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Abstract. Fast and accurate salient-object detectors are important for
various image processing and computer vision applications, such as adap-
tive compression and object segmentation. It is also desirable to have a
detector that is aware of the position and the size of the salient objects.
In this paper, we propose a salient-object detection method that is fast,
accurate, and size-aware. For efficient computation, we quantize the im-
age colors and estimate the spatial positions and sizes of the quantized
colors. We then feed these values into a statistical model to obtain a
probability of saliency. In order to estimate the final saliency, this prob-
ability is combined with a global color contrast measure. We test our
method on two public datasets and show that our method significantly
outperforms the fast state-of-the-art methods. In addition, it has compa-
rable performance and is an order of magnitude faster than the accurate
state-of-the-art methods. We exhibit the potential of our algorithm by
processing a high-definition video in real time.

1 Introduction

(a) Original image (b) Position & size  (c) Saliency map (d) Ground truth

Fig. 1. FASA processes (a) the 400 x 400 pixel image in 6 miliseconds and outputs (b)
the parameters of rectangles that enclose the salient objects and (c) a saliency map,
which is comparable to (d) the ground truth.

When we examine an image without specifying a task, our visual system
attends mostly to the low-level distinctive or salient regions. Visual saliency
can thus be defined as how much a certain image region visually stands out,
compared to its surrounding area.

Low-level visual saliency deals with color and texture contrast, and their
spatial constraints. The studies on these types of saliency-extraction techniques
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are, in general, inspired by the human visual system (HVS). A leading investi-
gation in this field was done by Itti et al. [1], where, to generate a saliency map,
center-to-surround differences in color, intensity, and orientations are combined
at different scales with a non-maximum suppression.

One of the branches of visual saliency is salient-object detection. It is a
popular and extensively studied topic in the computer vision community. It has
the ability to mimic the human visual attention by rapidly finding important
regions in an image. Therefore, similar to how the human brain operates [2],
various applications, such as video compression [3], image retargeting [4], video
retargeting [5, 6] and object detection [7], can allocate the processing resources
according to saliency maps given by the detectors. As saliency detection is a pre-
processing step, it should process the image in an efficient and accurate manner
and provide as much information as possible for the successive step.

In this paper, we satisfy the efficiency, accuracy, and information criteria by
introducing a Fast, Accurate, and Size-Aware (FASA) salient object detector.
To achieve these goals, our method first performs a color quantization and forms
a histogram in perceptually uniform CIEL*a*b* color space. It then uses the
histogram to compute the spatial center and variance of the quantized colors
via an efficient bilateral filtering approach. We show that the said variables are
related to the position and the size of the salient object. Our method builds a
probabilistic model of salient-object sizes and positions in an image. In order
to compute the probability of saliency, the spatial center and variance of the
colors are used in this model. The saliency probabilities are then multiplied
with a global contrast value that is efficiently calculated using the quantized
color differences. Finally, to obtain a full-resolution saliency map, the saliency
values are linearly interpolated and are assigned to individual pixels using their
quantization (histogram) bins.

On average, our method computes the saliency maps in 4.3 miliseconds (ms),
when it uses the SED-100 [8] dataset and in 5.5 ms, when it uses the MSRA-1000
dataset [9]. On the same datasets, we show that our method is one order of mag-
nitude faster than the accurate state-of-the-art methods and has a comparable
performance in salient-object detection. Furthermore, it performs significantly
better than other fast saliency-detection methods. In addition to fast computa-
tion and accurate saliency maps, our method also supplies the position and the
size of the salient regions. We demonstrate the potential of our algorithm on a
public high-definition (HD) video by detecting the saliency maps in real time
(over 30 frames per second), as well as the position and the size of the salient
object. In Figure 1, the outputs of our algorithm are illustrated with an example.

