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Abstract—Prosody is a crucial aspect of the speech signal
and its modelling is of great importance for various speech
technologies. Intonation models based on physiology rely on an
accurate model of muscle activation. Although most of them are
based on the spring-damper-mass (SDM) muscle model, the more
complex Hill type model offers a more accurate representation
of muscle dynamics. In this paper we analyse and compare these
two muscle models and discuss the benefits and disadvantages
they bring. This research is a part of an on-going effort to develop
an improved intonation model.
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I. INTRODUCTION

Prosody is a multidimensional phenomenon comprising
the intonation, energy, and duration contours of the speech
signal. It is the carrier of linguistic information, including
sentence structure, mode of enunciation, focus and contrast,
lexical stress, and even meaning. Prosody also serves to carry
paralinguistic information, such as gender, age, personality,
ethnic background, emotions, and physiological state.

Although prosody carries a wealth of information, it has
been only minimally integrated in speech technology systems.
In Text to Speech synthesis (TTS), prosody is crucial for
generating intelligible speech output. However these systems
use an averaged, worn-down version of prosody that sounds
bland and not quite natural. On the other hand, prosody is
completely ignored in Automatic Speech Recognition (ASR)
systems, except in tonal languages, where it serves to carry
linguistic meaning. This suboptimal treatment of prosody is
due to our lack of understanding of how prosody really works,
which is manifest by the lack of a satisfactory modelling
framework. This problem has been emphasized recently with
the shift of scientific focus on the areas of Speech Emotion
Recognition (SER), emotional speech synthesis, and emphatic
human-machine dialogue, all of which rely heavily on prosody.

The importance of prosody in TTS systems has been the
driving force in the development of prosody models [1],
most of which focus on intonation. Intonation models can
be roughly split into two groups: 1) surface models, which
model the pitch contour directly, and 2) physiological models,
that model the underlying mechanisms of pitch production by
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directly or indirectly incorporating physiological constrains.
While there is a plethora of surface intonation models, phys-
iologically based models are not as numerous. The most
famous model from this group is the Fujisaki Command-
Response (CR) model [2]. The CR model treats the pitch
contour as a sum of global, phrase components, and local,
accent components. Both components are output from a 2nd

order critically damped system, which is excited either by
impulses or by step functions, respectively. The 2nd order
system models the dependence of pitch on laryngeal muscle
activation [3]. Other authors have shown that using higher
order system models is beneficial to intonation modelling, e.g.
the quantitative target approximation qTA model [4], which
uses pitch targets as a physiological force function input to a
3rd order system to generate the surface pitch contours.

Recently, we have proposed an intonation model that offers
improvements in consistency and physiological plausibility,
while maintaining comparable performance across speakers
and languages [5], [6]. Our model is based on the decom-
position of the pitch contour into gamma shaped elementary
atoms, which can be used to approximate the impulse response
of a n-th order critically damped system. Similarly to Prom-
on et al. [4], our results have also shown improved model
performance when using higher, up to 6th order impulse re-
sponses as atoms. These findings have prompted us to analyse
in more detail the various muscle activation models. There are
different muscle models suggested in literature, which go from
very detailed ones - modelling the internal mechanics of the
muscle fibre, to more general ones - modelling only the output
to a given input of the muscle as a whole [7]. In this paper
we present an analysis that is part of an on-going research
effort, in which we take a closer look at the two most famous
muscle models: the spring-damper-mass (SDM) model and the
Hill type model.

II. THE SPRING-DAMPER-MASS (SDM) MUSCLE MODEL

It is a necessary practice to simplify the complex non-linear
mechanics of muscle for the purpose of their analysis. The
spring-damper-mass (SDM) model shown in Fig. 1 is the
simplest model of muscle activation. It’s critically damped
2nd order response served as a basis for Fujisaki et al. [2]
to develop the CR intonation model.

The output movement y(t) of the mass is given in Laplace
domain in (1), as a function of the input movement x(t), which
is caused by an input force fi(t) [8].

Y (s) =
sy(0) + y′(0) + 2ζω0y(0) + ω2

0X(s)

s2 + 2ζω0s+ ω2
0

(1)
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Fig. 1. A 2nd order spring-damper-mass (SDM) muscle model.

Here ζ is the damping ratio, and ω0 is the undamped natural
frequency of the mechanical system [9]. They are defined as:

ζ2 ,
c2

4mk
, ω2

0 ,
k

m
. (2)

If we assume critical damping (ζ = 1), steady state initial
conditions (y(0) = 0 and y′(0) = 0), and an impulsive driving
force (X(s) = 1), from (1) we have:

Y (s) =
ω2
0

s2 + 2ω0s+ ω2
0

=
ω2
0

(s+ ω0)2
(3)

the solution of which is:

y(t) = ω2
0te
−ω0tu(t) (4)

where u(t) is the Heaviside step function. This impulse
response function is used in the CR model.

