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Abstract: 

Although Computational Fluid Dynamics (CFD) simulations are often used to assess wind conditions 

around buildings, the accuracy of such simulations is often unknown. This paper proposes a data-

interpretation framework that uses multiple simulations in combination with measurement data to 

improve the accuracy of wind predictions. Multiple simulations are generated through varying sets of 

parameter values. Sets of parameter values are falsified and thus not used for predictions if differences 

between measurement data and simulation predictions, for any measurement location, are larger than 

an estimate of uncertainty bounds. The bounds are defined by combining measurement and modelling 

uncertainties at sensor locations. The framework accounts for time-dependent and spatially-distributed 

modelling uncertainties that are present in CFD simulations of wind. The framework is applied to the 

case study of the CREATE Tower located at the National University of Singapore. Values for time-

dependent inlet conditions, as well as values for the roughness of surrounding buildings, are identified 

with measurements carried out around the CREATE Tower. Results show that, on average, ranges of 



 

2 
 

horizontal wind-speed predictions at an unmeasured location have been decreased by 65% when 

measurement data are used. 

Keywords: Computational Fluid Dynamics (CFD); wind modelling; field measurements; data 

interpretation; multi-model reasoning 

1) Introduction 

Wind around buildings affects the comfort and health of residents as well as the energy consumption 

of buildings, particularly in tropical climates. For example, the convective heat flux at the building 

façade, influencing energy consumption of buildings, depends on the surrounding wind [1]. Wind can 

also be harnessed for natural ventilation of buildings [2]. Computational Fluid Dynamics (CFD) 

simulations have been widely used to simulate wind around and through buildings [3, 4]. Although 

guidelines have been established to improve simulation predictions [5], large discrepancies remain 

when simulation predictions are compared to field measurements. Moreover, uncertainties in 

simulation predictions are usually not quantified [6]. 

The steady Reynolds-averaged Navier-Stokes (RANS) equations are usually employed in CFD 

simulations to describe the fluid-flow behavior. These equations are time-averaged or ensemble-

averaged equations of the fluid-flow motion. Large discrepancies have been observed in wakes of 

buildings when predictions of RANS-based simulations are compared with wind-tunnel experiments 

[7, 8]. Wind-tunnel experiments are usually employed to evaluate the performance of approximate 

equations of fluid-flow solved in CFD simulations because values of parameters are known (e.g. inlet 

conditions and surface roughness). Large Eddy Simulation (LES) is an alternative strategy for 

modeling fluid-flow behavior in which time-dependent predictions are computed. LES has been found 

to provide better agreement with wind-tunnel experiments than RANS-based simulations [7]. 

Thermal processes may affect the wind behavior around buildings, especially in street canyons which 

can be subject to combinations of low wind speeds and high differential heating between surfaces [9]. 

However, if thermal processes are implemented into the CFD model, modeling complexity is 

increased [3, 10] along with the number of parameters that cannot be easily estimated, such as the 
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thermal properties of surfaces. Therefore, thermal processes are not often included in CFD 

simulations. Effects of thermal processes have been evaluated by using field measurements [9]; by 

simulating thermal processes with CFD simulations [11]; or by using wind-tunnel experiments with a 

heated floor [12]. However, the effects have been estimated for standard building configurations 

(street canyons) and they are likely to vary for other topologies. 

Model-based data interpretation has the potential to improve the accuracy of simulation predictions 

through the use of a population of CFD simulations and measurement data. In model-based data-

interpretation approaches, many model instances (simulation instances) are generated through 

assigning sets of parameter values to a model class.  In this work, the model class is a CFD model 

with un-assigned parameter values. Measurement data are used to estimate sets of parameter values by 

solving an inverse problem. The inverse problem involves estimating sets of parameter values by 

comparing measurement data with predictions of model instances. Several approaches are described 

in following chapters. 

Model calibration, in which an “optimal” model is found by minimizing the sum of the squared 

difference between simulation predictions and measurement data, is not appropriate because there 

rarely is a single answer to the inverse problem. Many set(s) of parameter values within a model class 

might give same responses at sensor locations in complex systems [13]. Such ambiguities are 

amplified by measurement and modelling uncertainties. Modeling uncertainties refer to uncertainties 

(probability distributions of errors) in the model class (e.g uncertainties associated with RANS 

equations). Moreover, model calibration approaches provide values of parameters, which compensate 

modeling and measurement errors at sensor locations. Therefore, the “optimal” model is conditional 

on sensor locations (and modeling errors at those locations). Furthermore, calibration approaches do 

not provide information that can lead to estimates of uncertainties of subsequent predictions [14]. 

Bayesian inference identifies conditional probability distributions of parameter values given 

measurement data [15]. Probability distributions are required to represent measurement and modeling 

uncertainties at sensor locations. Uncertainties in CFD simulations are difficult, if not impossible to 
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determine precisely. If incorrect probability distributions are defined, it may lead to over-conditioning 

of parameter values [14]. Furthermore, modeling errors are often systematic and this introduces 

additional error correlations between measurement locations [16, 17]. Implementation of Bayesian 

inference requires a complete knowledge of all correlations in order to avoid biased predictions. In 

wind modeling, the values of such correlations are unknown. 

