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Abstract
Cross-ratio (CR)-based eye tracking has been attracting much in-
terest due to its simple setup, yet its accuracy is lower than that
of the model-based approaches. In order to improve the estima-
tion accuracy, a multi-camera setup can be exploited rather than the
traditional single camera systems. The overall gaze point can be
computed by fusion of available gaze information from all cameras.
This paper presents a real-time multi-camera eye tracking system
in which the estimation of gaze relies on simple CR geometry. A
novel weighted fusion method is proposed, which leverages the user
calibration data to learn the fusion weights. Experimental results
conducted on real data show that the proposed method achieves a
significant accuracy improvement over single camera systems. The
real-time system achieves 0.82◦ of visual angle accuracy error with
very few calibration data (5 points) under natural head movements,
which is competitive with more complex model-based systems.
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1 Introduction
Remote video-based eye tracking methods can be classified mainly
into two groups, namely, interpolation-based and model-based
methods [Hansen and Ji 2010]. Interpolation-based methods map
image features to gaze points using machine learning while model-
based methods mostly estimate three-dimensional (3D) gaze direc-
tion by modeling the eye in 3D. The intersection between scene
geometry and gaze direction is computed as the point of regard
(PoR). System requirements of interpolation-based methods tend to
be smaller than model-based methods but they are suited to particu-
lar applications due to their limitations regarding accuracy and head
movements. Model-based methods offer greater freedom of move-
ment, however, they require more complex system setups such as
camera and geometric calibration. Contrary to these methods, CR-
based methods, e.g. [Yoo et al. 2002; Hansen et al. 2010; Huang
et al. 2014; Arar et al. 2015b], share advantages from both interpo-
lation and model-based methods. They do not only avoid camera
calibration, but they also allow free head motion. Unfortunately,
the performance of CR-based methods might be limited in accu-
racy and robustness due to the simplifications assumed which cause
certain estimation bias [Kang et al. 2008].

In the literature, several efforts have been made in order to en-
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hance the accuracy and robustness of CR-based gaze estimation
systems by performing a subject-specific calibration to correct the
estimation bias. For instance, homography-based bias correction
by [Hansen et al. 2010] has been widely accepted as it provides
a good calibration when there is not much head pose or location
change when there is sufficient number of calibration points. More-
over, a linear regression-based calibration has recently been shown
to model the bias more efficiently with fewer number of calibration
points even though there is certain amount of head movement [Arar
et al. 2015b]. Besides, a few other approaches were proposed to
explicitly bring robustness against head movements ([Coutinho and
Morimoto 2013],[Huang et al. 2014]).

Traditional eye tracking systems are commonly based on a single
camera, and the ones using a multi-camera setup are mostly de-
signed for the purpose of obtaining stereo vision. For instance,
[Beymer and Flickner 2003] propose a four-camera system that es-
timates the 3D gaze direction based on a detailed 3D eye model.
They use a wide field of view (FOV) stereo for face detection and a
narrow FOV stereo for eye tracking.

Despite a few attempts ([Utsumi et al. 2012; Arar et al. 2015a]),
the effectiveness of multi-camera setups, which jointly utilize sev-
eral independent camera systems, has not adequately been investi-
gated. [Utsumi et al. 2012] propose a multi-camera system to obtain
a wide observation area. They use two cameras which are placed on
the sides of a gaze-reactive signboard. However, their application
scenario does not require precise gaze estimation as observed from
the reported mean accuracy error which is > 11◦. Their focus is to
allow for a wide range of head motions and rotations. Alternatively,
in our previous work, we exploit, for the first time, a multi-camera
setup to enhance the estimation accuracy in the scope of precise
gaze estimation [Arar et al. 2015a]. The setup outputs an overall
PoR through an adaptive fusion of three independent camera sys-
tems. We first calculate an initial PoR using simple averaging of
available gaze information, and then assign fusion weights accord-
ing to the distances between the initial PoR and the cameras. This
proof of concept study demonstrates that a multi-camera setup with
a simple fusion approach results in a more accurate eye tracking.

