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Abstract

We propose a new variational inference method based on a proximal framework
that uses the Kullback-Leibler (KL) divergence as the proximal term. We make
two contributions towards exploiting the geometry and structure of the variational
bound. Firstly, we propose a KL proximal-point algorithm and show its equiva-
lence to variational inference with natural gradients (e.g. stochastic variational in-
ference). Secondly, we use the proximal framework to derive efficient variational
algorithms for non-conjugate models. We propose a splitting procedure to sep-
arate non-conjugate terms from conjugate ones. We linearize the non-conjugate
terms to obtain subproblems that admit a closed-form solution. Overall, our ap-
proach converts inference in a non-conjugate model to subproblems that involve
inference in well-known conjugate models. We show that our method is appli-
cable to a wide variety of models and can result in computationally efficient al-
gorithms. Applications to real-world datasets show comparable performance to
existing methods.

1 Introduction

Variational methods are a popular alternative to Markov Chain Monte Carlo (MCMC) for Bayesian
inference. They have been used extensively due to their speed and ease of use. In particular, methods
based on the Evidence Lower Bound Optimization (ELBO) are quite popular since they convert a
difficult integration problem to an optimization problem. This reformulation allows the application
of optimization techniques for large-scale Bayesian inference.

Recently, an approach called Stochastic Variational Inference (SVI) has gained popularity for infer-
ence in conditionally-conjugate exponential family models [1]. SVI exploits the geometry of the
posterior by using natural gradients, and uses a stochastic method to improve scalability. Resulting
updates are simple and easy to implement.

Several generalizations of SVI have been proposed for general latent variable models where the
lower bound might be intractable [2, 3, 4]. These generalizations, although important, do not take
the geometry of the posterior into account.

In addition, none of these approaches exploit the structure of the lower bound. In practice, not all
factors of the joint distribution introduce difficulty in the optimization. It is therefore desirable to
treat “difficult” terms differently from “easy” terms while optimizing.

∗A note on contributions: P. Baqué proposed the use of the KL proximal term and showed that the resulting
proximal steps have closed-form solutions. The rest of the work was carried out by M. E. Khan.
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In this context, we propose a splitting method for variational inference that exploits both the structure
and the geometry of the lower bound. Our approach is based on the proximal-gradient framework.
We make two important contributions. First, we propose a proximal-point algorithm that uses the
Kullback-Leibler (KL) divergence as the proximal term. We show that addition of this term incorpo-
rates the geometry of the posterior. We establish equivalence of our approach to variational methods
that use natural gradients (e.g. [1, 5, 6]).

Second, following the proximal-gradient framework, we propose a splitting approach for variational
inference. In this approach, we linearize difficult terms such that the resulting optimization problem
is easy to solve. We apply this approach to variational inference on non-conjugate models. We
show that linearizing non-conjugate terms leads to subproblems that have closed-form solutions.
Our approach therefore converts inference in a non-conjugate model to subproblems that involve
inference in well-known conjugate models, and for which efficient implementation exists.

2 Latent Variable Models and Evidence Lower Bound Optimization

Consider a general latent variable model with data vector y of length N and the latent vector z of
length D, following a joint distribution p(y, z) (we drop the parameters of the distribution from
the notation). ELBO approximates the posterior p(z|y) by a distribution q(z|λ) that maximizes a
lower bound to the marginal likelihood. Here, λ is the vector of parameters of the distribution q.
As shown in (1), the lower bound is obtained by first multiplying and dividing by q(z|λ), and then
applying Jensen’s inequality using concavity of log. The approximate posterior q(z|λ) is obtained
by maximizing the lower bound w.r.t. λ.

log p(y) = log

∫
q(z|λ)

p(y, z)

q(z|λ)
dz ≥ max

λ
Eq(z|λ)

[
log

p(y, z)

q(z|λ)

]
:= L(λ). (1)

It is desirable to choose q(z|λ) such that the lower bound is easy to optimize, however in general
this is not the case. This might happen for several reasons, e.g. some terms in the lower bound might
be intractable or may admit a form that is not easy to optimize. In addition, the optimization can be
slow when N and D are large.

3 The KL Proximal-Point Algorithm for Conjugate Models

In this section, we introduce a proximal-point method based on Kullback-Leibler (KL) proximal
function and establish its relation to existing approaches that are based on natural gradients [1, 5, 6].
In particular, for conditionally-conjugate exponential-family models, we show that each iteration of
our proximal-point approach is equivalent to a step along the natural gradient.

The Kullback-Leibler (KL) divergence between two distributions q(z|λ) and q(z|λ′) is defined as
follows: DKL[q(z|λ) ‖ q(z|λ′)] := Eq(z|λ)[log q(z|λ) − log q(z|λ′)]. Using the KL divergence as
the proximal term, we introduce a proximal-point algorithm which generates a sequence of λk by
solving the following subproblems:

KL Proximal-Point : λk+1 = arg max
λ
L(λ)− 1

βk
DKL[q(z|λ) ‖ q(z|λk)], (2)

given an initial value λ0 and a bounded sequence of step-size βk > 0,

A benefit of using the KL term is that it takes the geometry of the posterior into account. This fact has
lead to their extensive use in both optimization and statistics literature, e.g. to speed up expectation-
maximization algorithm [7, 8], for convex optimization [9], for message-passing in graphical models
[10], and for approximate Bayesian inference [11, 12, 13].

Relationship to the methods that use natural gradients: An alternative approach to incorporate
the geometry of the posterior is to use natural gradients [6, 5, 1]. We now establish the relationship of
our approach to this approach. The natural gradient can be interpreted as finding a descent direction
that ensures a fixed amount of change in the distribution. For variational inference, this is equivalent
to the following [1, 14]:

arg max
∆λ
L(λk + ∆λ), s.t. DsymKL [q(z|λk + ∆λ) ‖ q(z|λk)] ≤ ε, (3)
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where DsymKL is the symmetric KL divergence. It appears that the proximal-point subproblem (2)
might be related to a Lagrangian of the above optimization. In fact, as we show below, the two
problems are equivalent for conditionally conjugate exponential family models.

We consider the set-up described in [15] which is a bit more general than that of [1]. Consider a
Bayesian network with nodes zi and a joint-distribution

∏
i p(zi|pai) where pai are parents of zi.

We assume that each factor is an exponential family distribution defined as follows:

p(zi|pai) := hi(zi) exp
[
ηTi (pai)Ti(zi)−Ai(ηi)

]
, (4)

where ηi is the natural parameter, Ti(zi) is the sufficient statistics, Ai(ηi) is the partition function
and hi(zi) is the base measure. We seek a factorized approximation shown in (5) where each zi
belongs to the same exponential family as the joint. The parameters of this distribution are denoted
by λi to differentiate them from the joint-distribution parameters ηi. Also note that the subscript
refers to the factor i not to the iteration.

q(z|λ) =
∏
i

qi(zi|λi), where qi(zi) := hi(z) exp
[
λTi Ti(zi)−Ai(λi)

]
. (5)

For this model, we show the following equivalence between a gradient-descent method based on
natural gradients and our proximal-point approach. The proof is given in the supplementary material.
Theorem 1. For the model shown in (4) and the posterior approximation shown in (5), the sequence
λk generated by the proximal-point algorithm of (2) is equal to the one obtained using gradient-
descent along the natural gradient with step lengths βk/(1 + βk).

Proof of convergence : Convergence of the proximal-point algorithm shown in (2) is proved in
[8]. We give a summary of the results here. We assume βk = 1, however the proof holds for any
bounded sequence of βk. Let the space of all λ be denoted by S. Define the set S0 := {λ ∈ S :
L(λ) ≥ L(λ0)}. Then, ‖λk+1 − λk‖ → 0 under the following conditions:

(A) Maximum of L exist and the gradient of L is continuous and defined in S0.
(B) The KL divergence and its gradient are continuous and defined in S0 × S0.
(C) DKL[q(z|λ) ‖ q(z|λ′)] = 0 only when λ′ = λ.

In our case, conditions (A) and (B) are either assumed or satisfied, while condition (C) can be
ensured by choosing an appropriate parameterization of q.

4 The KL Proximal-Gradient Algorithm for Non-Conjugate Models

The proximal-point algorithm of (2) might be difficult to optimize for non-conjugate models, e.g.,
due to the non-conjugate factors. In this section, we present an algorithm based on the proximal-
gradient framework where we first split the objective function into “difficult” and “easy” terms, and
then linearize the difficult term to simplify the optimization. See [16] for a good review of proximal
methods for machine learning.

We split the ratio p(y, z)/q(z|λ) ≡ c p̃d(z|λ)p̃e(z|λ), where p̃d contains all factors that make the
optimization difficult while p̃e contains the rest (c is a constant). This result in the following split
for the lower bound:

L(λ) = Eq(z|λ)

[
log

p(y, z|θ)

q(z|λ)

]
:= Eq(z|λ)[log p̃d(z|λ)]︸ ︷︷ ︸

f(λ)

+Eq(z|λ)[log p̃e(z|λ)]︸ ︷︷ ︸
h(λ)

+ log c, (6)

Note that p̃d and p̃e can be un-normalized factors in the distribution. In the worst case, we may set
p̃e(z|λ) ≡ 1 and take the rest as p̃d(z|λ). We give an example of the split in the next section.

The main idea is to linearize the difficult term f such that the resulting problem admits a simple
form. Specifically, we use a proximal-gradient algorithm that solves the following sequence of
subproblems to maximize L as shown below. Here,5f(λk) is the gradient of f at λk.

KL Proximal-Gradient:λk+1 = arg max
λ

λT 5 f(λk) + h(λ) +
1

βk
DKL[q(z|λ) ‖ q(z|λk)]. (7)
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Note that our linear approximation is equivalent to the one used in gradient descent. Also, the ap-
proximation is tight at λk. Therefore, it does not introduce any error in the optimization, rather only
acts as a surrogate to take the next step. Existing variational methods have used approximations such
as ours, e.g. see [17, 18, 19]. Most of these methods first approximate the log p̃d(z|λ) term using a
linear or quadratic approximation and then compute the expectation. As a result the approximation
is not tight and may result in a bad performance [20]. In contrast, our approximation is applied
directly to f and therefore is tight at λk.

Convergence of our approach is covered under the results shown in [21] which proves convergence
of a more general algorithm than ours. We summarize the results here. As before, we assume that
the maximum exists and L is continuous. We make three additional assumptions. First, the gradient
of f is L-Lipschitz continuous in S, i.e., ||5 f(λ)−5f(λ′)|| ≤ L||λ−λ′||, ∀λ,λ′ ∈ S. Second,
the function h is concave. Third, there exist an α > 0 such that,

(λk+1 − λk)T 51 DKL[q(z|λk+1) ‖ q(z|λk)] ≥ α‖λk+1 − λk‖2, (8)
where51 denotes the gradient w.r.t. the first argument. Under these conditions, ‖λk+1 − λk‖ → 0
when 0 < βk < α/L. The choice of constant α is also discussed in [21].

