Vernay, D.G., Raphael, B. & Smith, I.F.C. "A model-based data-interpretation framework for improving wind
predictions around buildings" Journal of Wind Engineering and Industrial Aerodynamics, 145, 2015 pp.219-228
http://dx.doi.org/10.1016/j.jweia.2015.06.016

A MODEL-BASED DATA-INTERPRETATION FRAMEWORK FOR IMPROVING WIND PREDICTIONS

AROUND BUILDINGS

Didier G. Vernay *©*, Benny Raphael ® and lan F.C. Smith ¢ 'b®

3 Future Cities Laboratory, ETH Zurich, Zurich, Switzerland. \Q
b) Civil Engineering Department, Indian Institute of Technology, Madras, India. . %

° Applied Computing and Mechanics Laboratory, School of Architecture, Civil and Enwror@ | Engineering (ENAC),

EPFL, Lausanne, Switzerland. %_

o N
* Corresponding author: Didier G. Vernay, Future Cities Laboratory, Singapore-ETH Centre 1 CREATE Way #06-01
\OX

(o)
CREATE Tower Singapore 138602. Tel.: +65 9723 1127, E-mail: didier. vernay@epfl ch

N

Abstract:

Although Computational Fluid Dynamics (&‘\Iisb}simulations are often used to assess wind conditions
around buildings, the accuracy of su&@%ulaﬁons is often unknown. This paper proposes a data-
interpretation framework that p&@multiple simulations in combination with measurement data to
improve the accuracy of w& redictions. Multiple simulations are generated through varying sets of
parameter values. Set{%parameter values are falsified and thus not used for predictions if differences
between measu@t data and simulation predictions, for any measurement location, are larger than
an estlma&s‘q%ncertamty bounds. The bounds are defined by combining measurement and modelling
unc@hﬂes at sensor locations. The framework accounts for time-dependent and spatially-distributed
k%dellmg uncertainties that are present in CFD simulations of wind. The framework is applied to the
case study of the CREATE Tower located at the National University of Singapore. Values for time-
dependent inlet conditions, as well as values for the roughness of surrounding buildings, are identified

with measurements carried out around the CREATE Tower. Results show that, on average, ranges of



horizontal wind-speed predictions at an unmeasured location have been decreased by 65% when

measurement data are used.

Keywords: Computational Fluid Dynamics (CFD); wind modelling; field measurements; data

interpretation; multi-model reasoning

1) Introduction \&‘?

N

_ . | >

Wind around buildings affects the comfort and health of residents as well as the energy @\ ption
Q
of buildings, particularly in tropical climates. For example, the convective heat fl@the building
facade, influencing energy consumption of buildings, depends on the surround@ind [1]. Wind can
also be harnessed for natural ventilation of buildings [2]. Computat@luid Dynamics (CFD)
simulations have been widely used to simulate wind around and @h buildings [3, 4]. Although
guidelines have been established to improve simulation pre ns [5], large discrepancies remain
»

when simulation predictions are compared to fiel@@surements. Moreover, uncertainties in

simulation predictions are usually not quantified N\

O

The steady Reynolds-averaged Navier-@egs (RANS) equations are usually employed in CFD
simulations to describe the quid—fk@%&ehavior. These equations are time-averaged or ensemble-
averaged equations of the f]uid@giw motion. Large discrepancies have been observed in wakes of
buildings when predictio\rQQf\RANS-based simulations are compared with wind-tunnel experiments
[7, 8]. Wind—tunr{e‘é\@riments are usually employed to evaluate the performance of approximate
equations of f%@ow solved in CFD simulations because values of parameters are known (e.g. inlet
conditio@and surface roughness). Large Eddy Simulation (LES) is an alternative strategy for
m@%g fluid-flow behavior in which time-dependent predictions are computed. LES has been found

B\provide better agreement with wind-tunnel experiments than RANS-based simulations [7].

Thermal processes may affect the wind behavior around buildings, especially in street canyons which
can be subject to combinations of low wind speeds and high differential heating between surfaces [9].
However, if thermal processes are implemented into the CFD model, modeling complexity is
increased [3, 10] along with the number of parameters that cannot be easily estimated, such as the
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thermal properties of surfaces. Therefore, thermal processes are not often included in CFD
simulations. Effects of thermal processes have been evaluated by using field measurements [9]; by
simulating thermal processes with CFD simulations [11]; or by using wind-tunnel experiments with a
heated floor [12]. However, the effects have been estimated for standard building configurations

(street canyons) and they are likely to vary for other topologies.

C.)

Model-based data interpretation has the potential to improve the accuracy of simulation pregb@n
through the use of a population of CFD simulations and measurement data. In mode@%ed data-
interpretation approaches, many model instances (simulation instances) are Q%%’ated through
assigning sets of parameter values to a model class. In this work, the mod ss is a CFD model
with un-assigned parameter values. Measurement data are used to estlma@s of parameter values by
solving an inverse problem. The inverse problem involves estm@w sets of parameter values by

comparing measurement data with predictions of model ms@ge‘s Several approaches are described

in following chapters. &Qo
N

Model calibration, in which an “optimal” m s found by minimizing the sum of the squared
difference between simulation predictio&\ d measurement data, is not appropriate because there
rarely is a single answer to the inve%&roblem Many set(s) of parameter values within a model class
might give same responses Q{@nsor locations in complex systems [13]. Such ambiguities are
amplified by measurem.@d modelling uncertainties. Modeling uncertainties refer to uncertainties
(probability dlstrr@%‘hs of errors) in the model class (e.g uncertainties associated with RANS
equations) I@{%ver model calibration approaches provide values of parameters, which compensate
model@xd measurement errors at sensor locations. Therefore, the “optimal” model is conditional
or@g‘{sor locations (and modeling errors at those locations). Furthermore, calibration approaches do

R

not provide information that can lead to estimates of uncertainties of subsequent predictions [14].