The outline of our paper is as follows: In Section 2, we summarize the recent
research that is related to our method. In Section 3, we explain and discuss
our efficient saliency detection method and its outputs. In Section 4, we present
numerical and visual results of our method and compare it with other techniques
on the MSRA-1000 [9] and SED-100 [8] datasets. In Section 5, we recapitulate
the main points of our paper and explain possible future research directions.
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2 Related Work

The main objective of a salient-object detector is to rapidly and accurately gener-
ate a pixel-precision map of visually distinctive objects and to provide additional
information about them. We thus divide the previous studies on salient-object
detection into two groups.

2.1 Fast Methods

One approach to accelerate saliency detection without introducing undesirable
loss of accuracy is to quantize the intensity levels and/or compute the histogram
of an image. In Zhai et al. [10], global color contrast is calculated using sepa-
rate histograms for each channel. Whereas, in Cheng et al. [11], the color con-
trast is computed using a joint histogram. Both of the methods rely on global
color contrast as the primary measure of visual saliency and they perform color
quantization in sSRGB color space. As sRGB is not perceptually uniform, his-
tograms require a large number of quantization bins, otherwise they can suffer
from large quantization errors. In order to avoid this, in our method, we perform
the color quantization in CIEL*a*b* color space and, consequently, need fewer
quantization bins. This provides faster, more accurate, and perceptually uniform
color-contrast estimations.

Another approach for fast saliency estimation is to analyze the frequency
content of the images with salient objects. Achanta et al. [9] show that visual
distinctiveness is related to almost all frequency bands. Thus, saliency can be
detected by simply computing the color contrast between image pixels and the
average color of the scene. This corresponds to a band-pass filter. This method
is limited to the images, where average scene color is sufficiently different from
the color of the salient object. It does not suppress multi-colored backgrounds
very well. Our modeling of the spatial center and variances of colors overcomes
this limitation.

2.2 Accurate Methods

Other studies have focused on the accuracy of the saliency map and ignored
the computational efficiency. In order to estimate the visual saliency, Perazzi
et al. [12] fuse the spatial variance of a color of a superpixel and its contrast
with its local surroundings. The study in [11] is extended in Cheng et al. [13],
where a Gaussian mixture model with a spatial constraint is introduced for a
spatially-aware (non-global) color quantization. This step is followed by a further
color clustering for calculating the spatial variance and contrast of the colors in
a scene. To achieve an initial foreground and background segregation, Yang et
al. [14] form a superpixel graph and combine the saliency maps with different
image boundary queries. They find the final saliency map by querying the initial
foreground estimation.

Similar to ours, some of the techniques use the spatial variance of a color [12,
13]. They assume that the spatial variance of a salient object is smaller than the
background. Therefore, they inversely correlate the variance and saliency, and
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introduce a bias towards detecting smaller objects as more salient. In Section 3.2
and 3.5, we discuss this relationship and introduce a statistical model based on
salient-object position and size to correctly address the problem.

Salient-object detection is a pre-processing step. In order to properly allo-
cate the processing resources for higher-level tasks, such as object detection and
recognition, the detectors should rapidly detect the salient regions. Therefore,
we propose that the efficiency of salient object detectors is as important as their
accuracy.

3 Owur Method

Our saliency-detection method, FASA, combines a probability of saliency with
a global contrast map. Figure 2 provides a scheme illustrating our method. For
computational efficiency, our algorithm first quantizes an image to reduce the
number of colors. Then, in order to estimate the position and the size of the
salient object, the spatial center and variances of the quantized colors are cal-
culated. These values are put in an object model to compute the probability of
saliency. The same quantized colors are used to generate global contrast values
as well. Finally, the saliency probabilities of the colors and the contrast values
are fused into a single saliency map.

Spatial Center & Probability of
Variances of Colors Saliency

Original Image

Saliency Map

Color

Quantization Global Contrast

Fig. 2. Scheme of our method.

