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Abstract 

Enzymes are biocatalysts widely used in a large number of industrial biotechnology 

processes as they offer clear advantages over their chemical counterparts. Indeed, enzymes 

often show high substrate selectivity along with elevated turnover rates. Enzymatic catalysis 

usually functions under mild conditions of temperature, pressure and acidity. However, the 

industrial application of enzymes is often limited by their limited stability under operational 

conditions. Moreover, due to high water solubility of enzymes it is challenging to confine 

them in a flow reactor system.  

In order to circumvent these limitations, we have developed a supramolecular strategy that 

allows the reversible immobilization of active enzyme-polymer conjugates at the surface of 

filtration membranes. It is based on multivalent host-guest inclusion interactions between 

the membrane surface and a soluble enzyme-polymer conjugate. Cyclodextrins (CDs) as 

"host" molecules are covalently attached at the surface of polyethersulfone membranes and 

a multivalent water-soluble polymer is synthesized as a "guest" molecule. We demonstrate 

that while this supramolecular surface modification is stable under operational conditions 

and allows for efficient bio-catalysis, it can be straightforwardly reverse by competitive host-

guest interactions.  

The first part of this manuscript is dedicated to a literature review on selected topics. As the 

supramolecular strategy we have developed in the course of this PhD research work is based 

on the use of cyclodextrins as supramolecular host molecules, the first part of this literature 

review focuses on the physico-chemical characteristics of this class of macrocycles. A special 

emphasis is done on their ability to form host-guest multivalent inclusion complexes. In this 

context, we describe the concept of multivalency and the underpinning essential 

thermodynamic principles, which can be apply to design controllable, directional, and 

selective self-assemblies.  
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In the second part of this manuscript, we present our strategy to bio-functionalize polymeric 

membrane surfaces using multivalent reversible inclusion reactions. In more details, the 

chemical strategy to introduce CD macrocycles, in a covalent fashion, at the surface of the 

polymeric material is discussed. The synthesis and characterization of an enzyme-polymer 

conjugate, possessing multiple chemical functional groups (i.e. adamantyl) able to form 

inclusion complexes with CDs, is presented. It is demonstrated that this supramolecular 

strategy could be applied to the reversible immobilization of an active enzyme at the surface 

of polyethersulfone membranes. 

A similar strategy is applied to the reversible bio-functionalization of gold surfaces and used 

to prepare sensor chips for surface plasmon resonance (SPR) experiments. Self-assembled 

monolayers of CDs derivatives are prepared on the surface of a gold sensor chip. A water-

soluble protein-polymer conjugate, possessing multiple adamantyl moieties, is synthesized. 

The supramolecular reversible binding of this new conjugate on the chemically modified SPR 

chip is demonstrated. The possibility to use this system for antigen/antibody biosensing 

experiment is successfully confirmed. 

Keywords: Polymer, Self-assembly, Supramolecular chemistry, Surface chemistry, Enzyme 

catalysis 
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Résumé 

Les enzymes sont des catalyseurs biologiques qui sont utilisées dans de nombreux procédés 

industriels car elles offrent un avantage certain sur leurs équivalents chimiques. En effet, les 

enzymes possèdent généralement une sélectivité élevée pour leur substrat qu’elles 

transforment avec de haut taux de conversion. Les réactions catalysées par des enzymes se 

déroulent habituellement dans des conditions mesurées en termes de température, 

pression et acidité. Cependant, les applications industrielles impliquant des enzymes sont 

souvent limitées par la stabilité de ces biomolécules en conditions opérationnelles. De plus, 

du fait de la solubilité élevée des enzymes en milieu aqueux, le confinement à l’intérieur 

d’un réacteur en flux continu représente un défi.  

Afin de dépasser ces limites, nous avons développé une stratégie supramoléculaire basée sur 

des interactions hôte-invité qui permet l’immobilisation d’un conjugué polymère-enzyme, 

soluble dans l’eau, à la surface de membranes de filtration. Cette stratégie se base sur 

l’utilisation de cyclodextrines (CDs), agissant en tant que molécules « hôtes », liées de façon 

covalente à la surface de la membrane du polyéthersulfone. Un polymère multivalent et 

soluble dans l’eau est synthétisé pour jouer le rôle de molécule « invité ». Nous démontrons 

comment la modification supramoléculaire de la surface, stable dans les conditions 

opérationnelles, permet une biocatalyse efficace et peut être aisément relarguée par 

l’intermédiaire d’interactions hôtes-invités compétitives. 

La première partie du manuscrit est dédiée à une étude bibliographique menée sur les sujets 

suivants. La stratégie supramoléculaire développée durant ce travail de recherche de 

doctorat étant basée sur l’utilisation de la cyclodextrine en tant que molécule hôte, la 

première partie de la bibliographie se concentre sur les caractéristiques physico-chimiques 

de cette famille de macrocycles. L’accent est mis sur leur habilité à former des complexes 

d’inclusion multivalents hôte-invité. Dans ce contexte, nous décrivons le concept de 

multivalence et ces fondements essentiels en terme de thermodynamique, qui peuvent être 

appliqués pour élaborer de façon contrôlée et sélective des entités auto-assemblées. 
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Dans la seconde partie du manuscrit, nous présentons notre stratégie pour bio-

fonctionnaliser les surfaces de membranes de polymère en utilisant des réactions d’inclusion 

réversibles. La stratégie de synthèse pour introduire des macrocycles de cyclodextrine, de 

façon covalente, à la surface de ce polymère est aussi discutée en détail. La synthèse et la 

caractérisation du conjugué polymère-enzyme possédant plusieurs groupes fonctionnels (i.e. 

adamantane) capable de former des complexes d’inclusion avec la CD sont présentées. Il est 

établi que cette stratégie supramoléculaire peut être appliquée à l’immobilisation réversible 

d’enzymes actives à la surface de la membrane en polyéthersulfone.  

Une stratégie similaire est appliquée pour la bio-fonctionnalisation réversible des surfaces 

d’or et utilisée pour préparer des capteurs pour des expériences de résonance de plasmon 

de surface. Les monocouches auto-assemblées de dérivés de CD ont été préparées à la 

surface d’un capteur d’or. Un conjugué protéine-polymère soluble dans l’eau et possédant 

des groupements adamantyls a été synthétisé. Le lien supramoléculaire et réversible de ce 

nouveau conjugué sur le biocapteur a été démontré. La possibilité d’utiliser ce système pour 

des expériences impliquant des biocapteurs antigène/anticorps a été confirmée avec succès. 

Mots-clés: Polymère, Auto-assemblage, Chimie supramoléculaire, Chimie des surfaces, 

Catalyse enzymatique 
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  State of the art Chapter 1.

Multivalent interactions are defined as non-covalent interactions between multivalent 

receptors and ligands. Multivalent interactions usually result in higher binding strength than 

the sum of the corresponding monovalent interactions. Multivalency is an important 

principle used by nature and chemists for achieving strong, yet reversible interactions. 

In supramolecular chemistry, the concept of multivalency can be used to design controllable, 

directional, and selective self-assemblies.1,2 Cyclodextrins (CDs) are one of the classes of 

molecules widely used to design multivalent systems on surfaces. One of the important 

features of CDs is their ability to form complexes with variety of hydrophobic molecules.3,4 

CDs do not possess an intrinsic ability to self-assemble at interfaces or to bind covalently to 

surfaces. Nevertheless, a series of rational chemical modifications of the CD macrocycle have 

proven successful in the production of CDs that can react covalently with surfaces.5-7 The 

concept of multivalency can be applied to modify solid surfaces in a stable and reversible 

fashion.8-11  

In the present research work, we developed a supramolecular strategy based on 

multivalency that can allow stable but yet reversible anchoring of biocatalysts at the surface 

of polymeric membranes. We applied the concept of multiple-point interactions using a 

polymeric multivalent guest (adamantyl bearing polymer) and a host molecule (β-

cyclodextrin, β-CD) immobilized on the surface of a polymeric filtration membrane. 

In the first part of this chapter, a general overview about the history of CDs and their 

industrial production is given. Furthermore, physico-chemical characteristics of CDs and their 

ability to form host-guest inclusion compounds are discussed. The second part of this 

chapter is devoted to an overview about the concept of multivalency and the underlying 

thermodynamic principles. Selected important research works on different multivalent 

systems using CDs in solution and at interfaces are described and discussed. 
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1.1. Cyclodextrins 

1.1.1. Historical overview 

The history of CDs starts in France at the end of 19th century with the research of Antoine 

Villiers on the action of enzymes on different carbohydrates. In 1891, reporting his results on 

the degradation of potato starch by Bacillus amylobacter to the French National Academy of 

Sciences, he demonstrated that after processing one kilogram of starch under the action of 

ferments, three grams of a carbohydrate with the chemical formula of “C12H10O10+3HO” 

was crystallized in the form of elongated, shiny crystals.12 He proposed the name 

“cellulosine” due to the similarities of this substance with cellulose, in terms of resistance to 

acidic treatment and lack of reducing moieties.  

In 1903, in Vienna, the Austrian biologist Franz Schardinger isolated the strain of bacteria 

responsible for the formation of the crystalline products described by Villiers. He 

distinguished two types of polysaccharides by performing an iodine colorimetric test. He 

named these two types crystalline dextrin A and crystalline dextrin B (now known as α- and 

β-cyclodextrins). Freudenberg and Jacobi in 1935 discovered the existence of larger dextrins 

called γ-dextrin.  

Researches on dextrins were continued by Hans Pringsheim, a German chemist and 

biochemist.13,14 The main achievement of his work was the discovery that CDs were able to 

form inclusion compounds with organic guests, a characteristic that continues to keep this 

class of polysaccharides being widely used.15 In 1936, Freudenberg hypothesized that 

dextrins have a cyclic structure composed of glucose units bound together by α-(1→4) 

glycosidic linkages.16 Few years later, in 1954, Cramer published a book entitled “Inclusion 

compounds” where he summarized the structural and physico-chemical characteristics of α-, 

β- and γ-CDs.17 From the 1970s the modern studies on CDs began with research works of 

Szejtli in Hungary and Osa in Japan.  

1.1.2. Structural and physico-chemical characteristics of cyclodextrins 

CDs are cyclic oligomers of glucose, bound via α-(1→4) glycosidic linkages. They are 

composed of 6, 7 or 8 D-glucopyranose units, corresponding to α-, β-and γ-CD, respectively, 

as illustrated in Figure 1.1.  
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Figure 1.1: Chemical structures of α, β and γ-CDs 

From the crystal structure of CD derivatives could be observed that all glucose residues in 

the torus-like ring have the thermodynamically favoured chair conformation because all 

substituents are in equatorial position. They possess the primary hydroxyl groups at the 

primary rim of the macrocycle and the secondary hydroxyl groups at the secondary rim, as 

illustrated in Figure 1.2. The differences of chemical reactivity of the primary alcohol 

functions and the secondary alcohols represents an attractive feature of this class of 

molecules, as it allows fairly easy regio (rim)-selective chemical modifications of the 

macrocycles. The main structural characteristics of α-, β-and γ-CD are summarized in (Table 

1.1).  

 

Figure 1.2: X-ray crystal structure of α-, β- and α-CD, water molecules are omitted for clarity (from the X-ray crystal structure published by 
Lindner and Saenger.18) 
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Table 1.1: physicochemical properties of three cyclodextrins derivatives19 

 α-CD β-CD γ-CD 

Number of glucose unit 6 7 8 

Molecular weight (g/mol) 972 1135 1297 

Internal diameter (Å) 4.7-5.2 6.0-6.4 7.5-8.3 

External diameter (Å) 14.2-15.0 15.0-15.8 17.1-17.9 

Depth (Å) 7.9-8.0 7.9-8.0 7.9-8.0 

Internal cavity volume (Å
3
) 174 262 472 

Solubility in water (25°C, g/L) 145 18.5 232 

Number of H2O molecules in the cavity 6 11 17 

Melting point (°C) 250-260 255-265 240-245 

pK at 25°C 12.332 12.202 12.081 

 

The primary and secondary hydroxyl groups at the primary and secondary rim of CDs ensure 

their good water solubility with values of 145, 18.5 and 232 g L-1 at 25°C for α-, β- and γ-CD, 

respectively. The lower water solubility of the β-CD compared to α- and γ-CD is due to the 

geometry of the macrocycle. β-CD structure favors the formation of a set of hydrogen bonds 

linking the hydroxyl groups together at the lower rim of the macrocycle, therefore limiting 

their ability to interact with the surrounding water molecules. The water solubility of CDs in 

addition to their hydrophobic cavity of 174, 262 and 427 Å3 for α-, β-and γ-CD, respectively, 

makes this class of molecule an excellent candidate receptor for supramolecular host-guest 

chemistry. Hereinafter, we will briefly describe the host-guest inclusion properties of CDs.20 

CDs can also be used to form asymmetric inclusion complexes. Indeed as CDs are chiral 

macrocycles they are largely exploited to produce chiral sensors21 and chiral stationary 

phases in chromatography.22-26  

 

1.1.3. Industrial production of cyclodextrins 

CDs are produced via enzymatic conversion of starch or starch derivatives by CD 

glucosyltransferase (CGTase, EC 2.4.1.19).27-29 CGTases are produced by various bacterial 

species such as B. macerans,19,28 B. stearothermophilus,28,30 B. circulans30,31 and K. oxytoca.32 

The two main production processes of CDs are the “solvent-” and “non-solvent” processes; 

the current industrial production of CDs is primarily based on the solvent process, as 

illustrated in Figure 1.3. 
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Figure 1.3: Diagram of solvent processes for industrial production of CDs33 (Reproduced with permission from Ref.33 © Elsevier, 1996.) 