An alternative is to use a model-falsification approach, such as error-domain model falsification [16, 

18] and Generalized Likelihood Uncertainty Estimation (GLUE) [14], in which incorrect sets of 

parameter values are falsified using measurement data. Only bounds of measurement and modeling 

uncertainties are needed. Error-domain model falsification has been developed in the application of 

bridge diagnosis and leak detection in water networks. Error-domain model falsification involves 

falsification of model instances for which differences between measurement data and simulation 

predictions, for any measurement location, are larger than an estimate of uncertainty bounds; the 

bounds are defined by combining measurement uncertainties and modeling uncertainties at that 

location. When the entire set of model instances is falsified, the model class is incorrect. This could 

mean that either additional processes need to be included, boundary conditions are incorrect, etc. or 

modeling and measurement uncertainties have been underestimated. In this way, model falsification 

provides a way to test the validity of model classes. 

The main objective of this paper is to present a model-based data-interpretation framework which is 

appropriate for the identification of parameter values of CFD simulations, and subsequent predictions 

at unmeasured locations. The framework is based on error-domain model falsification. Improvements 

have been made to error-domain model falsification in order to reproduce time variability (at the scale 

of 15 minutes) of wind through allowing identification of different sets of inlet conditions at different 

times. In this framework, time-dependent inlet conditions as well as the roughness of the surrounding 

buildings are identified using time series of measurement data. 

Modelling and measurement uncertainties affect the information content of measurement data. A 

systematic methodology to evaluate modeling uncertainties is proposed that recognizes their time-
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dependent and spatially-distributed characteristics. The final objective is to apply the methodology to 

the case study of the “CREATE Tower”. The CREATE Tower is a 16-storey building located at the 

National University of Singapore. 

The structure of the paper is as follows. In the next section, the model-based data-interpretation 

framework is described. Section 3 introduces the case study and the model class including the 

parameters requiring identification. The experimental setup is presented in Section 4. Section 5 

presents a methodology to estimate modeling uncertainties that can be incorporated to the model-

based data-interpretation framework. The model-based data-interpretation framework is applied in 

Section 6 using simulation predictions, measurement data and knowledge of measurement and 

modeling uncertainties. The paper ends with a discussion of the results and plans for future work.  

2) Methodology 

This section presents the model-based data-interpretation framework used to identify sets of 

parameter values of the CFD simulation and predict wind variables at unmeasured locations. This 

framework is based on error-domain model falsification which has been found to be useful in 

applications of bridge diagnosis and leak detection in water networks [16, 18]. In such systems, 

parameter values are identified using measurements carried out only at specific times. In the 

assessment of wind behavior around buildings, parameter values of CFD simulations need to be 

identified dynamically using time series of measurements. 

2.1) Error-domain model falsification 

Error-domain model falsification involves generating sets of model instances ( )jM θ  through 

assigning a combination of parameter values 1, ,j p j
θ θ = … θ  to a model class  M  with

{ }  1, , mj n∈ … . p  is the number of parameters requiring identification and mn  is the number of 

model instances. When correct sets of parameter values *  θ are assigned to the model class, the 

predicted value of an output variable of the model instance ( )*  M θ  differs from the real value ( Q ) 
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by the modelling error   modelò . Modelling errors are errors associated with the model class. The real 

value is also equal to the measured value y  plus a measurement error   measureò . This is expressed in 

Equation (1). 

( )*  model measureM Q y+ = = +θ ò ò                                                                                                                    (1) 

Equation (2) is derived by rearranging the terms in Equation (1). The difference between the predicted 

and the measured value is equal to the difference between the measurement and the modeling error. 

( )*
measure modelM y− = −θ ò ò                                                                                                                             (2) 

However, errors are seldom known in environmental systems. Errors are represented with probability 

distributions (uncertainties), which are often assumed uniform in absence of more information [19]. 

Measurement and modelling uncertainties are combined using Monte Carlo technique [20]. Threshold 

bounds ,low highT T    are defined using the combined uncertainty and a confidence level of 95%φ =   

as presented in Figure 1. 

 

Figure 1: Threshold bounds determined with the combined uncertainty and a confidence level

95%φ =  

The model instance ( )jM θ  is candidate if Equation (3) is satisfied. Otherwise, the model instance is 

falsified ( *)j ≠θ θ . 

( )low j highT M y T≤ − ≤θ                                                                                                                                   (3) 
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Compared with typical Bayesian approaches (zero-mean Gaussian probability forms), this approach is 

more robust when error correlations are not known [17]. 

2.2) Application to wind modeling 

In this work, the parameters requiring identification are the inlet wind speed ,16  inlet mU  at 16m height, 

the inlet wind direction    inletϑ and the sand-grain roughness of the surrounding buildings   sk  (

,16  ,  , inlet m inlet sU kϑ =  θ ).The output variables of interest are the horizontal wind speeds U  and wind 

directions   ϑ  at sensor location { }   1, , si n∈ … and at unmeasured locations of interest, where sn  is the 

number of sensor locations. 

