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The outstanding progress in nanostructure fabrication and cooling technologies allows what was unthinkable
a few decades ago: bringing single-mode mechanical vibrations to the quantum regime. The coupling between
photon and phonon excitations is a natural source of nonclassical states of light and mechanical vibrations,
and its study within the field of cavity optomechanics is developing lightning fast. Photonic crystal cavities
are highly integrable architectures that have demonstrated the strongest optomechanical coupling to date and
should therefore play a central role for such hybrid quantum-state engineering. In this context, we propose a
realistic heralding protocol for the on-chip preparation of remotely entangled mechanical states, relying on the
state-of-the-art optomechanical parameters of a silicon-based nanobeam structure. Pulsed sideband excitation of
a Stokes process, combined with single-photon detection, allows the writing of a delocalized mechanical Bell
state in the system, signatures of which can then be read out in the optical field. A measure of entanglement in
this protocol is provided by the visibility of a characteristic quantum interference pattern in the emitted light.
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I. INTRODUCTION

Cavity optomechanics [1–4] remarkably allows the trans-
position of cavity quantum electrodynamics features to vibra-
tional quanta, through radiation pressure. This field of research
has demonstrated a spectacular theoretical and experimental
development in the past decade and is now envisioned as one
of the most promising routes to the production of nonclassical
states of macroscopic degrees of freedom. Recently, a number
of theoretical investigations have predicted such nonclassical
mechanical states to occur in the form of squeezed states [5–8],
Fock states [9,10], and photon-phonon [11–15] or purely me-
chanical entangled states [16–26]. Such achievements would
not only shine light on the foundations of quantum mechanics
and the decoherence process, but could also provide a long-
lived information storage or processing platform useful for
potential quantum repeaters [27]. Outstanding experimental
results have already been obtained in this direction by Lee
and coworkers [28] who managed, based on the Duan–Lukin–
Cirac–Zoller protocol [29], to entangle two optical-phonon
modes stored in remote diamond crystals at room temperature.
Meanwhile, current cooling technology [30–33] is paving
the way to nonclassical states stored in acoustic-phonon
modes, which can be pictured as the collective motion of a
macroscopic number of atoms in the solid.

The recent progress in the optimization of silicon [31,34],
indium phosphide [35,36], or more recently diamond-
based [37,38] photonic crystal structures allow the combi-
nation of high quality factors of cavity modes with confined
mechanical modes, resulting in record values of the optome-
chanical coupling reaching the MHz range [31]. Thanks to
their small footprint, solid-state structures lie among the best
candidates for the future of integrated quantum logic elements
that could exploit optical and mechanical quanta to code
information. In this framework, it is desirable to have access
to on-chip operations that involve single quanta of excitation
and remotely entangled states [39] of a high purity.
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In this article we predict the strong potential of optimized
silicon nanobeam structures for on-chip entanglement of
distant mechanical vibrations. We first design and characterize
a promising candidate system based on a state-of-the-art
photonic-phononic crystal structure. Then, we demonstrate
the possibility to engineer remotely entangled states of me-
chanical quanta on-chip, based on a high efficiency heralding
protocol [26]. The quantum dynamics is described by means
of a master equation treatment that includes the impact of
environmental interactions and finite temperature.

II. THE STRUCTURE

We propose the system shown in Fig. 1, which is based on
a pair of silicon nanobeams of width 529 nm and thickness
220 nm, at a distance of 140 nm from each other. The first
beam is patterned in order to host two defect cavities based on
the optimized design proposed in Refs. [31,40], separated by
a distance of d = 6.3 μm. The lattice constant of the photonic
crystal pattern (cf. Ref. [40] for details) is a0 = 436 nm. The
second beam hosts a clogged waveguide section that supports
Fabry–Perot-like modes and serves to couple the two cavities
in an implementation similar to the one of Ref. [41]. Such a
structure could be used to remotely couple cavities that are
separated by a distance of hundreds of wavelengths.