The solvent process begins with starch liquefaction followed by subsequent jet cooling. The 

starch solution is thus cooled down to the optimum temperature and CGTase is then added 

to start the enzymatic conversion. The use of organic additives that causes CD precipitation, 

leads to a tremendous enhancement of the enzymatic conversion process via equilibrium 

displacement. In other words, the decrease of CD concentration would drive the equilibrium 

towards CD production. The size of the CDs synthesized following this method is strongly 

dependent on the choice of the enzyme and the additives used. Subsequently, the CDs are 

separated and purified from the reaction mixture by centrifugation or filtration, followed by 

washing. The organic additives are removed by suspending and heating the CDs in aqueous 

solution followed by distillation or extraction. The product mixture is then concentrated and 

treated with activated carbon. Eventually, CDs are isolated by crystallization and 

filtration.28,33,34  

The non-solvent process (Figure 1.4) is mainly used for the production of β-CD, which, due to 

its differential solubility, can be easily purified by crystallization.33,35 The purification of α- 

and γ-CDs according to this process is costly, and typically results in low yields and a high 

range of by-products. The advantage of this process is that the product can be used in the 

food industry without restriction because of the absence of organic additives. 
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Figure 1.4: Diagram of non-solvent processes for industrial production of β-CDs33 (Reproduced with permission from Ref.33 © Elsevier, 

1996.) 

1.1.4. Formation of host-guest inclusion compounds 

One of the most interesting characteristics of CDs is their ability to form inclusion complexes 

with a large variety of organic guest molecules in solution.20 Those complexes are formed by 

the partial inclusion of the guest molecules inside the hydrophobic cavity of the CD 

macrocycle, as shown in Figure 1.5.  

 

Figure 1.5: inclusion complex of a hydrophobic guest molecule and a CD in water 

Water molecules occupy the CDs cavity under aqueous conditions, but the interactions 

between water and the interior of the macrocycle are weak and the system is consequently 

energetically not favourable. The presence of a guest molecule in solution with poor polarity 

leads to the formation of an inclusion complex, wherein the guest molecule replaces the 

bound water molecules with the condition that the geometry of the guest molecule is 

compatible with the internal space of the host CD. The complexation of CDs with guest (G) 
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entities can be described by a binding equilibrium model and the association constant of the 

complex can be defined as shown in Equation 1.1: 

𝑛𝐶𝐷 + 𝑚𝐺 ⇌ 𝐶𝐷𝑛𝐺𝑚  

𝐾𝑎 =
[𝐺𝑚][𝐶𝐷𝑛]

[𝐺]𝑚[𝐶𝐷]𝑛 Equation 1.1 

They are different driving forces for the complex formation. For instance, the release of 

water molecules from the cavity leads to an increase in entropy (ΔScomplex) of the system. 

Additionally, van der Waals forces between guest and cavity of CDs contribute to complex 

formation. In some systems, hydrogen bonding is also taking place between guest and the 

hydroxyl groups at the primary and/or secondary rims of CDs.  

2D NMR spectroscopy can be used for the study of inclusion complex formation in 

solution.36,37 The presence of a guest molecule inside the cavity typically induces changes in 

the spectral properties of both the host and the guest, allowing for a structural 

characterization of the complex. Single crystal X-ray crystallography technique can be used 

to study the crystal structure of inclusion complexes in the solid state.38 However, the 

production of crystals of sufficient quality for X-ray diffraction is often challenging. A number 

of additional characterization techniques have been applied to study the formation of 

complexes. These include thermogravimetric methods, polarimetry, infrared, fluorescence, 

UV-visible, and electron paramagnetic resonance spectroscopies, to name but a few.39 

1.2. Multivalency 

The term multivalency is defined as simultaneous non-covalent binding of m-valent 

receptors and n-valent ligands (m,n > 1). Multivalent interactions, in contrast to monovalent 

interactions, have the advantage of a multiple and therefore radically enhanced binding 

strength on a molecular scale; cf. Figure 1.6. The simultaneous binding of multiple 

recognition sites of one molecule to the recognition sites of another results in a higher 

binding strength than the sum of the corresponding monovalent interactions.1  
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Figure 1.6: Schematic representation of a) monovalent interactions, b) multiple monovalent interactions and c) multivalent interactions 

In order to better understand the distinct contributions of each multivalent molecule toward 

enhancement in binding affinity, it is important to understand the governing thermodynamic 

principles of multivalency. 

1.2.1. Thermodynamic principles of multivalent interactions 

In a monovalent system, the free enthalpy (ΔGmono) can be calculated from the difference of 

enthalpies in bound and unbound states. However, this duality is no longer applicable in 

multivalent systems. Indeed, for an n-valent receptor distinguished by the number j of 

occupied receptors, n+1 different binding state exists. Therefore in order to calculate the 

free binding enthalpy of a multivalent system (ΔGmulti), it has to be considered which binding 

states (0 < j < n) is considered as bound or unbound. The probabilities for j receptor sites to 

bind an n-valent receptor can be defined by following formulas (Equation 1.2): 

 (
𝑛
𝑗 ) =

𝑛!

(𝑛−𝑗)!𝑗!
  Equation 1.2  

This assignment is critical for the probable cooperative effect of multivalent bindings.40 

Cooperativity take place when binding of one ligand to a receptor affects the binding of 

additional ligands to that receptor. ΔGmulti can be related to that of N monovalent 

interactions (NΔGmono) and the degree of cooperativity can be defined as shown in Equation 

1.3. 
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∝= 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑖𝑡𝑦 =
∆𝐺𝑚𝑢𝑙𝑡𝑖

𝑁∆𝐺𝑚𝑜𝑛𝑜
  Equation 1.3  

Cooperativity can be classified as (i) positively cooperative (α>1), when the subsequent 

binding of another ligand to a receptor has a higher probability than that of previous one (ii) 

non-cooperative or additive (α=1), when the binding probability is identical and (iii) 

negatively cooperative or interfering (α<1), when the binding probability is lower. 

Cloninger and co-workers defined the cooperativity factor (α) for estimating the magnitude 

of multivalent associations relative to monovalent bindings. They studied the multivalent 

binding of carbohydrate-functionalized dendrimers to the lectin Concanavalin A.41 They 

calculated the level of multivalent interactions as shown in Equation 1.4. 

𝐾𝑁
𝑝𝑜𝑙𝑦

= (𝐾𝑚𝑜𝑛𝑜)∝𝑁  Equation 1.4 

where N represent the number of receptor-ligand interactions. They demonstrated that 

multivalent affinities could be influenced in predictable ways.42,43 

In order to assess multivalent binding effects, Whitesides and co-workers defined the 

enhancement factor (β).44 They assigned the influence of multivalent associations relative to 

the monovalent association, as the ratio of avidity to monovalent affinity constant as shown 

in Equation 1.5. Avidity of a multivalent interaction is defined as the dissociation constant of 

the completely associated receptor-ligand complex with N receptor-ligand interactions 

relative to completely dissociated forms of the multivalent receptor-ligand complex. 

𝛽 =
𝐾𝑁𝑚𝑢𝑙𝑡𝑖

𝑘𝑚𝑜𝑛𝑜
  Equation 1.5 

where N, represent the theoretical number of receptor-ligand. The enhancement factor (β) 

reflects the strength of a multivalent association relative to a monovalent association. 

However, this enhancement factor has the disadvantage that it simultaneously includes the 

influence of cooperativity and symmetry effects. The symmetry factor of equilibrium can be 

calculated based on the symmetry number of the molecules involved in the reaction. The 

symmetry number of a molecule (σ) is defined as the number of equivalent positions a 

molecule can be turned into via a simple rotation around an axis or axes. The symmetry 

number influences the entropy of a molecule by a factor of -R lnσ . As a result, for an 

equilibrium A + bB ⇌ cC, if the symmetry number of A, B and C are σA, σB and σV respectively, 

the effect of their symmetry on the equilibrium constant is given by the factor 𝜎𝐴
𝑎𝜎𝐵

𝑏 𝜎𝐶
𝑐⁄ . 
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Bundle developed a thermodynamic model for designing multivalent ligands demonstrating 

maximal avidity enhancement.45 Based on this approach, the avidity enhancement of a 

multivalent binding is dependent of three different components (i) the free energy change 

for the first receptor-ligand interaction (ΔG˚inter); (ii) free energy change for each additional 

interaction in the multivalent complex (ΔG˚intra); (iii) a combinatorial factor reflecting the 

probability of association and dissociation of individual ligands (Ωi) (Equation 1.6) 

∆𝐺𝑎𝑣𝑖𝑑𝑖𝑡𝑦
° = ∆𝐺𝑖𝑛𝑡𝑒𝑟

° + ∆𝐺𝑖𝑛𝑡𝑟𝑎
° ∑ 𝑤𝑖

𝑖𝑚𝑎𝑥
𝑖=1 (𝑖 − 1) + 𝑅𝑇 ∑ 𝑤𝑖

𝑖𝑚𝑎𝑥
𝑖=1 ln (

𝑤𝑖

𝛺𝑖
)  Equation 1.6 

wi, is a weight coefficient which takes into account the distribution of bound species at 

equilibrium. Based on this model, Kitov and Bundel developed a system using oligovalent 

carbohydrate inhibitors and different scaffold topologies.45 They observed an increase in 

affinity with radial topology compared to linear, circular and indifferent topologies (Figure 

1.7) for tailored multivalent ligand-receptor, which was attributed to intramolecular binding 

and avidity entropy.  

 

Figure 1.7: Schematic representation of different topologies of multivalent interactions (Reproduced with permission from Ref.45. © 
American Chemical Society, 2003.) 

Another important factor in the mechanism of multivalent binding is the influence of the 

statistical rebinding of multivalent ligands to multivalent receptors. A term that is important 

for assessment of this statistical rebinding is defined as effective concentration. Effective 

concentration represents a probability of interaction between two reactive or 

complementary interlinked entities. The concept of effective concentration originates from 
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the field of polymer chemistry where it was introduced for the estimation of the kinetics and 

thermodynamics of cyclization reaction for intramolecular reaction in polymer synthesis.46 

Similarly, effective concentration (Ceff) can be used for the assessment of the multivalent 

interactions. The first interaction of a multivalent ligand with a multivalent receptor alters 

the ligand site concentration as experienced by the neighbouring free receptor site. If this 

so-called effective concentration is higher than the actual receptor concentration in solution, 

intramolecular (multivalent) binding is favoured. If the ligand site concentration in solution is 

higher than Ceff experienced by the receptor site, the binding will most likely proceed in an 

intermolecular fashion. 

The association constant for the n-valent interaction (Kn) for a multivalent ligand-receptor 

system is defined by Equation 1.7.2 

𝐾𝑛 = 𝑏𝐾𝑖𝐶𝑒𝑓𝑓
𝑛−1  Equation 1.7 

Here, n is valency of the ligand, b is a scaling factor incorporating statistical factors 

determining the numbers of possible association and dissociation paths in the subsequent 

interaction steps and Ki is intrinsic association constant. 

Theoretically Ceff is similar to effective molarity (EM). In those cases where the multivalent 

interaction is involved of multiple non-cooperative interactions, Ceff equals EM. However, Ceff 

is based on concentrations estimated from physical geometries of complexes while EM is 

represented as the ratio of intra- and intermolecular association constants. Reinhoudt 

extend EM definition to higher-order systems and developed a model to predict the EM 

based on the valency of the ligands (n). EM can be given by Equation 1.8 for an 

intermolecular n-valent interaction with an association constant Kn. 

