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ABSTRACT: The affinity between a chosen target protein and small molecules
is a key aspect of drug discovery. Screening by popular NMR methods such as
Water-LOGSY suffers from low sensitivity and from false positives caused by
aggregated or denatured proteins. This work demonstrates that the sensitivity of
Water-LOGSY can be greatly boosted by injecting hyperpolarized water into
solutions of proteins and ligands. Ligand binding can be detected in a few
seconds, whereas about 30 min is usually required without hyperpolarization.
Hyperpolarized water also enhances proton signals of proteins at concentrations
below 20 μM so that one can verify in a few seconds whether the proteins remain
intact or have been denatured

Drug discovery aspires to identify new lead compounds
that bind with high affinity to target proteins or other

biomolecules. Robust assays are required in order to determine
binding affinities of extensive libraries of potential ligands.1,2

Two strategies for drug screening are mainly used nowadays,
high-throughput screening (HTS) and fragment-based drug
design (FBDD). In HTS, vast libraries of up to 2 million
compounds are screened in order to find strong ligands (with
dissociation constants KD < 10 μM) that can serve as lead
compounds. On the other hand, FBDD seeks to identify small
fragments, that is, compounds with molecular weights below
250 Da that only weakly interact with the target proteins (0.1 <
KD < 10 mM). Useful fragments found by primary screening in
FBDD can then either be “expanded” chemically in so-called
“fragment-growing” approaches or combined with other
fragments in “fragment-linking” strategies to obtain new lead
compounds.
Nuclear magnetic resonance (NMR) has become a well-

established technique for both of these complementary
strategies, albeit with distinct roles in HTS and FBDD
approaches. For FBDD, NMR is used to screen libraries of
carefully selected fragments and to characterize the weak
interactions that are typical for such small compounds.3,4 In
HTS campaigns on the other hand, NMR is employed to
validate ligands identified by preliminary high-throughput
assays. A HTS campaign can lead to a list of thousands of
compounds. Such a hit-list contains “true” ligands that

specifically bind to the target protein but also compounds
that interfere with the high-throughput assay, for example, by
causing the target protein to aggregate. These promiscuous
compounds can usually only be identified by using expensive
protein-observed NMR methods. Therefore, ideal NMR
methods should be able to detect binding of very diverse
ligands from HTS and FBDD approaches and, at the same
time, monitor the integrity of the target protein in order to
identify false positives.
A remarkable NMR experiment designed for the detection of

interactions of proteins and ligands in solution has come to be
known as Water-LOGSY (water-ligand observed via gradient
spectroscopy).5−10 The detection of ligand binding by Water-
LOGSY relies on the spontaneous transfer of polarization from
water to ligands via either of two pathways, via the nuclear
Overhauser effect (NOE) or via exchange of labile protons,6

though signals due to exchange are generally not considered as
reliable reporters of binding. The transfer can either occur
directly from the solvent to the ligand or be relayed indirectly
via the bound protein. The sign of the NOE transfer depends
on the rotational correlation time; rapidly tumbling free ligands
acquire negative enhancements, while slowly tumbling ligand−
protein complexes feature positive enhancements. Therefore,
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the difference between free and bound ligands can be readily
identified. NMR signals observed in conventional Water-
LOGSY experiments (without DNP) are typically 20−30
times weaker than signals in traditional one-dimensional NMR
experiments because only magnetization transferred by NOE
and/or exchange from water is selectively detected.
Hyperpolarization by dissolution dynamic nuclear polar-

ization (D-DNP)11−14 is a method of choice to increase the
nuclear spin polarization by 4−5 orders of magnitude. D-DNP
methods for drug screening have been developed recently by
the group of Christian Hilty. These are based on the
hyperpolarization of 1H or 19F nuclei of ligands.15,16 Note
that the enhanced polarization levels P(1H) or P(19F) and
corresponding relaxation times T1 can vary significantly from
ligand to ligand, leading to final signal enhancements that can
differ by orders of magnitude. Here, we explore the
combination of D-DNP and Water-LOGSY in view of high-
throughput detection of protein−ligand interactions. Water is
hyperpolarized by D-DNP in a comparable fashion to what has
been shown by the groups of Jan-Henrik Ardenkjaer-Larsen17

