
I am often asked to explain mathematics ; is it
just about numbers and equations? The best
answer that I’ve found is that mathematics uses
numbers and equations like a language. However
what distinguishes it from other subjects of thought
– philosophy, for example – is that in maths com-
plete understanding is sought, mostly by discover-
ing the order in things. That is why we cannot have
real maths without formal proofs and why mathe-
maticians study very simple forms to make pro-
found discoveries. One good example is the
triangle, the simplest geometric shape that has
been studied since antiquity. Nevertheless the
world had to wait 2,000 years for Morley’s theorem,
one of the few mathematical results that can be
expressed in a diagram.
Horology is of interest to a mathematician because
it enables a complete understanding of how a
watch or clock works. His job is to impose a
sequence, just as a conductor controls an orches-
tra or a computer’s real-time clock controls data
processing. Comprehension of a watch can be
compared to a violin where science can only con-
firm the preferences of its maker. Another example
is the bicycle that has defied mathematical analysis
for more than a century. Bicycle wheels roll without
sliding which leads to a mathematical model that
has no clear solution2. The watchmaker also needs
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Morley’s theorem (1898) states that if you trisect the

angles of any triangle and extend the trisecting lines until

they meet, the small triangle formed in the centre will

always be equilateral. 

Foliot clock.

1 Senior Scientist, EPFL IMT Instant-Lab, Patek Philippe Chair in
Micromechanical and Horological Design
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total understanding to make his watch work, so
mathematicians and watchmakers always have
something to discuss. 
Since they first appeared at the end of the Middle
Ages, mechanical clocks and later watches have
always been worked by the energy of a falling
weight or an unwinding spring, the rates of which
are controlled by a regulator. The original regulator
was the foliot, a centrally pivoted arm that is swung
back and forth by a gear train driven by a spring or
weight. The inertia of the foliot slowed down the
gear train, and with trial-and-error adjustment the
clock might keep time to within a quarter of an hour
a day. There was little room for improvement in
spring-powered timepieces because the braking
effect of the foliot is directly linked to the torque of
the spring. When the spring is at full tension, the
foliot swings faster and the watch gains ; con-
versely the watch goes slow when the spring runs
down. These time keepers really did nothing more
than indicate the varying output of the mainspring. 

A craft becomes a science. Until the 17th century,
clocks and watches were designed and built by arti-
sans who managed, by dint of mechanical adjust-
ment, to improve the precision to several minutes a
day. The great leap forward in horology was the
introduction of an oscillator with its own recoil
energy. In such an oscillator the period of each oscil-
lation is independent of the energy source.
Isochronism – equal periods – means that the oscil-
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The isochronism of an oscillator became easy to describe

once Isaac Newton’s laws of motion were known in 1687.

An oscillator like a blade spring obeys Hooke’s Law: the

force of a spring, F, is proportional to the distance it is

tensed, x. Following Newton’s laws it could be expressed

by a differential equation

where m is the mass and k, the stiffness of the spring, is a

constant; t is the time and d2x/dt2, the acceleration. Using

differential calculus, which we also owe to Isaac Newton, we

obtain the explicit answer for the position of the blade 

where A is the amplitude, f, the frequency and ϕ is a

phase that describes the initial position of the oscillator.

You can also derive a formula for the frequency

This formula shows that the frequency is only dependent

on the mass and elasticity; it is thus independent of the

amplitude, A, demonstrating the much sought-after

isochronism.

2 History of bicycle steer and dynamics equations,
bicycle.tudelft.nl/schwab/Bicycle/BicycleHistoryReview



lator makes its own time. Isochronism is the basic
principle of time measurement. We owe it to Galileo,
who discovered it by timing a swinging chandelier in
a church by the rate of his pulse. He concluded that
the period of the oscillation was independent of its
amplitude, and so defined isochronism.
Replacing the foliot by the pendulum increased
precision to within 15 seconds a day, almost a 100-
fold improvement. It could be said that time had
been conquered, because clocks had become
more regular than the sun, which can deviate by as
much as 30 seconds a day. The accurate clock trig-
gered a cultural revolution, since time measure-
ment was no longer based on natural phenomena,
but on an artificial and technical construct. 
This revolution was built on the laws of physics to
formulate the problem, and of mathematics to solve
it. And that is how horology became a science.

The horological mathematician. Christiaan Huygens
(1629-1695) is perhaps the embodiment of the horo-
logical mathematician. The physicist, Galileo, had
discovered isochronism by observing a pendulum,
but Huygens the mathematician went much further
and deeper. On December 25, 1656, he found out
how to regulate a clock with a pendulum to make it
substantially more accurate. His calculations imme-
diately showed that Galileo was wrong and that pen-
dulums were not isochronous. 
The mathematical Huygens was not satisfied by
this and found the full answer by devising an
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The return force of a pendulum is due to gravity and does

not obey Hooke’s Law. A pendulum is thus not a perfect

oscillator. The equation for the return force is more like

where θ is the angle of the pendulum, L is its length, g

acceleration due to gravity; t is the time and d2θ/dt2, the

angular acceleration. Knowing that sin θ is close to θ
when θ is small, one can abstract the difference and write

This is the equation of a true frequency oscillator

However this approximation is insufficient for a proper

precision clock. Increasing the amplitude of a standard

pendulum by 2 to 2.5 degrees causes a loss of 3.7 sec-

onds a day. 