To demonstrate waveguide-mediated optical coupling we
model the structure by using a commercial-grade simu-
lator based on the finite-difference time-domain (FDTD)
method [42]. By imposing odd, even, or no parity with respect
to the x = 0 transverse plane, we can selectively excite the
antisymmetric [Fig. 2(a)], symmetric [Fig. 2(b)], or both
modes of the coupled system. The corresponding simulated
spectra are presented in Fig. 2(c). The modes resonate
around the frequency ωc = 2π × 193.45 THz. To accurately
determine the frequency splitting, we record the electric field
in the center of one cavity when both modes are excited
and observe a clear beating pattern, as shown in the inset.
From the time interval between the two antinodes we com-
pute 2Jc = 2π × 16.9 GHz, which is consistent with the
spectrum in Fig. 2(c). In the absence of the waveguide instead,
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FIG. 1. (Color online) Three-dimensional model of the system under study, showing the nanobeam photonic crystal (upper) and the clogged
waveguide (lower), together with a sketch of the excitation and detection conditions. Cavity 1 is driven under pulsed excitation and its output
is collected by a single-photon detector. The yellow arrow highlights the waveguide-induced optical coupling of strength Jc between the two
cavities. The deformation of the cavities illustrate the slight transverse vibrations induced by the optical field that are computed in Figs. 2(d)
and 2(e).

the simulation results in a splitting of about 2π × 4 GHz
that would dramatically drop for larger cavity separation,
thus highlighting the role of the waveguide in enhancing the
coupling between the two cavities. The quality factors of
the two modes were computed from the time decay of the
field after selective excitation and are Q− = 1.14 × 106 and
Q+ = 8.0 × 105, corresponding to linewidths of κ− = 2π ×
169 MHz and κ+ = 2π × 243 MHz for the antisymmetric and
symmetric modes, respectively. The linewidths are slightly
unbalanced due to the different overlap of the two confined
modes with the continuum of radiation modes outside the

FIG. 2. (Color online) (a) Antisymmetric and (b) symmetric nor-
mal modes of the electromagnetic field in the coupled cavity system.
The color map expresses the Re(Ey) component of the electric
field. (c) Simulated optical spectrum after individual or simultaneous
excitation of the optical modes. The inset shows the time dependence
of the electric field, as recorded at the center of one cavity when both
modes are excited. (d) Antisymmetric and (e) symmetric confined
mechanical modes. The color map expresses the amplitude of the
displacement field.

beams. Even though such high Q values are experimentally
achievable [40], below we conservatively assume twice larger
values of κ− = 2π × 338 MHz and κ+ = 2π × 486 MHz in
view of the extra losses that would be introduced by the
measurement though input and output channels such as tapered
fibers [43].

The vibrational eigenmodes of the structure, associated
with the two defect cavities, were computed via finite-element
modeling [44]. The localized transverse breathing modes, as
described in Ref. [31], are found at a frequency �m = 2π ×
5.08 GHz. As for the optical modes, symmetric and antisym-
metric normal modes of the vibrations at the two cavities arise,
which are characterized by a negligible frequency separation of
2Jm = 2π × 8.8 kHz. The displacement fields of these modes
are depicted in Figs. 2(d) and 2(e). The associated distortion
of the cavity is transverse to the main axis of the structure,
producing a remarkably high single-photon optomechanical
coupling of g0 = 2π × 0.86 MHz [40]. We assume the me-
chanical quality factor Qm = 6.8 × 105 measured in Ref. [31],
where the structure was coupled to an acoustic radiation shield.
As we will see, the readout of the mechanical entangled
state requires that the vibrational modes are nondegenerate,
in order to introduce a relative phase factor between the
two optomechanical coupling processes, which reveals the
quantum superposition of the two mechanical modes through
an interference pattern in the optical readout [26]. Different
frequencies for the mechanical modes of the two cavities will
naturally arise due to imperfections in the nanofabrication
process. We have therefore studied the impact of the structural
disorder on the resonant mechanical frequency of one cavity by
introducing random, Gauss-distributed fluctuations of the hole
dimensions and positions with a standard deviation of 1 nm.
Over 100 simulated disorder realizations we found a typical
1% fluctuation of the mechanical frequency. In the quantum
model that follows, we will therefore assume �1 = �m and
�2 = 1.01 × �1 = 2π × 5.13 GHz.

III. QUANTUM MODEL

The system can be schematically summarized as in
Fig. 3(a); namely, as two coupled, single-mode cavities
(â1,2 operators), each optomechanically coupled to distinct
mechanical modes (b̂1,2 operators). The system Hamiltonian
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FIG. 3. (Color online) (a) Schematic representation of the model
system. (b) Write and readout pulses sequences for the interference
reconstruction. (c) The computed power spectrum in log scale of the
symmetric and antisymmetric cavity modes, revealing the Stokes and
anti-Stokes sidebands.

reads

Ĥ =
∑
j=1,2

[ωcâ
†
j âj + �j b̂

†
j b̂j + g0â

†
j âj (b̂†j + b̂j )]

+ Jc[â†
1â2 + â

†
2â1] + F (t)[â†

1e
−iωLt + â1e

+iωLt ]. (1)

