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Abstract: We focus on the control of heterogeneous swarms of agents that evolve in a random environment. Control is
achieved by introducing special agents: leader and infiltrated (shill) agents. A refined distinction is made between hidden
and apparent controlling agents. For each case, we provide an analytically solvable example of swarm dynamics.
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1. INTRODUCTION

Thorough understanding of swarm dynamics ideally re-
quires simultaneous mastery of analytical, simulation-
based and experimental approaches. In recent contribu-
tions, this ambitious program has been successfully ful-
filled for homogeneous swarms, where the mean-field ap-
proach can be used [1]. Mean-field theory cannot be
applied to heterogeneous swarms; thus, analytical ap-
proaches are very difficult. Nevertheless, for specific dy-
namics, other approaches can be explored in order to ob-
tain exact results, and the goal of this paper is to unveil
such possibilities. Specifically, we focus on swarms con-
trolled by the use of special agents (leader or infiltrated
(shill) agents). Leader-controlled swarms are commonly
used in robotics, and recent contributions presented joint
analytical and simulation illustrations [2]. The study of
leadership also plays an important role in ethology, where
recent papers presented experimental validation of the-
oretical results [3]. In parallel, due to numerous ap-
plications, the control of a swarm via shill agents (re-
ferred to as ”soft-control” [4]) is becoming very popular
in robotics and ethology [5, 6].

This paper attempts a classification of the different types
of swarm control mechanisms based on special agents.
Table 1 summarizes the four types of swarm control, de-
pending on whether the shills/leaders can remain hidden
within the swarm. Our classification is presented along
with analytically tractable illustrations.

Table 1: Classification diagram of the presented swarm
control examples.

aaaaaaaaaaa
Visibility

Special
Agent Leader Shill

Apparent Sect. 2.1 Sect. 3.1,
depending

Hidden Sect. 2.2 on shill’s
behavior

† Guillaume Sartoretti is the presenter of this paper.

2. LEADER-BASED CONTROL

The first type of swarm control can be achieved by using
a number of leader agents (possibly only one). In this
case, all regular agents must be aware of the presence of
the special agents. Accordingly, the dynamics of the reg-
ular agents must incorporate the role of the leader agents
a priori. The result is a heterogeneous swarm, where reg-
ular agents simultaneously follow their own nominal dy-
namics, and feel the influence of the leader agents. By
adequately controlling the leader agents, one can there-
fore control the whole group.
Within leader-controlled swarms, we further differen-
tiate between two classes of models. The separation
lies in whether the special agents can be identified as
such by an external observer of the swarm’s behavior.
This observer would be aware of the presence of special
agents, but would not be allowed access to the underly-
ing swarm’s dynamics. The visibility of the leader agents
(i.e., whether they can be externally recognized) helps us
assess their vulnerability. Since a small number of leader
agents control the entire swarm, leaders are the main lia-
bility of the group. Depending on the application, hiding
the leaders’ true nature can therefore effectively protect
the swarm.

2.1. Apparent Leaders
Apparent leaders usually stand out in the swarm by their
positioning. They act as general landmarks for the reg-
ular agents, either stationary or moving, and can there-
fore easily be identified by an external observer. Swarms
of agents controlled by apparent leaders have been stud-
ied extensively in the literature, and are mentioned here
mostly for completeness.
As a classical illustration, we consider a swarm of mobile
robots initially positioned in a single file. Our aim is to
allow the whole swarm to move in formation, with the
first robot acting as the swarm’s leader, while the others
follow in its path. To this aim, we let each regular mobile
robot act as differential-motor, two-sensor light-attracted
Braitenberg vehicle [7]. By attaching a light at the rear
of each robot, each regular robot will be attracted toward
the robot directly in front of it in the line. This effectively
enables us to build a ”robot train”, whose path the first
agent in line (i.e., the leading robot) controls (similar to
the column formation in [8]).
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Fig. 1(a) illustrate the initial state of the robots, and
1(b)-1(d) the selected consecutive states of a swarm of 10
robots. In this run, the leading robot is scripted in order
to follow a horizontal figure of eight.
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Fig. 1: (a): Initial state of a swarm of 10 robots (1 leader
(in red) and 9 followers), with all robots facing upwards.
(b)-(d): Selected consecutive states of the swarm through
time. During this run, the leader follows a horizontal
scripted figure of eight, while the rest of the train follows
in its path.