Bayesian inference identifies conditional probability distributions of parameter values given
measurement data [15]. Probability distributions are required to represent measurement and modeling

uncertainties at sensor locations. Uncertainties in CFD simulations are difficult, if not impossible to



determine precisely. If incorrect probability distributions are defined, it may lead to over-conditioning
of parameter values [14]. Furthermore, modeling errors are often systematic and this introduces
additional error correlations between measurement locations [16, 17]. Implementation of Bayesian
inference requires a complete knowledge of all correlations in order to avoid biased predictions. In

wind modeling, the values of such correlations are unknown.

S

An alternative is to use a model-falsification approach, such as error-domain model falsificatj \R
18] and Generalized Likelihood Uncertainty Estimation (GLUE) [14], in which inc@s sets of
parameter values are falsified using measurement data. Only bounds of measu‘req@nd modeling
uncertainties are needed. Error-domain model falsification has been develo@ﬂ%6 the application of
bridge diagnosis and leak detection in water networks. Error—domain\@el falsification involves
falsification of model instances for which differences between \.@@surement data and simulation
predictions, for any measurement location, are larger tha\n@?}sﬁmate of uncertainty bounds; the
bounds are defined by combining measurement u%ﬁ@?ﬁies and modeling uncertainties at that
location. When the entire set of model instance% sified, the model class is incorrect. This could
mean that either additional processes need%%e included, boundary conditions are incorrect, etc. or

modeling and measurement uncerta@have been underestimated. In this way, model falsification

provides a way to test the validi{@'model classes.
!\Q
The main objective of Qalper is to present a model-based data-interpretation framework which is
XN
appropriate for thg@&ftification of parameter values of CFD simulations, and subsequent predictions
at unmeasg@\j%ations. The framework is based on error-domain model falsification. Improvements
have b@mde to error-domain model falsification in order to reproduce time variability (at the scale
@gﬁnnutes) of wind through allowing identification of different sets of inlet conditions at different

times. In this framework, time-dependent inlet conditions as well as the roughness of the surrounding

buildings are identified using time series of measurement data.

Modelling and measurement uncertainties affect the information content of measurement data. A

systematic methodology to evaluate modeling uncertainties is proposed that recognizes their time-



dependent and spatially-distributed characteristics. The final objective is to apply the methodology to
the case study of the “CREATE Tower”. The CREATE Tower is a 16-storey building located at the

National University of Singapore.

The structure of the paper is as follows. In the next section, the model-based data-interpretation

framework is described. Section 3 introduces the case study and the model class including the

g

.

parameters requiring identification. The experimental setup is presented in Section 4. Se
presents a methodology to estimate modeling uncertainties that can be incorporated t@ model-
based data-interpretation framework. The model-based data-interpretation fram%&%ls applied in
Section 6 using simulation predictions, measurement data and knowled é@measurement and

modeling uncertainties. The paper ends with a discussion of the results a@ns for future work.

2) Methodology \\QQO

&
»
This section presents the model-based data-interpr{@%ﬁ framework used to identify sets of

parameter values of the CFD simulation and ;@@*Wind variables at unmeasured locations. This
framework is based on error-domain mo\éﬁlsmcatlon which has been found to be useful in
applications of bridge diagnosis and @ detection in water networks [16, 18]. In such systems,
parameter values are |dent|f|ed&}g measurements carried out only at specific times. In the
assessment of wind beha\/&\%ound buildings, parameter values of CFD simulations need to be

identified dynamlca,ll("@\g time series of measurements.

‘Q

{)%rror -domain model falsification
N

Erro@nam model falsification involves generating sets of model instances M (0j) through

Yglgnmg a combination of parameter values @, [491,...,6?p]_ to a model class M with
J

je{l,...,nm}. p is the number of parameters requiring identification and N is the number of

model instances. When correct sets of parameter values @~ are assigned to the model class, the

predicted value of an output variable of the model instance M (0*) differs from the real value (Q)



by the modelling errorQ

) ogel - Modelling errors are errors associated with the model class. The real

value is also equal to the measured value y plus a measurement error Q... - This is expressed in

Equation (1).

M (0 ) model Q y+ measure (1)

W
Equation (2) is derived by rearranging the terms in Equation (1). The difference between the @ted

and the measured value is equal to the difference between the measurement and the mo@rror.
M (0 )_ y= bmeasure _C)model \\.\ (2)

However, errors are seldom known in environmental systems. Errors%. represented with probability
distributions (uncertainties), which are often assumed unlformé\%sence of more information [19].

Measurement and modelling uncertainties are combined @\Aonte Carlo technique [20]. Threshold

bounds [T Th,th are defined using the com@certamty and a confidence level of ¢ =95%

) A

as presented in Figure 1. \Q
N |
Combined
A uncertainty
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Figure 1: Thres bounds determined with the combined uncertainty and a confidence level

)
¢= 95%§\
*@
w&?model instance M (Hj) is candidate if Equation (3) is satisfied. Otherwise, the model instance is

falsified (6, #6) .

low —

Tow SM(0;)=y <Ty (3)



Compared with typical Bayesian approaches (zero-mean Gaussian probability forms), this approach is

more robust when error correlations are not known [17].