3.1 Spatial Center and Variances of a Color

One of the prominent components of visual saliency is the spatial variance of a
color in a scene [12,13]. In order to compute it, we first define a position and a
color vector notation.

el

Here, p; is the position vector, which represents the coordinates (x;, y;) of the ith
pixel. C; is the color vector of the pixel at position p; in CIEL*a*b* color space.
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The spatial center {m,(p;), my(p;)} and the horizontal and vertical variances
{Va(pi), Vy(pi)} of a color can be calculated using the following equation:

Zj‘vﬂ wc(Ci, Cj) ]
L we(Ci, C))
il w(Ci, C;) - (5 — ma(pi))
> n we(Ci, C))

m:v(pZ) =

> (2)

Similar calculations can be done for y dimension. Here, IV is the total number
of pixels in an image, and w®(C;, C;) are the color weights and are calculated
using a Gaussian function.

2
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Here, o, is a parameter to adjust the effect of the color difference. If we look
at (2), we can notice that w® in both of the equations depends on the spatial
coordinates. These calculations correspond to a bilateral filter with a color kernel,
namely wC(CZ-7 Cj). For computational efficiency, the spatial kernel (or support)
is chosen to be the whole image, which turns our algorithm into a global saliency-
detection method.

The computational complexity of (2) is O(N?). Here, for efficient bilateral
filtering, we follow the approach proposed by Yang et al. [15], in which they
quantize the intensity levels of a grayscale image. In this paper, the colors C;
of an image are quantized (i.e., a color histogram is created) into a set of colors
{Qk}szl, where K is the number of colors after the quantization. In practice, we
can minimize K by assigning certain quantized colors that have very few pixels
to the perceptually closest quantized color with a non-zero number of pixels. A
similar color quantization in sSRGB color space is performed in Cheng et al. [11].
However, we quantize the image in perceptually uniform CIEL*a*b* color space
and thus need fewer quantization bins. An example of the color quantization is
given in Figure 3.

(a) Original Image (b) 175 quantized colors (c¢) 50 quantized colors

Fig. 3. The L*a*b* histogram (8 bins in each channel, 8 = 512 bins in total) of (a)
the original image contains (b) 175 quantized colors with non-zero histogram bins and
(c) 50 quantized colors that can cover 95% of the image pixels.
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In our paper, C; — Qy, indicates that the color of the pixel at p; falls to the
k" color histogram bin after the quantization. If we quickly calculate the color
histogram of the image and precompute wc(Qk, Qj)7 we can efficiently estimate
the spatial center and variances of the quantized colors as follows:

ml, = Zle wciQk’ Q;) * v Ciq, Ti
it by we (Qr, Q)
;S w(Qe Q) Yo, (@1l
o S by we (Qr, Q)

Similar calculations can be performed for y dimension. Here, {m/;,m;,} is the

(4)

spatial center and {V/, Vy’k} are the spatial variances of the k*"* quantized color.

hy = |in\Ci — Qk| is the number of pixels in the k** color histogram bin. The
spatial center and variances at each pixel in (2) can be estimated as follows:

mg(p;) ~ myy,  Vpi|Ci — Qp

5
Va(pi) =V VpilCi = Qi (5)

Similar calculations can be performed for y dimension. We reduce the complexity
of the bilateral filtering in (2) to O(K?) via the color quantization in (4). In
addition, as explained in Section 3.2, {m/,, m;, } and {V,, V,; } provide valuable
position and size cues about the salient object.

3.2 The Center and the Size of a Salient Object

The spatial center {m/,,m;,} shows the color-weighted center of mass of kth
quantized color of the image. The spatial variances {V,, Vy’k} depict how spa-
tially distributed the same quantized color is within the image. In addition, it
also gives us an idea about the “size” of that color. In order to show this rela-
tionship, in Figure 4(a), we illustrate a test image of size 256 x 256 pixels that
includes a red and a blue rectangle.