𝐸𝑀 = (
𝐾𝑛

𝑏 𝑘𝑖
)

(
1

(𝑛−1)
)
  Equation 1.8 

The dissociation rate of a multivalent ligand is only dependent on the concentration of the 

monovalently bound entities. For an intramolecular multivalent interaction, the 

concentration of the monovalently bound entities is dependent on the EM. That suggests 

that it is possible to make complexes based on multivalent interactions that combine high 

avidity with the possibility of kinetic control and reversibility.47 
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1.2.2. Multivalency in solution 

In this section we describe several important studies that are performed on different 

multivalent systems in solution.  

1.2.2.1. Zinc porphyrin-pyridyl motif 

The coordination of pyridyl bases to zinc porphyrins is one of the examples of the 

supramolecular systems that highlighted the importance of molecular design in multivalent 

systems.48 Anderson et al. studied the supramolecular interactions between a series of rigid 

and linear porphyrin dimers, trimers and tetramers with a series of rigid and flexible 

multivalent pyridyl bases. They demonstrated that an appropriate molecular design can 

result in very efficient multivalent bindings.49 Indeed, the association between a bis(Zn 

porphyrins) as a host and 3,3’-bipyridine as a guest gave a binding enhancement of 3×105 

compared to the corresponding monovalent interaction (Figure 1.8). This enhancement is 

attributed to the conformational preorganization of bis(Zn porphyrins). The EM of this 

system was 76 M. The high EM is due to the high complementarities between the rigid hosts 

and guests resulting in a perfect fit between receptors and ligands. For comparison, the 

interaction between the corresponding linear zinc-porphyrin dimer with some rotational 

freedom around the central butadiyne bond as a host and 3,3’-bipyridine as a guest was 

studied. The EM of this system was 0.5 M. Nevertheless, one has to consider that beside all 

advantages of conformational preorganization, an imperfect design at the angstrom scale 

may lead to steric hindrance and weak binding. 

 

Figure 1.8: examples of multivalent systems using zinc-porphyrin-pyridyl system; a) the pre-organized host; b) using a linear bis(Zn 
porphyrin) which is less pre-organized (Reproduced with permission from Ref.49. © Royal Society of Chemistry, 1995.) 
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1.2.2.2. Pseudorotaxanes  

Stoddart and co-workers used pseudorotaxanes from crown ethers and ammonium-based 

cation as hosts and guests in a multivalent system (Figure 1.9).50 They demonstrated that the 

trivalent interaction between a triphenylene-based tris(crown ether) and the 

tris(dibenzylammonium) trication has an association constant of 106 M-1 in acetonitrile. This 

corresponds to a binding enhancement of 104 compared to the corresponding monovalent 

interaction between single crown ether and a single cation. 

 

Figure 1.9: The trivalent equilibrium interaction between tris(crown ether) and the tris-ammonium ion (Reproduced with permission from 

Ref.50. © John Wiley and Sons, 2003.) 

The assessment of this multivalent system revealed that the trivalent complex could be 

dissociated by deprotonation of the ammonium cations after addition of suitable bases or 

DMSO, which competes with the crown ether oxygen in hydrogen binding of ammonium 

cations. The dissociation mechanism of the system upon addition of DMSO was monitored 

using NMR. The results revealed a stepwise dissociation process in which the trivalent 

complex gradually dissociated through the divalently and monovalently bound states (Figure 

1.10). 
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Figure 1.10: A schematic representation of the equilibration supramolecular interaction between the tris-crown ether and the tris-

ammonium ion, involving entities that are triply-, doubly-, and singly-bound, as well as free (Reproduced with permission from Ref.50. © 

John Wiley and Sons, 2003.) 

1.2.2.3. Vancomycin-D-alanine-D-alanine  

Whitesides and Rao studied multivalent interaction of vancomycin and D-alanine-D-alanine 

(DAlaDAla).51,52 Vancomycin can form five hydrogen bonds with DAlaDAla as shown in Figure 1. 

They demonstrated that a trivalent derivative of vancomycin binds a DAlaDAla trimer with an 

association constant of 2.2×1016 M-1. This multivalent interaction is 4×1010 times stronger 

than the corresponding monovalent interaction (Figure 1.11).  

http://www.chemspider.com/Chemical-Structure.14253.html
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Figure 1.11: Multivalent host (trivalent vancomycin) and guest (DAlaDAla trimer) entities (Reproduced with permission from Ref.64. © 
American Chemical Society, 2000.) 

Very slow dissociation kinetics for the multivalent complex formed in water was measured. 

Indeed, based on the binding constant and diffusion limited association rate (kon = 1×109; M-1 

s-1) they estimated a minimum dissociation rate of koff = 4×10-8; M-1 s-1 in water, which 

corresponds to a half-life of 200 days. The dissociation could be drastically speed up by using 

competitive monovalent DAlaDAla. Indeed, in the presence of 86 mM monovalent DAlaDAla, 

40% of the trivalent supramolecular complex was dissociated after 45 min. A faster 

dissociation could be achieved by using concentrations of monovalent DAlaDAla that are 

higher than the effective molarity. 

1.2.2.4. Cyclodextrins host-guest complexes 

Reinhoudt and co-workers demonstrated that the enhancement of the affinity of CD dimers 

for multivalent guests can be explained in a quantitative sense based on multivalency (Figure 

1.12).53 They demonstrated that the multivalent interaction between a CD host dimer and a 

bis(adamantane) guest exhibit an association constant of 107 M-1. That corresponds to an 

enhancement factor of 200 over the analogous monovalent system. Based on calorimetric 

measurements, it was also demonstrated that the enthalpy of binding for the multivalent 

interaction was twice lower (-14.8 kcal mol-1) than the corresponding monovalent 



16 
 

interaction (-7.0 kcal mol-1), which indicates an increase in the stability of the multivalent 

system. 

 

Figure 1.12: Multivalent interaction of a β-CD dimer as a host and a bis(adamantyl) guest (Reproduced with permission from Ref.53. © 

American Chemical Society, 2004.) 

Petter and co-workers, studied the supramolecular binding of toluidino-2-naphthalene 

sulfonate with β-CD dimers tethered by spacers of variable length (Figure 1.13).54 They 

demonstrated a linear relation between binding affinity and invers cubic tether length that 

can be explained in terms of effective concentration. Indeed, the linear trend of binding 

affinity for a guest entity versus spacer length of a CD dimer was observed for several 

different CD dimer systems.55-57 

 

Figure 1.13: Left, multivalent host (β-CD dimers tethered) and guest (toluidino-2-naphthalene sulfonate) entities; right, the plot of binding 

affinity versus invers cubic tether length for complexation of the toluidino-2-naphthalene sulfonate and CD dimer with variable tether 

length (Reproduced with permission from Ref.2. © Royal Society of Chemistry, 2004.) 

Breslow et al. demonstrated that also for CD dimers, the rigidity in both host and guest can 

result in higher binding affinities compared to their monovalent analogues.58,59 Nevertheless, 

an exact compatibility is needed in such a system. Indeed, mismatches in rigid systems can 
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result in low effective concentrations and therefore inefficient multivalent binding. Based on 

this phenomenon, Reinhoudt and co-workers developed β-CD dimers with photo-switchable 

binding properties.60-62 They synthesized β-CD dimers that were tethered via photo-

switchable diarylethene spacers that could be reversibly switched between a flexible and 

more rigid state. They demonstrated that the stability constant found for the binding of 

meso-tetrakis(4-sulfonatophenyl)porphyrin by the open form of the β-CD dimer, is a factor 

35 higher compared to the binding of the close form of this dimer. This difference allowed 

for a controlled, reversible release and uptake of the multivalent guest by the β-CD dimers 

as hosts (Figure 1.14). 

 

Figure 1.14: A schematic representation of the photo-switchable supramolecular interaction between a β-CD dimers and multivalent 

porphyrin guest (Reproduced with permission from Ref.61. © Royal Society of Chemistry, 2004.) 

1.2.3. Multivalency at interfaces 

Multivalent interactions can be applied for a strengthening of an interaction between 

different interfaces. A systematic assessment concerning multivalency, effective 

concentration and the effect of competitive functionalities on the dissociation rate of 

multivalent complexes can be achieved by varying structure, density and environment of the 

immobilized functionalities at interfaces. 

1.2.3.1. Cyclodextrin-based surfaces 

CDs have been widely studied as molecular building blocks in design of functional surfaces 

and interfaces because of their outstanding molecular recognition properties. CDs do not 

possess an intrinsic ability to self-assemble at interfaces or to bind covalently to surfaces. 

Nevertheless, a series of rational chemical modifications of the CD macrocycle have proven 

successful in the production of CDs that can react covalently with surfaces and form self-

assembled monolayers (SAMs).63 SAMs of appropriately modified CDs were successfully 
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prepared on gold or silicon dioxide surfaces and showed to retain their molecular 

recognition/inclusion properties.63,64  

The design of CDs that can form SAMs on gold typically requires the introduction of thiol or 

thioether functionalities in the CD structure; chemical structures of some selected β-CD 

SAMs building blocks such as per-thio-β-CD (1), thioether-bearing CDs (2, 4) and thiol 

derivative of β-CD (3) are given in Figure 1.15. 

 

  

Figure 1.15: chemical structure of some selective β-CD SAMs building blocks 

For the first time in 1995, Rojas et al. reported the formation of CD-based SAMs on gold.64 

The proof of principle that the immobilized CDs retained their molecular recognition 

properties was established, as effective binding for ferrocene (Fc) and m-toluic acid was 

shown.64 Nelles et al. studied SAMs of mono- and multi-thiolated derivatives of β-CD with 

different chain lengths on gold surfaces.65 It was demonstrated that the orientation of the 

CD cavities could be controlled by varying either the number of thiol groups per CD molecule 

or the length of the alkyl chains. Beulen et al. studied SAMs of a thioether derivative of β-CD 

(2).66 Those SAMs were reported to have more attachment points to the surface as 

compared with thiol-based β-CDs; the SAMs produced showed higher molecular densities 

and stabilities. Shahgaldian et al. used the same CD to coat a surface plasmon resonance 

(SPR) sensor and demonstrated that the produced SAMs possess the enantioselective 

binding properties of a thyroid hormone, namely thyroxin.67  

SAMs of CDs have also been prepared on SiO2 surfaces. For example, Onclin et al. 

immobilized a per-amino derivative of β-CD (NH-CD) on a SiO2 surface.68 In order to 

introduce amino groups on the SiO2 surface, first monolayers of undecyl isocyanide were 

produced by reacting the bare SiO2 surface with 1-cyano-11-trichloro-silylundecane. The 

isocyanide functions were consecutively reduced to the corresponding amino groups using 
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sodium bis(2-methoxyethoxy)aluminiumhydride. The final step consisted of introducing 

functional isothiocyanate onto the monolayer, this was achieved by using 1,4-phenylene 

diisothiocyanate, as shown in Figure 1.16. The SAM layers formed were reacted with the per-

amino-CD (NH-CD) to allow its covalent immobilization. It was demonstrated that the quality 

of these layers, in terms of molecular packing and the orientation of β-CDs, was similar to 

that of immobilized β-CD monolayers on a gold surface. The inclusion of fluorescent guest 

molecules on such a modified silicon oxide surface was visualized by confocal microscopy; 

this was not possible for SAMs on gold substrates owing to the fluorescence quenching 

effects of the metal. Molecular patterns of labelled guest-functionalized molecules were 

printed by micro-contact printing (µCP) on SAMs of the β-CD derivatives.  

 

Figure 1.16: Formation of an organized monolayer of an amino derivative of β-CD (5) on a silicon oxide surface. i) sodium bis(2-

methoxyethoxy)aluminiumhydride; ii) 1,4-phenylene diisothiocyanate; iii) NH-CD 

Auletta et al. demonstrated the ability of CD-based SAMs on SiO2 to bind, in a reversible 

manner, to adamantyl- or ferrocenyl-labelled guest molecules.69 The binding properties of 

the guest molecules to these surfaces, in terms of transfer and pattern stability, were 

demonstrated to be similar to that of immobilized β-CD monolayers on gold. It was also 

demonstrated that rinsing the substrate with buffer or water did not affect the patterns 

formed, while rinsing with a solution of competitor hosts (soluble β-CD) resulted in the 

release of the guest molecules from the surface. 
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1.2.3.1.1 Molecular printboards of CDs 

In 2002, Reinhoudt defined the term “molecular printboard” as an immobilized monolayer of 

host molecules on a solid substrate onto which multivalent guest molecules can be 

positioned in a controlled and reversible manner.70 The whole concept of molecular 

printboards relies on multivalency. CD-based molecular printboards were developed by 

Reinhoudt using SAMs of CDs as “host surfaces” and guest molecules possessing at least two 

chemical moieties that are known to form inclusion complexes with CDs.71 These molecular 

printboards were used as platforms for the precise positioning of multivalent guest 

molecules using micro-contact printing (µCP)68,72-74 and nanolithography.69,75 For example, 

defined circular patterns of ferrocenyl-functionalized dendrimers (multivalent guest 

molecules) were transferred onto a β-CD modified substrate using µCP.11 The stability of the 

complexes formed was demonstrated in water by solely removing the non-specifically bound 

molecules during a thorough rinsing of the monolayer. However, local electrochemical 

conversion of Fc to Fc+, achieved using a scanning electrochemical microscopy, caused a 

local release of the surface-bound molecules, owing to the lower affinity of CDs for the ionic 

ferrocene species, as displayed in Figure 1.17. 