We introduce an optical write and readout protocol analogous
to the one we recently adopted in the case of a single
optical cavity [26]. The system is driven first by a classical
source of amplitude F (t) and frequency ωL in cavity 1 that
stands for our input-output mode [see W in Fig. 3(c)]. It is
instructive to rewrite Ĥ on the basis of the symmetric and
antisymmetric modes following â± = (â1 ± â2)/

√
2 and b̂± =

(b̂1 ± b̂2)/
√

2 which recasts the optomechanical contribution
Ĥg = g0

∑
j â

†
j âj (b̂†j + b̂j ) as

Ĥg = g0√
2

(â†
+â+ + â

†
−â−)(b̂†+ + b̂+)

+ g0√
2

(â†
+â− + â

†
−â+)(b̂†− + b̂−). (2)

It describes two cavity modes of resonance ω± = ωc ± Jc

(i) optomechanically coupled to the same vibrational mode
b̂+ of frequency �+ = (�1 + �2)/2 � �1,2 (first term) and
(ii) coupled together through the absorption or emission of
a phonon of the mode b̂− (second term). The latter process,
which would allow an exchange of quanta between the â+
and â− modes, is off resonant in the conditions we consider
where ω+ − ω− � 3�1,2 and can be discarded. The cavity
spectrum shown in Fig. 3(c) consists of two main resonances
at ωc ± J each surrounded by sidebands formed by the Raman

interaction with the b̂+ mode (dashed lines). Note that (ii)
makes the â+ sidebands visible in the â− spectrum and vice
versa.

If cavity 1 is driven on the resolved â+ Stokes sideband,
i.e., setting ωL = ωc + Jc + �+ [see W arrow in Fig. 3(c)], the
first term of Eq. (2) then produces the two-mode squeezing [4]

Ĥg ≈ g√
2

(δâ†
+b̂

†
+ + δâ+b̂+) (3)

between the mechanical mode and the cavity fluctuations δâ+
under the standard linearized picture [4] (which we detail be-
low). Here â+ = 〈â+〉 + δâ+ and g = 〈â+〉g0 is the enhanced
optomechanical coupling. The â− contribution is negligible
since its frequency is shifted by −(2Jc + �+) from the pump
frequency, thus resulting in a strongly nonresonant process.
The interaction (3) therefore creates a pair correlation between
the symmetric cavity fluctuations and mechanical modes.
Under continuous-wave driving, one could therefore achieve a
steady-state hybrid continuous variable entanglement between
the â+ and b̂+ modes [12]. However, our goal here is to produce
a mechanical excitation in a linear superposition of two Fock
states, each corresponding to one quantum of vibration in
one cavity. This requires combining pulsed excitation with
postselection. Indeed, after the write pulse, the detection of a
single photon emitted by any of the two cavities heralds the
presence of a single phonon [10,26] stored in the mechanical
mode b̂+, i.e., shared between the remote modes b̂1 and b̂2.

In order to gain insight into the entanglement generation
protocol that we propose, before resorting to the numerical
solution of the equations for the driven-dissipative system
we provide here a simplified description of the elementary
steps of the protocol in terms of pure states. For weak pulses
of short duration �t , we can roughly approximate the time
evolution operator as Û ∼ Î − iĤ�t + O(�t2) and consider
the effect of the optomechanical Hamiltonian on the initial
state. Assuming zero temperature, the system lies initially
in its vacuum state |ψ0〉 = |0〉c1 ⊗ |00〉m ⊗ |0〉c2 , where the
indices cj and m refer to the cavities and mechanical states,
respectively. Then, the write laser tuned to the Stokes process
of the â+ mode drives the Hamiltonian term (3) and ideally
results in the quantum state

|ψ1〉 � Û |ψ0〉
= c00|0〉c1 ⊗ |00〉m ⊗ |0〉c2

+ c10|1〉c1 ⊗ (|10〉m + eiϕ|01〉m) ⊗ |0〉c2

+ c01|0〉c1 ⊗ (|10〉m + eiϕ|01〉m) ⊗ |1〉c2 + · · · . (4)

Here, ϕ = ϕ0 + (�2 − �1)t where ϕ0 is a tunable phase shift
depending on the details of the excitation scheme. Note that
an unequal optomechanical coupling to the two mechanical
modes would induce an additional phase shift to ϕ. The
coefficients cij are determined by the details of the time
evolution. In particular, one expects that, in the limit of weak
field amplitude, the components of this state corresponding
to two- and more photons are negligible. A single-photon
detection from cavity 1 retains only the second term of Eq. (4)
and the state of the system, after detection, reduces to

|ψW 〉 = c′
10|0〉c1 ⊗ (|10〉m + eiϕ′ |01〉m) ⊗ |0〉c2 , (5)
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which is nothing but a maximally entangled mechanical Bell
state |ψH〉m = (|10〉m + exp(iϕ′)|01〉m)/