2.2) Application to wind modeling

In this work, the parameters requiring identification are the inlet wind speed U at 16m height,

inlet,16m

the inlet wind direction 8, and the sand-grain roughness of the surrounding bqumg@?

0=[U

inlet,16m? mlet 1%

]) The output variables of interest are the horizontal wind speeds@%ﬂd wind

&

directions & at sensor location ie{l, }and at unmeasured locations of in %9( where N, is the
&
number of sensor locations. @

Modeling uncertainties are time dependent and spatially dIS'[I’I.b& (Section 5). Thus, modelling

uncertainties (and threshold bounds [T,vai'j’k’t,

Thighi ikt )-@Stlmated at each sensor location i, for

N

each model instance j, for each compared variablg @(U ,9 and at each time step t . At time step t

, model instances are candidate models if, @ch and every sensor location and for each and every

compared variable, the difference bet&&! the measured and the predicted value falls inside the

interval [T

low,i, j kit

Thigh,i,j,kt] I@orresponds to the situation when Equation (4) is satisfied.

\Q
Vie and ‘v’l&%&h, Towi jxt <M (0 )’k = Vike < Thighi ik (4)

Where M @?IS the predicted value of the variable k at sensor location i by the model instance |

N

and@ Is the measured value of the variable K at sensor location i at time step t .
W
Model instances are steady-state models. At each time step, specific set(s) of parameter values are

identified in order to represent the dynamic behavior of wind.

2.3)Wind predictions at unmeasured locations



Each candidate model is assumed to be equally probable. A discrete distribution of values can be
predicted with the set of candidate models for each variable k, at each unmeasured location of

interest | and at each time step t. These distributions correspond to uncertainties associated with

parameter values, which have been reduced through falsification of incorrect sets of parameter values.

In order to obtain unbiased predictions, modelling uncertainties need to be combined to the@)
distributions as expressed in Equation (5). For each candidate-model prediction, 2000 samp@re
drawn from distributions of modelling-uncertainty sources in order to build predictive d@utlons at

unmeasured locations. \Vg’
SO

S

@

&

Where B, is the predictive distribution of the variable K at @measured location | and at the

R =M (ej* )I‘k +Omode|,j*,|,k,t ©

timestept. M (49]*) is the prediction of the variab q{,@the candidate model j" at the
1,k
N
unmeasured location |. @ is a randoga\variable representing the modelling uncertainty of the

modeIJ Akt \

candidate model j* in the prediction (@&/ariable k at the unmeasured location | and at the time
step t. \QQ;

Ranges of predictions g@ondmg to any confidence level (for example 50, 70 and 95%) can be

computed using @Ulctlve distributions.
3) Ng@al simulations

CF %ulatlons have been executed using the commercial software FLUENT 14.5 [21] in order to
?r\nulate possible wind behavior around the CREATE Tower. The CREATE Tower is a 16-storey

building located at the National University of Singapore.

The 3D models of the buildings have been built using photogrammetry techniques [22]. The
resolution of the 3D model of the CREATE Tower is approximatively 5cm. A lower resolution is

employed for the surrounding buildings. The surrounding buildings of the CREATE Tower have been

8



modelled following best practice guidelines [23]. If the distance from a building of height H to the
CREATE Tower is lower than 6H , the building is explicitly modelled. The size of the computational
domain has also been determined using best practice guidelines [23], creating a computational domain

with dimensions LxW x H =2233mx1144mx 368m .

CutCell Meshing has been employed to generate the grid. CutCell Meshing generates a‘hi&q’g
N
percentage of hexahedral cells which provide better iterative convergence than tetrahedral ceb@ﬂ.

The expansion ratio is set to 1.1. The minimal size of the cells is set to 0.05m resultin @rid with

13.1x10° cells. Results have been compared with a finer grid in which the min@?%ze of the cells
has been reduced to 0.03m. In average over 187 locations close to the @TE Tower (possible
sensor locations mentioned in Section 4), the mean difference be@}& horizontal wind speeds
predicted with the two grids corresponds to 1.1% of the inlet wi&{&?@d at the same height. The finer

grid does not improve significantly the results and, therefo%@'&g not been selected.

&

The 3D steady RANS equations are used in the @ lass to describe the flow behavior around the
CREATE Tower. The Realizable k—¢& n@is employed to provide closure with two additional
Q

transport equations [24]. The first nev&@%ported variable is the turbulence kinetic energy k and the
second is the turbulence dissip@arate ¢ . Isothermal conditions were imposed. More sophisticated
model class can be empl&i@@to simulate the effect of thermal processes on the wind behavior.
However, it Would.\\@se the modelling complexity and would require the definition of new
parameter valu§$n as the thermal properties of the surfaces as well as the sun radiation which vary
with res@) time. Thus, isothermal conditions have been considered in the model class.
Ne{?ﬁ%ess, the effect of thermal processes on wind predictions is evaluated using statistical
keg‘nods on measurement data taken at different times of the day (and night) in Section 5.3 in order to

identify reliable sets of parameter values and predict reliable wind variables at unmeasured locations.

The Coupled algorithm is employed for pressure-velocity coupling. A second-order discretization

scheme is used to interpolate pressure from values at cell centers. The convergence criteria, based on



the scaled residuals, are set to 10~ for all variables. Before simulations were terminated, the predicted

values of the variables of interest were constant. Thus, the solution was regarded as converged [25].