2.2. Hidden Leaders
Hidden leader agents are more protected than apparent
leaders. Hidden leaders are often encountered in swarms
of social animals; a prime example is swarms of bees.
When swarming, either moving or resting, regular bees
regroup around the queen bee (which acts as the leader).
Even when the swarm is moving (and thus less tightly
packed around the queen), an (untrained) external ob-
server will not be able to tell the queen bee from the reg-
ular bees. This allows the swarm to safely move to a new
hive location, led by a leader hidden within the swarm
and following a similar dynamics.
A close illustration of such a swarm led by a hidden
leader can be found within nonlinear filtering (i.e., es-
timation problems). An estimation problem models the
case of an (usually noisy) input signal X(t) from which
noisy measures Z(t) are taken (either continuously or at
discrete timesteps):{

dX(t) = f(X(t)) + σxdWx(t),

dZ(t) = g(X(t)) + σzdWz(t),
(1)

where f and g are arbitrary functions, σx,z the noise vari-
ances of each process, and dWx,z(t) independent White
Gaussian Noise (WGN) sources. After a measure Z(t)
is obtained at time t, one wishes to obtain the best es-
timation of X(t) from the set of all previous measures
Z(t) := {Z(T ) | T ≤ t}. The probability distribution
P[X(t) = x | Z(t)] is usually computed (or empir-
ically constructed) to obtain this estimation. The best
estimation for X(t) is computed as the expected value
E[X(t) | Z(t)].
For linear estimation problems (linear f and g functions
in Eq. (1)), the Kalman-Bucy filter is well known to be

optimal. For nonlinear problems, a recent filtering mech-
anism uses feedback particles (i.e., agents) to empirically
form the distribution P[X(t) = x | Z(t) = z] [9]. The
Feedback Particle Filter (FPF) lets a swarm of N parti-
cles follow the same dynamic f as the noisy input signal
Y (t) (g, however, is assumed to be linear). The inter-
action kernel K lets the agent self-arrange, based on the
noisy measures dZ(t) obtained and on the state ~X(t) of
the whole swarm. The regular agentsXi(t) (1 ≤ i ≤ N ),
and the leader Y (t), follow the dynamics:

dXi(t) = f (Xi(t)) dt

+K
(
Xi(t), ~X(t), dZ(t)

)
+ σdWi(t),

leader’s
dynamic

{
dY (t) = f (Y (t)) dt+ σdW (t),

dZ(t) = hY (t)dt+ σodWy(t).

(2)

Since each measure dZ(t) obtained from the signal Y (t)
is known by each agent, the swarm can be seen as het-
erogeneous: The noisy input acts as the leader, while the
particles act as regular agents [10]. The regular agents
try and arrange themselves optimally around the leader,
knowing only its noisy instantaneous position.
The leader controls the position of the swarm, since the
regular agents always self-arrange around the leader’s po-
sition. The leader also controls the variance of the regular
agents’ positions around itself, by tuning the parameter
σo. The larger the noise added to the leader’s actual posi-
tion before it is revealed to the regular agents, the wider
the swarm’s dispersion around its leader. Agents closer
to the leader feel a weaker influence of the self-arranging
mechanism (since they are already well arranged). There-
fore, the leader and its close neighbors nearly follow the
same dynamics, precluding an external observer from
spotting the leader from even thorough observation of the
swarm’s behavior. Fig 2 shows how the leader is able to
steer the whole swarm (2(a)), while remaining well hid-
den among the other agents (2(b)-2(c)).
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Fig. 2: (a): Positions of N = 1000 agents (red) follow-
ing Eq.(2), arranging around one leader (black). (b)-(c):
Distribution of the agents (blue) around the leader (red)
at times t = 5 and t = 10. The function f is the Weber
Parabolic Cylinder function with parameter B = 0.49
(nonlinear case, see [10]), and σ = σo = h = 1.