 

Figure 1.17: Atomic force microscopy images of the µCP Fc-functionalized dendrimers patterns at β-CD SAMs on glass substrates a) before 

rinsing; b) after rinsing with water; c) schematic representation of induced electrochemical desorption of guest molecules from molecular 

printboards using scanning electrochemical microscopy (Reproduced with permission from Ref.11. © American Chemical Society, 2006.) 

Recently, Yang et al. demonstrated that ferrocene-tagged yellow fluorescent proteins (Fc-

YFPs) could be attached in an oriented, reversible fashion to β-CD molecular printboards, as 

shown in Figure 1.18.76 It was shown that a covalent disulfide bond between two YFP 

proteins resulted in a switch from monovalent to divalent ferrocene, which resulted in more 

stable protein immobilization. Fc-YFPs could be patterned on β-CD SAMs as uniform layers. 
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Repetitive adsorption and desorption cycles were interchangeable upon electrochemical 

reduction and oxidation. 

 

Figure 1.18: Schematic representation of a) conjugation of cysteine-functionalized Fcs and thioester-functionalized yellow fluorescent 

proteins; followed by covalent locking of two Fc-YFPs; b) immobilization of divalent Fc-YFPs onto thioether-functionalized β-CD monolayers 

(Reproduced with permission from Ref.76. © American Chemical Society, 2012.) 

A similar strategy was used for the fabrication of enzymatically functionalized microfluidic 

systems. It was demonstrated that a reusable homogeneous enzyme layers could be formed 

on micro-channels. This was achieved by formation of β-CD-adamantane and biotin-

Streptavidin (SAv) supramolecular interactions; cf. Figure 1.19. The specific immobilization of 

an alkaline phosphatase (AlkPh) onto the β-CD molecular printboards was studied using a 

surface plasmon resonance (SPR) flow cells. A step-wise assembly process was performed; 

first β-CDs modified gold substrates were functionalized by a biotinylated bisadamantyl 

linker (6). Subsequently in order to minimize the non-specific protein adsorption, an 

ethylene glycol based mono-adamantyl linker (5) was also immobilized at the surfaces. 

Successively, SAv was attached to the surface via site-specific avidin-biotin interactions. As a 

final step, biotinylated alkaline phosphatase (bt-AlkPh) (8) was immobilized at the SAv 

modified substrates. It was demonstrated that the structure and activity of the immobilized 

enzyme was retained.77  
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Figure 1.19: Schematic representation of the chemical structures of the building blocks and scheme for the step-wise assembly process 

(Reproduced with permission from Ref.77. © John Wiley and Sons, 2012.) 

González-Campo et al. recently published a versatile surface modification method based on 

CD molecular printboards.78 Alkyne-terminated coumarin monolayers were used to 

chemically attach a per-azido-β-CD through a Cu(I) catalysed “click” reaction. The resulting 

CD SAM surfaces were further functionalized through supramolecular µCP and by reactive 

µCP-induced click chemistry, as illustrated in Figure 1.20. The covalent immobilization of per-

azido-β-CD onto the SiO2 substrate was proved by fluorescence intensity enhancement, due 

to the formation of triazole rings on the alkyne-β-CD surface. The patterns formed were also 

visualized by fluorescence microscopy before and after incubation of alkyne-β-CD surfaces in 

a solution of a sulforhodamine B acid chloride-labelled divalent adamantyl guest (rhodamine 

Ad2). The guest molecules were only observed where β-CD molecules were immobilized. This 

also confirmed the presence and correct orientation of the β-CDs on the surface.  
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Figure 1.20 : a) Chemical structure of coumarin, per-azido-β-CDs, labelled diadamantyl guest and azide-functionalized dye; b) schematic 

representation of the patterned alkyne-β-CD monolayer prepared by µCP of per-azido-β-CDs onto coumarin terminated monolayers 

(Reproduced with permission from Ref.78. © American Chemical Society, 2010.) 

β-CD molecular printboards (using gold as a substrate) were also used as platforms for 

“writing” with supramolecular host molecules using a dip-pen nanolithography approach.69 

To that end, an AFM tip was used to transfer adamantyl-functionalized guests onto the 

printboard; a resolution below 100 nm was achieved with this approach. Maury et al. 

described a process for patterning CD monolayers on SiO2 surfaces via nano-imprint 

lithography and consequently used it as a platform for fabrication of 3D nanostructures.10 

First, β-CD patterned monolayers were formed on a silicon oxide surface through the 

attachment of the per-6-amino-β-CD (NH-CD) on an isothiocyanate-terminated monolayer. 

Those patterned SAMs were then used as starting points to build three-dimensional objects 

through a layer-by-layer approach using two types of nanoparticles (Au 2.8 nm, SiO2 60 nm), 

as shown in Figure 1.21. 
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Figure 1.21: SEM micrographs of nano-imprint lithography-patterned CD-layers followed by supramolecular host-guest assemblies of a) 

fifteen bilayers of adamantyl-functionalized dendrimers and CD functionalized Au NPs with 200 nm dot features; b) two bilayers (with 150 

nm wide grids); c) one bilayer of the adamantyl functionalized dendrimers and CD functionalized SiO2 NPs with 60 nm dots pattern forms; 

d) single NPs (60 nm) on a periodic pattern (Reproduced with permission from Ref.10. © IOP Science, 2007.) 

Harada et al. used CD polymer based gel systems to demonstrate molecular recognition at 

the macroscopic scale.79 A polyacrylamide-based hydrogels possessing either CDs as hosts or 

organic guest moieties (i.e., adamantyl, n-butyl or t-butyl) known to form complexes with 

CDs were synthesized. These gels were produced as millimetre-size cubes and doped with 

dyes to allow for visual differentiation. They demonstrated that a strong affinity exists 

between β-CD gel and adamantyl-gel in water, owing to the complexation of the host and 

guest molecules (Figure 1.22). The study of Harada certainly represents one of the first 

studies showing that recognition phenomena taking place at the molecular level can impact 

the assembly of millimetre-size objects. 
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Figure 1.22: Specific molecular recognition visualized at macroscopic scale (Reproduced with permission from Ref.79. © Nature, 2011.) 
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27 
 

 Results and discussion Chapter 2.

2.1. Reversible supramolecular modification of membrane surfaces 

Enzymes are used as catalysts for a wide range of chemical reactions with good substrate 

selectivity, regio- and stereo-selectivity.80-83 Therefore, they have an important role for the 

development of industrial biotechnology processes. In order to use enzymes in continuous 

reactor systems, they need to be retained either by using ultra- or nano-filtration 

membranes or by chemical immobilization on solid substrates.84-87 However, ultra- or nano-

filtration requires large amounts of energy in order to reach a reasonable flow rate and is 

often limited by fouling issues. The second approach is also limited by the limited stability of 

the enzyme under operational conditions.  

In order to overcome these limitations, we developed a surface modification strategy that 

allows for the reversible immobilization of active enzyme-polymer conjugates at the surface 

of polyethersulfone (PES) filtration membranes. We used this approach to design a 

membrane bioreactor in which a β-galactosidase (β-gal) enzyme is immobilized in a stable 

yet reversible fashion.88 This strategy is based on multiple host-guest supramolecular 

interactions between enzyme-polymer conjugates and membrane surfaces. We used a 

multivalent water-soluble guest and a host molecule (β-cyclodextrin, β-CD) covalently 

attached at the surface of PES membranes. In order to introduce reactive functional groups 

at the membrane surfaces, we followed an UV photo-grafting strategy. One of the 

advantages of this method is the possibility to be applied in large scales for industrial 

applications. The PES membranes were chemically modified using a coupling reaction 

between activated carboxylic acids and primary amine functions. This was achieved by 

introducing carboxylic functions on PES surfaces and synthesizing an amino derivative of β-

CD (NH-CD).   
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2.1.1. Covalent modification of PES membranes 

2.1.1.1. PES membranes 

Different polymeric materials can be used for organic membrane production such as 

poly(vinyl alcohol), polyamide, poly(acrylic acid), PES, polypropylene and poly(methyl 

methacrylate), to name but a few.89 PES membranes are one of the most used materials for 

the formulation of organic membranes (Figure 2.1). This widespread use is due to their low 

cost and good process-ability, chemical, thermal and mechanical resistance. PES membranes 

find applications in different fields such as chemical industries, protein purification and 

water treatment.90 

 

Figure 2.1: Chemical structure of polyethersulfone (PES) 

One of the disadvantages of PES membranes is their hydrophobic character, which prevents 

spontaneous wetting with aqueous media.91 Different procedures were proposed to render 

the surface of the membranes more hydrophilic. For instance, membranes can be prepared 

from a mixture of sulfonated and non-sulfonated polysulfone.92,93 The sulfonation can be 

controlled in order to limit the water solubility of the polymer. Another disadvantage of PES 

membranes possessing (nano)-structures on the surface is their high level of fouling, which 

can cause fast deterioration of membrane permeability.92,94 It was demonstrated that the 

fouling resistivity of PES membranes could be significantly increased by applying photo-graft 

copolymerization of neutral hydrophilic monomers.95 Indeed, photo-grafting methods 

compared with other methods such as plasma activation offers some advantages such as 

mild reaction conditions and low cost. 

Polymeric filtration membranes are also used as support materials for the immobilization of 

different catalysts such as enzymes.96-98 Hilal et al. demonstrated that lipases can be 

immobilized on PES ultrafiltration membranes.98 The membranes with immobilized enzymes 

on their surfaces offer the advantage to operate simultaneously as a catalytic support and 

selective barrier.99,100 Nevertheless this method is limited by the low temporal stability of the 

enzymes. Indeed when the bio-catalytic activity of enzymes deteriorates, the membrane has 

to be replaced.  
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2.1.1.2. Introduction of carboxylic functions on PES membrane surfaces (AA-PES) 

A UV photo-grafting approach was developed for introducing carboxylic acid functions at the 

surface of the membrane. UV irradiation results in the partial homolysis of the PES polymeric 

chain, essentially at the surface of the material.101 The radicals formed can then react with 

alkenes via a homolytic addition mechanism. In this work, this was achieved by incubating 

the membrane material in an aqueous solution of acrylic acid followed by UV irradiation. 

This led to the covalent grafting of the acrylic acid monomer and to the introduction of 

carboxylic acid functions at the surface of the membrane (AA-PES). The membranes were 

analysed by means of Fourrier-transform infrared spectroscopy (FTIR). The appearance of 

the carboxylate carbonyl stretching vibration band at 1708 cm-1, corresponding to carboxylic 

acid functions, confirmed the effective immobilization of acrylic acid on the membrane 

surface (Figure 2.2). 

 

Figure 2.2: (a) Schematic representation of the synthetic route to introduce carboxylic functions at the surface of PES membranes in a 
micro-patterned fashion; FTIR absorbance spectra characterization of (b) bare PES membrane and (c) PES membranes modified with acrylic 

acid. 

In order to introduce sufficient carboxylic acid functions at the surface of the membranes 

and to avoid membrane fouling, the carboxylic acid immobilization was optimized. 

Optimizations were achieved by varying UV irradiation time (0-330 sec) and monitoring the 

water flow through the membrane and relative intensity of carbonyl band at the surface of 

the membranes using FTIR; cf. Figure 2.3.  



30 
 

 

Figure 2.3: Assessment of carboxylic acid immobilization at the surface of the AA-PES membranes; (a) measurements of relative intensities 
of carbonyl bands of AA-PES membranes as a function of UV irradiation time; (b) measurements of water flow through AA-PES membranes 

as a function of UV irradiation time. 