Modeling uncertainties are time dependent and spatially distributed (Section 5). Thus, modelling 

uncertainties (and threshold bounds , , , , , , , ,  ,low i j k t high i j k tT T   ) are estimated at each sensor location  i , for 

each model instance  j , for each compared variable { }  ,k U ϑ∈  and at each time step  t . At time step  t

, model instances are candidate models if, for each and every sensor location and for each and every 

compared variable, the difference between the measured and the predicted value falls inside the 

interval , , , , , , , ,  ,low i j k t high i j k tT T   . This corresponds to the situation when Equation (4) is satisfied. 

{ } { } ( )  , , , , , , , , , ,,
1, ,  and  , :   s h low i j k t j i k t high i j k ti k

i n k u T M y Tϑ∀ ∈ … ∀ ∈ ≤ − ≤θ                                        (4) 

Where ( )
,j i k

M θ  is the predicted value of the variable  k  at sensor location i  by the model instance  j  

and , ,yi k t  is the measured value of the variable k  at sensor location  i  at time step  t . 

Model instances are steady-state models. At each time step, specific set(s) of parameter values are 

identified in order to represent the dynamic behavior of wind. 

2.3) Wind predictions at unmeasured locations 
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Each candidate model is assumed to be equally probable. A discrete distribution of values can be 

predicted with the set of candidate models for each variable k , at each unmeasured location of 

interest  l  and at each time step  t . These distributions correspond to uncertainties associated with 

parameter values, which have been reduced through falsification of incorrect sets of parameter values. 

In order to obtain unbiased predictions, modelling uncertainties need to be combined to these 

distributions as expressed in Equation (5). For each candidate-model prediction, 2000 samples are 

drawn from distributions of modelling-uncertainty sources in order to build predictive distributions at 

unmeasured locations. 

( )* *, , mod , , , ,,
 l k t j el j l k tl k

P M θ += ò                                                                                                            (5) 

Where , ,l k tP  is the predictive distribution of the variable k  at the unmeasured location l  and at the 

time step t . ( )*
,j l k

M θ  is the prediction of the variable k  by the candidate model *j  at the 

unmeasured location l . *mod , , , ,el j l k t
ò  is a random variable representing the modelling uncertainty of the 

candidate model *j  in the prediction of the variable k  at the unmeasured location l  and at the time 

step t . 

Ranges of predictions corresponding to any confidence level (for example 50, 70 and 95%) can be 

computed using the predictive distributions. 

3) Numerical simulations 

CFD simulations have been executed using the commercial software FLUENT 14.5 [21] in order to 

simulate possible wind behavior around the CREATE Tower. The CREATE Tower is a 16-storey 

building located at the National University of Singapore.  

The 3D models of the buildings have been built using photogrammetry techniques [22]. The 

resolution of the 3D model of the CREATE Tower is approximatively 5cm. A lower resolution is 

employed for the surrounding buildings. The surrounding buildings of the CREATE Tower have been 
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modelled following best practice guidelines [23]. If the distance from a building of height H  to the 

CREATE Tower is lower than  6H , the building is explicitly modelled. The size of the computational 

domain has also been determined using best practice guidelines [23], creating a computational domain 

with dimensions 2233 1144 368L W H m m m× × = × × . 

CutCell Meshing has been employed to generate the grid. CutCell Meshing generates a high 

percentage of hexahedral cells which provide better iterative convergence than tetrahedral cells [23]. 

The expansion ratio is set to 1.1. The minimal size of the cells is set to 0.05m resulting in a grid with 

613.1 10×  cells. Results have been compared with a finer grid in which the minimal size of the cells 

has been reduced to 0.03m. In average over 187 locations close to the CREATE Tower (possible 

sensor locations mentioned in Section 4), the mean difference between horizontal wind speeds 

predicted with the two grids corresponds to 1.1% of the inlet wind speed at the same height. The finer 

grid does not improve significantly the results and, therefore, has not been selected.  

The 3D steady RANS equations are used in the model class to describe the flow behavior around the 

CREATE Tower. The Realizable k ε−  model is employed to provide closure with two additional 

transport equations [24]. The first new transported variable is the turbulence kinetic energy k  and the 

second is the turbulence dissipation rate  ε . Isothermal conditions were imposed. More sophisticated 

model class can be employed to simulate the effect of thermal processes on the wind behavior. 

However, it would increase the modelling complexity and would require the definition of new 

parameter values such as the thermal properties of the surfaces as well as the sun radiation which vary 

with respect to time. Thus, isothermal conditions have been considered in the model class. 

Nevertheless, the effect of thermal processes on wind predictions is evaluated using statistical 

methods on measurement data taken at different times of the day (and night) in Section 5.3 in order to 

identify reliable sets of parameter values and predict reliable wind variables at unmeasured locations. 

The Coupled algorithm is employed for pressure-velocity coupling. A second-order discretization 

scheme is used to interpolate pressure from values at cell centers. The convergence criteria, based on 
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the scaled residuals, are set to 41  0−  for all variables. Before simulations were terminated, the predicted 

values of the variables of interest were constant. Thus, the solution was regarded as converged [25]. 

A user-defined function (UDF) in FLUENT is employed to define a vertical profile of wind speed

  inletU , turbulence kinetic energy inletk  and turbulence dissipation rate inletε  at the inlet of the 

computational domain. For the k ε−  model, profiles have been proposed by Richards and Hoxey 

[26]. They are expressed in Equation(6), Equation (7) and Equation (8). 