A user-defined function (UDF) in FLUENT is employed to define a vertical profile of wind speed

U, turbulence kinetic energy K, and turbulence dissipation rate &, at the inlet of the

inlet

computational domain. For the kK —& model, profiles have been proposed by Richards and I—k{@

[26]. They are expressed in Equation(6), Equation (7) and Equation (8).

: S
e 9) =228y G
° S

* 2 \
e () = o % 7
in (y) \/C7H 'QQO ()

ginlet (y) = % &Qo (8)
Y+ ~\Q

where Y is the height coordinate, Y, is %\roughness length of the terrain, x is the von Karman

constant, u;B,_ is the atmospheric @&iary layer (ABL) friction velocity and Cu is a model constant

N
of the kK —& model. \Q

S
The flow behavior'\e walls is modeled with the standard-wall function [27]. The sand-grain

roughness st s to be defined at wall surfaces in FLUENT. A relationship between the sand-grain
Q

\

roughr~1®§kS and the roughness length Yy, (commonly used in wind engineering) has been

9
g&-llished for the standard-wall function in FLUENT by Blocken et al. [28]. This relationship is

expressed in Equation (9).

9,793y,
C

S

k (9)
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Where C. is the roughness constant. The value of K, cannot be larger than Y, Which is the distance

between the wall and the centroid of the wall-adjacent cell. Therefore, C, may need to be adjusted in

FLUENT to satisfy Equation (9).

The terrain of the computational domain is decomposed into two surfaces. The first surface is the

terrain where the surrounding buildings are explicitly modelled. The second surface is the upsﬂ@fr’ﬁ

terrain where the buildings are implicitly modelled using an equivalent roughness Ien&.@b. The

O
roughness length used to model the upstream terrain is set to Yy, = 0.8m, which rewgents regularly-
'b
built large town [29]. By using Equation (9), the sand-grain roughness an roughness constant

have been set to K, =1.33 and C,=6. The roughness length mpose@e upstream terrain is also

used for the definition of inlet profiles (Egs. (6)-(8)) in order toé@?nintended streamwise gradient

associated with roughness modification in the upstream p@gf the computational domain [28]. The
terrain where the surrounding buildings are exph@ modelled is set to Y, =0.24m. Symmetry

boundary conditions are imposed on the sid % on the top of the computational domain. Zero-

pressure boundary condition is imposed \Qk outlet.

\Q

The parameters requiring identi@ﬂ)n are the inlet wind speed at 16m height U the inlet wind

inlet,16m?

direction 4, and the @f}ness of the surrounding buildings K, . A population of model instances
M (Hj) has bee@erated through assigning sets of parameter values @ [Umlet 16mr Fntets s:' to

the mode&\%s M described in previous paragraphs. These parameters have been selected because
the@e the highest impact on wind predictions and are difficult to estimate.

™
Wind speeds and wind directions at the inlet of the CFD simulation are sensitive parameters and are
difficult to estimate in urban areas [30]. Buildings and streets in the area of interest are modelled with
a certain degree of geometrical simplification in CFD simulations. A roughness is imposed on these

surfaces to implicitly model those simplifications. This roughness is difficult to estimate and may

have a strong influence on predictions of wind speeds (variations up to 25% for mean wind speeds)

11



[31]. In the proposed framework, representative inlet conditions and roughness of the surrounding

buildings are identified using measurement data from sensors located around the CREATE Tower.

Grid-based sampling is used to select sets of parameter values uniformly within the parameter space
for the generation of model instances. Table 1 presents the maximal and minimal values of parameters
as well as their discretization intervals. CFD simulations have been executed for each combination of

Yy
inlet wind direction 4, ., and roughness of the surrounding buildings K, . A single value of inl@ind

speed U

iniet 16m 1S Used in the CFD simulations. A total of 48 simulations have been ex@i In batch
mode using 12 processes in parallel on a Windows Server 2012 containing four % -Core Intel Xeon
E54607 2.20GHz processors and 64 GB memory which requires appr%&?atively 192 hours of

execution time. When a new value of inlet wind direction is assign%o the model class, the outside

box of the computational domain modifies its orientation, Ieadiqriéh%he generation of a new grid.
AN

N
Wind predictions for other inlet wind speeds are ob%@%&ing a linear relationship. Indeed, it was
observed that same amplification factor of Win@ and same wind directions are predicted at one
location when the value of inlet wind s@s varied. In total, wind predictions of 768 model

instances are obtained although only A@% simulations have been executed.

o
Horizontal wind speeds and,w&&rections are predicted at sensor locations for each model instance.
N
Figure 2 presents the hgr} mal wind speeds and wind directions at 30 meter height predicted by one

O
model instance. gQ\\

Table 1: @al and maximal values of parameters requiring identification as well as discretization

o

%" Minimal Maximal Discretization
Parameter requiring identification

value value intervals
Wind direction at the inlet ., form North [°] 0 337.5 225
Wind speed at the inlet U, .. .¢., (at 16m height) [m/s] 0.5 8 0.5

12




Sand-grain roughness of surrounding buildings K, [m] 0.02 0.32 0.15

.(_
Velocit
Model class M: [ | ‘;"\ . -
-Reynolds-Averaged 60\ P -—
Navier-Stokes (RANS) | s «—  Wind
equations B 40| inl
-Isothermal «—speed inlet
-— inlet,76m
<«— Wind
<« direction
Prediction= inlet
M(Uinlet,ffim’ 19inlet’ ks’ D .Bfniet
‘_7_‘ -
To be identified - CREATE Tafier =
R i ean R S