The results of the FPF applied on a nonlinear filtering
problem are usually not analytically tractable. However,
for a class of nonlinear problems where f is derived from
Weber Parabolic Cylinder functions, we have shown that
the mean and variance of P[X(t) = x | Z(t) = z] can
be explicitly written [10]. This enables us to analytically
study the leader’s influence on the spreading of the swarm
around its position, regarding the noise variance σo.

Several shortcomings can be observed with this type of
control. First, the leader’s influence must explicitly fea-
ture in the regular agents’ dynamics. Therefore, when
one wants to control a specific swarm, its dynamics must
be constructed in order to encompass the presence of
leader agents. Second, the small number of leaders sim-
plifies the control of a large swarm, but limits its resis-
tance to single agent failures. If a leader does not perform
as expected, the control of the whole swarm is weakened.

3. SOFT CONTROL

The second controlling mechanism consists of inserting
special agents in a swarm. The infiltrated agents (called
shill agents) are recognized by the other agents as regular
agents. Control of these infiltrated agents can lead to the
control of the whole swarm, provided one possesses ex-
tensive knowledge of the regular agents’ dynamics. This
type of control is often referred to as soft control, since
the swarm is not aware of being infiltrated. The influ-
ence of the shill agents is not explicitly included in the
dynamic of each agent. Shills control the other agents
only by taking advantage of the agents’ interactions.

Since shills are infiltrated within an unwitting swarm,
their actions can positively influence the swarm’s dynam-
ics. This constructive soft control can help the swarm ful-
fill its objectives, by adding the possibility of a real-time
external control. Alternatively, soft control can also be
used destructively – for example, it may break the swarm
cohesion or drive the swarm toward an incorrect direc-
tion. Since a shill must control the regular agents in a sub-
tle way, in order to remain unnoticed within the swarm,
the number of shill agents must usually be selected ac-
cording to the number of regular agents.

We introduce a similar distinction between apparent and
hidden shill agents. An example in which shills must be
apparent to control a swarm can help assess the robust-
ness of the swarm’s dynamics. In those cases, an in-
filtrated swarm can be immediately recognized as such
from the outside, precluding destructive shills to quietly
take control of the swarm. Cases in which the soft control
can be achieved using hidden shills however, help pro-
tect the special agent’s identity. In the same manner as
the leaders, shill agents can be a liability since the whole
swarm can be controlled through their single influence.
However, since agents in a soft-controlled swarm do not
recognize their shills, the swarm can resume functioning
on its own (uncontrolled) in their absence.

3.1. Apparent or Hidden Shills
Similar to apparent leaders, apparent shills stand out in a
swarm of regular agents. For example, if we consider a
swarm of flocking agents constantly driven toward their
barycenter. A shill can then steer the group toward a cho-
sen direction by changing its position, therefore changing
the global barycentric position. If the shill is too fast, it
can be driven outside the swarm and become apparent.
An external observer would recognize the shill’s action
as the cause of the swarm’s global movement.
We studied a similar model in which a shill agent is able
to drive a stationary swarm of flocking agents toward a se-
lected direction [11]. The shill can be analytically proven
to remain hidden or to quit the group depending on its
level of turbulence. In this model, a swarm of N Brow-
nian agents (1 ≤ i ≤ N ) diffuse on R following the
dynamics of a Hybrid Atlas Model (HAM) [12]:

dYid =
(∑N

k=1 gk1Qk(i){~Y d}+ γi + γ
)
dt

+σidWi(t),
Yi(0) = yi,

(3)

with σi ∈ R the respective noise variances of the N
independent WGN sources dWi(t). In the HAM, each
agent’s drift is constructed from a global barycentric drift
γ, an agent-based drift γi, and a rank-based drift gi. The
rank-based drift depends on the agent’s position within
the swarm. The first agent has the largest position Yi(t),
and the last one the smallest Yi(t). The agent-specific
and barycentric drifts are time-independent, whereas the
rank-based drift is updated constantly with time.
Ichiba et al. showed that a HAM swarm achieves flocking
iff each agent is constantly driven toward the barycenter
of the swarm [12]. This flocking conditions translates
into the set of constraints
l∑

k=1

[
gk + γp(l)