*     
ABL 0

0

( lu) n( )inlet
y yU y

yκ
+

=                                                                                                                (6) 

*     
ABL

μ

2

( ) u
Cinletk y =                                                                                                                                  (7) 

*     
ABL

3

0

) u
( )

(inlet y
y

y
ε

κ +
=                                                                                                                           (8)                   

where y  is the height coordinate, 0y  is the roughness length of the terrain, κ  is the von Karman 

constant, *     
ABLu  is the atmospheric boundary layer (ABL) friction velocity and μC  is a model constant 

of the k ε−  model. 

The flow behavior near walls is modeled with the standard-wall function [27]. The sand-grain 

roughness sk  needs to be defined at wall surfaces in FLUENT. A relationship between the sand-grain 

roughness sk  and the roughness length 0y  (commonly used in wind engineering) has been 

established for the standard-wall function in FLUENT by Blocken et al. [28]. This relationship is 

expressed in Equation (9). 

09.793

s
sk y

C
=                                                                                                                                                      (9) 
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Where sC  is the roughness constant. The value of sk  cannot be larger than   py , which is the distance 

between the wall and the centroid of the wall-adjacent cell. Therefore, sC  may need to be adjusted in 

FLUENT to satisfy Equation (9).  

The terrain of the computational domain is decomposed into two surfaces. The first surface is the 

terrain where the surrounding buildings are explicitly modelled. The second surface is the upstream 

terrain where the buildings are implicitly modelled using an equivalent roughness length 0 y . The 

roughness length used to model the upstream terrain is set to 0 0.8y m= , which represents regularly-

built large town [29]. By using Equation (9), the sand-grain roughness and the roughness constant 

have been set to sk =1.33 and sC =6. The roughness length imposed on the upstream terrain is also 

used for the definition of inlet profiles (Eqs. (6)-(8)) in order to avoid unintended streamwise gradient 

associated with roughness modification in the upstream part of the computational domain [28]. The 

terrain where the surrounding buildings are explicitly modelled is set to 0  0.24y m= . Symmetry 

boundary conditions are imposed on the sides and on the top of the computational domain. Zero-

pressure boundary condition is imposed at the outlet. 

The parameters requiring identification are the inlet wind speed at 16m height ,16  inlet mU , the inlet wind 

direction  inletϑ and the roughness of the surrounding buildings   sk . A population of model instances 

( )jM θ  has been generated through assigning sets of parameter values ,16  ,  , j inlet m inlet s j
U kϑ =  θ  to 

the model class  M described in previous paragraphs. These parameters have been selected because 

they have the highest impact on wind predictions and are difficult to estimate. 

Wind speeds and wind directions at the inlet of the CFD simulation are sensitive parameters and are 

difficult to estimate in urban areas [30]. Buildings and streets in the area of interest are modelled with 

a certain degree of geometrical simplification in CFD simulations. A roughness is imposed on these 

surfaces to implicitly model those simplifications. This roughness is difficult to estimate and may 

have a strong influence on predictions of wind speeds (variations up to 25% for mean wind speeds) 
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[31]. In the proposed framework, representative inlet conditions and roughness of the surrounding 

buildings are identified using measurement data from sensors located around the CREATE Tower. 

Grid-based sampling is used to select sets of parameter values uniformly within the parameter space 

for the generation of model instances. Table 1 presents the maximal and minimal values of parameters 

as well as their discretization intervals. CFD simulations have been executed for each combination of 

inlet wind direction inletϑ  and roughness of the surrounding buildings   sk . A single value of inlet wind 

speed ,16   inlet mU is used in the CFD simulations. A total of 48 simulations have been executed in batch 

mode using 12 processes in parallel on a Windows Server 2012 containing four Hexa-Core Intel Xeon 

E54607 2.20GHz processors and 64 GB memory which requires approximatively 192 hours of 

execution time. When a new value of inlet wind direction is assigned to the model class, the outside 

box of the computational domain modifies its orientation, leading to the generation of a new grid. 

Wind predictions for other inlet wind speeds are obtained using a linear relationship. Indeed, it was 

observed that same amplification factor of wind speeds and same wind directions are predicted at one 

location when the value of inlet wind speed is varied. In total, wind predictions of 768 model 

instances are obtained although only 48 CFD simulations have been executed. 

Horizontal wind speeds and wind directions are predicted at sensor locations for each model instance. 

Figure 2 presents the horizontal wind speeds and wind directions at 30 meter height predicted by one 

model instance. 

Table 1: Minimal and maximal values of parameters requiring identification as well as discretization 

intervals. 

Parameter requiring identification 
Minimal 

value 

Maximal 

value 

Discretization 

intervals 

Wind direction at the inlet inletϑ  form North [°] 0 337.5 22.5 

Wind speed at the inlet ,16  inlet mU  (at 16m height) [m/s] 0.5 8 0.5 
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Sand-grain roughness of surrounding buildings   sk  [m] 0.02 0.32 0.15 

 

 

 

Figure 2: Wind velocities predicted by one model instance ( 90inletϑ = ° , ,16  6 /inlet mU m s= ,

  0.17 )sk m=   at 30 meter height determined through a CFD simulation (top view) and description of 

the system. 