In this image, we have three dominant colors, i.e. k € {red, green,blue}.
As there is sufficient global color contrast between these colors, we can assume
we(Qu, Q;) ~ 0 for k # j and we know that w°(Qy, Qx) = 1. By using this, we
can rewrite (4) and estimate the center of the objects as follows:

, 1
mx,rect o X = Tzc (6)
rect Vi |Ci—=Qrect

Here r;. is the = coordinate of the center of the red rectangle. As rectangles are
symmetrical in both horizontal and vertical dimensions, we can easily compute
the center of the red rectangle (ry,ry.) using (6). The size of an object can be
calculated as follows:

T:cl/2 2
V! - 1 (17 _r )2 - Tyl —Tzz/2x ~dx . ril (7)
srect ™ § i xc) ~ =
wree hrect Tyl * Tl 12

Vi, |Cz _>Q'rect



FASA: Fast, Accurate, and Size-Aware Salient Object Detection 7

(a) () (d)

Fig. 4. (a) A test image with two salient rectangles with (b) the center and size param-
eters of the red rectangle. (c) The estimated position and sizes are shown with black
bounding rectangle. (d) The accuracy of the center and the size estimation degrades,
when the color of the objects are similar.

Here, r,; and ry; are the width and the height of the red rectangle, respectively.
Similar equations can be derived for the y dimension. As we can see from (6) and
(7), given sufficient color contrast, we are able to estimate the center and the
size of both rectangles and ellipses, which is illustrated with black boundaries in
Figure 4(c).

Conventionally, a bounding rectangle is used to represent a detected object.
However, in some cases, it could be useful to represent the objects using a bound-
ing ellipse instead. The central position of a bounding ellipse can be computed
using (6). To estimate the dimensions of an ellipse, we slightly modify (7):

) Crest/2 2 _ oz
o N /4 ey f_e,gl/za7 m dz ey (8)

xz,ellipse ™

72/16 - ey - em - 16

Here, e, and ey are the width and the height of an ellipse, respectively. The
equation for estimating the height is similar to (8).

Natural images often contain non-rectangular objects and the color of the
objects might interfere with each other as shown in Figure 4(d). However, the
spatial center and variances still give us an idea about the position and the
size of an object (or background), so that we can better calculate the saliency
value. Moreover, this additional information is beneficial for object detection
applications, as demonstrated in Section 4.4.

3.3 Computing Probability of Saliency

The salient objects tend to be smaller then their surrounding background. As
they do not calculate the position and the size of an object, Perazzi et al. [12] and
Cheng et al. [13] favor small spatial variations by using an inverting function to
map the spatial variance to visual saliency. This creates a bias towards smaller
objects.

In our method, we estimate the position and the size of the salient object,
thus we can statistically model a mapping from these variables to a saliency
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probability. To generate our model, we use the MSRA-A dataset [16] that in-
cludes over 20’000 images with salient objects and their enclosing rectangles
marked by three persons. The MSRA-1000 dataset is derived from the MSRA-A
dataset. Therefore, to generate unbiased statistics, we exclude the images of the
MSRA-1000 from the MSRA-A dataset. In Figure 5, we illustrate the probability
distributions in terms of the width and the height of the salient objects, as well
as their distance to the image center.

0.05 -0.5
8
0.04 § 0.02
=) z e
z 2003 3 0.015
g : £ o
& &0.02 8 0.01
®
kst
0.01 5 0.005
>
0 05 o
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 -0.5 0 0.5
Width Height Horizontal Distance to Center
(a) (b) (c)

Fig. 5. Distributions of object (a) width (b) height, and (c¢) distance to image center
in the MSRA-A dataset [16] based on the ground truth rectangles. All values are
normalized by using the image dimensions.

