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Abstract 

This study aims towards an improved estimation of annual heat demand of the building stock for an entire region. This requires the 

holistic representation of aspects influencing the heat demand of buildings, namely their geometry, fabric, users and surrounding 

environment. A large data base for the building stock of the Swiss canton of Geneva was systematically assessed to identify 

parameters suited for representation of these aspects. Due to the expectable differences in heat demand, the building stock was 

categorized into 8 building types. For each type a multiple linear regression model was developed to predict the heat demand. 

An aspect which has so far been neglected by regression models of buildings’ heat demand is the influence of microclimate. Since 

this aspect is considerably influenced by the surrounding topography, parameters suited for the representation of the urban 

topography were defined and included in the regression.  

The regression analysis revealed that all models were able to explain high shares of the variance (R̅2: 71.2% to 88.9%). The mean 

average errors for hotel, health-care, educational and office buildings were ranging between 30.2% and 39.8% while the error for 

residential buildings was 17.8%. The suitability and of the selected parameters for heat demand prediction was analyzed in detail 

for the residential building model and revealed that almost all chosen parameters were highly suited.  
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1. Introduction 

The building sector accounts for 40% of the final energy consumption in Europe and thus presents a high potential 

for energy savings [1]. A reliable prediction of the heat demand of buildings is required to improve the design and 

operation of energy systems and target demand reduction measurements as e.g. incentives for refurbishment at city or 

regional scale. A prediction on such a scale in turn requires to regard several building types representing as 

comprehensive as possible the entire building stock. Such a prediction further requires a holistic representation of 

aspects influencing the heat demand of buildings, namely their geometry, fabric, users and surrounding environment. 

The representation of these different aspects needs building specific information. However, the availability of 

information in terms of both different parameters and a complete parameter set for each building usually limits the 

detail of the representation and the number of buildings, respectively, for which a heat demand estimation can be 

made. Thus one objective of this work was to include the mentioned aspects influencing buildings’ heat demand into 

the estimation while taking into consideration the availability of data. 

 

Amongst possible techniques, physical and statistical modeling have been widely used for the heat demand 

estimation of building stocks [2]. Due to their mathematical nature and diametric to it, both modeling methods have 

different strengths and weaknesses regarding the representation of the different aspects of buildings [3]. While the 

representation of statistic or stochastic information as user-related aspects is an issue for physical models, the 

representation of physical aspects as building geometry or topography is usually less or not considered by stochastic 

models. Due to their general higher flexibility in incorporated information [4, 5], a stochastic method in form of 

multiple linear regression modeling was used for this work. In order to overcome the previously mentioned drawbacks 
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of statistical models and better represent physical aspects, a set of geometric parameters was included in the regression.  

An aspect so far neglected by regression models of buildings’ heat demand is the influence of solar gains and 

microclimate. This aspect is substantially characterized by the surrounding topography [6]. Thus meaningful 

parameters were included, which are suited to represent urban topography and are easily derivable from building data. 

 

2. Materials and methods 

2.1. Data description 

This study was carried out on basis of georeferenced data for the canton of Geneva in Switzerland. Thus next to 

mostly urban areas also rural areas were regarded in this study. The data were obtained from the territorial information 

system for Geneva (SITG) [7], which provides a large amount of publicly available data for the entire building stock. 

The 115 listed building types were sorted into 7 categories according to expectable similarities in heat demand: 

residential buildings, offices, commercial buildings for wholesale and retail, industries (factories and workshops, 

excluding storehouses), educational buildings (schools, universities and research institutes), healthcare buildings 

(excluding sport facilities) and hotels (including guest houses). An eighth building type represents less frequent 

buildings with yet a considerable heat demand (e.g. museums, libraries, churches, stations, airport). Further buildings 

with minor or without heat demand as e.g. garages were excluded. Figure 1 shows the resulting number of buildings 

per building type, the number of buildings for which annual heat demand measurements were available and the number 

of buildings regarded in the regression analysis excluding records with incomplete parameter sets.  