In this paper, we investigate how to more efficiently combine the
gaze data obtained from multiple camera systems. In order to en-
hance the estimation accuracy, we propose to leverage the user cal-
ibration data for estimating the fusion weights. Since user calibra-
tion is inevitable to compensate for the estimation bias, exploiting
it for the purpose of fusion weights estimation does not cause any
additional overhead. To this effect, we first define a few indicators
such as the calibration accuracy, gaze availability and a histogram
of the best performing sensors for each calibration point. We cal-
culate several statistics with respect to these indicators to generate
weight maps. Finally, we perform a weighted fusion of sensors
during testing with the weights learned from the calibration data.
The experiments conducted on real data show that the proposed
system and weighting method produce significantly better results
than a single camera system and a multi-camera system with sim-
ple fusion methods. Thus, the main contribution of this paper can
be stated as the introduction of an offline fusion weights estimation
method in order to achieve an improved accuracy for multi-camera
eye tracking systems.
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The rest of the paper is organized as follows: Section 2 gives a
detailed description of the proposed system. Experimental results
are given in Section 3. Finally, Section 4 concludes the paper.

2 Overview of the Proposed System
The overview of the proposed multi-camera setup is illustrated in
Figure 1. The overall system consists of single camera gaze estima-
tion systems. Each single camera system is practically independent
such that their feature detection and gaze estimation processes are
independent. The details of the system are explained in the follow-
ing sections.
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Figure 1: Overview of the proposed multi-camera system.

2.1 Hardware Setup
The system consists of three cameras, seven groups of LEDs for the
illumination and a controller unit for the synchronization as shown
in Figure 2. The cameras have a resolution of 1280×1024, and a
12 mm manual focus lens is used. LEDs are placed on the cor-
ners of the monitor to create glints and also placed as a ring around
each camera to create the bright pupil effect. A micro-controller is
programmed to synchronize the cameras and LEDs to obtain inter-
laced dark and bright pupil images at 30 frames per second (fps).
In the current setup, the user sits approximately 70 cm away from a
24-inch monitor with a resolution of 1920×1200.
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Figure 2: Hardware setup.

2.2 CR Gaze Estimation with User Calibration
We employ the original CR method [Yoo et al. 2002] for the estima-
tion of the PoR. In CR method, a virtual tangent plane on the cornea
surface, where four glints lie on, is assumed to exist. Therefore, the
polygon formed by the glints is the projection of the monitor on the
cornea. Another projection takes place from the corneal plane to
the image plane, obtaining the glints and the projection of the pupil
center. As the virtual tangent plane on the cornea has the same pla-
nar projective transformation of the monitor and image planes, the
pupil center on image plane corresponds to the PoR on the monitor,
which can be computed by equality of the cross-ratios.

CR-based gaze estimation has a limited performance due to the
simplification assumptions such as non-coplanarity of the pupil and
glints planes, and the angular offset between visual and optical axes
of the eye [Kang et al. 2008]. Since the cornea curvature and the an-
gular offset are subject-specific, a calibration needs to be performed
to compensate for the estimation bias. The calibration is performed

once, prior to the use of the system by asking the users to gaze
at certain points on the monitor. Subject-specific bias correction
is learned by minimizing the distances between the estimated gaze
positions and the corresponding calibration points on the monitor.

In this paper, we use a linear regression-based calibration method
([Arar et al. 2015b]) to model the error vectors since it has been
shown to have better modeling and generalization capabilities than
the homography-based methods due to reduced model parameters
and relaxed constraints. This method simply learns a linear trans-
form between the estimated points and target points, and the learned
transform is applied on the test samples for the bias correction.

2.3 Estimation of Fusion Weights

The hardware setup allows free head movement and captures both
eyes simultaneously so that it enables to output two PoRs for the
same frame for each camera system. This way our system gener-
ates multiple PoRs for a frame, one for each sensor (i.e., each eye of
a camera system) and fusing them in an effective way would lead to
an enhanced estimation accuracy compared to using a single camera
system as in most of the previous work. Hence, we propose to com-
bine PoRs in a weighted way in which we leverage the user calibra-
tion data statistics to estimate the weights. The proposed technique
is, in fact, independent of the gaze estimation algorithm, therefore,
the CR method used in this paper can practically be replaced with
any other gaze estimation method (e.g., interpolation, 3D model).
Once the weight maps are obtained, the proposed method performs
a weighted averaging of individual PoRs as follows:
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c are the weight maps of the right and left eye of c-th camera,

respectively. In case one of the PoRs can not be calculated for a
given frame, the weight of the missing PoR is considered as zero.
We do not report an overall PoR in case all sensors are unavailable.