We can see in Figure 5 that all probability distributions resemble a Gaussian
distribution. Therefore, we model their joint distribution with a multivariate
Gaussian function given as follows:

N = éex _ (g — )72 (g — )
)= G 7 2 )
o - lm-mpi) VIZ V) ma(pr) — n/2 my(ps) — /2]

Naw Th N Ny

(9)
Here, P(pi) is the probability of saliency of an input image with dimensions 7.,
and ny,. Note that the factor 12 in g; comes from (7).
The mean vector and the covariance matrix of the joint Gaussian model that
is illustrated in Figure 5 are given as follows:

0.5555 0.0231 —0.0010 0.0001 —0.0002

= 0.6449 5 —0.0010 0.0246 —0.0000 0.0000 (10)
0.0002 |’ 0.0001 —0.0000 0.0115 0.0003
0.0063 —0.0002 0.0000 0.0003 0.0080

If we analyze p in (10), we can see that the average height is larger than the
average width. This could be due to a tendency of the photographers to take
landscape photographs over portraits, in order to emphasize salient objects. In
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addition, the average position is very close to the image center, thus validating
the well-known center-bias phenomenon [17].

3.4 Global Contrast

High color-contrast is widely used as a measure of saliency [1,9-14]. Once we
have the quantized colors and the color differences w®(Qg, Q;), we can easily
compute the global contrast of each quantized color as follows:

K
R(pi) = > h;-[|Qr — Qjll2, ¥PilCi = Qi (11)

Jj=1

Here, h; is the number of pixels in the 4" histogram bin and Q; is the quantized
color that corresponds to that bin. State-of-the-art methods, such as FT [9], LC
[10], and HC [11], rely only on global color contrast. In order to generate a final
saliency map, our method combines global color contrast with the probability of
saliency.

3.5 Computing the Final Saliency Map

In order to combine the probability of saliency and the global contrast into a
single saliency map, we use the following approach:

K c
S(pi) = Z]=1w (gkaQJ) P(p;) R(I)Z)7 Vpi|Ci = Qs (12)
2 =1 w(Qr, Qj)

Here, S(p;) is the saliency value of the pixel at p;. All of the computations
for P(p;), R(p:), and S(p;) can be done using quantized colors. Therefore, our
implementation performs the calculations by using K colors and assigns the cor-
responding saliency values to individual pixels based on their color quantization
bins. The final computational complexity of our method is O(N)+O(K?), where
O(N) comes from the histogram computation and O(K?) comes from the bilat-
eral filtering and other quantization related computations. A color weighting is
used in (12) for smoother saliency values. After computing the final saliency
map, we normalize the map between 0 and 1.

4 Experiments

In this section, to show the most recent state-of-the-art performance on the
MSRA-1000 [9] and the SED-100 [8] datasets, we compare our FASA method
to fast saliency detection methods, such as FT [9], LC [10], HC [11], as well
as accurate methods, such as GC [13], SF [12], RC [11], and GMR [14]. FASA
performs efficient and image-dependent quantization in CIEL*a*b* color space
and benefits from a statistical object model. Therefore, it is one order of magni-
tude faster than accurate methods while significantly outperforming other fast
techniques.
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4.1 Experimental Setup

Given an input image, we quantize its colors in CIEL*a*b* color space. We use
8 bins in each channel. In order to minimize the quantization errors, instead of
using the full range of CIEL*a*b* (for example L* € [0,100]), we divide the
range, defined by the minimum and the maximum value of each channel, into 8
bins. This gives us a histogram of size 8% = 512. We further reduce the number of
colors to a set of colors that represents 95% of the image pixels. We reassign the
excluded non-zero color histogram bins to the perceptually closest bins. There
are, on average, 55 and 60 colors per image in the MSRA-1000 and the SED-100
datasets, respectively. We use o, = 16 to calculate the color weights w®(Qg, Q;).
For all methods, we run the corresponding author’s implementations using an
Intel Core i7 2.3GHz with 16GB RAM.

4.2 Performance Comparisons

The color quantization step, prior to the bilateral filtering, greatly reduces the
computational complexity of our method while still retaining the saliency accu-
racy. Our algorithm estimates the visual saliency of an image in the MSRA-1000
and the SED-100 datasets in, on average, 5.5 and 4.3 ms, respectively. The com-
parison of execution times is given in Table 1. Note that the most time consuming
step (superpixel segmentation) in GMR is implemented in C++ and it processes
the MSRA-1000 images in approximately 200 ms, on average.