4) Experimental setup and field measurements 

Measurements were carried out from February 14. 2014 to March 21. 2014 during the North-East 

monsoon season. 

A sensor-placement methodology was applied in order to define measurement locations that should 

bring the largest amount of information on the wind behavior around the CREATE Tower [32]. 

Possible locations were limited to the balconies and terraces of the CREATE Tower. From the 187 

possible locations defined initially, the 8 best locations have been determined. Figure 3 presents the 

possible locations of weather stations as well as their actual locations. Seven weather stations are used 

to falsify incorrect sets of model instances (sensor S1 to S7) and the last weather station is used to test 
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the framework (sensor S8). The weather stations were deployed around the CREATE Tower at 

different floor levels (L3, L7 and L13). 

Four Davis weather stations, each equipped with a wind-cup anemometer and a wind vane were used 

to measure horizontal wind speeds and wind directions (sensor S1 to S4) and four HOBO weather 

stations equipped with a wind-cup anemometer, a wind vane and a temperature sensor were used to 

measure horizontal wind speeds, wind directions and temperatures (sensor S5 to S8). 

A data logger was installed on each weather station to store measurement data. Average values of 

measurement data were logged every minute. The resolutions of the Davis weather stations are 0.1m/s 

for horizontal wind-speed measurements and 22.5° for wind-direction measurements. The starting 

threshold is 0.4m/s. The resolutions of the HOBO weather stations are 0.19m/s for horizontal wind-

speed measurements and 1.4° for wind-direction measurements. The starting threshold is 0.5m/s. 

 

Figure 3: a) Measurement locations around the CREATE Tower (top view) and b) description of the 

HOBO weather station 

5) Modeling uncertainties 

Modelling uncertainties at sensor locations affect the information content of measurement data. This 

section proposes strategies to estimate main sources of uncertainties and to combine them in order to 

define threshold bounds used for falsification of incorrect model instances. 
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5.1) Uncertainties associated with RANS-based simulation in the predictions of mean 

wind variables 

LES has been found to be more accurate than RANS-based simulation in regions of flow separation 

and recirculation when compared to wind-tunnel experiments because flow is highly unsteady in these 

regions [7]. However, LES takes two order of magnitude longer to execute than a RANS-based 

simulation [33] and, therefore, it has not been employed for the generation of model instances 

(Section 3). Uncertainties associated with RANS-based simulation are estimated by comparing 

predictions of a RANS-based simulation with those of a LES. Horizontal wind speeds and wind 

directions predicted at 10000 locations around the CREATE Tower with the RANS-based model are 

compared with mean values of LES predictions.  

The geometry and grid settings described in Section 3 are used for both LES and the RANS-based 

simulation. The same wind conditions are defined at the inlet of both simulations. The turbulence 

kinetic energy imposed at the inlet of the RANS-based simulation is reproduced in LES by imposing a 

time-dependent wind-speed profile using the vortex method [34] in FLUENT 14.5. 190 vortices are 

used in the vortex method because it has provided good results in previous studies on the wind 

behavior around a wall-mounted cube [35]. In LES, the dynamic Smagorinsky model is employed to 

model the small eddies of the flow [36].  

A zero sand-grain roughness is imposed on all surfaces of the RANS-based simulation in order to be 

consistent with LES. In order to avoid unintended streamwise gradient in the upstream part of the 

computational domain, a small roughness length ( 0 0.001y m= ) is used to define the inlet profiles 

(Eqs. (6)-(8)), which is different from the roughness length used to model the upstream terrain in the 

generation of model instances (Section 3). In this section, the goal is to estimate the uncertainties 

associated with steady RANS equations by comparing RANS predictions with equivalent LES 

predictions. The goal is not to predict the wind velocity accurately for the selected case study. Since 

the uncertainties in the RANS predictions are defined as a function of the inlet wind speed, avoiding 
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unintended streamwise gradients in the upstream part of the computational domain leads to consistent 

estimations of uncertainties. 

Responses of the RANS-based simulation are employed as initial conditions for LES. In LES, the 

time step size is set to 0.25s. After 1h of real time, mean values of LES do not vary significantly. 

Figure 4 presents differences between mean responses of LES and responses of the RANS-based 

simulation with respect to the amplification factor of wind speeds predicted with the RANS-based 

simulation. The amplification factor of wind speeds is defined as the ratio between the predicted 

horizontal wind speed U  and the inlet wind speed at the same height 0 U . It is thus important to avoid 

streamwise gradients in the upstream part of the computational domain. 

Differences in the predictions of horizontal wind speeds are higher in regions of low amplification 

factors of wind speeds (Figure 4a). Differences in the predictions of horizontal wind speeds are 

defined as a percentage of the inlet wind speed at the same height 0 U . Indeed, in a previous paper, 

LES and RANS-based predictions around a single cubical building have been compared for two inlet 

wind speeds [37]. Differences in the predictions of horizontal wind speeds between LES and RANS-

based simulations have been found to be proportional to 0 U  [37].  

Large variations in the predictions of wind directions are observed in regions of low amplification 

factors of wind speeds. This is in agreement with results found using a single cubical building [37].  