Note that even though h is required to be concave, f could be nonconvex. The lower bound usually
contains concave terms, e.g., in the entropy term. In the worst case when there are no concave terms,
we can simply choose h ≡ 0.

5 Examples of KL Proximal-Gradient Variational Inference

In this section, we show a few examples where the subproblem (7) has a closed form solution.

Generalized linear model : We consider the generalized linear model shown in (9). Here, y is the
output vector (of length N ) with its n’th entry equal to yn, while X is an N ×D feature matrix that
contains feature vectors xTn as rows. The weight vector z is a Gaussian with mean µ and covariance
Σ. The linear predictor xTnz is passed through p(yn|·) to obtain the probability of yn.

p(y, z) :=

N∏
n=1

p(yn|xTnz)N (z|µ,Σ). (9)

We restrict the posterior to be a Gaussian q(z|λ) = N (z|m,V) with mean m and covariance V,
therefore λ := {m,V}. For this posterior family, the non-Gaussian terms p(yn|xTnz) are difficult
to handle, while the Gaussian term N (z|µ,Σ) is easy since it is conjugate to q. Therefore, we set
p̃e(z|λ) ≡ N (z|µ,Σ)/N (z|m,V) and let the rest of the terms go in p̃d. The constant c is set to 1.

Substituting in (6) and using the definition of the KL divergence, we get the lower bound shown
below in (10). The first term is the function f that will be linearized, and the second term is the
function h.

L(m,V) :=

N∑
n=1

Eq(z|λ)[log p(yn|xTnz)]︸ ︷︷ ︸
f(m,V )

+Eq(z|λ)

[
log
N (z|µ,Σ)

N (z|m,V)

]
︸ ︷︷ ︸

h(m,V )

. (10)

For linearization, we compute the gradient of f using the chain rule. Denote fn(m̃n, ṽn) :=
Eq(z|λ)[log p(yn|xTnz)] where m̃n := xTnm and ṽn := xTnVxn. Gradients of f w.r.t. m and V
can then be expressed in terms of gradients of fn w.r.t. m̃n and ṽn:

5mf(m,V) =

N∑
n=1

xn 5m̃n
fn(m̃n, ṽn), 5Vf(m,V) =

N∑
n=1

xnxTn 5ṽn fn(m̃n, ṽn), (11)

For notational simplicity, we denote the gradient of fn at m̃nk := xTnmk and ṽnk := xTnVkxn by,
αnk := −5m̃n

fn(m̃nk, ṽnk), γnk := −25ṽn fn(m̃nk, ṽnk). (12)
Using (11) and (12), we get the following linear approximation of f :

f(m,V) ≈mT [5mf(mk,Vk)] + Tr [V {5Vf(mk,Vk)}] (13)

= −
N∑
n=1

[
αnk (xTnm) + 1

2γnk (xTnVxn)
]
. (14)
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Substituting the above in (7), we get the following subproblem in the k’th iteration:

(mk+1,Vk+1) = arg max
m,V �0

−
N∑
n=1

[
αnk (xTnm) + 1

2γnk (xTnVxn)
]

+ Eq(z|λ)

[
N (z|µ,Σ)

N (z|m,V)

]
− 1

βk
DKL [N (z|m,V)||N (z|mk,Vk)] , (15)

Taking the gradient w.r.t. m and V and setting it to zero, we get the following closed-form solutions
(details are given in the supplementary material):

V−1
k+1 = rkV

−1
k + (1− rk)

[
Σ−1 + XT diag(γk)X

]
, (16)

mk+1 =
[
(1− rk)Σ−1 + rkV

−1
k

]−1
[
(1− rk)(Σ−1µ−XTαk) + rkV

−1
k mk

]
, (17)

where rk := 1/(1 + βk) and αk and γk are vectors of αnk and γnk respectively, for all k.

Computationally efficient updates : Even though the updates are available in closed-form, they are
not efficient when dimensionality D is large. In such a case, an explicit computation of V is costly
since the resulting D ×D matrix is extremely large. We now derive a reformulation that avoids an
explicit computation of V.

Our reformulation involves two key steps. The first step is to show that Vk+1 can be parameterized
by γk. Specifically, if we initialize V0 = Σ, then we can show that:

Vk+1 =
[
Σ−1 + XT diag(γ̃k+1)X

]−1

, where γ̃k+1 = rkγ̃k + (1− rk)γk. (18)

with γ̃0 = γ0. A detailed derivation is given in the supplementary material.

The second key step is to express the updates in terms of m̃n and ṽn. For this purpose, we define
some new quantities. Define m̃ to be a vector with m̃n as its n’th entry. Similarly, let ṽ be the vector
of ṽn for all n. Denote the corresponding vectors in the k’th iteration by m̃k and ṽk, respectively.
Finally, define µ̃ = Xµ and Σ̃ = XΣXT .

Now, using the fact that m̃ = Xm and ṽ = diag(XVXT ) and by applying Woodbury matrix
identity, we can express the updates in terms of m̃ and ṽ, as shown below (a detailed derivation is
given in the supplementary material):

m̃k+1 = m̃k + (1− rk)(I− Σ̃B−1
k )(µ̃− m̃k − Σ̃αk), where Bk := Σ̃ + [diag(rkγ̃k)]−1,

ṽk+1 = diag(Σ̃)− diag(Σ̃A−1
k Σ̃), where Ak := Σ̃ + [diag(γ̃k)]−1. (19)

Note that these updates depend on µ̃, Σ̃,αk, and γk, whose size only depends onN and is indepen-
dent of D. Most importantly, these updates avoid an explicit computation of V and only requires
storing m̃k and ṽk both of which scale linearly with N .

Also note that the matrix Ak and Bk differ only slightly and we can reduce computation by using
Ak in place of Bk. In our experiments, this does not give any convergence issues.

To assess convergence, we can use the optimality condition. By taking the norm of derivative of
L at mk+1 and Vk+1 and simplifying, we get the following criteria: ‖µ̃ − m̃k+1 − Σ̃αk+1‖22 +

Tr[Σ̃
{

diag(γ̃k − γk+1 − 1)
}

Σ̃] ≤ ε, for some ε > 0. (derivation in the supplementary material).

Linear Basis Function Model and Gaussian Process : The algorithm presented above can be
extended to linear basis function models using the weight-space view presented in [22]. Consider
a non-linear basis function φ(x) that maps a D-dimensional feature vector into an N -dimensional
feature space. The generalized linear model of (9) is extended to a linear basis function model by
replacing xTnz with the latent function g(x) := φ(x)T z. The Gaussian prior on z then translates
to a kernel function κ(x,x′) := φ(x)TΣφ(x) and a mean function µ̃(x) := φ(x)Tµ in the latent
function space. Given input vectors xn, we define the kernel matrix Σ̃ whose (i, j)’th entry is equal
to κ(xi,xj) and the mean vector µ̃ whose i’th entry is µ̃(xi).

Assuming a Gaussian posterior over the latent function g(x), we can compute its mean m̃(x) and
variance ṽ(x) using the proximal-gradient algorithm. We define m̃ to be the vector of m̃(xn) for
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Algorithm 1 Proximal-gradient algorithm for linear basis function models and Gaussian process

Given: Training data (y,X), test data x∗, kernel mean µ̃, covariance Σ̃, step-size sequence rk,
and threshold ε.
Initialize: m̃0 ← µ̃, ṽ0 ← diag(Σ̃) and γ̃0 ← δ11.
repeat

For all n in parallel: αnk ←5m̃n
fn(m̃nk, ṽnk) and γnk ←5ṽnfn(m̃nk, ṽnk).

Update m̃k and ṽk using (19).
γ̃k+1 ← rkγ̃k + (1− rk)γk.

until ‖µ̃− m̃k − Σ̃αk‖+ Tr[Σ̃ diag(γ̃k − γk+1 − 1)Σ̃] > ε.
Predict test inputs x∗ using (20).

all n and similarly ṽ to be the vector of all ṽ(xn). Following the same derivation as the previous
section, we can show that the updates of (19) give us the posterior mean m̃ and variance ṽ. These
updates are the kernalized version of (16) and (17).

For prediction, we only need the converged value of αk and γk, denoted by α∗ and γ∗, respectively.
Given a new input x∗, define κ∗∗ := κ(x∗,x∗) and κ∗ to be a vector with n’th entry equal to
κ(xn,x∗). The predictive mean and variance can be computed as shown below:

ṽ(x∗) = κ∗∗ − κT∗ [Σ̃ + (diag(γ̃∗))−1]−1κ∗ , m̃(x∗) = µ̃∗ − κT∗α
∗ (20)

The final algorithm is shown in Algorithm 1. Here, we initialize γ̃ to a small constant δ1, since
otherwise solving the first equation may not be well-conditioned.

It is straightforward to see that these updates also work for Gaussian process (GP) with a generic
kernel k(x,x′) and mean function µ̃(x) and many other latent Gaussian models.

6 Experiments and Results

We now present some results on the real data. Our goal is to show that our approach gives compa-
rable results to existing methods, while being easy to implement. We also show that, in some cases,
our method is significantly faster than the alternatives due to the kernel trick.

We show results on three models: Bayesian logistic regression, GP classification with logistic like-
lihood, and GP regression with Laplace likelihood. For these likelihoods, expectations can be com-
puted (almost) exactly. Specifically, we used the methods described in [23, 24]. We use a fixed
step-size of βk = 0.25 and 1 for logistic and Laplace likelihoods respectively.

We consider three datasets for each model. A summary is given in Table 1. These datasets can be
found at data repository1 of LIBSVM and UCI.

Bayesian Logistic Regression: Results for Bayesian logistic regression are shown in Table 2. We
consider three datasets of various sizes. For ‘a1a’, N > D, for ‘Colon’, N < D and for ‘gisette’
N ≈ D. We compare our ‘proximal’ method to 3 other existing methods: ‘MAP’ method which
finds the mode of the penalized log-likelihood, ‘Mean-Field’ method where the posterior is fac-
torized across dimensions, and ‘Cholesky’ method of [25]. We implemented these methods using
‘minFunc’ software by Mark Schmidt2. We used L-BFGS for optimization. All algorithms are
stopped when optimality condition is below 10−4. We set the Gaussian prior to Σ = δI and µ = 0.
To set the hyperparameter δ, we use cross-validation for MAP, and maximum marginal-likelihood
estimate for the rest of the methods. Since we compare running time as well, we use a common set
of hyperparameter values for a fair comparison. The values are shown in Table 1.

For Bayesian methods, we report the negative of the marginal likelihood approximation (‘Neg-Log-
Lik’). This is (the negative of) the value of the lower bound at the maximum. We also report the
log-loss computed as follows:−

∑
n log p̂n/N where p̂n are the predictive probabilities of the test

data and N is the total number of test-pairs. A lower value is better and a value of 1 is equivalent
to random coin-flipping. In addition, we report the total time taken for hyperparameter selection.

1https://archive.ics.uci.edu/ml/datasets.html and http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2Available at https://www.cs.ubc.ca/ schmidtm/Software/minFunc.html
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Model Dataset N D %Train #Splits Hyperparameter range

LogReg
a1a 32,561 123 5% 1 δ = logspace(-3,1,30)
Colon 62 2000 50% 10 δ = logspace(0,6,30)
Gisette 7,000 5,000 50% 1 δ = logspace(0,6,30)

GP class
Ionosphere 351 34 50% 10 for all datasets
Sonar 208 60 50% 10 log(l) = linspace(-1,6,15)
USPS-3vs5 1,540 256 50% 5 log(σ) = linspace(-1,6,15)

GP reg
Housing 506 13 50% 10 log(l) = linspace(-1,6,15)
Triazines 186 60 50% 10 log(σ) = linspace(-1,6,15)
Space ga 3,106 6 50% 1 log(b) = linspace(-5,1,2)

Table 1: A list of models and datasets. %Train is the % of training data. The last column shows the
hyperparameters values (‘linspace’ and ‘logspace’ refer to Matlab commands).

Dataset Methods Neg-Log-Lik Log Loss Time

a1a

MAP — 0.499 27s
Mean-Field 792.8 0.505 21s
Cholesky 590.1 0.488 12m
Proximal 590.1 0.488 7m

Colon
MAP — 0.78 (0.01) 7s (0.00)
Mean-Field 18.35 (0.11) 0.78 (0.01) 15m (0.04)
Proximal 15.82 (0.13) 0.70 (0.01) 18m (0.14)

Gisette
MAP — 0.112 5s
Mean-Field 1275.7 0.258 22m
Proximal 608.5 0.140 13h

Table 2: A summary of the results obtained on Bayesian logistic regression. In all columns, a lower
values implies better performance.

For MAP, this is the total cross-validation time, while for Bayesian methods it is the time taken to
compute ‘Neg-Log-Lik’ for all hyperparameters values.

We summarize these results in Table 2. For all columns, a lower value is better. We see that for ‘a1a’,
fully Bayesian methods perform slightly better than MAP. More importantly, Proximal method is
faster than Cholesky method while obtaining the same error and marginal likelihood estimate. For
Proximal method, we use updates of (17) and (16) sinceD � N , but even in this scenario, Cholesky
method is slow due to expensive line-search for large number of parameters (of the order O(D2)).

For ‘Colon’ and ’gisette’ datasets, we use the update (19) for Proximal method. Since Cholesky
method is too slow for these large datasets, we do not compare to it. In Table 2, we see that for
‘Colon’ dataset our implementation is as fast as Mean-Field while performing significantly better.
For ‘gisette’ dataset, however, our method is slow since both N and D are big.

Overall, we see that with the proximal approach we achieve same results as Cholesky method, while
taking much less time. In some cases, we can match the running time of Mean-Field method.
Note that Mean-Field does not give bad predictions overall, and the minimum value of log-loss are
comparable to our approach. However, since Neg-Log-Lik values for Mean-Field are inaccurate, it
ends up choosing a bad hyperparameter value. This is expected since Mean-Field makes an extreme
approximation. Therefore, cross-validation is more appropriate for Mean-Field.

Gaussian process classification and regression: We compare Proximal method to expectation
propagation (EP) and Laplace approximation. We use the GPML toolbox for this comparison. We
used a Squared-Exponential Kernel for Gaussian process with two scale parameters σ and l (as
defined in GPML toolbox). We do a grid search over these hyperparameters. The grid values are
given in Table 1. We report the log-loss and running time for each method.

The left plot in Figure 1 shows the log-loss for GP classification on USPS 3vs5 dataset, where Prox-
imal method shows very similar behaviour to EP. Results are summarized in Table 3. We see that our
method performs similar to EP, sometimes a bit better. The running times of EP and Proximal are

7



0.
1

0.
1

0.
2

0.
2

0.
4

0.
4

0.
6

0.
6

Laplace-usps

log(s)
0 2 4 6

l
o
g
(
s
i
g
m
a
)

0

2

4

6

0.
5

0.
5

0.5

1

Laplace-usps

log(s)
0 2 4 6

l
o
g
(
s
i
g
m
a
)

0

2

4

6

0.
07

0.
1

0.1

0.
2

0.2
0.4

0.
4

0.6

0.
6

EP-usps

log(s)
0 2 4 6

0

2

4

6

10

10
10

15

15
20 20

30 30

30

30

EP-usps

log(s)
0 2 4 6

0

2

4

6

0.
07

0.07

0.
1

0.1

0.
2

0.2
0.4

0.
4

0.6

0.
6

Prox-usps

log(s)
0 2 4 6

0

2

4

6

5

5

10

10

15

15

20

20

30

30

40

40

50

Prox-usps

log(s)
0 2 4 6

0

2

4

6

Test Examples
0 50 100 150 200 250 300

P
r
e
d
i
c
t
i
v
e
 
P
r
o
b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EP vs Proximal

EP
Proximal

Figure 1: In the left figure, the top row shows the log-loss and the bottom row shows the running time
in seconds for ‘USPS 3vs5’ dataset. In each plot, the minimum value of the log-loss is shown with
a black circle. The right figure shows the predictive probabilities obtained with EP and Proximal
method (a higher value implies better performance).