YV

Figure 2: Wind velocities predicted by o@el instance (3 =90°, U, 10 16m =6M/S,

N

k, =0.17m) at 30 meter height determin%%rough a CFD simulation (top view) and description of

the system. \QQ\Q

4) Experimental setup and f@g‘fﬂeasurements
QQ

Measurements were C?Z;@ out from February 14. 2014 to March 21. 2014 during the North-East
monsoon season. \\Q’

N
A senso \%&ment methodology was applied in order to define measurement locations that should
brin%ﬁ&% largest amount of information on the wind behavior around the CREATE Tower [32].
gble locations were limited to the balconies and terraces of the CREATE Tower. From the 187
possible locations defined initially, the 8 best locations have been determined. Figure 3 presents the

possible locations of weather stations as well as their actual locations. Seven weather stations are used

to falsify incorrect sets of model instances (sensor S1 to S7) and the last weather station is used to test

13



the framework (sensor S8). The weather stations were deployed around the CREATE Tower at

different floor levels (L3, L7 and L13).

Four Davis weather stations, each equipped with a wind-cup anemometer and a wind vane were used
to measure horizontal wind speeds and wind directions (sensor S1 to S4) and four HOBO weather
stations equipped with a wind-cup anemometer, a wind vane and a temperature sensor were used (tg
measure horizontal wind speeds, wind directions and temperatures (sensor S5 to S8). 'b®\Q)
N\
A data logger was installed on each weather station to store measurement data. Av%@sﬁlues of
measurement data were logged every minute. The resolutions of the Davis Weatr@(%ons are 0.1m/s
‘

for horizontal wind-speed measurements and 22.5° for wind-direction measurements. The starting

O
threshold is 0.4m/s. The resolutions of the HOBO weather stations \§9m/s for horizontal wind-

« N
speed measurements and 1.4° for wind-direction measurements. The starting threshold is 0.5m/s.
ol
AN
a) y. (e b)
A - .
Ny A A\ « Possible sensor
// \ . locations
/£ , \ b ) —
/ { 1 - \_—~7 |e Falsification
4 N | sensors
4 | A & Test sensor
(j . * ,_-—4—"'7.\‘ \\ Temperature
'S i S B PE. sensor
. 00O, s,
\ S5 \ “952 (113)
= § ST,
) e S8 (L7)
e \ \ S7 (L13)

SensorS5

\\V
Figure 3: a) M@rement locations around the CREATE Tower (top view) and b) description of the

\
HOBO W@I&r station
N9
%@odeling uncertainties
¢

Modelling uncertainties at sensor locations affect the information content of measurement data. This
section proposes strategies to estimate main sources of uncertainties and to combine them in order to

define threshold bounds used for falsification of incorrect model instances.

14



5.1) Uncertainties associated with RANS-based simulation in the predictions of mean

wind variables

LES has been found to be more accurate than RANS-based simulation in regions of flow separation
and recirculation when compared to wind-tunnel experiments because flow is highly unsteady in these
regions [7]. However, LES takes two order of magnitude longer to execute than a RANS-based
simulation [33] and, therefore, it has not been employed for the generation of model iq@es
(Section 3). Uncertainties associated with RANS-based simulation are estimated b@%mparmg
predictions of a RANS-based simulation with those of a LES. Horizontal wm&%%éds and wind
directions predicted at 10000 locations around the CREATE Tower with the S based model are

N

compared with mean values of LES predictions. %\Q

The geometry and grid settings described in Section 3 are use&\@ oth LES and the RANS-based
simulation. The same wind conditions are defined at the@t of both simulations. The turbulence
Kinetic energy imposed at the inlet of the RANS-bas @ ulation is reproduced in LES by imposing a
time-dependent wind-speed profile using the &Q >meth0d [34] in FLUENT 14.5. 190 vortices are
used in the vortex method because it I&k\owded good results in previous studies on the wind
behavior around a wall-mounted cub&sS] In LES, the dynamic Smagorinsky model is employed to

NN

model the small eddies of the {Q’\ [36].
&

A zero sand-grain rp ss is imposed on all surfaces of the RANS-based simulation in order to be
consistent with @ In order to avoid unintended streamwise gradient in the upstream part of the
computafgmgdomam a small roughness length (Y, =0.001m) is used to define the inlet profiles
(E@) (8)), which is different from the roughness length used to model the upstream terrain in the
X\neratlon of model instances (Section 3). In this section, the goal is to estimate the uncertainties
associated with steady RANS equations by comparing RANS predictions with equivalent LES

predictions. The goal is not to predict the wind velocity accurately for the selected case study. Since

the uncertainties in the RANS predictions are defined as a function of the inlet wind speed, avoiding

15



unintended streamwise gradients in the upstream part of the computational domain leads to consistent

estimations of uncertainties.

Responses of the RANS-based simulation are employed as initial conditions for LES. In LES, the

time step size is set to 0.25s. After 1h of real time, mean values of LES do not vary significantly.