Figure 2 summarizes all used parameters and their availability for the regarded building stock and in terms of their 

completeness. The annual heat demand of each building was available in form of an average heat demand for the years 

2010 to 2012, which included both hot water and weather-corrected space heating energy demand, normalized by the 

energetic reference floor area (SRE) of the building. However, it was refrained from using the normalized values for 

two reasons: First, the SRE is almost only available for buildings for which heat demand data are available. Predicting 

the SRE specific demand would thus not help to predict the total demand for the rest of the building stock. Second, 

regressing the normalized value does not allow to compare the influence of the floor area against other parameters. 

Therefore the total consumption was obtained by multiplying the area specific heat demand and the energetic reference 

floor area (SRE) of each building.  

Information about the geometry of buildings are available from both an extensive building cadaster and a three-

dimensional city model. The cadaster includes height and number of floors. The gross floor area is estimated by 

multiplying the number of floors with the footprint area. Analogously buildings’ volumes were computed using their 

footprint areas and height. The three-dimensional model provided further information about the their envelope surface 

in terms of total, shared and unshared wall surfaces as well as roof surface and average roof pitch. An important further 

aspect is the buildings’ fabric. Since information about e.g. U-values and airtightness is not available, the building's 

construction period is used as a representing parameter [8]. Reliable information about renovations of buildings was 

Figure 1. Categorization of Geneva's building stock in building types and regarded data availability (absolute values indicated) 
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not available and thus left out of the analysis since neither is the type of renovation specified nor is a clear distinction 

possible if a building was not renovated or the entry is missing. 

To reflect potential effects of the urban topography on the heat demand, two additional parameters were defined. 

As a basis for their definition the partition of the canton of Geneva into 474 sectors, defined by the cantonal office of 

statistics, was used. Two considerations led to their definition: (a) Long and shortwave radiation processes and micro 

climate are rather influenced by buildings’ external dimensions than by their area or volume. (b) Horizontal and 

vertical topography might have different effects on the demand since they are influencing obstruction to solar 

irradiation and convective heat transfer in different ways [6]. Thus the vertical topography was represented by the 

average building height within each of the statistical sectors. The horizontal topography was represented by the ratio 

of the sum of all buildings’ perimeters Pbuild within one sector and the sector's area Asect: 𝑝𝑠𝑒𝑐𝑡 = ∑𝑃𝑏𝑢𝑖𝑙𝑑 /𝐴𝑠𝑒𝑐𝑡 . These 

factors, specific to each sector, were attributed to the respective buildings and together indicate the amount of façade 

surfaces within each sector normalized by the sectors area. To further specifically represent the effect of solar gains, 

data of a solar cadaster is used, which gives for every roof surface the area specific, average annual irradiation. 

Additional information is available for residential buildings in the form of number of dwellings per building, 

inhabitants per building and their approximate income. The latter is not available on building level but on the level of 

the previously mentioned statistical sectors as average income. Also information is available if a building is used only 

for residential purposes or for other purposes as well (mixed). 

2.2. Regression analysis 

Multiple linear regression has been previously used by several authors for predicting the annual heat demand of 

buildings [4, 9]. The suitability of various regression methods has been compared by different authors and it was 

mostly found that linear regression models have a performance comparable to others and thus are preferable since 

being computationally more efficient and easier interpretable [10]. Thus linear multiple regression models for heat 

demand prediction were developed separately for each building type using the statistical software R [11]. Each of 

these models included all parameters summarized in figure 1 except of the SRE and the parameters specific to 

residential buildings. The models were fitted using the Ordinary Least Squares method. Kolter and Ferreira [10] 

showed how a logarithmic transformation of predicted variable and predictors substantially improves the performance 

Figure 2. Parameter availability and completeness for the total 47096 categorized buildings and 42292 residential buildings, respectively 

(percentage values indicated) 
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of methods for the regression of buildings’ heat demand. Thus all parameters whose distributions were clearly skewed 

on the original scale, were logarithmically transformed (indicated in table 2). Construction periods and information 

about mixed usage were included as factorial variables. The initial regression model for each building type included 

the full parameter set as listed in figure 2 except the SRE due to its limited availability. Starting with this parameter 

set stepwise regression was performed for the residential building model in order to identify variables of less 

significance for the heat demand estimation of this building type. 