By increasing the UV irradiation time from 0 to 330 sec, the relative intensity of the carbonyl 

band increased from 0 to 0.86, while the water flow through the AA-PES membrane 

decreased from 65 to 2 mL min-1. After 150 seconds of UV irradiation time, the water flow 

through the membrane decreased only of 15% while the relative intensity of the carbonyl 

band at the surface of PES was 84% of the maximum intensity measured. Therefore we used 

150 sec UV irradiation time as the optimized condition for introducing carboxylic acid 

functions at the surface of the membranes. 

In addition to membranes fully exposed to UV irradiation, membranes photo-patterned 

were produced using a UV photomask (100 × 100 µm squares). These membranes were used 

for the microscopic assessment of the supramolecular host-guest binding as the non-UV-

exposed surface represented an internal reference. 

The membranes fully exposed to UV irradiation were further characterized with Field-

emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). No 

significant differences in morphology of the membranes were observed before and after 

treatment (Figure 2.4). The results revealed that the surface roughness measured by AFM 

before (202 nm) and after modification (191 nm) did not change significantly. 
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Figure 2.4: FE-SEM micrographs of (a) PES and (c) AA-PES. AFM tapping mode micrographs (25 µm scan range) of (b) PES and (d) AA-PES. 
Scale bars represent 5 μm. 

2.1.1.3. Synthesis of heptakis(6-deoxy-6-amino)-β-cyclodextrin (NH-CD) 

In order to immobilize CDs at the surface of AA-PES membranes, heptakis(6-deoxy-6-amino)-

β-cyclodextrin (NH-CD) was synthesized from β-CD in three steps (Figure 2.5).102 First the 

per-6-iodo derivative of β-CD was prepared (yield 81%) from the native β-CD via an Appel 

conversion using triphenylphosphine and iodine. The reaction was followed by the 

nucleophilic substitution (SN2) of the iodine by azido functions using sodium azide to yield 

the per-6-azido-β-CD derivative (yield 90%). The azide functions were consecutively reduced 

to the corresponding amine groups using triphenylphosphine and aqueous ammonia to yield 

the per-amino derivative of β-CD (yield 92%). The three molecules synthesized were 

characterized with nuclear magnetic resonance (1H NMR, 13C NMR) and matrix-assisted laser 

desorption/ionization time of flight mass spectroscopy (MALDI-TOF). The analytical data 

were in perfect agreement with those reported in the literature.102  
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Figure 2.5: Synthetic route to NH-CD 

2.1.1.4. Immobilization of NH-CDs on the AA-PES membranes 

The NH-CDs synthesized were immobilized on the surface of AA-PES membranes following a 

procedure described hereafter. The carboxylic functions at the surface of the membranes 

were activated using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in order to yield 

active O-acylisourea intermediates. This reaction was followed by the nucleophilic attack of 

the primary amino groups of NH-CD to the activated leaving groups, which resulted to 

formation of the desired amide (NH-CD-PES) (Figure 2.6). 

 

Figure 2.6: EDC reacts with carboxylic acids to create an O-acylisourea intermediate. In the presence of NH-CD, an amide bond is formed 
with release of an isourea by-product. 

 The CD-modified membranes were characterized with FTIR. The FTIR absorbance spectrum 

of NH-CD-PES membrane was compared with AA-PES membrane. The successful NH-CD 
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coupling was confirmed by a decrease in intensity of the carbonyl stretching band measured 

at 1708 cm-1 for the carboxylic acid and the appearance of the stretching band of the amide 

carbonyl (which resulted from the coupling to the amine functions of NH-CD) at 1641 cm-1; 

cf. (Figure 2.7). The topography of the membrane surface was monitored after 

immobilization of NH-CD using FE-SEM. No significant change in morphology was observed 

compared to AA-PES membrane. Additionally, the surface roughness of 206 nm measured by 

AFM also confirmed no significant alternation. 

 

Figure 2.7: (a) Schematic representation of the synthetic route to introduce NH-CDs at the surface of AA-PES membranes in a micro-
patterned fashion; (b) FTIR absorbance spectra of NH-CD-PES membrane; (c) FE-SEM micrographs of PES; (d) AFM tapping mode 

micrograph (25 µm scan range) of a NH-CD-PES. Scale bars represent 5 μm. 

2.1.2. Synthesis of the multivalent enzyme-polymer conjugate (MEP) 

The enzyme-polymer conjugate (MEP) to be used to bind to CD-modified membranes, 

besides the water solubility needed for the enzyme activity, has to possess multiple chemical 

functional groups able to form inclusion complexes with the CDs macrocycles immobilized 

on the surface of the membrane. We synthesized an acrylamide-based polymer using three 

different monomers, namely adamantyl acrylamide, acryloyl-6-aminocaproic acid and 

acrylamide as monomers. Adamantyl acrylamide was synthesized by the amidification of 1-
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adamantylamine using acryloyl chloride and trimethylamine (Figure 2.8). All analytical values 

(1H NMR, 13C NMR) were in good agreement with those reported in the literature.79 

 

Figure 2.8: Synthetic route to adamantyl acrylamide 

A soluble “guest polymer” was synthesized by the copolymerization of acrylamide, acryloyl-

6-aminocaproic acid and adamantyl acrylamide via radical polymerization using 

azobisisobutyronitrile (AIBN) in dimethyl sulfoxide (Figure 2.9).79 The polymer was purified 

by dialysis and characterized using NMR and gel-permeation chromatography (GPC). The 

preliminary results of GPC revealed that polymer synthesized had a very high polydispersity. 

Consequently the precise average molecular weight of the polymer and consequently the 

number of adamantyl functions per polymer could not yet be extracted from the 

characterization results. Therefore, we optimized the reaction conditions and used a 

reversible addition-fragmentation transfer (RAFT) method. RAFT polymerization is one of the 

most efficient method for polymer synthesis with controlled molecular weight and low 

polydispersity.103 

 

Figure 2.9: Synthetic route to a soluble guest polymer 

Using the same monomer as acrylamide, acryloyl-6-aminocaproic acid and adamantyl 

acrylamide, the polymer was synthesized following a RAFT strategy (Figure 2.10).  

The acrylamide-based polymer was characterized by GPC, which revealed a weight average 

molecular weight of 11600 and a polydispersity index of 2.2. The weight average molecular 
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weight of the polymer synthesized corresponds to 8.1 adamantyl functions per polymer 

molecule.  

In order to bio-functionalize the surface of the filtration membranes, an enzyme namely β-

galactosidase (β-gal; EC 3.2.1.23) from Kluyveromyces lactis had to be covalently attached to 

the polymer synthesized. The carboxylic functions of this polymer were activated using EDC 

and N-hydroxysulfosuccinimide (sulfo-NHS) and reacted with β-gal in a phosphate buffer. 

Subsequently, in order to follow in real time the supramolecular interactions between the 

water-soluble polymers synthesized and CDs immobilized on the membrane surfaces by 

fluorescent microscopy, the enzyme-polymer conjugate was labelled with a fluorescent dye 

(Fluorescein isothiocyanate, FITC); cf. Figure 2.10. We measured the enzymatic activity of 

MEP in solution. The results did not show any extreme loss in the activity of the enzyme 

after coupling with the polymer. As a control we also labelled β-gal with FITC. 
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Figure 2.10: (a) Synthetic route to the fluorescently labelled MEP; an acrylamide-based polymer was synthesized following a RAFT strategy, 
using 4,4’-azobis(4-cyanopentanoic acid) as a radical initiator and 4-cyanopentanoic acid dithiobenzoate as a chain transfer agent. 

Adamantyl acrylamide, acrylamide and acryloyl-6-aminocaproic acid were used as monomers with molar ratio of 1:15:1. The synthesis was 
followed by covalent attachment of β-gal and subsequent labelling with a FITC; (b) Schematic representation of the multivalent 

supramolecular binding of MEP to covalently immobilized CDs on the membrane surface. 

A water-soluble reference polymer (MEPref) was synthesized following the same protocol but 

excluding the guest moiety (adamantyl-acrylamide monomer) (Figure 2.11). The GPC analysis 

of MEPref revealed a molecular weight of 4500 and a polydispersity index of 1.7. The lower 
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molecular weight of MEPref compared to MEP can be explained by to the absence of 

adamantyl acrylamide in MEPref synthesis, this monomer may have a slightly different 

chemical reactivity than that of the two other monomers used in the synthesis.  

  

Figure 2.11: Synthetic route to fluorescently labelled MEPref; an acrylamide-based polymer was synthesized following a RAFT strategy, using 
4,4’-azobis(4-cyanopentanoic acid) as a radical initiator and 4-cyanopentanoic acid dithiobenzoate as a chain transfer agent. Acrylamide 

and acryloyl-6-aminocaproic acid were used as monomers with molar ratio of: 1:15. The synthesis was followed by covalent attachment of 
β-gal and subsequent labelling with a FITC. 

2.1.3. Surface attachment of the multivalent enzyme-polymer conjugates  

The supramolecular binding between multivalent enzyme-polymer conjugates (MEP) and 

immobilized NH-CDs on the surface of membranes was assessed using fluorescence 

microscopy and by monitoring a bio-catalytic conversion at the surface of the MEP-modified 

membranes. 

2.1.3.1. Assessment of reversible surface modification by fluorescence microscopy 

In order to study the supramolecular reversible binding of MEP and β-CD immobilized on the 

surface, the NH-CD-PES membranes were incubated in a solution of MEP for 30 min. In order 

to remove all molecules physisorbed, the membranes were thoroughly rinsed with nanopure 
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water and subsequently characterized by fluorescence microscopy. Five different control 

experiments were carried out by incubating NH-CD-PES membranes in solutions of Fluo-β-gal 

and MEPref and incubating PES, UV-irradiated PES membranes and AA-PES membranes in 

MEP solution. The results obtained are presented in Figure 2.12.  

 

Figure 2.12: Fluorescence micrographs of the NH-CD-PES membrane, (a) before (NH-CD-PES) and (b) after incubation in MEP solution; (c) 
after incubation in a solution of β-CD and (d) after a second incubation in MEP solution. Scale bars represent 200 µm. 

After incubation with MEP, the NH-CD-PES membrane showed fluorescent square patterns 

with a size identical to that of the photomask we used for patterning the surface, thus 

confirming the attachment of the fluorescent MEP on CD-modified areas of the membrane. 

No other reference showed any relevant fluorescent signal, which proved the specific 

binding of MEP on CD-modified areas of the PES membrane. The reversibility of the 

supramolecular binding of MEP on NH-CD-PES surface was studied by rinsing the 

membranes with an aqueous solution of β-CD (20 g L-1). As the supramolecular binding 

between MEP and β-CDs immobilized on the surface is expected to be under a dynamic 

equilibrium; the soluble β-CDs will compete with the ones immobilized. As a result, each 

adamantyl moiety of MEP will form a complex with soluble β-CD and it is anticipated that 

MEP will be released from the membrane surface. This hypothesis was confirmed, as no 

fluorescence signal was detected after washing the NH-CD-PES surface with β-CD solution. 

The reversibility of the process was confirmed by repeating the MEP incubation and 

recovering the original fluorescence pattern. 
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2.1.3.2. Bio-catalytic conversion at the surface of the MEP-modified membranes in a batch 

process 

As a first experiment, we assessed the bio-catalytic conversion at the surface of the MEP-

modified membranes in a batch process. A model reaction was used with ortho-nitrophenyl-

β-galactoside (ONPG) as a synthetic substrate. In the presence of β-gal, ONPG is hydrolysed 

to galactose and o-nitrophenol. The CD-modified membranes were incubated in a MEP 

solution (0.01 g L-1) for 30 min. Subsequently, in order to remove the unbound MEP, the 

membranes were thoroughly rinsed with buffer. In parallel, a series of control experiments 

were performed by incubating NH-CD-PES membranes with the enzyme (β-gal) in free 

solution and MEPref or by incubating PES membranes, UV-irradiated PES membranes and AA-

PES membranes with a solution of MEP. The immobilized enzymatic activities on the PES 

membranes were measured using the conventional ONPG assay; the results are presented in 

Figure 2.13. 

 

Figure 2.13: Measurements of ONPG conversion rates at the surface of membranes in a batch process after incubation of NH-CD-PES 
membranes in MEP solution, followed by incubation in a β-CD solution as a competitor host. The procedure was repeated five times. 