This originates from the over-estimation of the region of reverse flow in wakes of buildings with 

RANS-based simulations. Therefore, RANS-based simulations may predict reverse flow at locations 

where LES do not. Model calibration mentioned in Section 1 is especially hazardous when sensors are 

located in regions of high uncertainties because the calibrated set of parameter values may 

compensate with possible high errors in the model class. 

Two regions are defined in the model-based data-interpretation framework in order to acknowledge 

for the spatial variability of modeling uncertainties; the first region is defined by amplification factors 

of wind speeds that are lower than 0.33 and the second region is defined by amplification factors of 
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wind speeds that are higher than or equal to 0.33. Locations of those regions vary for each model 

instance. Based on the distributions of differences, this source of uncertainty is described with a 

normal distribution for each flow variable and for each region. 

 

  

Figure 4: Differences between LES and a RANS-based simulation in the predictions of a) horizontal 

wind speeds and b) wind directions with respect to the amplification factor of wind speeds 

5.2) Uncertainties associated with turbulence 

In the model-based data-interpretation framework, an averaging window needs to be chosen to 

average measurement data. Defining the averaging window is a challenging task because of the 

presence of two conflicting objectives: 1) the averaging window should be short enough to be able to 

assume constant wind conditions at the inlet of the RANS-based simulations used in the model-based 

data-interpretation framework, 2) the averaging window should also be long enough in order to avoid 

fluctuations of wind variables associated with turbulence at locations of interest. Uncertainties 

associated with turbulence refer to uncertainties originating from turbulent fluctuations at locations of 

interest when the averaging window is not long enough. 

Unlike RANS-based simulations, LES predicts time series of horizontal wind speeds and wind 

directions. Uncertainty associated with turbulence is estimated using time series predicted at sensor 

locations (sensor S1 to S7). Figure 5 presents maximal fluctuations of horizontal wind speeds and 

wind directions around the mean values of LES, averaged over all sensor locations, with respect to the 
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averaging window. Fluctuations decrease rapidly when the averaging window increases from 1 

minute to 15 minutes. Smaller reductions of these fluctuations are observed if the averaging window 

is further increased. Therefore, the averaging window is set to 15min. For this averaging window, 

constant wind conditions are assumed at the inlet of the RANS-based simulations used in the model-

based data-interpretation framework. 

 
 

Figure 5: Maximal fluctuations of a) horizontal wind speeds and b) wind directions around the mean 

value of LES, averaged over all sensor locations, with respect to the averaging window 

5.3) Uncertainties associated with thermal processes 

Uncertainties associated with thermal processes are estimated with measurement data because 

modelling thermal processes in CFD simulations is complex (Section 1). It would require the 

definition of new parameter values such as the thermal properties of surfaces and the execution of a 

transient simulation for a period of several days [3]. 

A reference station should be placed on the roof of a building, close to the area of interest in order to 

measure the ambient wind conditions [61]. In the urban canopy layer, the wind can be significantly 

affected because of the combination of low wind speeds below roof level and high differential heating 

between surfaces. In this work, the reference station is located on a small ridge at the rooftop of the 

Engineering Faculty of the National University of Singapore. Measurement data at this station are 

provided online (https://inetapps.nus.edu.sg/fas/geog/stationInfo.aspx). Information from the 
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reference station is not used as inlet conditions in the CFD simulations because it might not be 

representative of the overall conditions at the inlet [30].  

The steps followed to estimate the effect of thermal processes on the horizontal wind speed and the 

wind direction at sensors located around the CREATE Tower are described below. 

1) Calculate the mean value of horizontal wind speeds and wind directions at the reference 

station.  

2) Select measurement data that are taken when wind conditions at the reference station are 

similar to the mean wind conditions (mean value of horizontal wind speeds and mean value of 

wind directions).  

3) Regression analyses are employed in order to separate out the effect of thermal processes 

from a data sample taken at different times of the day in which the wind conditions above 

roof level are similar.  

Determining the sample size is difficult because of two competing objectives. The sample 

size should be high enough in order to be able to separate out the effect of thermal processes 

from other sources of variability (e.g. turbulence, etc.). However, the sample size should be 

small enough in order to have same ambient wind conditions measured above roof level. 

Thus, different sample sizes are used in the methodology. The regression analyses are 

expressed in Equation (10) and Equation (11). 

, , , , , ,i s i s i s i s ref s i sU a T b U c= × + × +                                                                                                   (10)                                                                                     

, , , , , ,i s i s i s i s ref s i sd T e fϑ ϑ= × + × +                                                                                                    (11) 

Where ,i sU , ,i sϑ  and ,i sT  are vectors of horizontal wind speeds, wind directions and 

temperatures respectively measured at the sensor location i  whose sizes correspond to the 

number of sample s . ,ref sU and ,ref sϑ  are vectors of horizontal wind speeds and wind 

directions respectively measured at the reference station whose sizes correspond to the 

number of sample s . ,i sa , ,i sb , ,i sc , ,i sd , ,i se  and ,i sf  are the regression coefficients. 



 

20 
 

4) Find out if the values of the regression coefficients, ,i sa  and ,i sd , are significantly different 

than 0 by performing a t-test [38]. If not, values of the regression coefficients are reported to 

be 0. 

