA,

2002. ISBN 0-262-16209-1.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program. Lang.

Syst., 22(1):1–44, January 2000. ISSN 0164-0925.

Hubert Plociniczak. Scalad: An interactive type-level debugger. In Proceedings of the 4th

Workshop on Scala, SCALA ’13, pages 8:1–8:4, New York, NY, USA, 2013. ACM. ISBN 978-1-

4503-2064-1.

Hubert Plociniczak and Martin Odersky. Implementing a type debugger for Scala. In APPLC,

2012.

Hubert Plociniczak, Heather Miller, and Martin Odersky. Improving Human-Compiler Inter-

action Through Customizable Type Feedback. Technical report, EPFL, 2014.

Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin Odersky. Scala-

virtualized: linguistic reuse for deep embeddings. Higher-Order and Symbolic Computa-

tion, 25(1):165–207, 2012. ISSN 1388-3690.

Claudio V. Russo and Dimitrios Vytiniotis. Qml: Explicit first-class polymorphism for ml. In

Proceedings of the 2009 ACM SIGPLAN Workshop on ML, ML ’09, pages 3–14, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-509-3.

Matthew Sackman and Susan Eisenbach. Errors for the Common Man: Hiding the unin-

telligable in Haskell. Technical report, Imperial College London, September 2008. URL

http://pubs.doc.ic.ac.uk/error-handling-for-Haskell/.

319



Bibliography

Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios Vytiniotis. Complete

and decidable type inference for gadts. In Proceedings of the 14th ACM SIGPLAN In-

ternational Conference on Functional Programming, ICFP ’09, pages 341–352, New York,

NY, USA, 2009. ACM. ISBN 978-1-60558-332-7. doi: 10.1145/1596550.1596599. URL

http://doi.acm.org/10.1145/1596550.1596599.

Peter J. Stuckey and Martin Sulzmann. A theory of overloading. ACM Trans. Program. Lang.

Syst., 27(6):1216–1269, November 2005. ISSN 0164-0925.

Martin Sulzmann. An overview of the Chameleon System. In APLAS, 2002.

Kanae Tsushima and Kenichi Asai. An embedded type debugger. In Ralf Hinze, editor, Imple-

mentation and Application of Functional Languages, volume 8241 of Lecture Notes in Com-

puter Science, pages 190–206. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-41581-4.

Dimitrios Vytiniotis, Simon Peyton jones, Tom Schrijvers, and Martin Sulzmann. Outsidein(x)

modular type inference with local assumptions. J. Funct. Program., 21(4-5):333–412,

September 2011. ISSN 0956-7968.

Jeroen Weijers, Jurriaan Hage, and Stefan Holdermans. Security type error diagnosis for

higher-order, polymorphic languages. In Proceedings of the ACM SIGPLAN 2013 Workshop

on Partial Evaluation and Program Manipulation, PEPM ’13, pages 3–12, New York, NY,

USA, 2013. ACM. ISBN 978-1-4503-1842-6.

J. B. Wells. Typability and type checking in system F are equivalent and undecidable. Ann.

Pure Appl. Logic, 98(1-3):111–156, 1999.

Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon Peyton-Jones. Diagnosing

type errors with class. In Proceedings of the 36th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2015, pages 12–21, New York, NY, USA,

2015. ACM. ISBN 978-1-4503-3468-6.

320



th



�

�




