
Buffer overflow vulnerabilities in CUDA: a
preliminary analysis

Andrea Miele

EPFL, LACAL, Lausanne, Switzerland

Abstract

We present a preliminary study of buffer overflow vulnerabilities in CUDA
software running on GPUs. We show how an attacker can overrun a buffer
to corrupt sensitive data or steer the execution flow by overwriting func-
tion pointers, e.g., manipulating the virtual table of a C++ object. In
view of a potential mass market diffusion of GPU accelerated software
this may be a major concern.

1 Introduction

General-Purpose Computing on Graphics Processing Units (GPGPU) has
become very popular in recent years. Modern GPUs are many-core accel-
erators for massively parallel applications rather than simply 2D and 3D
graphics rendering coprocessors as in the past. Hardware/software plat-
forms for GPGPU like Compute Unified Device Architecture (CUDA) [6]
and OpenCL [3,1] allow developers to program graphics cards in languages
like C/C++ or Fortran through APIs and language extensions. Such plat-
forms have been used to accelerate a variety of scientific applications in
the recent past and their use to speed-up commodity applications (e.g.,
web applications [4]) or operating systems can be expected in the near
future [13]. As a consequence, questions about the security of code run-
ning on these platforms have become relevant. So far the security of GPU
code has been somehow touched upon only considering GPUs as acceler-
ators for malware [14,9] and more recently information leakage through
side channels [11], but as far as we know no one has explored potential
vulnerabilities of GPU code and their exploitation. A natural question
that arises is whether or not classic C/C++ “buffer” overflow vulnerabil-
ities [8,2,10] can be exploited. Leveraging a vulnerability to run arbitrary
code on CPUs usually aims at interacting with the operating system via
system calls to perform privilege escalation. In the context of GPUs there
is no notion of operating system and the code runs on many cores across

ar
X

iv
:1

50
6.

08
54

6v
1

 [
cs

.C
R

]
 2

9
Ju

n
20

15
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148018363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a large number of threads. Thus, the concept of exploit assumes a differ-
ent dimension. The ultimate goal of an attacker may be tampering with
a parallel computation to maliciously affect the outcome or to force one
or more threads to jump to specific parts of the code. This may become
critical in view of future tight integration of CPU and GPU architectures.

The study of this problem on current GPUs is hindered by the lack of
documentation on low level details of the hardware/software interfaces.
The actual ISA of GPUs is usually not exposed by vendors who provide,
in some cases, only virtual low level assembly [7]. Recently NVIDIA has
released a disassembler for their binary executable format and a list of
ISA instructions [5]. The latter, though, does not include a description of
their syntax and functioning. Consequently, the analysis of GPU software
vulnerabilities has to rely on “trial and error” experiments and reverse
engineering.

In this paper we present a preliminary study of buffer overflow vulner-
abilities in CUDA software. In particular we show how a buffer overrun
can be exploited to overwrite function pointers (e.g., to manipulate the
virtual table of a C++ object) to steer the execution flow. An attacker
can hijack each call to specific functions to other functions in the code of
his/her choice or perform limited return orient programming (ROP) [12].
We hope that our results will act as a wake-up call for the community
as we believe that GPU software security will soon become an extremely
relevant problem. The source code of this project will be made freely
available.

2 Compute Unified Device Architecture (CUDA)

In this section we give a brief overview of CUDA. CUDA [6] is a comput-
ing platform, consisting in both a hardware and a software architecture,
enabling NVIDA GPUs to support general purpose computing. At the
programming level CUDA consists of extensions to the C/C++ language,
libraries and some specific data types that enable the programmer to com-
pute on the GPU. An actual function call mechanism exists and defining
recursive functions is possible. Moreover, OOP programming is possible
through a subset of C++ constructs that are supported. In CUDA pro-
grams the code that runs on the GPU is enclosed in a special function
called kernel. A kernel is executed in the form of multiple parallel in-
stances corresponding to a set of parallel threads. Threads are grouped in
blocks and blocks are grouped in grids:

– thread: A thread executes one instance of the kernel, and it is uniquely
identified inside its block by a thread identifier. Each thread has its
program counter, registers, per-thread private memory, input, and
output results.

– block: A block is a set of concurrently executing threads that can co-
operate among themselves through synchronization and shared mem-
ory. Each thread block has a private per-block shared memory space
used for inter-thread communication, data sharing, and result sharing
in parallel algorithms.

– grid: A grid is an array of thread blocks that execute the same ker-
nel, read inputs from global memory, write results to global memory,
and synchronize between dependent kernel calls. The GPU executes
a kernel as a grid of parallel thread blocks.

This hierarchal grouping scheme allows CUDA applications to scale across
different device models. See [6] for more details.

3 Practical analysis

In this section we present our practical analysis through two examples.
We will consider the presently common CPU/GPU interaction model in
which the CPU and GPUs work on separate physical memory. The CPU
loads the input data into the GPU memory and then runs the GPU kernel
that will process these data and produce output data. A soon as the kernel
terminates, the CPU copies the produced output from the GPU memory
to the CPU memory. We will not explore the case where CPU and GPU
are somehow integrated and share the same memory.

In our first example we show how function pointers in static memory
can be overwritten to have each thread call a function that should nor-
mally not be callable. In our second example we show how the VTABLE
of a C++ object in dynamic memory can be manipulated for the same
purpose. Table 1 shows the specifications of the platform we have used
for our experiments.

Table 1. Experimental platform specifications.

CPU Intel Core i7-4790, 3.60GHz

GPU Asus GTX Titan Black, 2880 cores

OS Ubuntu 14.04.1 LTS 64-bit

Compiler CUDA nvcc 6.5

3.1 A stack overflow

Consider the following fragment of CUDA code (the qualifier device
denotes a function that is called by threads running on the GPU).

#define BUF_LEN 16

typedef unsigned long(*pFdummy)(void);

__device__ __noinline__ unsigned long dummy1(){

return 0x1111111111111111;

}

__device__ __noinline__ unsigned long dummy2(){

return 0x2222222222222222;

}

__device__ __noinline__ unsigned long dummy3(){

return 0x3333333333333333;

}

__device__ __noinline__ unsigned long dummy4(){

return 0x4444444444444444;

}

__device__ __noinline__ unsigned long dummy5(){

return 0x5555555555555555;

}

__device__ __noinline__ unsigned long dummy6(){

return 0x6666666666666666;

}

__device__ __noinline__ unsigned long dummy7(){

return 0x7777777777777777;

}

__device__ __noinline__ unsigned long dummy8(){

return 0x8888888888888888;

}

__device__ __noinline__ unsigned long dummy9(){

printf("HELLO ADMIN!\n");

return 0x9999999999999999;

}

__device__ __noinline__ unsigned long unsafe(

unsigned int * input, int len){

unsigned int buf[BUF_LEN];

pFdummy fp[8];

fp[0]=dummy1;

fp[1]=dummy2;

fp[2]=dummy3;

fp[3]=dummy4;

fp[4]=dummy5;

fp[5]=dummy6;

fp[6]=dummy7;

fp[7]=dummy8;

unsigned int hash = 5381;

// copy input to buf

for(int i=0;i<len;i++)

buf[i]=input[i];

//djb2

for(int i=0;i<BUF_LEN;i++){

hash = ((hash << 5) + hash) + buf[i];

}

return (unsigned long) (fp[hash%8])();

}

The function unsafe is vulnerable to a buffer overflow (the array buf
can be overridden if the attacker has control over the variables string
and len). It computes a hash value of the input (using the djb2 algorithm
of D.J. Bernstein) and uses such value reduced modulo 8 to select and
call one of the first 8 “dummy” functions. The code of the simple CUDA
kernel using the unsafe functions is the following:

__global__ void test_kernel(unsigned long* hashes,

unsigned int * input, int len, int *admin){

unsigned long my_hash;

int idx=blockDim.x*blockIdx.x+threadIdx.x;

if(*admin)

my_hash=dummy9();

else

my_hash=unsafe_hash(input+(len*idx),len);

hashes[idx]=my_hash;

}

It is possible to use cuda-gdb or disassemble the binary with cuobjdump
to figure out what are the addresses of the dummy functions. For instance
on our platform the function dummy9 has address 0x4e0. This address
is relative to the base address of the code section and does not change
across multiple executions. We launch our kernel on one thread with value
pointed by admin set to zero (we omit the very simple host code for the
sake of clarity) and observe that if we fill the input buffer with at most
26 values (the value of len is set to 26), for instance 26 times 0x4e0,
the code prints correctly: Hash[0]: 6666666666666666. If we fill the in-
put buffer with one more value 0x4e0 (the address of dummy9) and set
the value of len to 27, the output is instead HELLO ADMIN! Hash[0]:
9999999999999999, thus we have successfully overwritten the function
pointers with the address of dummy9. If more than one thread is run we
observe that each thread is hijacked to execute dummy9. By looking
at the disassembled binary with cuobjdump:

.......................................

/*03d8*/ LDL R0, [R0];

/*03e0*/ PRET 0x3f0;

/*03e8*/ BRX R0 -0x3f0;

/*03f0*/ IADD R1, R1, 0x80;

/*03f8*/ RET;

/*0408*/ MOV32I R4, 0x11111111;

/*0410*/ MOV32I R5, 0x11111111;

/*0418*/ RET;

/*0420*/ MOV32I R4, 0x22222222

/*0428*/ MOV32I R5, 0x22222222

/*0430*/ RET;

/*0438*/ MOV32I R4, 0x33333333

/*0448*/ MOV32I R5, 0x33333333

/*0450*/ RET;

/*0458*/ MOV32I R4, 0x44444444

/*0460*/ MOV32I R5, 0x44444444

/*0468*/ RET;

/*0470*/ MOV32I R4, 0x55555555

/*0478*/ MOV32I R5, 0x55555555

/*0488*/ RET;

/*0490*/ MOV32I R4, 0x66666666

/*0498*/ MOV32I R5, 0x66666666

/*04a0*/ RET;

/*04a8*/ MOV32I R4, 0x77777777

/*04b0*/ MOV32I R5, 0x77777777

/*04b8*/ RET;

/*04c8*/ MOV32I R4, 0x88888888

/*04d0*/ MOV32I R5, 0x88888888

/*04d8*/ RET;

/*04e0*/ MOV32I R4, 0x0;

/*04e8*/ MOV32I R5, 0x0;

/*04f0*/ MOV R7, RZ;

/*04f8*/ MOV R6, RZ;

/*0508*/ JCAL 0x0;

/*0510*/ MOV32I R4, 0x99999999

/*0518*/ MOV32I R5, 0x99999999

/*0520*/ RET;

/*0528*/ BRA 0x528;

/*0530*/ NOP;

/*0538*/ NOP;

.......................................

we observe that the address 0x4e0 of dummy9 is relative to the base
address of the code as mentioned above. The “Branch to Relative Indexed
Address” BRX instruction at address 0x03e8 is used to jump to the correct
dummy function, whose address is stored in register R0.

It follows that by overwriting the function pointers in fp an attacker
can jump to any address in the code memory and so ROP type of exploits
are theoretically possible. Notice that the function call and return mech-
anism is handled with a PRET instruction followed eventually by a RET

instruction. The PRET instruction presumably stores the return address
(again relative to the code base address) at an unknown location. Classic
return address overwrite attacks seem not to be feasible and attempts
to jump outside the code memory failed (for instance we could not find
a way to jump to shellcode injected into the buffer buf). Therefore, we
conclude that code and data address spaces are separated and thus simple
injected code execution is not possible.

3.2 A “heap overflow”: manipulating the virtual table of a
C++ object

Consider the following code where we define a C++ class B with four
virtual methods: f1, f2, f3 and f4 and the derived class D defines the
above four methods. The function unsafe is very similar to the homony-
mous function described in section 3.1, but in this case the array buf and
a class D object are dynamically allocated. The function is vulnerable to
a “heap” overflow as the array buf can be overridden to overwrite the
adjacent class D object.

#define BUF_LEN 8

class B //base class

{

public:

__device__ virtual unsigned long f1

(unsigned int hash)

{return 0;}

__device__ virtual unsigned long f2

(unsigned int hash)

{return 0;}

__device__ virtual unsigned long f3

(unsigned int hash)

{return 0;}

__device__ virtual unsigned long f4

(unsigned int hash)

{return 0;}

};

class D : public B {

public:

__device__ __noinline__ unsigned long f1

(unsigned int hash);

__device__ __noinline__ unsigned long f2

(unsigned int hash);

__device__ __noinline__ unsigned long f3

(unsigned int hash);

__device__ __noinline__ unsigned long f4

(unsigned int hash);

};

__device__ __noinline__ unsigned long D::f1

(unsigned int hash)

{return hash;}

__device__ __noinline__ unsigned long D::f2

(unsigned int hash)

{return 2*hash;}

__device__ __noinline__ unsigned long D::f3

(unsigned int hash)

{return 3*hash;}

__device__ __noinline__ unsigned long D::f4

(unsigned int hash)

{return 4*hash;}

__device__ __noinline__ unsigned long secret() {

printf("HELLO ADMIN! ");

return 0x9999999999999999;

};

__device__ __noinline__ unsigned long unsafe(

unsigned long * input, unsigned int len){

unsigned long res =0;

unsigned long hash = 5381;

unsigned long *buf =

(unsigned long *)

malloc(sizeof(unsigned long)*BUF_LEN);

D *objD = new D;

// copy input to buf

for(int i=0;i<len;i++)

buf[i]=input[i];

//djb2

for(int i=0;i<BUF_LEN;i++){

hash = ((hash << 5) + hash) +buf[i];

}

res=objD->f1(hash);

res=objD->f2(res);

res=objD->f3(res);

res=objD->f4(res);

free(buf);

delete objD;

return res;

}

The kernel we focus on is also very similar to the kernel presented in
section 3.1:

__global__ void test_kernel(unsigned long* hashes,

unsigned long * input, unsigned int len, int *admin){

unsigned long my_hash;

int idx=blockDim.x*blockIdx.x+threadIdx.x;

if(*admin)

my_hash=secret();

else

my_hash=unsafe_hash(input+(len*(idx)),len);

hashes[idx]=my_hash;

}

By instrumenting the code with simple printf calls we have been
able to observe the following:

– The addresses of dynamically allocated memory blocks (malloc) or
objects (new) are predictable. In our case, considering the first thread
of the first block, the address of the array buf allocated in the function
unsafe is always 0xb0513f920.

– The first 64-bit value stored in an object of class D is the address of
its virtual table (VTABLE). This address is the same across different
threads as one would expect.

– The VTABLE contains the addresses (relative to the base of code
section) of the four virtual functions defined in class D. This can
be verified printing the VTABLE and comparing the first four 64-
bit values with the addresses of the four functions appearing in the
disassembled code obtained with cuobjdump.

Using the above observations we can exploit the overflow vulnerability
to overwrite the VTABLE address of the class D object instantiated in
a thread with the address of a “forged” VTABLE (which is stored in
buf) containing 4 copies of the address of the function secret. Then the
thread is forced to call the function secret.

Focusing on a single thread we have the memory layout showed in
Figure 1. The exploit is achieved by filling the array buf as depicted in
Figure 2, namely the first 11 locations of buf must contain the address
of the the forged VTABLE, which is in turn stored in buf starting at the
12-th location. We have not discovered any hint suggesting the use of
classic malloc linked lists with pointers stored next to the actual data.
We leave the exploration of classic malloc and free exploits [2] as future
work.

0xb04640010	

buf

*objD

0xb0513f920

0x588	
0x5a0	
0x5b8	
0x5d8	

VTABLE 0xb04640010

0xb0513f970

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0x588

0x5a0

0x5b8

0x5d8

f1()

f2()

f3()

f4()

CAL	 secret	 0x58

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 1. Memory layout snapshot for function unsafe.

4 Conclusion

We have shown that CUDA software running on the latest NVIDIA GPUs
can be vulnerable to classic buffer overflow attacks. Buffer overflows in
both static and dynamic memory can be exploited to overwrite sensitive
data or function pointers (e.g., to manipulate a C++ object virtual table).
Our analysis does not expose any concrete threat, however it shows that
the exploitation of vulnerabilities in GPU software is possible. This may

0x58	
0x58	
0x58	
0x58	

0xb0513f920	
0xb0513f920	
0xb0513f920	
0xb0513f920	
0xb0513f920	
0xb0513f920	

0xb0513f920	

buf

*objD

0xb0513f920

fake VTABLE

0xb0513f970

.

.

.

.

.

.

CAL	 secret	
0x58

.

.

.

.

.

.

Fig. 2. Exploiting the heap overflow in function unsafe. We override the
buffer buf to inject a forged VTABLE into the object *objD.

become a critical problem in the future if commodity GPGPU software
will spread, especially if GPUs and CPUs will be tightly integrated.

References

1. AMD. http://developer.amd.com/tools-and-sdks/opencl-zone/.

2. anonymous. Once upon a free(). http://phrack.org/issues/57/9.html.

3. K. Group. OpenCL. http://www.khronos.org/opencl/.

4. K. Group. WebGL. https://www.khronos.org/webgl.

5. NVIDIA. CUDA binary utilities. docs.nvidia.com/cuda/

cuda-binary-utilities/index.html.

http://www.khronos.org/opencl/
https://www.khronos.org/webgl
docs.nvidia.com/cuda/cuda-binary-utilities/index.html
docs.nvidia.com/cuda/cuda-binary-utilities/index.html

6. NVIDIA. CUDA Programming Guide, docs.nvidia.com/cuda/

cuda-c-programming-guide/. 2014.
7. NVIDIA. Parallel Thread Execution ISA docs.nvidia.com/cuda/

parallel-thread-execution/. 2014.
8. A. One. Smashing the stack for fun and profit. http://phrack.org/issues/49/

14.html.
9. D. Reynaud. GPU Powered Malware. Ruxcon 2008, 2008.

10. rix. SMASHING C++ VPTRS. http://phrack.org/issues/56/8.html.
11. A. V. Roberto Di Pietro, Flavio Lombardi. CUDA Leaks: Information Leakage in

GPU Architectures. arXiv:1305.7383.
12. R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented program-

ming: Systems, languages, and applications. ACM Trans. Info. & System Security,
15(1), Mar. 2012.

13. M. Silberstein, B. Ford, I. Keidar, and E. Witchel. Gpufs: Integrating a file system
with gpus. SIGARCH Comput. Archit. News, 41(1):485–498, Mar. 2013.

14. G. Vasiliadis, M. Polychronakis, and S. Ioannidis. Gpu-assisted malware. In Ma-
licious and Unwanted Software (MALWARE), 2010 5th International Conference
on, pages 1–6, Oct 2010.

docs.nvidia.com/cuda/cuda-c-programming-guide/
docs.nvidia.com/cuda/cuda-c-programming-guide/
docs.nvidia.com/cuda/parallel-thread-execution/
docs.nvidia.com/cuda/parallel-thread-execution/
http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html

	Buffer overflow vulnerabilities in CUDA: a preliminary analysis
	Andrea Miele