The assumptions of multiple linear regression were carefully verified and the prediction error was estimated using 

the mean average percentage error (MAPE) and the root-mean-square error (RMSE) for both the logarithmically 

scaled model outputs (log) and the ones transformed back to the original scale. This makes it possible to compare the 

performance of the models of the different building types against each other and values reported by other authors. 

Due to the partly very large sample size, 10-fold cross-validation was chosen since being a non-exhaustive method. 

However, the inclusion of the building period as factorial variable raises an issue if the entire sample per category 

contains only one building built within a specific period. Since every building will be once part of the test data, the 

model will then not be trained on data containing this specific period thus preventing the application of the resulting 

model for this building. The issue was circumvented by excluding the regarding buildings from the cross-validation. 

This was the case for the categories of commercial (1 building excluded), educational (1) and healthcare (3) buildings. 

3. Results and discussion 

3.1. Results of the regression analyses for the whole building stock 

Results of the regression analysis for the different building types are shown in table 1. The models were able to 

account for between 73.1% and 88.9% of the variances (R²). The difference between R² and the adjusted coefficient 

of determination R̅2, naturally increases with decreasing sample size [12].  Considering the sample size, the highest 

share of explained variance is achieved by the residential model with 88.9%. 

Table 1. Results of the regression analyses for the different building types 

Building type Residential Office Commerce Industry Education Health Hotel Other 

R2 0.889 0.795 0.800 0.744 0.838 0.915 0.889 0.731 

R̅2 0.889 0.789 0.760 0.725 0.824 0.854 0.861 0.712 

MAPE [%] 17.8 39.8 47.0 121.6 38.7 36.9 30.2 58.4 

MAPE (cross-validated) [%] 17.9 41.6 64.4 167.1 44.0 85.2 38.6 66.2 

RMSE (log) 0.243 0.488 0.555 0.714 0.468 0.428 0.374 0.623 

RMSE (log, cross-validated) 0.244 0.506 0.666 0.783 0.531 0.765 0.488 0.674 

RMSE [MWh/a] 61.3 423.4 458.1 361.5 419.6 460.0 432.1 271.3 

RMSE (cross-validated) [MWh/a] 61.6 449.1 674.5 380.2 691.3 1690.3 642.5 306.0 

 

The p-values are for all models close to zero demonstrating that the models are globally significant and the null-

hypothesis can be rejected. The scatterplots of the residuals against the predicted values were checked but revealed no 

pattern for any building type thus showing no heteroscedasticity in the errors.  

 

The lowest errors were achieved for the residential building type with a MAPE of 17.8% and an RMSE of the 

logarithmically scaled outputs of 0.243. The MAPE for hotel, healthcare, educational and office buildings range 

between 30.2% and 39.8%.  

Three aspects of industrial buildings differ quite considerably from building to building which might explain the 

very high error for this type (MAPE: 167.1%): (a) The share of gross floor which is heated, (b) the building’s operation 

with set-point temperatures and air exchange rates and (c) the internal heat gains or loads due to installed equipment 

and people. These arguments might as well apply to commercial buildings (MAPE: 47.0%) although the expectable 

differences should be lower. Thus a common conclusion for these both categories is that a consideration of the specific 

type of industry or commerce might reduce the model error. The high model error for last building type representing 

other buildings (MAPE: 58.4%) is not surprising because of the diversity of expectable demand patterns within this 

type.  
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The discrepancy between RMSE of scaled (log) and unscaled [MWh/a] model output stems from the differing 

average heat demand of the buildings. For example a high RMSE for unscaled outputs of hotel buildings is not a 

contradiction to a low RMSE for scaled outputs and a low MAPE since the hotel buildings were found to have the 

highest average heat demand within the measured demand data.  