Figure 4 presents differences between mean responses of LES and responses of the RANS-b@
simulation with respect to the amplification factor of wind speeds predicted with the RA@ed

simulation. The amplification factor of wind speeds is defined as the ratio between\%s predicted

horizontal wind speed U and the inlet wind speed at the same heightU,,. It is t@nportant to avoid

>

streamwise gradients in the upstream part of the computational domain. \Q

©

Differences in the predictions of horizontal wind speeds are hiw regions of low amplification

factors of wind speeds (Figure 4a). Differences in the pr. %JIOHS of horizontal wind speeds are
defined as a percentage of the inlet wind speed at th%@%ﬁ%e height U, . Indeed, in a previous paper,

LES and RANS-based predictions around a sis@&ubical building have been compared for two inlet

Q
wind speeds [37]. Differences in the pre@ns of horizontal wind speeds between LES and RANS-

based simulations have been found tb& proportional to U, [37].
N
R\

Large variations in the prng\%)ns of wind directions are observed in regions of low amplification
factors of wind spo\@hls is in agreement with results found using a single cubical building [37].
This ongmates@n the over-estimation of the region of reverse flow in wakes of buildings with
RANS- b%‘d%lmulatlons Therefore, RANS-based simulations may predict reverse flow at locations
Whe&s do not. Model calibration mentioned in Section 1 is especially hazardous when sensors are
Mated in regions of high uncertainties because the calibrated set of parameter values may

compensate with possible high errors in the model class.

Two regions are defined in the model-based data-interpretation framework in order to acknowledge
for the spatial variability of modeling uncertainties; the first region is defined by amplification factors

of wind speeds that are lower than 0.33 and the second region is defined by amplification factors of

16



wind speeds that are higher than or equal to 0.33. Locations of those regions vary for each model
instance. Based on the distributions of differences, this source of uncertainty is described with a

normal distribution for each flow variable and for each region.
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Figure 4: Differences between LES and a RANS-based sim.u%@r in the predictions of a) horizontal

N
wind speeds and b) wind directions with respect to th%(j@?mcation factor of wind speeds

A
5.2) Uncertainties associated with SK nce
\Q

In the model-based data-interpretatio@ework, an averaging window needs to be chosen to
average measurement data. Da(@ the averaging window is a challenging task because of the
presence of two conflicting b‘@ctives: 1) the averaging window should be short enough to be able to
assume constant wind aé&tions at the inlet of the RANS-based simulations used in the model-based
data—interpretatio@\}mework, 2) the averaging window should also be long enough in order to avoid
quctuatiag\é‘ wind variables associated with turbulence at locations of interest. Uncertainties
assoc%&{ with turbulence refer to uncertainties originating from turbulent fluctuations at locations of

w%:-test when the averaging window is not long enough.

Unlike RANS-based simulations, LES predicts time series of horizontal wind speeds and wind
directions. Uncertainty associated with turbulence is estimated using time series predicted at sensor
locations (sensor S1 to S7). Figure 5 presents maximal fluctuations of horizontal wind speeds and

wind directions around the mean values of LES, averaged over all sensor locations, with respect to the
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averaging window. Fluctuations decrease rapidly when the averaging window increases from 1
minute to 15 minutes. Smaller reductions of these fluctuations are observed if the averaging window
is further increased. Therefore, the averaging window is set to 15min. For this averaging window,
constant wind conditions are assumed at the inlet of the RANS-based simulations used in the model-

based data-interpretation framework.
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Figure 5: Maximal fluctuations of a) horizontal wind %‘eﬂs and b) wind directions around the mean
value of LES, averaged over all sensor Iocaﬂo@h respect to the averaging window

5.3) Uncertainties associated \thermal processes
>
Uncertainties associated with \t& | processes are estimated with measurement data because
modelling thermal processes&q CFD simulations is complex (Section 1). It would require the

definition of new parw@er values such as the thermal properties of surfaces and the execution of a

transient simulati@or a period of several days [3].

A refere@s\matlon should be placed on the roof of a building, close to the area of interest in order to
me{’@ the ambient wind conditions [61]. In the urban canopy layer, the wind can be significantly
??ected because of the combination of low wind speeds below roof level and high differential heating
between surfaces. In this work, the reference station is located on a small ridge at the rooftop of the
Engineering Faculty of the National University of Singapore. Measurement data at this station are

provided online (https://inetapps.nus.edu.sg/fas/geog/stationinfo.aspx). Information from the
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reference station is not used as inlet conditions in the CFD simulations because it might not be

representative of the overall conditions at the inlet [30].

The steps followed to estimate the effect of thermal processes on the horizontal wind speed and the

wind direction at sensors located around the CREATE Tower are described below.

1)

2)

3)

Calculate the mean value of horizontal wind speeds and wind directions at the refere@g

N
station. \Q'b
Select measurement data that are taken when wind conditions at the refere §tation are
similar to the mean wind conditions (mean value of horizontal wind spee@ mean value of
wind directions). @'
Regression analyses are employed in order to separate out%_\gfect of thermal processes
from a data sample taken at different times of the da&ih&?%ch the wind conditions above
roof level are similar. QQEQQJ
Determining the sample size is difficult b of two competing objectives. The sample
size should be high enough in order t%Q&Tﬂe to separate out the effect of thermal processes
from other sources of variabilit@. turbulence, etc.). However, the sample size should be
small enough in order to h*a@ same ambient wind conditions measured above roof level.

Thus, different sam@&zes are used in the methodology. The regression analyses are

expressed in Eq\@ (10) and Equation (11).
NS
Ui,s = a‘i%%‘l,s + bi,s ><Uref,s + Ci,s (10)

%\QQT voxGy 1, (11)
NS

N

here U,

i,s?

4, and T, ¢ are vectors of horizontal wind speeds, wind directions and

temperatures respectively measured at the sensor location i whose sizes correspond to the

number of sample s. U . ;and 3, ; are vectors of horizontal wind speeds and wind

ref ,s
directions respectively measured at the reference station whose sizes correspond to the

number of sample s.a. ., b d

is» B, G, O, € and f;  are the regression coefficients.
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4) Find out if the values of the regression coefficients, @, ; and d,

i

are significantly different
than 0 by performing a t-test [38]. If not, values of the regression coefficients are reported to
be 0.