Table 1. Average computation time (in miliseconds) for the MSRA-1000 (12 x 10*
pixels per image) and the SED-100 (8.7 x 10 pixels per image) datasets.

Accurate Fast
GMR [14] [SF [12]]RC [11]]GC [13][|FT [9]|HC [11]]LC [10]||[FASA
MSRA-1000 262 241 180 68 16 12 3 5.5
SED-100 214 198 121 50 13 10 3 4.3
[Code [[Matlab/C++[ C++ | C++ | C++ [[C++] C++ | C++ [[ C++ |

To reduce the computation time, the methods LC, HC, RC, and GC execute a
color quantization step that is similar to ours. They quantize the colors in sSRGB
space by using either 255 bins (LC, independent histograms for each channel)
or 12 bins (HC, RC, GC) per channel. Instead, we perform the quantization in
the perceptually more uniform CIEL*a*b* color space and adjust the histogram
using the minimum and the maximum values of L*a*b* channels of the processed
image. Consequently, we need only 8 bins per channel and obtain a better and
faster representation of the image.

In Figure 6, we compare the precision and recall curves of our method with
the other methods on the MSRA-1000 and SED-100 datasets. As it can be
seen from Figure 6(a) and 6(b), our algorithm significantly outperforms the fast
methods, such as FT, LC, and HC, because they only take the color contrast
(global and/or local) into account. The local saliency-detection methods, such as
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SF and GC, also use the spatial variance as a part of their saliency computation.
However, as stated before, they directly favor smaller objects by assuming an
inverse correlation between the spatial variance and the object saliency. We use,
instead, the position and the size information in a statistical model and, even
though our method is global, we achieve an accuracy comparable to SF, GC,
and RC and we are one order of magnitude faster.

As we state in Section 2.2, saliency detection is a pre-processing step for
successive applications. Therefore, the speed of a salient-object detector can be
as essential as its accuracy. In this paper, we focus on the efficiency and present
a method that is 50 times faster than GMR, which is one of the most accurate
state-of-the-art salient-object detectors.

Fast Methods on the MSRA-1000 Fast Methods on the SED-100 ; Objectness on the MSRA-1000
1 1 ;
0.8| 0.8 0.8/ —
2
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@ 0.4 0.4 204
[=]
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0.2]—HC (12) 0.2f—HC (10) 0.2 o Alexe et al.
—LC(@3) —LC @3) —BING
o —FASA (5.5) 0 —FASA (4.3) 0 —FASA
0 0.5 1 0 05 1 10° 10' 10°
Recall Recall Number of Object Proposal Windows
(a) (b) (c)
Accurate Methods on the MSRA-1000 . Accurate Methods on the SED-100 1 Objectness on the SED-100
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—GC (68) —GC (50) —BING
0 —FASA (5.5) 0 —FASA (4.3) 0 —FASA
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Fig. 6. Salient object detection performance of our method are compared to fast and
accurate methods in (a, b, d, e). The numbers in parentheses indicate the execution
times of the corresponding methods. The objectness detection rate of our method is
compared to other methods in (¢) and (e).

Our method outputs additional position and size information about salient
objects, which can be considered as an “objectness” measure. Therefore, we com-
pare the object-detection capabilities of FASA to well-known objectness measur-
ing methods, such as Alexe et al. [18] and BING [19]. The object-detection rate
(probability of detecting an object) versus the number of object proposal win-
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dows for the MSRA-1000 and the SED-100 datasets are illustrated in Figure 6(c)
and Figure 6(f), respectively. Our method is more accurate if we just consider
the first proposal window. This is logical as our method focuses on (and is op-
timized for) estimating the salient objects and provides object center and size
as additional information. This property can be helpful to provide single and
accurate proposals for object detection and tracking.

4.3 Visual Comparisons

We visually compare the saliency maps generated by different methods in Fig-
ure 7. Due to the accurate quantization in CIEL*a*b* color space, our saliency
maps are more uniform than the maps of LC and HC. Moreover, the background
suppression of the probability of saliency is better than FT. Compared to the
other fast methods, FASA generates visually better results.