For all control membranes, the ONPG conversion rates measured were lower than 0.002 

μmol min-1 cm-2. However, a considerably higher ONPG conversion rate of 0.043 μmol min-1 

cm-2 was measured for the MEP-modified membrane, which confirmed the selectivity of the 

adsorption of MEP on the surface. Additionally, the results obtained from this experiment 

proved that the catalytic characteristics of the enzyme were conserved after supramolecular 

immobilization of multivalent MEP at the surface of the PES membranes. After incubation of 
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the MEP-modified membranes in a β-CD solution, the ONPG conversion rate dropped to 

0.0018 μmol min-1 cm-2 (Figure 2.13). This corresponds to a removal of 96% of the 

immobilized MEP from the PES surface. Subsequently, for a second cycle, MEPs were 

immobilized on the surface of the PES membranes. An activity of 0.042 μmol min-1 cm-2 

corresponding to a recovery of 98% of the initial ONPG conversion rate was measured. After 

the second cycle of modification, the MEP-modified membrane could be regenerated, as the 

enzymatic activity dropped to 0.0017 μmol min-1 cm-2 after incubation in a β-CD solution. 

The MEP binding assay was repeated five times; after each cycle a recovery of 95-100% of 

the initial enzymatic activity was measured. The results obtained from this experiment 

confirmed the possibility to modify and regenerate the surface of PES membranes with MEP 

without significant loss of the enzymatic activity. 

2.1.3.3. Bio-catalytic conversion at the surface of the MEP-modified membranes in a 

continuous filtration process 

We also performed the supramolecular immobilization of MEP at the surface of PES 

membranes in a continuous filtration process. We fixed each filtration membrane using a 

disposable syringe filter holder while the flow rate of the fluid feed through the membranes 

was controlled using a syringe pump (Figure 2.14).  

 

Figure 2.14: Schematic representation of the setup used for continuous filtration process 

We first filtered the MEP solution (0.01 g L-1) through the NH-CD-PES membranes with a flow 

rate of 4 mL h-1. In order to evaluate the bio-catalytic conversion rate at the surface of the 

membranes, a solution of ONPG was subsequently filtered (4 mL h-1) through the 

membranes at 40°C. The ONPG conversion rate at the surface of the MEP-modified 

membrane was measured to be 0.39 μmol min-1 cm-2, which is significantly higher than the 

value measured in the corresponding batch process (0.043 μmol min-1 cm-2). Two 

hypotheses could explain the higher enzymatic activity at the surface of filtration 
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membranes in the continuous filtration process. The first hypothesis was that the substrate 

(ONPG) diffusion is a limiting factor in the batch process. The second hypothesis was that the 

density of immobilized MEP at the surface of NH-CD-PES membranes was higher when the 

immobilization was performed in a continuous filtration conditions. 

In order to study substrate diffusion at the surface of PES filtration membranes in the batch 

process, we first incubated the MEP-modified membranes in solutions of ONPG at increasing 

concentrations going from 5 to 40 mM at 40°C. By increasing the ONPG concentrations, the 

bio-catalytic conversion rate at the surface of the MEP-modified membranes increased from 

0.017 to 0.07 μmol min-1 cm-2 until it reached a plateau (Figure 2.15). 

 

Figure 2.15: Measurements of ONPG conversion rates at the surface of the MEP-modified membranes in batch (●) and continuous (○) 
processes using increasing concentrations of ONPG. 

These results confirmed that the ONPG diffusion is a limiting factor in the batch process. 

Nevertheless, the maximum enzymatic activity in the batch process (0.07 μmol min-1 cm-2) 

was still lower than in the filtration process (0.39 μmol min-1 cm-2). In order to better 

understand this difference, we modified the membranes with MEPs in a continuous filtration 

process and assessed their enzymatic activities in batches using different ONPG 

concentrations going from 5 to 40 mM. From the results shown in Figure 2.15, it could be 

seen that by increasing the substrate concentration, the enzymatic activity increased steadily 

from 0.09 to 0.39 μmol min-1 cm-2 until it reached a plateau. The maximum enzymatic 

activity in this experiment reached the value obtained in the filtration process. These results 

confirmed that both substrate diffusion and the quantity of immobilized MEP, are limiting 

the batch process. We confirmed that in the continuous filtration process, MEPs were also 
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immobilized within the membrane pores. Therefore the batch process compared to the 

continuous filtration process resulted in lower ONPG conversion rates.  

2.1.3.4. Bio-catalytic conversion at the surface of the MEP-modified membranes in a 

continuous filtration process using a complex matrix 

We assessed the efficiency and stability of the MEP-modified membranes under operational 

conditions in a complex matrix. To that end, we investigated the hydrolysis of lactose in milk 

serum. In such a complex matrix, the presence of high concentrations of small molecules 

that can compete with the adamantane-CD complex can decrease the stability of the 

immobilization and hinder the overall process. The assay was performed using the MEP-

modified membranes. In parallel, as a control experiment, the soluble enzyme (β-gal) was 

filtered through the NH-CD-PES membrane. Consequently, milk serum was filtered through 

the MEP-modified and reference membrane at flow rate of 4 mL h-1 at 40°C. We measured 

then the immobilized enzymatic activities on the surface of the membranes (Figure 2.16) 

 

Figure 2.16: Measurements of lactose conversion rates at the surface of membranes after filtration of milk serum solution through the 
MEP-modified membranes, followed by filtration of a β-CD solution as a competitor host. The procedure was repeated five times. 

The enzymatic activity at the surface of the reference membrane was only 0.003 μmol min-1 

cm-2. The lactose conversion rate at the surface of the MEP-modified membrane was 0.39 

μmol min-1 cm-2. The MEP-modified membranes have similar conversions rates for both 

substrates, namely lactose and ONPG. This is explained by the fact that β-gal has a similar 

maximum velocity for both substrates (600 µmol min-1 mg-1).104 
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In order to regenerate the MEP-modified membranes, a β-CD solution was filtered through 

the membranes with a flow rate of (4 mL h-1). The enzymatic activity dropped to 0.0004 

μmol min-1 cm-2, which confirmed that 99.9% of immobilized MEP was removed from the 

membrane surface. For a second cycle, the membranes were modified with MEP and a 

recovery of 98% (0.38 μmol min-1 cm-2) of initial enzymatic activity was obtained. The MEP 

binding assay and assessment of the hydrolysis of lactose in milk serum was repeated for 

five times. After each cycle, we recovered 92-102% of the initial enzymatic activity. The 

results obtained from this experiment proved that the MEP-modified filtration membranes 

maintain their efficiency and stability in a complex matrix such as milk serum. Additionally it 

confirmed the possibility to regenerate the PES membrane without significant loss of 

enzymatic activity in milk serum. 

2.1.4. Summary 

In summary, we developed a new supramolecular strategy that allows immobilizing enzymes 

at the surface of filtration membranes in a stable and reversible fashion. Our approach is 

based on multiple point host-guest supramolecular inclusion interactions between CDs 

immobilized at the surface of the PES membranes and the enzyme-polymer conjugates. Low 

density of CDs as host entities were immobilized covalently at the surface of the polymeric 

filtration membrane. We synthesized an acrylamide-based polymer possessing adamantyl 

moieties as guest functions and β-gal as a biocatalyst. The bio-conjugation strategy is 

versatile as it is based on a coupling reaction between activated carboxylic acids of the 

polymer and primary amine functions of lysine of the enzyme and can therefore be applied 

to a wide range of enzymes. We demonstrated that this method allows the stable 

immobilization of an enzyme at the surface of filtration membranes. The membrane 

bioreactors developed allowed for an efficient hydrolysis of lactose in milk serum. This 

approach is expected to be important for different industrial bio-based applications. 
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2.2. Reversible supramolecular modification of surface resonance sensor 

(SPR) chip 

Surface plasmon resonance (SPR) is an optical technique that is used to study molecular 

interactions on surfaces. It is a surface-sensitive bioanalytical method that allows for a rapid 

and label-free monitoring of bio-molecular interactions on the surface of a sensor in a real 

time.105,106 Binding of an analyte (e.g. antibody) from the solution to an immobilized bio-

molecule (e.g. antigen) on a sensor chip results in a change of refractive index that is 

measured as a change in a wavelength.106 

In order to perform multiple analyses with a single sensor, the conjugate surface has to be 

regenerated by dissociation of antigen-antibody complex.107-109 However, once an antigen is 

inactive, the SPR sensor chip has to be replaced. It is therefore important to develop a more 

cost-effective method to regenerate the surface of a used SPR sensor chip for SPR-based 

immunoassays.  

We adapted the strategy developed for membranes to stably but reversibly immobilize 

antigen-polymer conjugates at the surface of gold SPR sensor chips. This approach is based 

on multivalent interactions between an antigen-polymer conjugate and a SPR sensor chip 

surface. We used a multivalent acrylamide-based polymer guest and a host molecule (β-CD) 

covalently immobilized at the surface of gold SPR sensor chips (Figure 2.17). This approach 

allows to in-place regenerate the SPR sensor chips with new bio-molecules in SPR-based 

immunoassays.  
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Figure 2.17: Schematic representation of a multivalent supramolecular binding of an antigen-polymer conjugate to covalently immobilized 
CDs on a SPR sensor chip surface.  

2.2.1. Chemical modification of gold sensor chips 

The chemical modification of gold sensor chips was based on the formation of highly 

ordered monolayers of a dialkylsulfide derivative of β-CD on a surface of a gold SPR sensor 

chip. 

2.2.1.1. Synthesis of heptakis{6-deoxy-6-[12(thiododecyl)undecanamido]}-β-CD 

In order to immobilize CDs at the surface of gold sensor chip, we synthesized heptakis{6-

deoxy-6-[12(thiododecyl)undecanamido]}-β-CD. This was achieved following the synthetic 

route presented in Figure 2.18. 
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Figure 2.18: (a) Synthetic route to 12-(thiodecyl)undecanoic acid; (b) synthetic route to heptakis{6-deoxy-6-
[12(thiododecyl)undecanamido]}-β-CD; O-Benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate (TBTU) was used as an 

activating agent 

12-(thiodecyl)undecanoic acid was synthesized by displacement of bromide from alkyl 

bromides by a thiolate anion (Figure 2.18). The resulting dialkyl sulphide was purified by 

crystallization in heptane. All analytical values (1H NMR and 13C NMR) were in good 

agreement with those published in the literature.110 

A dialkyl sulfide derivative of β-CD was synthesized by reacting per-amino derivative of β-CD 

(NH-CD) and 12-(thiodecyl)undecanoic acid in presence of O-Benzotriazol-1-yl-N,N,N',N'-

tetramethyluronium tetrafluoroborate (TBTU) as an activating agent in freshly dried 

dichloromethane. All analytical values (1H NMR, 13C NMR) were in good agreement with 

those reported in the literature.111 

2.2.1.2. Self-assembled monolayers of heptakis{6-deoxy-6[12(thiododecyl)undecanamido]}-

β-CD on a gold substrate 

A SAM of dialkylsulfide derivative of β-CD were prepared (Figure 2.19) by immersing freshly 

cleaned gold substrates in a solution of heptakis{6-deoxy-6-

[12(thiododecyl)undecanamido]}-β-CD (1 mM, EtOH:CHCl3, 1:2, v/v) for 16 h at room 

temperature. Subsequently the CD-modified Au substrates (CD-Au) were rinsed with 

chloroform and assembled in the SPR chip holder. Surface ellipsometric analyses revealed a 

β-CD layer thickness of 22 Å, which is consistent with a vertically oriented heptakis{6-deoxy-
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6-[12(thiododecyl)undecanamido]}-β-CD molecular structure to the Au plane as represented 

in Figure 2.19.   

 

Figure 2.19: Schematic representation of a SAM of dialkylsulfide derivative of β-CD on a gold surface 

2.2.2. Synthesis of the multivalent BSA-polymer conjugate (MPP) 

In order to synthesize a multivalent antigen-polymer conjugate (MPP), we used the 

acrylamide-based polymer possessing adamantyl moieties as guest functions (section 2.1.2), 

which are able to form "host-guest" inclusion complexes with CDs immobilized on the 

surface of the CD-Au sensor chips. MPP was synthesized following the same protocol 

described for MEP (Figure 2.20), but using a protein that will serve as an antigen (bovine 

serum albumin, BSA) instead of an enzyme (β-gal). 
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Figure 2.20: Synthetic route to MPP. 

2.2.3. Assessment of the supramolecular binding of MPP on the chemically-

modified SPR chips 

NH-CD-Au sensor chips were equilibrated using HBS buffer (HEPES 0.01 M, NaCl 0.15 M, 

EDTA 3 mM, pH 7.4). After the equilibration stage, MPP (50 µg mL-1) in HBS buffer was 

injected (5 µL min-1) to one of the flow chambers. After injection of MPP and equilibration 

time of 15 min, the sensor response showed an increase of 511 arbitrary units (AU) (Figure 

2.21). This proved the immobilization of MPP on the surface of the CD-Au senor chip (MPP-

Au). 