Figure 6 presents values of the regression coefficient, ,  i sa , with respect to the number of samples at 

sensors S5 to S8 (where temperature sensors are installed). ,i sa  is the regression coefficient that 

determines the effect of thermal processes on the horizontal wind speed at sensor location i  using a 

number of samples s . Values of the regression coefficient, ,  i sa , are almost constant with respect to 

the number of samples used in the regression. 

Uncertainties in the prediction of horizontal wind speed at sensor location i   are represented by 

uniform distributions with bounds , , , ,,low th i high th iU U ∆ ∆   computed using Equation (12). 

( ) ( ), , , , , min, , min,, min( ) ,max( )low th i high th i i s i i i s i is s
U U a T T a T T  ∆ ∆ = × − × −   

                                        (12) 

Where iT  is the temperature measured at sensor location i . min,iT  is the minimal temperature measured 

at sensor location i . It is assumed that thermal processes have no-significant effects when the 

temperature measured is minimal. 

Wind behavior is affected differently by thermal processes from one sensor to another as presented in 

Figure 6. Spatially-distributed uncertainties are thus considered in the model-based data-interpretation 

framework in order to identify reliable set(s) of parameter values. Furthermore, bounds depend on the 

temperature measured at sensor locations. Therefore, time-dependent uncertainties are also considered 

in the model-based data-interpretation framework. 
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Figure 6: Regression coefficient, ,  i sa , with respect to the number of samples at sensors S5 to S8 

(averaging window = 15 minutes) 

The maximal and minimal values of the regression coefficients ,i sa  at sensor locations are used to 

estimate the maximal and minimal effect of thermal processes on the horizontal wind speed at 

unmeasured locations. Therefore, uncertainties at unmeasured locations are represented by uniform 

distributions with bounds , ,,low th high thU U ∆ ∆   defined by Equation (13). 

)( )( ( ) )( )( ( )min, min,, , , ,, min min ,max maxi i i ilow th high th i s i si s i s
U U a T T a T T  ∆ ∆ = × − × −   

           (13) 

Where iT  is the average value of temperatures measured at sensor locations. min,iT  is the minimal 

value of iT . 

The same procedure has been followed in order to estimate the effect of thermal processes on the 

wind direction. Table 2 summarizes the minimal and maximal values of the regression coefficients at 

sensor locations and at unmeasured locations. The maximal and minimal values of the regression 

coefficients at unmeasured locations are relatively low. A stronger effect of thermal processes would 

be expected if measurements would be carried out in street canyons [9]. In such situations, thermal 

processes might need to be incorporated into the model class. 
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Table 2: Minimal and maximal values of the regression coefficients at sensor locations and at 

unmeasured locations used to estimate uncertainty associated with thermal processes. 

Wind 
variable 

[ / ]U m s  ][ϑ °  

, ,min( )sensor i ss
a  , ,max( )sensor i ss

a  , ,min( )sensor i ss
d  , ,max( )sensor i ss

d  

Se
ns

or
 lo

ca
tio

ns
 

S5 0.19 0.22 -1.65 -1.27 

S6 0.08 0.11 3.47 4.60 

S7 0.05 0.07 2.09 2.38 

S8 0.08 0.09 1.21 1.34 

U
nm

ea
su

re
d 

lo
ca

tio
ns

 )( )( ,min min i si s
a  )( )( ,max max i si s

a  )( )( ,min min i si s
d  )( )( ,max max i si s

d  

0.05 0.22 -1.65 4.60 

 

5.4) Uncertainty combination 

Measurement uncertainty, uncertainty associated with RANS-based simulation (Section 5.1), 

uncertainty associated with turbulence (Section 5.2) and uncertainty associated with thermal processes 

(Section 5.3) have been combined using Monte Carlo technique. Measurement uncertainty 

corresponds to the resolutions of the sensors mentioned in Section 4. The combination of uncertainties 

is illustrated in Figure 7.  

Threshold bounds used to falsify incorrect sets of model instances are defined using the combined 

uncertainty and a confidence level of 95%ϕ = . The Šidák [39] correction is employed to adjust the 

confidence level ( 1/' Nϕ ϕ= ) in order to ensure that the target reliability is respected when multiple 

measurements are employed simultaneously to falsify model instances [40]. N  is the number of 

measurements. 
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Figure 7: Uncertainty combination for the definition of threshold bounds 

6) Results 

6.1) Identification of parameter values of the CFD simulation 

Falsification of model instances is performed every 15 minutes. Model instances are candidate models 

if the differences between the measured and the predicted values of horizontal wind speeds and wind 

directions fall within threshold bounds at each and every sensor location (Section 2.2). Figure 8 

presents the falsification of model instances using the horizontal wind speed measured at sensor S1 at 

12pm on March 11. 2014. The purple dashed line is the measured value; blue lines are threshold 

bounds; red crosses are falsified models and green points are candidate models. Falsified models that 

appear inside threshold bounds in Figure 8 have been falsified using measurement data at other sensor 

locations or using the measured wind direction at this sensor location. 