Our maps are visually comparable to the maps of the accurate methods,
such as RC, GC, SF, and even GMR. Considering that FASA is one order of
magnitude faster than these methods, our method may be preferable for time-
critical applications.

Image GT FASA FASA

(d) SED-100 (e) Fast methods

Fig. 7. Four example images from the MSRA-1000 and the SED-100 datasets. (a,d)
FASA estimates the position and the size of the objects (red rectangles). (b,e) Our
saliency maps are better than the maps of the fast methods and (c,f) they are visually
comparable to the maps of the accurate state-of-the-art methods (GT: Ground Truth).
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4.4 Application to Videos

Our method is fast enough to use it as a real-time salient-object detector in
videos. Furthermore, it provides the position and size information for the salient
and non-salient parts of the image. This property can be used in applications
such as object tracking in videos [20, 21].

In order to demonstrate the potential of FASA, we estimate, using different
resolutions, the saliency of the publicly available video “Big Buck Bunny”!. We
are able to process the HD version (1280 x 720) of the video with a speed of 30
frames per second (fps). Given that the frame-rate of the video is 24 fps, our
method estimates the saliency map and the center and the size of the objects in
real time. The fps values under different resolutions are given in Table 2. The
fps value linearly changes with the number of pixels in a single video frame. In
other words, the number of pixels our method can process in a second (N x fps)
is largely independent from the resolution of the image. This shows that our
method has a computational complexity of O(N) + O(K?) ~ O(N), where K
is the number of colors after quantization and K2 <« N. Note that our method
is optimized to perform saliency detection in images and individually processes
each video frame.

Table 2. Average processing speed of FASA in frames per second (fps) for different
resolutions of the video “Big Buck Bunny”.

Resolution
1920 x 1080{1280 x 720|854 x 480
fps |Frames per second 13.7 30.7 66.5
N |Number of megapixels 2.07 0.92 0.41
N x fps|Number of megapixels per second 28.4 28.3 27.2

For visual results, in Figure 8, we illustrate 10 frames from the same video.
We encircle the most salient regions (saliency > 0.75 after normalization be-
tween 0 and 1) using their estimated positions and sizes, and we display the
corresponding saliency maps. Due to its global nature, our method is accurate
in scenes with a single salient object or multiple salient objects with different
colors. It has a limited performance when color interference or a complex scene
is present, as shown in the last two frames in Figure 8.

5 Conclusion

In this paper, we introduce a salient-object detection method that quantizes
colors in perceptually uniform CIEL*a*b* space and combines two components
for a fast and accurate estimation of saliency. The first component deals with
the spatial center and variances of the quantized colors via an efficient bilateral

! http://www.bigbuckbunny.org/index.php/download/
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filtering. This component also produces a probability of saliency based on a
statistical object model that is extracted from the MSRA-A dataset [16]. The
center and variance values are shown to be related to the position and the size of
the salient objects. The second component computes the global color contrast.
The final saliency map is calculated by linearly interpolating the product of
the two components. Our method performs significantly better than other fast
state-of-the-art methods and it is an order of magnitude faster than the methods
with similar precision-recall performances on the MSRA-1000 [9] and SED-100
[8] datasets. We also present the potential of our method by generating saliency
maps and by computing the position and the size of salient objects in 30 fps on
an HD video.

For computational efficiency, our algorithm globally detects the visual saliency.
This can create limitations in scenes with multiple salient objects and multi-
colored salient objects, because colors interfere with each other during the es-
timation of saliency. In order to generate more accurate saliency maps, we can
enforce spatial constraints to our color histogram through bilateral filtering or to
our contrast computation, without significantly sacrificing the execution time.
Another future research direction is to calculate temporally-aware color his-
tograms for video processing.

Fig. 8. 10 frames from the video “Big Buck Bunny”. The first row shows the original
frame, the second row position and the size of the most salient objects, and the third
row the saliency map of the frame.
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