The difference between the errors for models of the entire data sets and the cross-validated errors, i.e. the optimism 

index, is lowest for the residential building model (ΔMAPE: 0.1%) and considerably low (ΔMAPE: 1.6 to 8.4%) for 

all other categories apart from industrial and healthcare buildings. The high index for the healthcare building model 

(ΔMAPE: 48.3 %) hints towards an overfitting of the data due to a small sample size of 42 buildings. For industrial 

buildings (ΔMAPE: 45.5 %) overfitting is not so likely to be a problem since the sample size of 281 buildings is quite 

large. It rather points out again the low suitability of statistical models for predicting industrial heat demand without 

having further information about the type of the industry. 

The good model results for residential buildings hint towards a suitability of the chosen parameter set for this 

category. A further inclusion of building type specific parameters is expected to improve the models for other 

categories. 

3.2. Results of the regression analysis for residential buildings 

The influence and significance of the various parameters is assessed more in detail exemplary for the model of 

residential buildings since it represents the biggest part of the building stock. Table 2 lists the estimated model 

coefficients, their standard errors, t-values, significances and variance inflation factors. When interpreting the values 

it has to be noted that the logarithmic transformation of some of the parameters prohibits a direct comparison in terms 

of value to unscaled parameters.  

The interpretation of the regression coefficients requires further the prevention of multi-collinearity [12]. Thus only 

a limited set of all available geometric parameters was included. Multi-collinearity was assessed by examining the 

variance inflation factors (VIF). The parameters were selected thus that the VIFs showed values at maximum around 

10 indicating no serious multi-collinearity issues [13]. Of all initially used parameters only the number of floors was 

excluded from the model for residential buildings due to the results of the stepwise regression. 

Table 2. Statistical summary of the linear regression model for residential buildings: Factorial coefficients are compared against a reference value 

which is thus not listed. The reference values are “<1919” for the building period and “Mixed usage” for the usage of residential buildings. 

Coefficients marked with lt are logarithmically transformed prior to the regression. 

Parameter 
Est. coeff. 

[∙10-3] 

Std. Error 

[∙10-3] 
t-value Signif. VIF 

Intercept  6846.46 48.26 141.85 <0.0001  

Building specific      

Height 22.81 0.66 34.46 <0.0001 5.03 

Gross floor arealt 244.61 9.63 25.41 <0.0001 11.04 

Shared façade surfacelt  -3.22 1.40 -2.30 0.0215 1.34 

Roof surfacelt 429.54 11.13 38.58 <0.0001 4.12 

Roof pitch -4.07 0.24 -16.90 <0.0001 1.83 

1919-1945 17.63 9.45 1.87 0.0621 1.49 

1946-1960 -7.62 8.83 -0.86 0.3881 1.82 

1961-1970 -0.22 9.12 -0.02 0.9808 2.05 

1971-1980 -7.28 9.29 -0.78 0.4332 1.89 

1981-1985 -6.67 14.01 -0.48 0.6340 1.24 

1986-1990 -43.51 12.00 -3.63 0.0003 1.36 

1991-1995 -89.11 11.26 -7.91 <0.0001 1.53 

1996-2000 -99.23 11.10 -8.94 <0.0001 1.58 

2000-2005 -183.00 13.00 -14.08 <0.0001 1.62 

2006-2010 -382.15 20.23 -18.89 <0.0001 1.21 



Nils Schüler et al. 