Figure 6 presents values of the regression coefficient, a, , with respect to the number of samples at

sensors S5 to S8 (where temperature sensors are installed). a; ; is the regression coefficient@)

determines the effect of thermal processes on the horizontal wind speed at sensor Iocati@sing a

number of samples s. Values of the regression coefficient, a, , are almost const ¥h respect to
Q>
the number of samples used in the regression. \\.\

»

Uncertainties in the prediction of horizontal wind speed at sensor Ioca('g}|Q are represented by

uniform distributions with bounds [AUlOW i AU pign thi] comp@}&sing Equation (12).
- . N9
SO
, (\\

[AU low,th,i ! AU high,th,i :' = |:msin(ai,s) X (TI _Tmin,i ) ’ msax(ai,s) X (TI _Tmin,i )j| (12)

N
Where T, is the temperature measured at sa%c?location T
&

at sensor location i. It is assumed th Qrmal processes have no-significant effects when the

is the minimal temperature measured

\
temperature measured is mini ?:ft\g

Q\
Wind behavior is affeoté@%fferently by thermal processes from one sensor to another as presented in
Figure 6. Spatial@éributed uncertainties are thus considered in the model-based data-interpretation
framewo%&@der to identify reliable set(s) of parameter values. Furthermore, bounds depend on the
tempﬁ&fe measured at sensor locations. Therefore, time-dependent uncertainties are also considered

We model-based data-interpretation framework.
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The maximal and minimal values of the regression coeffic@ﬁs\ &, ; at sensor locations are used to

estimate the maximal and minimal effect of thern&l\{@esses on the horizontal wind speed at

unmeasured locations. Therefore, uncertainties at unmeasured locations are represented by uniform
Y

distributions with bounds [Auuow,va@tﬁ defined by Equation (13).
Q

R
[ AU 00 AU i | = [miin (msin (ai’S ))x('ﬂ —T i ) miax(mglx(ai]s ))x (-Fi —T mini )} (13)
Q'
&

_ N _
Where T is the@ ge value of temperatures measured at sensor locations. T mini IS the minimal

value of E\Q\
N\

T@gd%e procedure has been followed in order to estimate the effect of thermal processes on the
wind direction. Table 2 summarizes the minimal and maximal values of the regression coefficients at
sensor locations and at unmeasured locations. The maximal and minimal values of the regression
coefficients at unmeasured locations are relatively low. A stronger effect of thermal processes would
be expected if measurements would be carried out in street canyons [9]. In such situations, thermal

processes might need to be incorporated into the model class.
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Table 2: Minimal and maximal values of the regression coefficients at sensor locations and at

unmeasured locations used to estimate uncertainty associated with thermal processes.

Wind U[m/s] I[°]
Va“able msln(asensor,i,s) msax(asensor,i,s) msm(dsensor,i,s) msax(dsensor,i,s)
g S5 0.19 0.22 -1.65 -1.27
g |6 0.08 0.11 3.47 >
L QU
2 S7 0.05 0.07 2.09 @38
@
0 S8 0.08 0.09 1.21 O\Q 1.34
NN/
2w m_in(min(ais)) max(max(ais)) m_in(min(d\&% max(max(dis))
S S i s ' i s ' i i s '
g5 $
g S 0.05 0.22 @ 4.60
) : . %- .

N
53

&

Measurement uncertainty, uncertainty associated %ﬁﬂﬁ RANS-based simulation (Section 5.1),

5.4) Uncertainty combination

uncertainty associated with turbulence (Sectloﬁ& and uncertainty associated with thermal processes
(Section 5.3) have been combined @ Monte Carlo technique. Measurement uncertainty
corresponds to the resolutions of tr@&sors mentioned in Section 4. The combination of uncertainties

™)

is illustrated in Figure 7. \Q
D

Threshold bounds us&ﬁﬁ} falsify incorrect sets of model instances are defined using the combined

uncertainty and@wfidence level of ¢ =95% . The Sidak [39] correction is employed to adjust the

conflde@vel (p'= go“ ) in order to ensure that the target reliability is respected when multiple

m@%%ments are employed simultaneously to falsify model instances [40]. N is the number of

measurements.
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Figure 7: Uncertainty combination for the definition of threshold bounds

6) Results Q\é;
N
N

Falsification of model instances is performed every 15 minutes. Model instances ar@idate models

6.1) Identification of parameter values of the CFD simulation

if the differences between the measured and the predicted values of horizontacb){& speeds and wind
directions fall within threshold bounds at each and every sensor Ioc&@Section 2.2). Figure 8
presents the falsification of model instances using the horizontal .WiQ@o%eed measured at sensor S1 at
12pm on March 11. 2014. The purple dashed line is the. mQ?}\ed value; blue lines are threshold
bounds; red crosses are falsified models and green poiQtVs‘{S%candidate models. Falsified models that
appear inside threshold bounds in Figure 8 have@ Isified using measurement data at other sensor

locations or using the measured wind direct@this sensor location.

N

Threshold bounds are not the same %&\ model instances because model instances are not defined
&
with the same inlet wind speed m\ﬁ}they don’t predict the same amplification factor of wind speeds at

N
sensor S1. Furthermore,.@natic bias in modeling uncertainties has led to threshold bounds that are

AN
@red value.