Log Loss Time (s is sec, m is min, h is hr)
Data Laplace EP Proximal Laplace EP Proximal
Ionosphere .285 (.002) .234 (.002) .230 (.002) 10s (.3) 3.8m (.10) 3.6m (.10)
Sonar .410 (.002) .341 (.003) .317 (.004) 4s (.01) 45s (.01) 63s (.13)
USPS-3vs5 .101 (.002) .065 (.002) .055 (.003) 1m (.06) 1h (.06) 1h (.02)
Housing 1.03 (.004) .300 (.006) .310 (.009) .36m (.00) 25m (.65) 61m (1.8)
Triazines 1.35 (.006) 1.36 (.006) 1.35 (.006) 10s (.10) 8m (.04) 14m (.30)
Space ga 1.01 (—) .767 (—) .742 (—) 2m (—) 5h (—) 11h (—)

Table 3: Results for GP classification using logistic likelihood and GP regression using Laplace
likelihood. For all rows, a lower value is better.

also comparable. The advantage of our approach is that it is easier to implement compared to EP and
is numerically robust. The predictive probabilities obtained with EP and Proximal for ’USPS 3vs5’
dataset are shown in the right plot of Figure 1. We see that Proximal method gives better estimates
than EP in this case (higher is better). The improvement in the performance is due to the numerical
error in the likelihood implementation. For Proximal method, we use the method of [23] which is
quite accurate. Designing such accurate likelihood approximations for EP is challenging.

7 Discussion and Future Work

In this paper, we proposed a proximal framework that uses the KL proximal term to take the geome-
try of the posterior into account. We established equivalence between our proximal-point algorithm
and natural-gradient methods. We proposed a proximal-gradient algorithm that exploits the structure
of the bound to simplify the optimization.

An important future direction is to apply stochastic approximations to approximate gradients. This
extension is discussed in [21]. It is also important to design a line-search method to set the step sizes.
In addition, our proximal framework can also be used for distributed optimization in variational
inference, e.g. using Alternating Direction Method of Multiplier (ADMM) [26, 11].
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Supplementary Material for “Kullback-Leibler
Proximal Variational Inference”

1 Proof of Theorem 1

The KL proximal point algorithm solves the following subproblems:

λk+1 = argmax
λ
L(λ)− 1

βk
DKL[q(z|λ) ‖ q(z|λk)] (1)

To prove the theorem, we will first derive the expression for the gradient descent updates using the
natural gradient. Afterwards, we will derive the solution of (1) by differentiating the objective. Some
simplification will give us the required result.

Derivative of L: Denote the mean-field update for qi by λ∗i . Then the gradient 5λi
L(λ) and the

natural gradient 5̂λi
L(λ) are given as shown below (see Appendix A.1 and A.2 of [1] for a detailed

derivation):

5λiL(λ) =
[
52
λi
Ai(λi)

]
(λ∗i − λi) , 5̂λi

L(λ) = λ∗i − λi. (2)
Denoting the vector λi at k’th iteration by λi,k, a gradient update along the natural gradient with
step-size ρ will result in the following update:

λi,k+1 ← λi,k + ρ5̂λi
L(λ) = (1− ρ)λi,k + ρλ∗i (3)

Solution of KL proximal-point algorithm: We will now derive the solution of the proximal-point
subproblem of (1). The gradient of the KL-divergence term can be derived using the definition of
the KL-divergence for exponential family [2].

DKL[qi(zi|λi) ‖ qi(zi|λi,k)] := Ai(λi,k)−Ai(λi)−5λiAi(λi)(λi,k − λi) (4)

⇒ 5λi
DKL[qi(zi|λi) ‖ qi(zi|λi,k)] = 52

λi
Ai(λi)(λi,k − λi) (5)

The minimum of (1) can be obtained by setting the gradient to zero.

5λi
L(λ)− 1

βk
5λi

DKL[qi(zi|λi) ‖ qi(zi|λi,k)] = 0 (6)

⇒
[
52
λi
Ai(λi)

]
(λ∗i − λi)−

1

βk
52
λi
Ai(λi)(λi,k − λi) = 0 (7)

⇒
[
52
λi
Ai(λi)

] [
λ∗i − λi −

1

βk
(λi,k − λi)

]
= 0 (8)

⇒ λi,k+1 =
1

1 + βk
λi,k +

βk
1 + βk

λ∗i (9)

Therefore, we see that ρ = βk/(1 + βk).