6 
 

Urban topography      

Average building height 0.18 0.64 0.28 0.7807 2.68 

Horizontal density 875.77 116.56 7.51 <0.0001 1.99 

Average irradiation 0.15 0.02 6.89 <0.0001 1.37 

Residential building specific      

Number of dwellingslt 161.31 6.81 23.70 <0.0001 6.64 

Number of inhabitantslt 65.38 5.95 10.99 <0.0001 5.11 

Average income -0.00 0.00 -4.66 <0.0001 1.78 

Residential only -35.17 5.61 -6.27 <0.0001 1.35 

 

Almost all chosen parameters are highly significant for the model of residential buildings. The estimated 

coefficients for geometric parameters reveal importance of these parameters for the estimation of buildings’ heat 

demand. Both an increasing heat demand with building dimensions and a decreasing demand with increasing area of 

shared walls is reasonable. The estimated coefficients for construction periods show that the demand of buildings 

constructed from 1919 on generally increases with building age. Since buildings constructed before 1919 are forming 

the reference period, the model further shows that those buildings tend to have a lower heat demand than buildings 

constructed between 1919 and 1945 and buildings constructed only after 1985 tend to have a considerable lower heat 

demand. This result is highly in-line with the findings of Aksoezen et al. [14] and reveals a non-linear dependency of 

heat demand on building age. Thus this effect would be missed by linear models e.g. by considering the age as an 

integer in a linear regression model. The decrease in heat demand of buildings constructed after 2005 is further 

remarkable.  

The horizontal density factor is found to have a high estimated coefficient. An interpretation of the topographic 

factors, however, is complicated since the building density affects heat demand in different ways. Due to increased 

obstruction denser districts should correspond to lower solar gains and thus increased demand. At the same time the 

increased amount of façade surfaces means also an increased long-wave exchange and thus a decreased heat demand. 

When assessing the significance of the chosen topographic factors, it has to be taken into account, that both factors 

are not defined per building and thus rough in comparison to most other parameters. A future study shall therefore 

determine and compare further parameters to account for urban topography. The data from the solar irradiation 

cadaster did not have a considerable effect. Here again the question is if the effect of solar gains on annual heat demand 

on a regional scale is generally not so high, which is e.g. quite plausible for older buildings, or if more suited 

parameters could be identified for a better representation of this effect. In fact the solar irradiation cadaster represents 

only the amount of incident irradiation on roofs. The effect of solar irradiation on vertical walls is thus not specifically 

represented. However, the previously discussed topographic parameters represent the amount of façade surfaces 

within a sector normalized by sector area and should thus incorporate information about the amount of shaded surfaces. 

Furthermore information about glazing ratios of buildings should be of particular importance for the estimation of the 

effect of solar gains. 

The analysis of the additional parameters for residential buildings reveals that the number of dwellings per building 

has a remarkable bigger effect on heat demand than the number of inhabitants. The information about average income 

has almost no effect, which might again be due to the fact that this information was only available at the level of 

statistical sectors. The negative estimated coefficient for the information that a building is only used for residential 

purposes means that these buildings generally have a lower heat demand than buildings with mixed usage. 

4. Conclusions 

In order to predict the annual heat demand of buildings within the canton of Geneva regression models for 8 

building categories were developed, which represent about 47000 buildings. The models were fitted using available 

data for about 13000 buildings. A systematic assessment of available data was performed to identify parameters suited 

to represent how geometry, fabric, users and topographic environment of buildings affect their heat demand. Adjusted 

to the sample size the models were able to explain between 71.2% and 88.9% of the total variance. Mean average 

percentage errors of 30.2 to 39.8% were achieved by the models for hotel, healthcare, educational and office buildings. 

The lowest error (MAPE: 17.8%) and highest share of explained variance (R²: 0.889) was obtained with the model for 

residential buildings, for which also information about inhabitants was respected.  Further parameters specific to other 
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building types should improve the other models as well. Moreover, parameters representing the urban topography 

have been included in the regression analysis. However, only the factor accounting for horizontal building density 

was found to have a considerable influence. A future identification and calculation of topographic parameters on a 

building level could improve the representation of urban topography in statistical models of buildings’ heat demand. 
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