For generating the weight maps (Me
c) we calculate different statis-

tics on the calibration data. For instance, an effective weighting
indicator would be the calibration accuracy per sensor on calibra-
tion points. The reason is that if the calibration accuracy on a point
is consistently lower for a sensor than the others, that sensor’s bias
correction during testing is expected to be less reliable and accu-
rate around the same point. Hence, the calibration accuracy based
weighting assigns higher weights to the sensors whose bias correc-
tions are more reliable, and so, a more accurate overall PoR can be
computed. To calculate the calibration accuracy (accec,k) for each
point, after learning the calibration model on the whole calibration
data, we apply the learned model on the very same data. Then, we
measure how close the calibrated samples are to their correspond-
ing target points. We perform this process for each calibration point
of each sensor separately. As we perform calibration for each eye
of each camera independently, we obtain 6 values for each calibra-
tion point. We then normalize these accuracy values to compute the
sensor weights (we

c,k) for each calibration point as shown in (2).
Lastly, we interpolate and extrapolate the weight set (We

c) over the
whole monitor to generate the weight maps (Me

c). A set of gener-
ated weight maps is shown in Figure 3.

we
c,k =

accec,k∑
c

∑
e

∑
k acce

c,k
(2)

We
c = {we

c,k|e ∈ {L,R}, c ∈ {0, 1, 2}, 1 ≤ k ≤ K

where K is the number of calibration points.
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Figure 3: Calibration accuracy and gaze availability based weight maps of the (a) right eye of the bottom camera; (b) left eye of the bottom
camera; (c) right eye of the right camera; (d) left eye of the right camera; (e) right eye of the left camera; (f) left eye of the left camera.

In addition, we use sensors’ gaze availability statistics on each cal-
ibration point and a histogram of the best performing sensor on
each calibration point as alternative weighting indicators. The gaze
availability may indicate the reliability of feature detection. A low
availability implies less consistent and less reliable features. Hence,
a sensor with a higher availability is more likely to produce reliable
PoRs. Similarly, the histogram of the best performing sensor stores
the information about how often each sensor gets the best result
for a given calibration point. If a sensor consistently gets the best
result for a calibration point, it is more likely for the sensor to pro-
vide a more accurate PoR during testing. Maps generated by all the
methods are supplied in the supplementary materials. Note that all
these statistics can be calculated in a subject-specific and subject-
independent manner. In order to investigate the subject influence
on the fusion weights, we estimate the weights in both manners.

3 Experiments and Results
We conducted user experiments to evaluate and to compare the per-
formances of the investigated fusion methods. Ten users partici-
pated in the experiment. Users were asked to look at the target
stimuli points in a way that they feel comfortable. Therefore, we
did not use a chin rest to keep user’s head still and to keep user’s
eyes within the cameras’ FOV to capture high-resolution eye data.

User experiments consist of acquiring the calibration and test data
separately. In calibration data acquisition, users were asked to look
at 25 uniformly distributed target stimuli points on the screen. In
test data acquisition, users were asked to look at 18 target points in
a 3×3 grid covering the whole screen. Test points are randomly
generated inside the grids to avoid overfitting on the calibration
points as well as creating a more realistic test condition. We re-
port our eye tracker’s performance as the gaze estimation accuracy
error, which is defined as the average displacement between the real
stimuli point and the estimated PoR. We report the estimation per-
formance in degrees of visual angle as it is user distance invariant.

Our evaluation process starts with face tracking on the frames
where we extract eye regions of size ∼130×70 pixels. We then de-
tect features (pupil center and four glints) on the extracted regions
using the methods in [Arar et al. 2015a]. Next, we apply CR based
gaze estimation to calculate the raw gaze data. In the calibration
process, we learn an estimation bias correction model on the raw
gaze data. In the test process, we apply the learned model to correct
the raw gaze data. The calibrated PoRs of all sensors are combined
by the proposed weighted fusion scheme to output an overall PoR.