2 Derivation for Generalized Linear Model

We will show that the following closed-form solutions,

V−1k+1 = rkV
−1
k + (1− rk)

[
Σ−1 + XT diag(γk)X

]
, (10)

mk+1 =
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
(1− rk)(Σ−1µ−XTαk) + rkV

−1
k mk

]
, (11)

1



are obtained for the following proximal-gradient subproblem:

(mk+1,Vk+1) = arg max
m,V �0

−
N∑
n=1

[
αnk (x

T
nm) + 1

2γnk (x
T
nVxn)

]
+ Eq(z|λ)

[
N (z|µ,Σ)

N (z|m,V)

]
− 1

βk
DKL [N (z|m,V)||N (z|mk,Vk)] . (12)

2.1 Update for Vk+1

The KL divergence for Gaussian distribution is given as follows:

DKL [N (z|m1,V1)||N (z|m2,V2)] =

− 1
2

[
log |V1V

−1
2 | − Tr(V1V

−1
2 )− (m1 −m2)

TV−12 (m1 −m2) +D
]

(13)

Using this and the fact that the second term in (12) is the negative of the KL divergence, we expand
(12) to get the following,

1
2 [log |V| − Tr(VΣ−1)− (m− µ)TΣ−1(m− µ) +D]

+
1

2βk
[log |V| − Tr{V(Vk)

−1} − (m−mk)
TV−1k (m−mk) +D]

−
N∑
n=1

[
αnk(x

T
nm) + 1

2γnk(x
T
nVxn)

]
(14)

= 1
2

[(
1 +

1

βk

)
log |V| − Tr

{
V

(
Σ−1 +

1

βk
V−1k

)}
− (m− µ)TΣ−1(m− µ)

− 1

βk
(m−mk)

TV−1k (m−mk) +

(
1 +

1

βk

)
D

]
−

N∑
n=1

[
αnk(x

T
nm) + 1

2γnk(x
T
nVxn)

]
(15)

Taking the derivative with respect to V at V = Vk+1 and setting it to zero, we get the following:

⇒
(
1 +

1

βk

)
V−1k+1 −

(
Σ−1 +

1

βk
V−1k

)
−XT diag(γk)X = 0 (16)

⇒ V−1k+1 =
1

1 + βk
V−1k +

βk
1 + βk

[
Σ−1 + XT diag(γk)X

]
(17)

⇒ V−1k+1 = rkV
−1
k + (1− rk)

[
Σ−1 + XT diag(γk)X

]
(18)

where rk := 1/(1 + βk).

2.2 Update for mk+1

Taking derivative with respect to m at m = mk+1 and setting it to zero, we get the following:

⇒ −Σ−1(mk+1 − µ)− 1

βk
V−1k (mk+1 −mk)−XTαk = 0 (19)

⇒ −
[
Σ−1 +

1

βk
V−1k

]
mk+1 +

[
Σ−1µ+

1

βk
V−1k mk

]
−XTαk = 0 (20)

⇒ mk+1 =

[
Σ−1 +

1

βk
V−1k

]−1 [
Σ−1µ+

1

βk
V−1k mk −XTαk

]
(21)

⇒ mk+1 =

[
Σ−1 +

1

βk
V−1k

]−1 [
Σ−1µ+

1

βk
V−1k mk −XTαk

]
(22)

⇒ mk+1 =
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
(1− rk)

(
Σ−1µ−XTαk

)
+ rkV

−1
k mk

]
(23)

where the last step is obtained using the fact that 1/βk = rk/(1− rk).
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3 Derivation of the Computationally Efficient Updates

3.1 The first key step: reparameterization of Vk+1

We show that Vk+1 can be expressed in terms of γk. Specifically, if we assume that V0 = Σ, then

Vk+1 =
[
Σ−1 + XT diag(γ̃k+1)X

]−1
, where γ̃k+1 = rkγ̃k + (1− rk)γk. (24)

with γ̃0 = γ0.

We recursively substitute Vj for j < k + 1 and simplify to get a convenient update.

V−1k+1 = rkV
−1
k + (1− rk)

[
Σ−1 + XT diag(γk)X

]
(25)

= rk

[
rk−1V

−1
k−1 + (1− rk−1)

(
Σ−1 + XT diag(γk−1)X

)]
+ (1− rk)

(
Σ−1 + XT diag(γk)X

)
(26)

= rkrk−1V
−1
k−1 + rk(1− rk−1)

(
Σ−1 + XT diag(γk−1)X

)
+ (1− rk)

(
Σ−1 + XT diag(γk)X

)
(27)

= rkrk−1V
−1
k−1 + (1− rkrk−1)Σ−1 + XT

[
rk(1− rk−1)diag(γk−1) + (1− rk)diag(γk)

]
X

(28)

= rkrk−1

[
rk−2V

−1
k−2 + (1− rk−2)

(
Σ−1 + XT diag(γk−2)X

)]
+ (1− rkrk−1)Σ−1 + XT

[
rk(1− rk−1)diag(γk−1) + (1− rk)diag(γk)

]
X (29)

= rkrk−1rk−2V
−1
k−2 + (rkrk−1 − rkrk−1rk−2)Σ−1 + (1− rkrk−1)Σ−1

+ XT
[
rkrk−1(1− rk−2)diag(γk−2) + rk(1− rk−1)diag(γk−1) + (1− rk)diag(γk)

]
X (30)

= rkrk−1rk−2V
−1
k−2 + (1− rkrk−1rk−2)Σ−1

+ XT
[
rkrk−1(1− rk−2)diag(γk−2) + rk(1− rk−1)diag(γk−1) + (1− rk)diag(γk)

]
X (31)

Continuing in this fashion until k = 0, we can write the update as follows:

V−1k+1 = tkV
−1
0 + (1− tk)Σ−1 + XT diag(γk)X (32)

where tk is the product of rk, rk−1, . . . , r0 and γ̃k is computed according to the following recursion:

γ̃k = rkγ̃k−1 + (1− rk)γk (33)

with γ̃−1 = γ0. If we set V0 = Σ, then the formula simplifies to the following:

V−1k+1 = Σ−1 + XT diag(γ̃k)X (34)

3.2 The second key step: expressing the updates in terms of m̃ and ṽ

We recall the definition described in the paper. Define m̃ to be a vector with m̃n as its n’th entry.
Similarly, let ṽ be the vector of ṽn for all n. Denote the corresponding vectors in the k’th iteration
by m̃k and ṽk, respectively. Let αk be the vector of αnk for all n and similarly let γk be the vector
of γnk for all n. Finally, define µ̃ = Xµ and Σ̃ = XΣXT .