√
2 when the cavity

modes are traced out. According to this hand-waving picture of
the protocol, the system is cast in state (5) upon heralding, i.e.,
whenever one photon is detected from cavity 1. The probability
amplitude of this event is associated with the ratio c10/c00,
which in turn is roughly proportional to the enhanced optome-
chanical coupling g. Thus, a finite heralding probability in
principle exists for arbitrarily small values of g. In a realistic
setup, however, we expect that several effects will contribute
to set a lower bound on the optomechanical coupling required
to successfully herald this process, among which are single-
photon-detection efficiency and noise from various origins.
Below, we carry out full numerical simulations of the protocol
and select the pulse amplitudes so to obtain a significant
heralding rate when assuming a single-photon optomechanical
coupling g0 = 2π × 0.86 MHz [40], as demonstrated for this
structure. From the heralding rate, we then provide a more
quantitative estimate of the number of pulses—and thus of the
acquisition time—that would be required in an experiment in
order to assess the mechanical entanglement.

The nonclassical character of the mechanical quantum state
can be indirectly assessed through the optical field. For this,
the information stored in the phonon state has to be transferred
back to the cavity field. This is achieved thanks to the anti-
Stokes process induced by a second pulse of frequency ωL =
ωc + Jc − �+ onto the cavity 1 [see R arrow in Fig. 3(c)].
Such an excitation condition is resonant with the beam-splitter
interaction [4]

Ĥg ≈ g√
2

(δâ†
+b̂+ + δâ+b̂

†
+), (6)

which swaps the b̂+ phonon with an â+ fluctuation. The action
of Eq. (6) on the written state produces

|ψR〉 = c′′
00|0〉c1 ⊗ (|10〉m + eiϕ′′ |01〉m) ⊗ |0〉c2

+ c′′
10|1〉c1 ⊗ (1 + eiϕ′′

)|00〉m ⊗ |0〉c2

+ c′′
01|0〉c1 ⊗ (1 + eiϕ′′

)|00〉m ⊗ |1〉c2 + · · · . (7)

The corresponding cavity-1 intensity involves the second term
of Eq. (7) and reads

I1 = |c′′
10|2[1 + cos(ϕ′′)], (8)

where ϕ′′ = ϕ0 + ��mt ′′ depends on the delay from the write
procedure. Equation (8) reveals a full contrast interference
pattern providing means to reveal the entangled nature of
the mechanical state. Note that one could equally detect
the cavity 2 field and obtain the same result. The expected
interferences can be reconstructed by integrating the emission
received by a single-photon detector over multiple runs where
the delay between the write and readout pulse is gradually
increased, as shown in Fig. 3(b) and detailed below.

These simplified and intuitive pictures based on pure
states, which were presented above, can be supported by a
numerical study of the full system dynamics, which we carried
out by using the theoretical tools to model open quantum
systems [45]. In this analysis, in order to be able to account for
the sizable classical field component induced by the driving
laser, we separated the total fields into the sum of their

classical and quantum-fluctuation components according to
â± = α± + δâ± and b̂± = β± + δb̂±. The classical evolution
is governed by the following set of equations:

iα̇± =
(

±Jc + g0

√
2 Re(β±) − i

κ±
2

)
α±

+ g
√

2 Re (β∓)α∓ + F (t)√
2

e−i(ωL−ωc)t , (9)

iβ̇± =
(

�+ − i
γ±
2

)
β± + �−β∓ + g√

2
(α∗

+α± + α∗
−α∓),

(10)

which are written here in the frame rotating at the cavity-
mode frequency ωc and on the basis of the symmetric and
antisymmetric modes α± and β± to account for the unbalanced
losses κ± discussed previously. However, we consider equal
mechanical losses γ± = 2π × 3.75 kHz which is valid given
the large timescales involved. The dynamics of quantum
fluctuations is treated via a master equation for the density
matrix in the displaced reference frame set by the classical
field [46]

dρ̂

dt
= −i[Ĥf ,ρ̂] + 1

2

∑
j=±

κj D̂[δâj ]ρ̂

+ 1

2

∑
j=±

[γj (n̄th + 1)D̂[δb̂j ]ρ̂ + γj n̄thD̂[δb̂†j ]ρ̂], (11)

where n̄th = [exp(�+/kBT ) − 1]−1 is the mean thermal
phonon occupation and D̂[ô]ρ̂ = ô†ôρ̂ + ρ̂ô†ô − 2ôρ̂ô† de-
scribe the dissipations to the environment for each mode. The
fluctuation Hamiltonian reads