We obtain results using different weighting approaches based on
the calibration accuracy, gaze availability, and histogram of the
best performing sensor, and their combinations. Amongst all, the
best performance is achieved by the method using the calibration
accuracy and gaze availability combination to estimate the fusion
weights. Table 1 and Figure 4 and 5 demonstrate the performance
comparison of different camera setups and fusion methods. In Ta-
ble 1, we list the results obtained from all camera setups with sep-
arate eye data as well as the multi-camera setup with the proposed
fusion approach. Figure 4 shows firstly that multi-camera fusion
with any kind of fusion method improves significantly the overall

Figure 4: Comparison of the proposed weighted multi-camera fu-
sion with non-weighted fusion and without camera fusion.

estimation performance compared to without camera fusion. Sec-
ondly, in all calibration configurations, the proposed fusion method
achieves lower accuracy errors than the non-weighted multi-camera
fusion. Note that the performance improvement becomes more sig-
nificant when we learn the weights on the calibration data which
consists of more than 5 points. This indicates that more calibra-
tion data leads to a more accurate estimation of fusion weights. Yet
the performance seems to saturate after 9 points for the calibration.
In addition, we observe that there is not a big performance differ-
ence between subject-specific and subject-independent estimation.
Subject-specific estimation leads to a slightly better performance.
However, subject-independent estimation can also accurately cap-
ture the overall tendency of weighting, and performs better than
non-weighted fusion. This implies that the weighting is mostly
based on hardware factors such as positions and viewing directions
of the cameras and perhaps the monitor size. They are partly in-
fluenced by other subject-specific factors such as subjects’ heights,
gazing habits, eye dominances or vision problems. In order to take
these factors into account, subject-specific estimation seems a bet-
ter choice for a more accurate estimation. Since the calibration data
needs to be acquired for each subject anyway, we propose to esti-
mate the weights in a subject-specific manner.

In addition to accuracy enhancement, a multi-camera system pro-
vides a higher gaze estimation availability (see Table 1). It brings
more flexibility for users’ head and body movements. In single
camera systems, the system can not output a PoR whenever the
user is out of FOV of the only camera, whereas the user needs to be
out of FOV of all the cameras in a multi-camera setup. Our user ex-
periments do not contain large body movements, so there is a very
high gaze availability even when only using the bottom camera,
and the increase achieved by the multi-camera setup is not critical.
To obtain a more concrete conclusion regarding the effectiveness
of a multi-camera system on the gaze availability and robustness
against head/body movements, another user study containing larger
head/body movements must be performed. We leave such a study
as our future work.

Figure 5 illustrates the comparison of the investigated methods with
the previous work in the literature. The results indicates a signif-
icant improvement achieved by multi-camera setups over the best
performing single camera system and the binocular fusion proposed



Table 1: Comparison of different camera setups. Average gaze estimation accuracy errors are reported in degrees of visual angle.

Camera Setup Eye Data Without Number of Calibration Points Gaze (%)
Calibration 5 9 13 16 25 Availability

Bottom Camera
Only Right Eye 7.14 1.22 1.16 1.15 1.16 1.14 95.8
Only Left Eye 6.63 1.19 1.09 1.07 1.08 1.06 91.7
Combined 5.12 0.95 0.88 0.87 0.88 0.87 96.4

Right Side Camera
Only Right Eye 4.69 1.61 1.48 1.46 1.43 1.45 89.2
Only Left Eye 8.38 1.59 1.33 1.29 1.28 1.26 77.4
Combined 4.79 1.32 1.23 1.21 1.19 1.20 91.9

Left Side Camera
Only Right Eye 7.53 1.56 1.43 1.58 1.49 1.47 76.7
Only Left Eye 4.39 1.65 1.42 1.36 1.31 1.34 83.1
Combined 4.68 1.35 1.19 1.22 1.17 1.18 90.0

Multi-camera Overall 3.41 0.82 0.73 0.72 0.72 0.72 97.3

by [Zhang and Cai 2014]. The proposed fusion method further im-
proves the estimation accuracy compared to [Arar et al. 2015a]. Be-
sides, we plot another result showing the performance as if there is
an oracle knowing the best performing camera for each frame in
order to highlight the upper limits of the system through an opti-
mal weighting system, and that this choice of the best camera is a
critical factor for high accuracy. The oracle results imply a possible
further enhancement.