 

Figure 2.21: Binding sensogram of MPP, values are expressed in arbitrary units and normalized to zero at the beginning of the injection 

In order to study the specific antigen-antibodies interactions between BSA and bovine serum 

albumin antibody (AntiBSA, 50 µg mL-1), AntiBSA in HBS buffer was injected into both flow 

chambers (5 µL min-1). A CD-modified flow chamber (CD-Au) was used as a reference flow 

chamber. After an equilibration time of 5 min, the sensor response was 102 AU higher in 
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MPP-Au than in the reference flow chamber (Figure 2.22), which proved the specific binding 

between AntiBSA and immobilized MPP on the surface. 

 

Figure 2.22: Binding sensogram of specific AntiBSA-MPP interactions 

In order to dissociate the AntiBSA-BSA complex at the surface of the Au sensor chip, we 

injected glycine (10 mM, pH 2, 5 µL min-1) to the AntiBSA-modified flow chamber. Most 

proteins become partly unfolded and positively charged at low pH. A decrease of 153 AU 

was measured after injection of glycine as a regeneration solution. This decrease in the 

signal response was close to the signal increase measured for immobilization of AntiBSA (102 

AU) and thus proved AntiBSA removal (Figure 2.23). 



50 
 

 

Figure 2.23: AntiBSA dissociation sensogram after loading of glycine solution 

Furthermore, in order to regenerate the surface of MPP-Au sensor chips and remove MPP, 

we injected a solution of β-CD (20 g L-1) as a competitor host. After four cycles of injection, a 

decrease of 430 AU was measured. This decrease in the signal response (430 AU) was close 

to the signal increase measured for immobilization of MPP (511 AU) and therefore proved 

MPP removal from the surface of the Au sensor chip (Figure 2.24). 

 

Figure 2.24: AntiBSA dissociation sensogram after injection of β-CD solution 

The MPP binding assay and assessment of the AntiBSA-MPP was repeated another time. 

After the first cycle, 97% of the initial AntiBSA-MPP binding affinity was recovered (Figure 

2.25). The results obtained from this experiment confirmed the possibility to modify and 
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regenerate the surface of Au SPR sensor chips with MPP without significant loss of antigen-

antibody affinity. 

 

 

Figure 2.25: Binding sensogram of the regenerated Au sensor chip  

2.2.4. Summary 

We applied a similar supramolecular strategy used for reversible modification of filtration 

membranes, for reversible modification of Au SPR sensor chips. A SAM of the dialkylsulfide 

derivative of β-CD was prepared on a surface of Au sensor chips. An acrylamide-based 

polymer (MPP), possessing adamantyl moieties as guest functions and BSA as a ligand was 

synthesized following the same synthetic route used for MEP. This approach allowed for the 

stable but yet reversible immobilization of BSA at the surface of an Au SPR sensor chip. The 

MPP-modified SPR sensor chip allowed the assessment of an efficient antigen-antibody 

interaction. This approach can be theoretically used to immobilize a large variety of ligands 

on surface of SPR sensor chips and will allow using the same SPR sensor chip for several 

different immunoassays. 
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 Experimental methods Chapter 3.

3.1. General 

All solvents (analytical grade) were obtained from Sigma-Aldrich and used without further 

purification unless otherwise stated. Polyethersulfone filtration membranes were purchased 

from Millipore. A UV photomask (chrome/quartz) was obtained from Compugraphics Jena 

with 100×100 µm square features. Absorbance and fluorescence intensities were measured 

using a Biotek Synergy™ H1 Hybrid Multi-Mode Microplate Reader. All SPR binding assays 

were performed using a BIAcore® X apparatus. The gold SPR sensor chips (SIA Kit Au®) were 

obtained from BIAcore. Fluorescence microscopy images were acquired using an Olympus 

BX51 fluorescence microscope. Fourier transform infrared spectra were measured in 

attenuated total reflection (ATR) using a single reflection diamond ATR device (Golden Gate) 

and a Varian 670-IR spectrometer. Gel permeation chromatography (GPC) analysis was 

performed using an Agilent PL-GPC 50 Plus system. The instrument was equipped with 

refractive index (RI) detector. The following conditions were used for performing the GPC 

measurements: column, guard column and two PL-aquagel-OH Mixed-M columns; eluent, 

NaNO3 (0.1 M) containing 10% MeOH (wt %) in water; flow rate, 1 mL min−1; column oven 

temperature, 40°C. Polyethylene glycol standards were used for molecular weight 

calibration. 

3.2. Synthesis of the enzyme-polymer conjugate (MEP) 

All glassware was dried prior to use and DMSO was degassed with N2 for 30 min. 

Subsequently, acrylamide (10.95 g, 154 mmol), adamantyl acrylamide (2.15 g, 10.5 mmol) 

and acryloyl-6-aminocaproic acid (1.94 g, 10.5 mmol) were dissolved in degassed DMSO (20 

mL). 0.1 mmol of the radical initiator (4,4’-azobis(4-cyanopentanoic acid, 28 mg) and a 0.5 

mmol of the chain transfer agent (4-cyanopentanoic acid dithiobenzoate, 139.7 mg) were 

added to the reaction mixture. The solution was purged with nitrogen for 30 min. The 

mixture was heated to 70° C for 24 h. The reaction mixture was cooled to the room 
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temperature and the product was precipitated in acetone three times. In order to purify the 

polymer, a dialysis (MWCO 3.5 kDa) was performed in water. The purified polymer was dried 

by lyophilisation. 

An enzyme-polymer conjugate was synthesized by dissolving the polymer synthesized (1 g L-

1) in MES buffer (5 mM, pH 6). Subsequently, the activating agents, 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (2 mM) and N-hydroxysulfosuccinimide (5 mM) were 

added to the reaction mixture and the solution was stirred for 15 min at room temperature. 

The polymer was purified from reaction by-products by performing a dialysis (MWCO 3.5 

kDa) in MES buffer. Consequently, β-gal (1:1, β-gal:polymer, molar ratio) was added to the 

activated polymer in sodium phosphate buffer (0.1 M, pH 7.5) for conjugation and the 

mixture was stirred for 2 h at room temperature. The enzyme-polymer conjugate was 

purified by performing dialysis (MWCO 50 kDa) in the enzyme buffer solution (dipotassium 

phosphate 100 mM, MgCl2 5 mM, pH 6.5). 

In order to label the enzyme-polymer conjugate, fluorescein isothiocyanate (FITC) was used. 

The enzyme-polymer conjugate buffer was exchanged to borate buffer (50 mM, pH 8.5) by 

dialysis (MWCO 10 kDa). After FITC was equilibrated at room temperature, it was dissolved 

in DMF (1 g L-1) and was added to the enzyme-polymer conjugate solution (enzyme:FITC, 

1:24, molar ratio). The solution was incubated at room temperature for 1 h. The excess of 

unreacted FITC was removed by doing a dialysis (MWCO 10 kDa) in the enzyme buffer 

solutions. The enzyme-polymer labelled conjugate (MEP) was stored at 4°C in the enzyme 

buffer solution. 

A reference enzyme-polymer conjugate (MEPref) was synthesized following the same 

procedure described for MEP. Acrylamide (11.69 g, 164 mmol), acryloyl-6-aminocaproic acid 

(1.94 g, 10.5 mmol), 4,4’-azobis(4-cyanopentanoic acid (28 mg, 0.1 mmol) and 4-

cyanopentanoic acid dithiobenzoate (139.7 mg, 0.5 mmol) were dissolved in DMSO (20 mL) 

and the solution was degassed with N2 for 30 min. Subsequently the solution was heated at 

70°C for 24 h. The reference polymer was purified following the same steps than for MEP. 

Subsequently, β-gal was covalently attached on the polymer and labelled with FITC following 

the same procedures described for MEP.  



55 
 

3.3. Synthesis of the multivalent BSA-polymer conjugate (MPP) 

The acrylamide-based polymer was synthesized following the same procedure described for 

MEP. In order to attach the antigen (BSA), the polymer synthesized (1 g L-1) was first 

dissolved in MES buffer (5 mM, pH 6). Subsequently, the activating agents, 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (2 mM) and N-hydroxysulfosuccinimide (5 mM) were 

added to the reaction mixture. The solution was stirred for 15 min at room temperature. In 

order to purify the activated polymer from reaction by-products, a dialysis (MWCO 3.5 kDa) 

was performed in MES buffer. Subsequently, BSA (1:1, BSA:polymer, molar ratio) was added 

to the activated polymer in sodium phosphate buffer (1 M, pH 7.5) for conjugation. The 

solution was stirred for 2 h at room temperature. The antigen-polymer conjugate was 

purified by dialysis (MWCO 50 kDa) in a phosphate buffer. 

3.4. Synthesis of the per-6-iodo-β-cyclodextrin 

Triphenylphosphine (40 g, 143 mmol) was dissolved in dry DMF (160 mL). To this solution, 

iodine (40 g, 160 mmol) was slowly added over 10 min. Subsequently, dry β-CD (11.6 g, 10 

mmol) was added to the reaction mixture and the temperature was increased to 70°C. The 

solution was stirred under N2 for 20 h. The reaction was cooled to room temperature and 

was concentrated under reduced pressure. Subsequently sodium methoxide (3 M, 60 mL) 

was added to the reaction solution while cooling. The solution was stirred for 30 min. The 

reaction solution was poured in MeOH. The precipitate was washed with MeOH and soxhlet 

extracted with MeOH for 24 h. The product (15.7 g, 81%) was dried as a white powder. 

1H NMR (CD3SOCD3 ,300 MHz): δ= 3.25 (t, 7 H), 3.32-3.45 (m, 14 H), 3.52-3.65 (m, 14 H), 3.78 

(d, 7 H), 4.97 (d, 7 H), 5.92 (d, 7 H), 6.03 (d, 7 H); 13C NMR (CD3SOCD3 ,75 MHz): δ = 102.0, 

86.0, 72.2, 72.0, 71.0, 9.3 ppm 

3.5. Synthesis of the per-6-azido-β-cyclodextrin 

Per-6-iodo-β-cyclodextrin (15 g, 7.9 mmol) was dissolved in DMF (250 mL) and subsequently 

NaN3 (5 g, 77.2 mmol) was added to the solution. The mixture was heated to 60°C under N2 

atmosphere and was stirred for 24 h. The reaction mixture was concentrated under reduced 

pressure and consequently a large excess of water was added. The precipitate powder was 

filtered, and washed with water. The product (9.2 g, 90%) was dried under vacuum. 



56 
 

1H NMR (CD3SOCD3 ,300 MHz): δ= 3.28-3.40 (m, 14 H), 3.50-3.62 (m, 14 H), 3.65-3.79 (m, 14 

H), 4.89 (d, 7 H), 5.75 (d, 7 H), 5.90 (d, 7 H); 13C NMR (CD3SOCD3 ,75 MHz): δ = 102.0, 82.8, 

73.0, 72.0, 70.5, 51.0 ppm 

3.6. Synthesis of the per-6-amino-β-cyclodextrin 

Per-6-azido-β-cyclodextrin (9 g, 6.8 mmol) was dissolved in DMF (180 mL) and subsequently 

triphenylphosphine (28.5 g, 108.4 mmol) was added to the solution. The mixture was stirred 

for 1 h and subsequently concentrated aqueous NH3 (27 mL, 35%) was added dropwise to 

the reaction solution. The reaction mixture was stirred for 24 h and subsequently 

concentrated under reduced pressure. The product was precipitated by addition of EtOH 

(500 mL). The precipitated powder was washed copiously with EtOH and dried under 

vacuum (7.1 g, 92%). 

1H NMR (D2O, 300 MHz): δ= 3.21 (dd, 7 H), 3.39 (dd, 7 H), 3.56 (t, 7 H), 3.64 (dd, 7 H), 3.95 

(dd, 7 H), 4.16-4.26 (ddd, 7 H) , 5.12 (d, 7 H); 13C NMR (D2O, 75 MHz): δ = 101.4, 82.1, 72.1, 

71.7, 67.8, 40.2 ppm 

3.7. Synthesis of 12-(thiodecyl)undecanoic acid 

Under anhydrous conditions, sodium (1 g) was added to 100 mL degassed methanol. 

Dodecanethiol (2 mL, 11.7 mmol) was added to the reaction mixture. Subsequently, 12-

bromoundecanoic acid (3.26 g, 11.7 mmol) was added and a clear solution was formed. The 

reaction mixture was stirred overnight at room temperature under N2 atmosphere. The 

product was purified by pouring the reaction mixture in to a solution of water (200 mL), 

concentrated HCl (10 mL), and diethyl ether (600 mL). The ethereal layer was extracted and 

washed with deionized water (3×200 mL) and saturated aqueous NaCl (200 mL), dried with 

anhydrous sodium sulphate, and filtered. Ether was removed under reduced pressure and 

the compound was purified by crystallization from heptane (2.6 g, yield 56%).  