Ĥf =
∑
j=1,2

[�jδb̂
†
j δb̂j + 2g0 Re(βj )δâ†

j δâj ]

+
∑
j=1,2

g0[α∗
j δâj + αjδâ

†
j ][δb̂†j + δb̂j ]

+
∑
j=1,2

g0δâ
†
j δâj (δb̂†j + δb̂j ) + Jc[δâ†

1δâ2 + δâ
†
2δâ1],

(12)

given the inverse transformations δâ1,2 = (δâ+ ± δâ−)/
√

2,
δb̂1,2 = (δb̂+ ± δb̂−)/

√
2, and similarly for the classical fields.

Note that we kept here the nonlinear optomechanical contri-
butions [third term of Eq. (12)] for an exact description of the
system [46].

IV. RESULTS AND DISCUSSION

The write procedure is conducted with a Gaussian excita-
tion at a time tW = 30 ns, of amplitude AW = 103κ−, standard
deviation σt = 3.85 ns, and frequency ωL = ωc + Jc + �+ on
cavity 1. Note that one could equally excite the antisymmetric
mode at ωL = ωc − J + �+ as prescribed by Eq. (2). The
driving pulse results in a large classical field amplitude for
the cavity mode. This acts as a source for the mechanical
field and produces a sizable phonon occupation in both
mechanical modes, thanks to the optical coupling between
the two cavities. In this way, the normal modes â+ and b̂+
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FIG. 4. (Color online) Write procedure: Log scale (a) classical
and (b) fluctuation occupations versus time. Blue and dashed-red
lines represent cavity modes 1 and 2, yellow and dashed purple lines
represent mechanical modes 1 and 2. The vertical black line marks the
time tq , starting from which quantum fluctuations become dominant.
(c) Parametric plot showing the computed heralding rate νH(t) versus
the concurrence C(t). (d) Absolute value of the heralded mechanical
density matrix ρ̂

(1)
H at the Cmax time [vertical red dashed line in panels

(a) and (b)] conditioned on the detection of a single photon out of
cavity 1.

are excited without needing to drive the field in the second
cavity. Figures 4(a) and 4(b) show, respectively, the classical
and quantum fluctuation occupations. We observe that the
classical components, which temporarily displace the system
to coherent states [47], vanish along with the input pulse.
Starting from a time tq � 25 ns (vertical black line), quantum
fluctuations dominate over the classical components and decay
according to the respective lifetimes. The quantity tq defines
a time horizon past which the system evolves freely and can
display quantum correlations. Importantly, a compromise must
be made on the pulse duration, which should be set (i) long
enough to accurately excite the sideband without leaking too
much on the main cavity frequency and (ii) short enough
to allow for a sufficiently large occupation of the quantum
fluctuations at time tq . Besides, the driving amplitude was set
to maximize the heralding success rate past tq while preserving
a negligible two-phonon probability.

The heralding at a time tH > tq is modeled via the projection
of the density matrix onto the single-photon subspace [10,26]
of cavity 1

ρ̂
(1)
H = P̂1ρ̂(tH)P̂−1

1

Tr[P̂1ρ̂(tH)]
, (13)

P̂1 = |1〉c1
〈1|c1 ⊗ Îm1 ⊗ Îm2 ⊗ Îc2 . (14)

From tq , we consider in Eq. (13) the full density matrix of
the system obtained by including the classical contributions as

coherent states |α±〉 and |β±〉 and applying a multimode dis-
placement operator D̂(α±,β±) to ρ̂. The heralding efficiency—
therefore the degree of mechanical entanglement—is com-
puted through the concurrence C [48] of the reduced density
matrix ρ̂m = Trâ1,â2 (ρ̂H) restrained to the 0 and 1 phonon
subspaces. It displays a large maximum value of Cmax = 0.95
from tH � 30 ns [see vertical dashed lines in Figs. 4(a)
and 4(b)]. Corresponding to this value, a mechanical Bell
state storing a delocalized phonon is formed, as revealed by
the |ρ̂(1)