We will derive the following computationally efficient updates:

m̃k+1 = m̃k + (1− rk)(I− Σ̃B−1k )(µ̃− m̃k − Σ̃αk), where Bk := Σ̃ + [diag(rkγ̃k)]
−1,

ṽk+1 = diag(Σ̃)− diag(Σ̃A−1k Σ̃), where Ak := Σ̃ + [diag(γ̃k)]
−1. (35)
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We use the fact that ṽ = diag(XVXT ) and apply Woodbury matrix identity.

ṽk+1 = diag(XVk+1X
T ) = diag

[
X(Σ−1 + XT diag(γ̃k)X)−1XT

]
(36)

= diag
[
X

{
Σ−ΣXT

(
diag(γ̃k)

−1
+ XΣXT

)−1
XΣ

}
XT

]
(37)

= diag
[
Σ̃− Σ̃

(
diag(γ̃k)

−1
+ Σ̃

)−1
Σ̃

]
(38)

= diag(Σ̃)− diag(Σ̃A−1k Σ̃), where Ak := Σ̃ + [diag(γ̃k)]
−1. (39)

Now we derive updates for m̃k+1. First, we simply the updates of mk+1 as shown below. The first
step is obtained by adding and subtracting (1− rk)Σ−1mk in the square bracket at the right. In the
second step, we take out mk. The final step is obtained by plugging in the updates of Vk.

mk+1 =
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
(1− rk)(Σ−1µ−XTαk) + rkV

−1
k mk

]
(40)

=
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
(1− rk){Σ−1(µ−mk)−XTαk}+ {(1− rk)Σ−1 + rkV

−1
k }mk

]
(41)

= mk + (1− rk)
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
Σ−1(µ−mk)−XTαk

]
(42)

= mk + (1− rk)
[
Σ−1 + rkX

T diag(γ̃k−1)X
]−1 [

Σ−1(µ−mk)−XTαk

]
(43)

Now we multiply the whole equation by X and use the fact that m̃ = Xm.

m̃k+1 = m̃k + (1− rk)X
[
Σ−1 + rkX

T diag(γ̃k−1)X
]−1 [

Σ−1(µ−mk)−XTαk

]
(44)

= m̃k + (1− rk)X
{

Σ−ΣXT
(

diag(rkγ̃k)
−1

+ XΣXT
)−1

XΣ

}[
Σ−1(µ−mk)−XTαk

]
(45)

= m̃k + (1− rk)
{

XΣ−XΣXT
(

diag(rkγ̃k)
−1

+ XΣXT
)−1

XΣ

}
Σ−1

[
µ−mk −ΣXTαk

]
(46)

= m̃k + (1− rk)
{

X− Σ̃
(

diag(rkγ̃k)
−1

+ Σ̃
)−1

X

}[
µ−mk −ΣXTαk

]
(47)

= m̃k + (1− rk)
{

I− Σ̃
(

diag(rkγ̃k)
−1

+ Σ̃
)−1}[

µ̃− m̃k − Σ̃αk

]
(48)

= m̃k + (1− rk)(I− Σ̃B−1k )(µ̃− m̃k − Σ̃αk) (49)

where Bk := Σ̃ + [diag(rkγ̃k)]
−1.

4 Convergence Assessment

We will use the first-order condition which says that the gradient of L should be zero at the maxi-
mum. The lower bound is given as follows:

L(m,V) =

N∑
n=1

fn(m̃n, ṽn) + Eq(z|λ)
[
N (z|µ,Σ)

N (z|m,V)

]
(50)

=

N∑
n=1

fn(m̃n, ṽn) +
1
2 [log |V| − Tr(VΣ−1)− (m− µ)TΣ−1(m− µ) +D] (51)

Taking the derivative w.r.t. V at m = mk+1,V = Vk+1, we get the following:
5VL(m,V) = − 1

2XT diag(γk+1)X + 1
2V−1k+1 −

1
2Σ−1 (52)

= − 1
2XT diag(γk+1)X + 1

2

[
Σ−1 + XT diag(γ̃k)X

]
− 1

2Σ−1 (53)

= 1
2XT

[
diag(γ̃k)− diag(γk+1)

]
X− 1

2Σ−1. (54)
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Taking the derivative w.r.t. m at m = mk+1,V = Vk+1, we get:

5mL(m,V) = −XTαk+1 −Σ−1(mk+1 − µ). (55)

We can therefore monitor the two gradients to assess convergence:

‖Σ−1(µ−mk+1)−XTαk+1‖22 + 1
2Tr[XT diag(γ̃k − γk+1)X−Σ−1] ≤ ε, (56)

To get computational efficient version, we can monitor the following:

‖XΣ5m L(m,V)‖22 + Tr
[
XΣ5V L(m,V)ΣXT

]
= | Σ̃αk+1 − m̃k+1 + µ̃‖22 + Tr

[
Σ̃
{

diag(γ̃k − γk+1 − 1)
}

Σ̃
]

(57)
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