Figure 5: Comparison of investigated methods with previous work.

As shown in Figure 5, the error reduces with increasing amount of
calibration data. However, a user-friendly system should involve as
little effort as possible for the subject-specific calibration. There-
fore, our results suggest a calibration with 9 points as the improve-
ment with more points is not significant. Yet the system can reach
a reasonable estimation accuracy of 0.82◦ with a calibration with
only 5 points. Hence, it shows comparable performance to more
complex 3D model-based systems whose reported accuracies are
around 1◦ in [Hansen and Ji 2010].

Moreover, the proposed system brings another advantage, that is a
lower computational complexity than 3D model-based methods. So
the system is highly suitable for real-time gaze tracking. In fact, our
system implemented in C++ can run at∼30 fps, without performing
any speed optimization, on a PC with Intel i7 3.2GHz processor.

4 Conclusion
In this paper, we investigate different fusion techniques to improve
the overall gaze estimation accuracy of a multi-camera eye track-
ing system. We present a novel method which estimates the fusion
weights by exploiting user calibration data statistics for efficiently
combining multiple independent camera systems. The proposed
method determines the weights using the statistics of certain weight
indicators such as the calibration accuracy and available gaze data
per sensor. The effectiveness of the proposed method has been vali-
dated with user experiments. The results show that the system’s per-
formance, even with very few calibration data (5 points), is compet-

itive with more complex systems presented in the literature. Hence,
the proposed system enables fast and user-friendly gaze tracking
with minimum user effort without sacrificing too much accuracy.
As the future work, we plan to investigate the robustness of the
method against large head/body movements.

Acknowledgements
This project is supported by the Swiss Commission for Technology
and Innovation (CTI) under grant number 13594.1 PFFLR-ES. Au-
thors would like to thank Dr. Hua Gao for his valuable discussions.

References

ARAR, N. M., GAO, H., AND THIRAN, J.-P. 2015. Robust
gaze estimation based on adaptive fusion of multiple cameras.
In FGR.

ARAR, N. M., GAO, H., AND THIRAN, J.-P. 2015. Towards
convenient calibration for cross-ratio based gaze estimation. In
WACV, 642–648.

BEYMER, D., AND FLICKNER, M. 2003. Eye gaze tracking using
an active stereo head. In CVPR, 451–458.

COUTINHO, F. L., AND MORIMOTO, C. H. 2013. Improving head
movement tolerance of cross-atio based eye trackers. IJCV 101,
3, 459–481.

HANSEN, D. W., AND JI, Q. 2010. In the eye of the beholder: a
survey of models for eyes and gaze. PAMI 32, 3, 478–500.

HANSEN, D. W., AGUSTIN, J. S., AND VILLANUEVA, A. 2010.
Homography normalization for robust gaze estimation in uncal-
ibrated setups. In ETRA.

HUANG, J.-B., CAI, Q., LIU, Z., AHUJA, N., AND ZHANG, Z.
2014. Towards accurate and robust cross-ratio based gaze track-
ers through learning from simulation. In ETRA.

KANG, J. J., EIZENMAN, M., GUESTRIN, E. D., AND EIZEN-
MAN, E. 2008. Investigation of the cross-ratios method for
point-of-gaze estimation. Transactions on Biomedical Engineer-
ing 55, 9, 2293–302.

UTSUMI, A., OKAMOTO, K., HAGITA, N., AND TAKAHASHI,
K. 2012. Gaze tracking in wide area using multiple camera
observations. In ETRA.

YOO, D. H., KIM, J. H., LEE, B. R., AND CHUNG, M. J. 2002.
Non-contact eye gaze tracking system by mapping of corneal
reflections. In FGR.

ZHANG, Z., AND CAI, Q. 2014. Improving cross-ratio based
eye tracking techniques by leveraging the binocular fixation con-
straint. In ETRA.