H | visual shown in Fig. 4(d). The imbalance in the
diagonal elements is a consequence of having driven a single
cavity only. We have computed a fidelity F = 0.97 to the
(|10〉 + |01〉)/√2 Bell state. Obviously, the heralding time
would be random in an experiment and the detector should
target the t > tq time window where C ∼ Cmax, while avoiding
to monitor earlier times, for the procedure to fully succeed.
The entangled state lives as long as the mechanical lifetime
τm = 2π/γ1,2. Given the very high quality factor character-
izing nanobeam cavities, combined to the GHz range of the
frequency of the mechanical modes, one could experimentally
reach τm = 277 ms [40] which is promising for quantum
repeater technology [27]. When aiming at a concurrence
C > 0.9, the heralding rate achieved in our simulations was
νH = κ1,2n1,2 ∼ 3 × 10−2 MHz, where κ1,2 = (κ+ + κ−)/2,
as shown in Fig. 4(c). Finally, we point out that, in addition
to a large value of the simulated concurrence, in order to
assess our target entangled state it is required that the two-
and higher- photon terms in the full mechanical density matrix
be negligible as it is the case here. This is simply achieved
by controlling the amplitude of the driving field. In particular
in our simulation, the cavity occupations at tH amounts to
n1,2 � 10−4 which corresponds to an effective optomechanical
coupling 〈â1,2〉g0 � 2π × 86 kHz � �1,2.

The readout step involves a second input pulse having the
same width as the write pulse, and amplitudeAR = 5 × 103κ−
delayed by �T = tR − tW . The central frequency of the pulse
is tuned to the anti-Stokes â+ sideband ωL = ωc + Jc − �+
and aims at transferring the information about the phonon
mode back to the optical field. As discussed previously, the
nondegeneracy of the mechanical modes �� = �2 − �1 �
2π × 50 MHz, resulting from the sample imperfections,
introduces a relative phase factor ϕ = ϕ0 + ��t between the
modes which is associated with an interference pattern in the
emitted light. The latter is revealed by varying the write and
readout pulse delay �T and integrating the corresponding
signals [see Fig. 3(b)]. Figures 5(a) and 5(b) show the
classical and fluctuations contributions, respectively, to the
occupations in a realization where the cavity intensity reaches
a maximum [dashed white line in Fig. 5(c)]. Once again,
quantum fluctuations dominate after the driving pulse has
decayed (vertical black line). Starting from this time, the
quantum interference should be recorded. From the Fig. 5(b)
inset one can see the b̂+ mode being emptied by the optical field
as revealed in the b̂1 and b̂2 simultaneous population decay.

Varying gradually the delay �T between the write and
readout pulses and specifically tR reveals the predicted
interference pattern of period T = 2π/��m � 125 ns, as
shown in Fig. 5(c). The field in cavity 2 obviously displays
a similar behavior (not shown). Note that, to obtain a vertical
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procedure. The inset of panel (b) shows the mechanical occupation
in linear scale. (c) The field intensity in cavity 1, averaged over
several runs, as a function of the readout tR and shifted evolution
time t − �tR where �tR = t

(j )
R − t

(1)
R for run number j . The inset

shows a normalized cut along the vertical red dashed line, from
which the visibility V can be inferred. The horizontal white dashed
line corresponds to the evolutions in panels (a) and (b) where the
intensity is at a maximum. (d) Simulated temperature dependence of
the negativity and the fringe visibility.

pattern in the plot (instead of an oblique one), the readout
pulses have been shifted so that the x axis shows the shifted
evolution time t − �tR where �tR = t

(j )
R − t

(1)
R and j is the run

index. This corresponds to what would be obtained varying the
phase ϕ0 of the write pulse instead of �T . A normalized cut
along the vertical axis (dashed-red line), taken at fixed delay
from tR , is plotted in the inset. It shows a fringe visibility
as large as V � 0.92. The interference carries a signature of
the relative phase between the two confined phonon modes.
This can be related to the amount of phonon entanglement. In
particular, a fully separable state would result in a visibility
Vc = 0.5 [26]. This value sets a lower bound, below which
the entanglement may still be present in the system, but
cannot be directly inferred from the interference pattern.
The average cavity occupation at this value of tR amounts
to n1(tR) � 5 × 10−4, which corresponds to a photoemission
rate of νR = 0.2 MHz. It is interesting at this stage to
provide a rough estimate of the experimental requirements
to obtain a sufficiently-well-resolved interference pattern. For
a Poissonian source, one needs approximately 104 pulses in
order to expect a 1% fluctuation of the photon number. Given
the present estimate of νR and assuming a delay of 30 ns
between pulses, this would require an acquisition time of
about 15 s. This value has to be further corrected in order
to account for the single-photon-detector efficiency. State-

of-the-art superconducting single-photon detectors nowadays
display an efficiency ranging between 10% and 90% at telecom
wavelengths relevant to this proposal, with kHz-low dark count
rates [49,50]. These values would result in an acquisition time
of roughly one minute. Assuming that one period T = 125 ns
of the interference pattern of Fig. 5(c) is experimentally
resolved with ∼100 time bins, we expect that a few hours
of integration and a few million pulses are finally necessary.