The zero-pole diagram and the corresponding impulse re-
sponses for a sweep of values of c ∈ [1, 10], for k = 178
and m = 0.12 are given in Fig. 2. The parameters were taken
from Piovesan et al. [10] and represent the elasticity of the
elbow muscles and inertia of the underarm. As we can see,
although not that evident in the plots of the impulse response,
the system reaches critical damping only for c = 10, which is
at the extreme end of the physiologically plausible range.

III. THE HILL TYPE MUSCLE MODEL

The three-element Hill muscle model is shown in its
Poynting-Thomson (PT) form [7] in Fig. 3, it comprises:
• a contractile element (CE) - representing the active force

generated in the muscle tissue through its contraction.
This component can be modelled as a parallel circuit
comprising a force generator and a damper,

• a series elasticity (SE) - representing the elasticity of the
tendons that connect the muscle to the bone,

• a parallel elasticity (PE) - representing the elasticity of
the muscle tissue itself.

To derive the characteristic function of this model we
will use the impedance electro-mechanical analogy [11]. This
analogy allows us to use methods and tools developed for the
analysis of electrical circuits to analyse the dynamics of a
mechanical system. The equivalent electrical circuit is shown
in Fig. 4. Here, the resistor R = c represents the damping
of the CE, the inductance L = m represents the mass load,

Fig. 2. Zero pole diagram and impulse response of the 2nd order
spring-damper-mass (SDM) muscle model for a sweep of values of

c ∈ [1, 10], for k = 178 and m = 0.12.

Fig. 3. Hill’s three element model.

and the two capacitors Cp = 1/kp and Cs = 1/ks represent the
elasticity of the PE and SE, respectively.

We are ultimately interested in the movement that the
muscle generates we want to track the displacement of the
load, which is analogous to the charge in the inductance. If
we solve for the charge in the inductor assuming steady state

Fig. 4. Equivalent electrical circuit to Hill’s three element model with mass
load.



initial conditions, in the Laplace domain [9] we obtain (5),
which is equivalent to (6) in the mechanical domain for
fi(t) = δ(t).

q0(s) =
io(s)

s
=

1

RLCss3 + L
Cs+Cp

Cp
s2 +Rs+ 1

Cp

vi(s)

(5)

yo(s) =
1

cm
ks
s3 +m

ks+kp

ks
s2 + cs+ kp

(6)

From the circuit shown in Fig. 4 we can find the resonant
frequency of the mechanical system. This can be done by
finding the input impedance Zi(s), substituting s = jω,
finding the imaginary part and equalling it to zero [9].

Zi(s) =
vi(s)

ii(s)
= R+

1

sCp
+

sL

1 + s2LCs
(7)

X(ω0) =
ω0L

1− ω2
0LCs

− 1

ω0Cp
= 0 (8)

ω2
0 =

1

L(Cs + Cp)
(9)

or in the mechanical domain:

ω2
0 =

kpks
m(kp + ks)

(10)

We can use (5) and (6) to find the characteristic equations
of the system in the two domains. By assuming zero-input and
steady-state conditions we have:

RLCss
3 + L

Cs + Cp

Cp
s2 +Rs+

1

Cp
= 0 (11)

cm

ks
s3 +m

ks + kp
ks

s2 + cs+ kp = 0 (12)

Finally, we can rewrite (12) by substituting in the resonant
frequency ω0 from (10) and introducing the ratio of the
elasticity of the SE and PE k = ks/kp as:

c

kp(1 + k)
s3 + s2 +

c

kp
ω2
0s+ ω2

0 = 0. (13)

To derive the damping ratio ζ of this system we can
parametrize the 3rd order polynomial into:

(s+ αω0)(s2 + 2ζω0s+ ω2
0) = 0. (14)

However, this leads to an overdetermined system of non-
linear equations that has no solutions, except the trivial one.
This points to the necessity of taking a different approach in
the analysis.

Piovesan et al. [10] did a thorough analysis of (12) used
Cardano’s formula and the discriminant ∆ to clarify the
connection between the system damping and the elasticity ratio
k. A ∆ > 0 means that the system is underdamped – it has
two complex conjugate poles, and oscillates; for ∆ = 0 the
system is critically damped – the complex poles become real
and equal; for ∆ < 0 the system is overdamped – all of the

Fig. 5. Value of the discriminant ∆ in respect to the CE damping c for
different values of k = ks/kp.