&

not centered on t
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Figure 8: Falsification using the horizontal wind speed measured at s&%}r S1 at 12pm on March 11.

2014 \

6.2) Predictions at unmeasured locations (VQQO

A distribution of predictions can be obtained @\ unmeasured location using the final candidate
model set (Section 2.3). The likelihood we%gor each candidate model is assumed to be equal. This
distribution, which corresponds to@mcertamty associated with parameter values propagated

through the model, is combm@gwlth all sources of modeling uncertainty using Monte Carlo

technique. The comblna‘u@o uncertainties is illustrated in Figure 9. Prediction bounds [R,,, P,,]

are defined using X d|ct|ve distribution and a confidence level of ¢ =95% .

R .’(
|
I
+ + + -
[ 1 [ 1 = ¢ R
P L g
\ Uncertainty Uncertainty Uncertainty Uncertainty L High
associated with associated with associated with associated with Predictive distribution
parameter values RANS-based turbulence thermal processes
simulations

Figure 9: Uncertainty combination for predictions at unmeasured locations

Figure 10 presents predicted and measured values of horizontal wind speeds at the test sensor S8. Red

points are horizontal wind speeds measured at the test sensor (sensor S8). Blue lines are prediction
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ranges of horizontal wind speeds before measurements. These ranges are obtained using the
methodology presented in Figure 9; in which uncertainty associated with parameter values
corresponds to the distribution of predictions obtained with the initial set of model instances.
Prediction ranges vary with respect to time because of time-dependent uncertainties (uncertainties

associated with thermal processes change according to the measured temperatures).

&

Grey lines are prediction ranges of horizontal wind speeds after measurements. Measuremg@ta
have been employed to reduce the uncertainty associated with parameter values. On av&@; ranges
of horizontal wind-speed predictions have been decreased by 65% when measure@g‘ﬂata are used.

Moreover, horizontal wind speeds measured at the test sensor fall within ran&e})\&‘predlctlons 99% of

the time after measurements. %\Q

The purple dashed line is the mean values of predictions. The@@mean square difference between

the measured values of horizontal wind speeds and the me@a%lues of predictions at the test sensor is
N
Time variability (at the scale of 15 mmuteﬁ{é\measured horizontal wind speeds is observed at the

0.39m/s.

test sensor S8. Time variability is alsog&erved in predictions. This demonstrates that the proposed
framework is able to identify th >pendent inlet conditions. At 2:15pm, all model instances have
been falsified. This might @ate from the underestimation of uncertainties associated with thermal

processes, which effe{@e important at this time of the day.
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Figure 10: Predicted and measured va{@\;of horizontal wind speeds at the test sensor S8 every 15

minutes on March 11. 2014 \@
o

D
~\Q
7) Discussion \QQ
)
This paper propo@ model-based data-interpretation framework in order to identify time-dependent
sets of pa@r values and predict time-dependent ranges of wind variables at unmeasured
Iocag;ég*f ime-dependent and spatially-distributed modeling uncertainties, which affect the

»iermation content of measurement data, have been considered.

Limitations are as follows: In the present study, uncertainties associated with RANS-based simulation
have been estimated with LES. Although LES has been found to be in better agreement than RANS-

based simulation when compared to wind-tunnel experiments, LES is not perfectly accurate.
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Uncertainties associated with turbulence have also been estimated with LES. One simulation using
LES has been executed under isothermal conditions. Otherwise definition of many new parameters
such as thermal properties of surfaces would need to be defined. Furthermore, a transient simulation
for a period of several days is needed to simulate such processes, which would take much longer

computation time [3]. Fluctuations predicted with LES would have been larger if thermal processes

S

were considered because of the additional turbulence generated. Moreover, a small roughness len
is employed to define the wind profiles at the inlet of LES in order to avoid unintended str&@'&e
gradients in the upstream part of the computational domain. This leads to small turb I@@at the inlet.

Thus, the turbulent fluctuations predicted by LES at sensor locations are mainl@o the
N

Furthermore, the wind profiles used at the inlet of the CFD simula\f@@assumed an equilibrium

surrounding buildings that are explicitly modelled.

boundary layer and neutral conditions. These assumptions m{x\@%‘t be valid in all urban environments.

Additional sources of uncertainties associated with t@ﬁmplificaﬁons should be added in order to
N

identify reliable sets of parameter values and @ reliable ranges of predictions at unmeasured

locations. Even though uncertainties assm{@i with these simplifications were not considered in this

study, reliable ranges of prediction@@e still obtained at unmeasured locations (Section 6.2).

N
8) Conclusions N
N
N\
In this paper, a frank %Irk is proposed to integrate information obtained from measurements with
simulation reé{@he information provided by measurements is used to estimate the parameter
values@e simulation, including those for inlet wind conditions, through multiple solutions of the

in@%&oroblem. The information content of measurement data depends on levels of measurement and

xodelling uncertainties at sensor locations. Specific conclusions are:

o Differences between predictions of the RANS-based simulation and LES have been
found to be large in regions of low amplification factors of wind speeds. This has led

to the definition of modeling uncertainties that vary with respect to space.
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e Thermal processes significantly influence horizontal wind speeds at sensors located
around the CREATE Tower. This has led to a systematic bias in the modeling
uncertainty of horizontal wind speed which depends on temperature measurements.

o Reliable prediction ranges of horizontal wind speeds at unmeasured locations are

obtained dynamically with the proposed framework.

without compromising reliability. §
Q
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