At zero temperature we obtained a Bell state with high
fidelity, which could be characterized by the concurrence, if
restricting the analysis to the subspace with 0- and 1-phonon
states. However, at finite temperature a non-negligible thermal
occupation may result in a sizable contribution from states
with n > 1 phonons. In this case, an entanglement measure
appropriate to the larger Hilbert space is needed. The concur-
rence was recently extended to four-dimensional spaces [51].
Its computation, however, is a demanding numerical task for
n � 4 [52,53] and is therefore not suitable in the general
case we want to consider here. The Bell character of our
states naturally suggest to deploy an entanglement monotone
derived from positive partial transpose criterion; namely, the
negativity [54,55] N = ||ρ̂�1,2

m ||1 − 1, where ρ̂
�1,2
m is the partial

transpose of ρ̂m and ||ρ̂�1,2
m ||1 is its trace norm. The above

argument using quantum states can be extended to mixed
states in order to estimate a lower bound on the visibility
resulting from an entangled state, assuming in particular that
the mechanical modes initially lie in the product of two thermal
states. We analytically derive the heralded mechanical density
matrix at finite temperature in the Appendix A and recover
the lower bound of Vc � 0.5 to the fringe visibility in the
Appendix B.

Besides, the impact of state-of-the-art cooling temperature
T [33] on our protocol was computed by direct master equation
simulations, and the results are presented in Fig. 5(d), where
N and V are plotted versus T . We see, as expected, a clear
correlation between N and V . They both start decreasing from
T � 0.05 K. Entanglement survives in the temperature range
we considered, and the visibility reaches the lower bound Vc

at Tc � 0.2 K. Above this temperature, our readout procedure
cannot directly assess the presence of entanglement, and a full
quantum tomography of the state would be instead required.
Finally, the impact of the pure dephasing imposed by other
mechanical resonances was analyzed in Ref. [26] and was
shown to be negligible in the typical photonic crystal parameter
range.

V. CONCLUSION

We proposed a realistic photonic crystal architecture based
on coupled nanobeams and computed its optomechanical
properties. We showed that this structure should allow us to
achieve on-chip remote entanglement between the localized
acoustic phonon modes, mediated by the optical field, with no
need for an additional beam splitter as in typical entanglement
schemes [11,28]. Our protocol achieves high heralding rates
and is still effective at accessible cooling temperature for
silicon-based systems. The characteristic long mechanical
lifetime makes the present system very promising for demon-
strating macroscopic entanglement and for the future of hybrid
quantum logic circuits.
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APPENDIX A: HERALDED DENSITY MATRIX

In the present protocol, the system is driven around the
symmetric cavity mode resonance at ω+ = ωc + Jc. Because
2J  �1,2, the contribution from the antisymmetric mode
can be safely disregarded. Under such an assumption we
are left with a three-mode system, whose optomechanical
interaction reduces to

Ĥg ≈ g+â
†
+â+(b̂†+ + b̂+). (A1)

Here, b̂+ = (b̂1 + b̂2)/
√

2 and g+ = g0/
√

2. At low
temperature, the cavity mode can be assumed to lie in its
vacuum state, described by the density matrix ρ̂0

c = |0〉〈0|.
The mechanical modes on the other hand are characterized by
resonant frequencies in the GHz range, and states with a finite
thermal phonon occupation must be assumed. Then the density
matrices of the mechanical modes 1 and 2 are expressed as

ρ̂0
m1,2

= (1 − p)
N−1∑
n=0

pn|n〉〈n| = (1 − p)
N−1∑
n=0

pnρ̂n, (A2)

where N is the maximal occupation number assumed when
truncating the Hilbert space and p = n̄th/(1 + n̄th). The
number N in our calculations is increased until convergence is
reached. However, we discuss more specifically the case N =
2 hereafter, because it leads to compact analytical expressions
for the density operators and allows for a simple analytical
expression of the concurrence parameter. We assume that the
initial density matrix is separable, i.e., ρ̂0 = ρ̂0

c ⊗ ρ̂0
m where

ρ̂0
m = ρ̂0

m1
⊗ ρ̂0

m2
= (1 − p)2

N−1∑
n,m=0

p(n+m)ρ̂n,m. (A3)