1H NMR (CDCl3, 300 MHz): δ= 2.50 (t, 4 H), 2.35 (t, 2 H), 1.51-1.67 (m, 6 H), 1.18-1.39 (m, 32 

H), 0.88 (t, 3 H); 13C NMR (CDCl3, 75 MHz): δ = 80.05, 34.06, 32.24, 31.94, 29.76, 29.65, 29.56, 

29.52, 29.4, 29.3, 29.27, 29.24, 29.07, 28.97, 24.69, 22.71, 14.12 ppm 
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3.8. Synthesis of heptakis{6-deoxy-6-[12(thiododecyl)undecanamido]}-β-

CD 

12-(Thiodecyl)undecanoic acid (1.2 g, 3.1 mmol), O-benzotriazol-1-yl-N,N,N',N'-

tetramethyluronium tetrafluoroborate (TBTU) (1 g, 3.1 mmol) and 4-ethylmorpholine (800 

µl, 6 mmol) were dissolved in dry DMF under anhydrous condition. The reaction mixture was 

stirred for 10 min at 0°C. The per-amino derivative of β-CD (0.5 g, 0.44 mmol) was added to 

the mixture and the reaction was allowed to warm at room temperature and was stirred for 

additional 16 h. Consequently, DMF was evaporated under reduced pressure and the residue 

obtained was dissolved in dichloromethane (200 mL). The reaction solution was extracted 

with HCl (1 M, 200 mL), water (200 mL) and subsequently dried over magnesium sulphate. 

Dichloromethane was evaporated under reduced pressure. The residue was re-dissolved in 

dichloromethane (10 mL) and precipitated in acetone. The product (1 g, yield 60%) was 

filtered and washed abundantly with acetone. 

1H NMR (CDCl3, 300 MHz): δ= 7.26 (s, 7 H), 6.64 (s, 7 H), 5.19 (s, 7 H), 4.87 (s, 7 H), 4.06-3.66 

(m, 42 H), 2.49 (t, 28 H), 2.19 (m, 14 H), 1.63-1.48 (m, 42 H), 1.44-1.14 (m, 224 H), 0.88 (t, 21 

H); 13C NMR (CDCl3, 75 MHz): δ = 174.0, 102.1, 84.2, 73.2, 71.0, 54.1, 43.0, 37.1, 36.1, 32.0, 

31.7, 29.7, 29.6, 29.5, 29.3, 29.0, 26.1, 22.5, 14.1 ppm 

3.9. Chemical modification of polyethersulfone filtration membranes  

Each PES membrane was incubated in an aqueous solution of acrylic acid (2 wt%, 2 mL) for 

30 min. Subsequently, the UV photomask was placed on the membrane and UV irradiated 

(254 nm) under N2 atmosphere for 2.5 min. The membranes were consequently rinsed with 

nanopure water. In order to attach covalently the NH-CDs to the surface of the membrane, 

each AA-PES membrane was incubated in 1 mL solution of NH-CD (0.15 g L-1) and an 

activating agent (EDC, 10 g L-1) in a phosphate buffer (NaH2PO4 50 mM, NaCl 150 mM, pH 

7.2) for 2 hours. The reactive sites in excess were blocked using ethanolamine (1 mL, 40 

mM). NH-CD-modified membranes (NH-CD-PES) were subsequently stored in nanopure 

water (resistivity ≥ 18 MΩ cm). 

3.10. Chemical modification of gold sensor chip (NH-CD-Au) 

In order to clean gold substrates, they were immersed in acetone and subsequently 

submitted to ultrasonic treatment for 20 min. The same procedure was repeated using 
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methanol as a solvent. Subsequently, the gold substrates were immersed in a piranha 

solution (H2SO4:H2O2, 70:30, v/v) for 1 h (WARNING: piranha solution is highly oxidative and 

corrosive; it could explode unexpectedly and must be handled with extreme care). The 

sensors were then thoroughly rinsed with nanopure water, acetone and were dried under 

nitrogen. Subsequently the gold substrates were immersed in a solution of heptakis{6-

deoxy-6-[12(thiododecyl)undecanamido]}-β-CD (1 mM, EtOH:CHCl3, 1:2, v/v) overnight. The 

CD-modified substrates were then rinsed with chloroform and dried under nitrogen. 

3.11. Glucose oxidase method 

The O-dianisidine reagent was prepared by dissolving O-dianisidine (25 mg, 0.1 mmol) in 1 

mL methanol and adding 49 mL of phosphate buffer (0.1 M, pH 6.5) to this solution. To this 

mixture, peroxidase (5 mg) and glucose oxidase from Aspergillus Niger (5 mg) were added. 

Subsequently, a freshly prepared O-dianisidine reagent was mixed with each sample (1:1, 

v:v) at 35°C for 40 min. Concentrated hydrochloric acid (6 N, 1:1, v/v) was added to each 

sample and absorbance was measured at 540 nm.  

3.12. Ortho-nitrophenyl-β-galactoside (ONPG) enzymatic assay 

50 µl of the enzyme (β-gal) solution was equilibrated for 5 min at 40°C. The substrate 

solution (ONPG, 50 µl, 40 mM) was added to each sample under stirring for 5 min at 40°C. In 

order to stop the reaction, the pH was increased using sodium carbonate (1 M, pH 11, 100 

µl). Absorbance was measured at 420 nm. 

3.13. Microscopic characterization 

A Zeiss SUPRA® 40VP scanning electron microscope was used for imaging membranes. The 

PES membranes were dried under ambient conditions, and sputter-coated with a gold-

platinum alloy for 30 s at 15 mA using a SC7620 Sputter coater. The SEM micrographs were 

acquired using the secondary electron mode with an accelerating voltage of 20 kV. 

Magnification of 104× was used for all the micrographs. 

The membrane roughness was measured using a NTEGRA Prima (NT-MDT) atomic force 

microscopy system and Nova SPM software. The root mean square roughness (RMS) is 

defined as the standard deviation of the average roughness. The AFM was used in a tapping 

mode in air and micrographs are presented without any image processing. The AFM system 
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was equipped with Gold-coated silicon rectangular cantilevers (length 95 μm, width 30 μm, 

NT-MDT, scan range 25 µm).  

3.14. Spectroscopic ellipsometry measurements  

Ellipsometry measurements were performed using an imaging and spectroscopic system (EP3 

Ellipsometer, Accurion) in a nulling PCSA (polarizer-compensator-sample-analyser) set-up. In 

this set-up, the incident beam, which is elliptically polarized with a linear polarizer (P) and a 

quarter-wave plate (C) is reflected from the sample (S) to the analyser (A) and finally imaged 

with a CCD camera using 10× objective. The nulling conditions (related to the optical 

properties of each sample) were obtained by tuning the angles of P, C and A. Measured data 

were then converted to the ∆ (relative phase shift of p- and s-polarized light upon reflection 

on the sample) and ᴪ (relative amplitude ratio of the reflection coefficients of p- and s- 

polarization). Measurements were performed with a fixed angle of incidence (50°) at five 

different wavelengths (λ=629.3, 760.3, 829.9, 905.0, 1000.8 nm). Thickness of transferred 

layers was calculated by transferring measured ∆ and ᴪ as a function of wavelength lambda 

to the EP4 model software. A model with two layers (AU/CD-SAM/air) was created. Using 

data base of EP4 software, dispersion functions of Au and air as ambient were defined. A 

Cauchy model with predefined refractive index and extinction coefficient (n= 1.5, k=0) was 

designated for the CD-SAM. Thickness of 22 Å was measured for CD-SAM layer. A system 

control was done prior to each set of experiments using standard Au samples. 
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 Conclusion Chapter 4.

In the frame of this PhD research work we developed a new supramolecular strategy that 

allows immobilizing enzymes at the surface of filtration membranes in a stable and 

reversible fashion. Our approach is based on multiple points host-guest supramolecular 

inclusion interactions between CDs immobilized at the surface of the PES membranes and 

enzyme-polymer conjugates. Low density of CDs host entities were immobilized covalently 

at the surface of the polymeric filtration membrane following a coupling reaction between 

activated carboxylic acids on PES surfaces and primary amine functions of the per-amino 

derivative of β-CD (NH-CD). No significant differences in morphology, roughness and water 

flow through the membrane was observed, which confirmed that the physico-chemical 

properties of filtration membranes did not change drastically after immobilization of CDs.  

As a multivalent enzyme-polymer conjugate, we synthesized an acrylamide-based polymer 

possessing adamantyl moieties as guest functions and β-gal as a biocatalyst. The membrane 

bioreactors developed in this research work, with immobilized β-gal at the surface of PES 

membranes, allowed for an efficient hydrolysis of lactose in milk serum. For future 

applications, in order to increase the bio-catalytic conversion rate at the surface of the 

filtration membrane, the immobilized enzyme density should be increased at the surface. 

This can be achieved using star-, comb- or brush-based polymer instead of the used linear 

polymer and therefore increasing the number of the chemical moieties for covalent 

anchoring of the enzyme.  

The used bio-conjugation strategy is versatile as it is based on a coupling reaction between 

activated carboxylic acids of the polymer and primary amine functions of lysine residues of 

the enzyme and can therefore be applied to a wide range of enzymes. Some commercially 

available enzymes, which are used in industrial-scale production bioprocesses, are amylases, 

lipases, proteases, laccase, cellulases, etc.. For instance, amylases can be used for the 

conversion of starch to sugar syrups, and production of CDs for pharmaceutical or food 

industries. Other widely used industrial bio-catalysts are Lipases. They can be used in 
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detergents and waste water treatments for degradation of fat containing materials. 

Cellulases have the ability to degraded lignocellulosic feedstocks and therefore are widely 

used in textile industries. Another industrial applicable enzyme is laccases, which is used for 

bleaching in paper and textile industries. Our developed strategy can be applied to 

immobilize different enzymes that are used in variety of industrial sectors such as textile, 

dairy, baking, pulp and paper, beverage, brewing and cosmetic industries, to name but a 

few. 

We applied a similar supramolecular approach used for reversible modification of filtration 

membranes for reversible bio-functionalization of gold surfaces, which were used to prepare 

sensor chips for surface plasmon resonance assays. A self-assembled monolayer of the 

dialkylsulfide derivative of β-CD was prepared on a surface of Au sensor chips.  

In order to produce a multivalent protein-polymer conjugate guest molecule, we synthesized 

an acrylamide-based polymer (MPP), possessing adamantyl moieties as guest functions and 

BSA as a ligand. This was achieved following the same synthetic route used for MEP. This 

approach allowed for the stable but yet reversible immobilization of BSA at the surface of an 

Au SPR sensor chip. The MPP-modified SPR sensor chip allowed the assessment of an 

efficient antigen-antibody interaction. We demonstrated that the surface of the BSA-

modified sensors could be regenerated after injection of β-CD as a competitor host. We 

repeated the MPP binding assay and confirmed the possibility to modify and regenerate the 

surface of Au SPR sensor chips with MPP without significant loss of antigen-antibody affinity.  

The efficiency of antigen-antibody recognition based on this strategy may be improved by 

increasing the density of immobilized protein at the surface of the sensor chip. This can be 

achieved, following a similar approach that was mentioned above for increasing the bio-

catalytic conversion rate at the surface of the membranes, using star-, comb- or brush- 

based polymer and therefore increasing the number of the immobilized proteins. This 

strategy can also be extended to immobilize antibodies instead of antigens on the surface of 

SPR sensors. Indeed, antibodies are one of the most widely used biological recognition 

molecules in SPR biosensors. In the case of an antibody-antigen interaction, immobilization 

of antibodies at the surface of SPR sensor chips would avoid the binding avidity effects that 

result from the bivalency of the antibody. Immobilization of the bivalent protein allows 

determination of the kinetic rate constants by fitting the responses to a simple Langmuir 
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binding model. This approach can be theoretically used to immobilize a large variety of 

ligands on surface of SPR sensor chips and will allow using the same SPR sensor chip for 

several different immunoassays. This method can also be adapted to covalently immobilize 

CD derivatives at the surface of other SPR sensor chips such as carboxymethylated dextran-

modified (CM) sensors. The CM sensors can be chemically modified using a coupling reaction 

between activated carboxylic acids of the sensor's surface and primary amine functions of an 

amino derivative of β-CD.  

Our developed method theoretically allows the stable but yet reversible immobilization of 

any type of enzyme at the surface of different carrier materials (e.g. nanoparticles). This 

approach is expected to be important for different industrial bio-based applications. 
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