Portrait of Christiaan Huygens, painted by Caspar

Netscher in 1671. Collection of the Historical Museum of

the Hague. On permanent loan to the Boerhaave Museum

in Leiden, the Netherlands.
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isochronous pendulum. This is his solution in three
stages:
1 The tautochrone curve. Huygens sought to find

the curve down which a ball will roll in a given time,
irrespective of where it starts on the curve, as
shown in the above left-hand diagram. He showed
that the curve was a cycloid. It followed that the
oscillations of ball on a cycloid are isochronous. 

2 Involutes and evolutes. Huygens proposed the
notion of the involute – the curve traced by the
end of a taut string unwinding from a circle or
other curve (the evolute). 

3 The involute of a cycloid is another cycloid. 
Verifying these results is an easy task with the know -
ledge of today, but it should be noted that Huygens
had arrived at them in 1657, meaning 30 years before
Isaac Newton’s laws of motion and differential calcu-
lus in 1687. Huygens’ methods are well explained in
an excellent book by Léopold Defossez3.
The result was that a pendulum on a cord that
unwinds off a cycloid, as depicted on the above
right-hand diagram, is isochronous. Huygens’ idea
was implemented by the clockmaker, Salomon
Coster, in 1657 with an immediate improvement in
timekeeping precision. 
This story is not well known to mathematicians, but
it does illustrate how abstract concepts are thought

up to solve concrete problems, and that once the
theory is established their origins are often forgotten.
Huygens’ solution is typical of the mathematician’s
work: a sound and elegant theory, but of not much
practical use. Indeed, the cycloidal pendulum did
not give very satisfactory results and was aban-
doned in favour of a rigid pendulum beating at low
amplitude. But Huygens did not stop at the pendu-
lum. In 1675 he introduced the sprung balance,
which is theoretically isochronous according to
Hooke’s Law (Robert Hooke should always be
mentioned as the co-inventor of the balance
spring). The sprung balance continues to regulate
the wristwatches of today.
Other eminent mathematicians took an interest in
horology. George Biddle Airy (1801-1892) drew up
the specifications of London’s “Big Ben” clock and
William Thomson (1824-1907), better known as
Lord Kelvin of the temperature scale, built an astro-
nomical clock with a unique system of maintaining
power. 
We can’t all be Huygens, yet advances in mechanical
horology are still possible. Our laboratory, for instance,
last year announced the first mechanical oscillator to
regulate a timepiece without an escapement5.

Horological theory. Mathematics continues to
play a role in the watchmaking industry. The theory
of time measurement is embodied in physics, the
technical expression of which is the language of
mathematics. The teaching of horological theory
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A ball rolling along a cycloid. The involute of a cycloid is also a cycloid.

3 Léopold Defossez, Les savants du XVIIe siècle et la mesure du
temps, published by the Journal Suisse d’Horlogerie, Lausanne
1946.
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and its application date back to Jules Grossmann
(1829-1907), director of the horological school at
Le Locle. He realised that teaching people to adjust
watches was difficult because it was a knack that
was not easily transmitted. He thus taught the the-
ory of time measurement to save hours of fiddling
about with the adjustment. It was the equivalent of
today’s computer-aided design that enables watch-
makers to test concepts without having to make a
string of prototypes. 
With his son, Hermann, he wrote the first Swiss
book describing the theoretical basis of timekeep-
ing. His successor at the Le Locle school, Léopold
Defossez, wrote the definitive book on the subject,
Théorie Générale de l’Horlogerie, published in
1950 and since used throughout the Swiss watch
industry. Today the textbooks for the technical
schools are The Theory of Horology of the Joux
valley’s technical school and the Traité de con-
struction horlogère by the professors of the HE-
ARC technical university. •
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Clock designed by Huygens with cycloidal banking. 4

4 Christian Huygens, Horologium Oscillatorium, translated from
the Latin by Ian Bruce,
www.17centurymaths.com/contents/huygenscontents.html 

5 S. Henein, I. Vardi, L. Rubbert, R. Bitterli, N. Ferrier, S. Fifanski,
D. Lengacher, IsoSpring: vers la montre sans échappement,
actes de la Journée d’Etude de la SSC 2014, 49–58.

A cycloid is the curve described by a point on the rim of a

wheel rolling without slipping on a straight line.

The involute of a curve is the line drawn by the end of a

string unwinding from the curve. Gear teeth are often pro-

filed according to the involute of a circle.

cord
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