Fig. 6. Numerical simulation of 3rd order impulse response using elbow
parameters [10], for a sweep of values of the muscle damping c.

poles are real, but different. In our case, if we define d = c/kp,
for the discriminant ∆ we obtain:

q =
(3k + 3)d2ω2

0 − k2 − 2k − 1

9d2
(15)

r =
(9k2 − 9k − 18)d2ω2

0 − 2k3 − 6k2 − 6k − 2

54d3
(16)

∆ = q3 + r2 (17)

A numerical analysis of (17) using the physiological param-
eters for the elbow joint [10], yields the plots shown in Fig. 5.
We can see that indeed the damping depends on the ratio k,
and that the system reaches critical damping only for k ≥ 8.
The impulse response of the system for k = 10 and c ∈ [5, 10]
is shown in Fig. 6. These plots also show that the response
reaches critical damping for 8 < c < 9.

IV. COMPARISON AND DISCUSSION

The two presented muscle models are of different complex-
ity and thus capture the physiology of muscle activation to a
different extent. It is necessary to analyse the tradeoff that each
of these models offers, when choosing which one to use for
the application of intonation modelling. Our discussion will
be guided according to the following questions:

1) Does the SDM model oversimplify muscle dynamics?
2) Is using a critically damped Hill model physiologically

plausible?
3) Do we need a more complex model?



A. SDM oversimplifying muscle dynamics

Researchers mostly use 2nd order systems to model muscle
activation, in favour to 3rd order ones, under the assumption
that the tendon’s stiffness is much larger than that of the
stiffness of the muscle tissue itself. Even though SE stiffness
is a multiple of PE stiffness, this claim does not hold entirely,
because it is never beyond an order of magnitude greater.
Indeed, research has shown that k < 8 for the calf muscle [12],
k < 10 for the elbow muscles at full activation [13], and it
can be as little as k = 1 for muscles in the palm at full
activation [14].

Kistemaker et al. have used a 2nd order SDM model to
replicate the response of a 3rd order Hill model [13]. They
have found that although reasonable accuracy can be obtained
for the initial (rising) portion of the impulse response, the
SDM model fails to adequately capture the whole length of
the response. Others, have found a maximum correlation of
0.85 between observed real muscle responses and simulated
ones with the SDM model [15].

Moreover, the major flaw of the SDM model is the complex
non-linear relationship between its parameters and those of
the Hill model. This means that not only is the estimated
stiffness and damping very different from the actual modelled
parameters, and outside of the physiologically plausible range,
but also that they are very sensitive to measurement errors [13].

B. Critically damped Hill model

The linearised Hill model neglects the important force-
length-velocity non-linear relationship of real muscles, as
well as the dynamical properties originating from activation
dynamics, short range stiffness and history dependence of
muscle force production. Still, it is the simplest model that
takes into account the essential interaction arising from the
stiffness of the tendon [13], and is a faithful representation of
muscle-tendon mechanics [10]. This can be the reason behind
the increased performance of the qTA when using a 3rd order
system response [4].

As was shown, the increased complexity of the Hill model
precludes a compact mathematical solution. This can be mit-
igated by taking the assumption that the system is critically
damped. However, Piovesan et al. have shown that conditions
for critical damping are minuscule when one uses physio-
logically plausible model parameters [10]. Over most of the
parameter range the Hill system is underdamped. This suggests
that using a critically damped Hill model is not justified in
physiology.

C. More complex models

On one hand, the underdamped behaviour of the Hill type
model can be used to explain why humans use position
control strategy, i.e. the central nervous system (CNS) activates
opposing muscles to indirectly control force [16]. On the
other, measurements of isotonic contractions have not shown
oscillations in single muscle fibre contraction, which might
suggest that the Hill model is not enough.

Indeed, considering the complex interaction between several
muscles that drives the changes in F0, we can argue that a

more complex mechanical model is needed. Such a model
should also capture the mechanics of the joints and the vocal
folds themselves. It is to be expected that such a model would
also have increased order, which might explain the increase in
performance that we have seen when using 6th order atoms in
our intonation model [6].

V. CONCLUSION

We can conclude that although the SDM model has been
successfully used to model intonation, it is too simple to
capture the basic mechanics of muscle activation. In that sense,
better performance can be exected when using higher order
models. The Hill type model is the next step in complex-
ity, offering improved modelling of muscle-tendon dynamics.
However, the model exhibits underdamped behavior which
cannot be parametrized easily. Finally, the complexity of the
physiology of pitch production hints towards a necessity of
even more complex models, which necessiates further inves-
tigation.
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