Threshold bounds are not the same for all model instances because model instances are not defined 

with the same inlet wind speed and they don’t predict the same amplification factor of wind speeds at 

sensor S1. Furthermore, systematic bias in modeling uncertainties has led to threshold bounds that are 

not centered on the measured value.  
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Figure 8: Falsification using the horizontal wind speed measured at sensor S1 at 12pm on March 11. 

2014 

6.2) Predictions at unmeasured locations 

A distribution of predictions can be obtained at an unmeasured location using the final candidate 

model set (Section 2.3). The likelihood weight for each candidate model is assumed to be equal. This 

distribution, which corresponds to the uncertainty associated with parameter values propagated 

through the model, is combined with all sources of modeling uncertainty using Monte Carlo 

technique. The combination of uncertainties is illustrated in Figure 9. Prediction bounds [ , ]low highP P  

are defined using the predictive distribution and a confidence level of 95%ϕ = . 

 

Figure 9: Uncertainty combination for predictions at unmeasured locations 

Figure 10 presents predicted and measured values of horizontal wind speeds at the test sensor S8. Red 

points are horizontal wind speeds measured at the test sensor (sensor S8). Blue lines are prediction 
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ranges of horizontal wind speeds before measurements. These ranges are obtained using the 

methodology presented in Figure 9; in which uncertainty associated with parameter values 

corresponds to the distribution of predictions obtained with the initial set of model instances. 

Prediction ranges vary with respect to time because of time-dependent uncertainties (uncertainties 

associated with thermal processes change according to the measured temperatures).  

Grey lines are prediction ranges of horizontal wind speeds after measurements. Measurement data 

have been employed to reduce the uncertainty associated with parameter values. On average, ranges 

of horizontal wind-speed predictions have been decreased by 65% when measurement data are used. 

Moreover, horizontal wind speeds measured at the test sensor fall within ranges of predictions 99% of 

the time after measurements.  

The purple dashed line is the mean values of predictions. The root-mean-square difference between 

the measured values of horizontal wind speeds and the mean values of predictions at the test sensor is 

0.39m/s. 

Time variability (at the scale of 15 minutes) of measured horizontal wind speeds is observed at the 

test sensor S8. Time variability is also observed in predictions. This demonstrates that the proposed 

framework is able to identify time-dependent inlet conditions. At 2:15pm, all model instances have 

been falsified. This might originate from the underestimation of uncertainties associated with thermal 

processes, which effects are important at this time of the day.  
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Figure 10: Predicted and measured values of horizontal wind speeds at the test sensor S8 every 15 

minutes on March 11. 2014  

 

7) Discussion 

This paper proposes a model-based data-interpretation framework in order to identify time-dependent 

sets of parameter values and predict time-dependent ranges of wind variables at unmeasured 

locations. Time-dependent and spatially-distributed modeling uncertainties, which affect the 

information content of measurement data, have been considered.  

Limitations are as follows: In the present study, uncertainties associated with RANS-based simulation 

have been estimated with LES. Although LES has been found to be in better agreement than RANS-

based simulation when compared to wind-tunnel experiments, LES is not perfectly accurate.  
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Uncertainties associated with turbulence have also been estimated with LES. One simulation using 

LES has been executed under isothermal conditions. Otherwise definition of many new parameters 

such as thermal properties of surfaces would need to be defined. Furthermore, a transient simulation 

for a period of several days is needed to simulate such processes, which would take much longer 

computation time [3]. Fluctuations predicted with LES would have been larger if thermal processes 

were considered because of the additional turbulence generated. Moreover, a small roughness length 

is employed to define the wind profiles at the inlet of LES in order to avoid unintended streamwise 

gradients in the upstream part of the computational domain. This leads to small turbulence at the inlet. 

Thus, the turbulent fluctuations predicted by LES at sensor locations are mainly due to the 

surrounding buildings that are explicitly modelled.  

Furthermore, the wind profiles used at the inlet of the CFD simulations assumed an equilibrium 

boundary layer and neutral conditions. These assumptions may not be valid in all urban environments.  

Additional sources of uncertainties associated with these simplifications should be added in order to 

identify reliable sets of parameter values and predict reliable ranges of predictions at unmeasured 

locations. Even though uncertainties associated with these simplifications were not considered in this 

study, reliable ranges of predictions were still obtained at unmeasured locations (Section 6.2).   

8) Conclusions 

In this paper, a framework is proposed to integrate information obtained from measurements with 

simulation results. The information provided by measurements is used to estimate the parameter 

values of the simulation, including those for inlet wind conditions, through multiple solutions of the 

inverse problem. The information content of measurement data depends on levels of measurement and 

modelling uncertainties at sensor locations. Specific conclusions are: 

• Differences between predictions of the RANS-based simulation and LES have been 

found to be large in regions of low amplification factors of wind speeds. This has led 

to the definition of modeling uncertainties that vary with respect to space.  
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• Thermal processes significantly influence horizontal wind speeds at sensors located 

around the CREATE Tower. This has led to a systematic bias in the modeling 

uncertainty of horizontal wind speed which depends on temperature measurements. 

• Reliable prediction ranges of horizontal wind speeds at unmeasured locations are 

obtained dynamically with the proposed framework.  

• Tighter prediction ranges of horizontal wind speeds are possible using the framework 

without compromising reliability. 
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