]
< 0, (4)

for l ∈ {1, ..., N − 1} and all possible permutations p =
(p (1) , ..., p (N)) ∈ ΣN – i.e., N !(N − 1) constraints.
Without loss of generality, we can always assume that∑N
k=1 [gk + γk] = 0. In other words, the average

barycentric speed of the swarm is governed only by γ,
which we will assume vanishes (stationary swarm). We
assume that agent-specific drifts γi vanish ∀i, and let
gi = −g (1 ≤ i ≤ N − 1) and gN = (N − 1)g (with
g ∈ R). This dynamics fulfills the flocking conditions
of Eq. (4). This choice of rank-based drifts means that
every agent is pushed back with a drift−g, except for the
last agent which is strongly pushed forward with a drift
(N − 1)g.
In our flocking swarm, we then introduce our shill agent,
agent 1 (without loss of generality), following the same
HAM dynamics but driven by a Ballistic Noise source
dZ(t):

dZ(t) = β tanh [βZ(t)] dt+ dW (t), Z(0) = 0. (5)

Despite its nonlinear nature, this specific noise source can
be reduced to a Brownian motion with constant drift ±β
[13]. In other words, one realization of the ballistic noise



consists of an initial random draw deciding whether the
constant drift will be +β or −β, with equal probability.
The rest of the realization will then just be that of a Brow-
nian motion with constant drift: dZ(t) = ±β + dW (t).
Therefore, our ballistic shill agent follows the same HAM
dynamics as its regular fellows, but with a constant extra
drift ±β (depending on the realization). The shill steers
the (initially stationary) swarm toward by inducing an av-
erage barycentric drift ± β

N . For small β, flocking is still
be achieved within the swarm, and the shill will be hidden
while still steering the swarm. However, for large β, the
shill agent extracts itself from the swarm, and diverges
from the other agents. The shill therefore becomes ap-
parent, obviously being the reason for the swarm’s move-
ment to an external observer.
Our dynamic is asymmetric in rank-based drifts: The last
agent is strongly pushed forward, whereas the others are
gently pushed backward. Therefore, the shill’s visibil-
ity also depends on the realization of its ballistic noise
source. When it gets a−β extra drift, the shill most likely
always is ranked last in the swarm, and thus strongly
pushed forward toward the rest of the swarm. Conversely,
during realization with an extra +β drift, the shill is most
likely ranked first, and thus only gently driven toward the
other agents. Therefore, three outcomes arise:

1. The shill can always remain hidden.
2. The shill is hidden for its−β realizations, but apparent
for the +β ones.
3. The shill is always apparent.

Analytical investigation of the model allowed us to ex-
press the thresholds values for β, marking the transition
between each of these outcomes [11].
Fig. 3 shows the two types of realizations, when an ini-
tially stationary swarm is infiltrated by a ballistic shill for
the second outcome.
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Fig. 3: Two realizations of the HAM dynamics of Eq.(3)
with a swarm of N = 9 regular agents and 1 shill. Here,
β = 1.5, σ = g = 1, which corresponds to the outcome
2. (i.e., the shill’s visibility depends on the realization of
its noise source). The upper realization shows the +β re-
alization, where the shill (black) becomes apparent from
the regular agents (green). The lower trajectories show a
−β realization, in which the shill (black) steers the swarm
of regular agents (red) while remaining flocked.

4. CONCLUSION
For a given application, we believe that our classifi-
cation helps select the appropriate control mechanism.
Although we believe our classification is exhaustive,
whether further refinements are needed remains an open
question at this stage.
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