Here we have used the notation ρ̂n,m = |n,m〉〈n,m|. The
Stokes process used for the write procedure resonantly

generates two-mode squeezing through the corresponding
linearized term (3). Under this interaction the system
density matrix evolves according to ρ̂(t) = Û ρ̂0Û † where
Û = exp(−iĤgt). The latter is roughly approximated to
Û � Î − iĤg�t + O(�t2) for a short pulse duration �t .
Therefore, one has ρ̂(�t) � (1 − iĤg�t)ρ̂0(1 + iĤ†

g�t).
The heralding procedure, which projects ρ̂(t) onto its
one-photon subspace, only retains the action of the term
proportional to Ĥgρ̂0Ĥ†

g after the write procedure. By tracing
this state over the cavity mode, the heralded density matrix of
the mechanical system is then obtained:

ρ̂(H )
m = (1 − p)2

N−1∑
n,m=0

p(n+m)
[
(n + 1)ρ̂n+1,m + (m + 1)ρ̂n,m + 1

+
√

(n + 1)(m + 1)
(
e+iϕρ̂

n,m+1
n+1,m + e−iϕρ̂

n+1,m
n,m+1

)]
,

(A4)

where we use ρ̂
k,l
i,j = |i,j〉〈k,l| for the off-diagonal matrix

terms. The relative phase factors are introduced by the
action of b̂

†
2 in the frame rotating at the frequency �2 where

ϕ = ��t . In the simple case where N = 2 (i.e., assuming
no more than one phonon per mode, valid for very low
temperature where p � 1), we obtain

ρ̂(H )
m = 1

2(p + 1)

[
ρ̂1,0 + ρ̂0,1 + 2pρ̂1,1

+e+iϕρ̂
0,1
1,0 + e−iϕρ̂

1,0
0,1

]
(A5)

upon trace normalization. At zero temperature where p = 0,
Eq. (A5) reduces to

ρ̂(H )
m = 1

2

(
ρ̂1,0 + ρ̂0,1 + e+iϕρ̂

0,1
1,0 + e−iϕρ̂

1,0
0,1

)
; (A6)

namely, the density matrix associated with the pure Bell state
|ψ〉 = (|10〉 + eiϕ |01〉)/√2. The concurrence of the 4 × 4
mixed state (A5) straightforwardly reads

C = 1

1 + p
= 1 − n̄th

2n̄th + 1
(A7)

and is plotted in Fig. 6(a) (dashed black line).
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For N � 2, the degree of entanglement can be evalu-
ated through the negativity N = ∑

i |λi | − λi where λi are
the negative eigenvalues of the partial transpose of ρ̂(H )

m

with respect to one of the mechanical modes. One easily
finds, e.g., for N = 2, that only one eigenvalue λ = [p −
(1 + p2)1/2]/2(1 + p) is negative independently of p, and
therefore

N =
√

1 + p2 − p

1 + p
= (

√
1 + p2 − p)C. (A8)

The cases where N > 2 are presented in Fig. 6(a) (see legend).

APPENDIX B: READOUT INTENSITY

The anti-Stokes process used for the readout procedure
drives the process associated with the interaction (6). When
applying this operator onto the heralded density matrix
Eq. (A4) and retaining as in the write case only terms with
one photon, the resulting density matrix reads

ρ̂R = (1 − p)2
N−1∑

n,m=0

p(n+m)[(n + 1)2 + (m + 1)2

+ 2(n + 1)(m + 1) cos ϕ]ρ̂n,m

+ (1 − p)2
N−1∑

n,m=0

p(n+m)[n(m + 1)ρ̂n−1,m+1

+m(n + 1)ρ̂n+1,m−1] + · · · , (B1)

where we indicate only the diagonal terms explicitly. The field
intensity of the cavity mode, associated with Eq. (B1) is given
by

I(ϕ) = (1 − p)2
N−1∑

n,m=0

p(n+m)[(n + m + 1)(n + m + 2)

+ 2(n + 1)(m + 1) cos ϕ]. (B2)

From there one can deduce the fringes visibility as V =
(Imax − Imin)/(Imax + Imin), where Imax = I(0) and Imin =
I(π ), to obtain

V =
∑N−1

n,m=0 2p(n+m)(n + 1)(m + 1)∑N−1
n,m=0 p(n+m)(n + m + 1)(n + m + 2)

. (B3)

We show in Fig. 6(b) a plot of V versus n̄th for several values
of N (see legend). Within the range of values considered for
n̄th, convergence is achieved for N � 8.
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