and Lucio Frydman,18 but this could also be achieved by
Overhauser liquid-state DNP.19−22 The hyperpolarization of
water is highly reproducible and robust. The transfer of
polarization from hyperpolarized water to the ligands is
indicative of protein−ligand binding properties.
Hyperpolarization of ligands usually demands rapid protein−

ligand association after injection on a time scale that must be
faster than the inevitable decay of the hyperpolarization by
longitudinal T1 relaxation. Hyperpolarization of water, on the
other hand, allows one to probe protein−ligand equilibria even
if the kinetics are very slow. Indeed, hyperpolarized water can
be prepared and injected after the thermodynamic equilibrium
of the protein−ligand interaction has been reached. As an
additional benefit of water DNP, the spontaneous transfer of
polarization from water to proteins enables the observation of
their proton spectra18 even at concentrations below 20 μM.
This offers a welcome means to check that the protein has
remained intact. Results are reported for the protein Dot1L, a
human histone methyl transferase,23,24 with both weakly and
strongly binding ligands, typical of both FBDD and HTS
approaches at various stages of drug discovery projects.
In the DNP-Water-LOGSY approach, a mixture of H2O, a

glassing agent such as glycerol, and a radical like TEMPOL is
hyperpolarized at ∼1.2 K and 6.7 T13 with microwave
frequency modulation.25 The hyperpolarized sample is then
quickly dissolved using superheated D2O and transferred to an
NMR magnet through a magnetic tunnel,26 where it is rapidly
injected into an equilibrated protein−ligand solution (Figure
1). The excitation of hyperpolarized water can lead to massive
radiation damping (RD) and demagnetizing distant dipolar
field effects.27 Therefore, frequency-selective pulses are used in
order to preserve the water resonance while detecting ligand
and protein signals with full sensitivity (see the Supporting
Information for details on the preparation of hyperpolarized
water and on the adaptation of the Water-LOGSY experiment).
Direct Detection of Weak Binders. The protein Dot1L and its

weak ligand adenosine were chosen as a model system to
demonstrate the potential of DNP-Water-LOGSY (see the
Supporting Information for details on the preparation of
Dot1L). Dot1L is a histone methyl transferase enzyme, that is,
it methylates histone proteins around which DNA is tightly
wrapped in the cell nucleus.28 Such methylation events of
histones can modulate the packing and accessibility of DNA for

transcription and therefore influence cellular function. Dot1L
plays a role in embryonic development and hematopoiesis, but
aberrant activity can lead to leukemia.23 Mechanistically, Dot1L
transfers a methyl group of the tightly bound (KD = 300−500
nM) cofactor S-(5′-adenosyl)-L-methionine (SAM) onto lysine
79 of histone H3. The protein−ligand system used in the
present work consists of Dot1L (residues 2−332, 38 kDa) and
adenosine, which is a fragment of SAM that binds weakly to
Dot1L (KD = 100 μM; concentrations after dilution [Dot1L] =
21.5 μM and [adenosine] = 2.15 mM, that is, a 100-fold
excess). The intense longitudinal water magnetization
generated by D-DNP (Figure 2a) is partially transferred to
adenosine, either directly or indirectly via the protein, so that
the ligand is also hyperpolarized (Figure 2b). In the absence of
protein (Figure 3a (1)), all adenosine molecules are in their
free form with a rotational correlation time τc ≪ 1/ω0 so that
the signals of both nonexchangeable aromatic protons H2 and
H8 are negatively enhanced. In the presence of protein (Figure
3a (2)), adenosine binds in the fast exchange regime so that,
even though adenosine is in a 100-fold excess with respect to
the protein, the signals of the nonexchangeable adenosine
protons are positively enhanced because the complex has a
rotational correlation time τc > 1/ω0. DNP-Water-LOGSY thus
allows one to reveal the binding of a weak ligand
unambiguously.
Detection of Strong Binders by Competition. Strong binders can

be detected indirectly by competition experiments when a weak
binder is used as a “spy ligand”.29,30 The strong binders displace
the spy ligand to its free form, hence giving rise to negative
LOGSY signals of the weak binder that indicate its displace-
ment by the stronger ligand. The two natural ligands SAM and
S-(5′-adenosyl)-L-homocysteine (SAH) (see Figure 3b) bind to

Figure 1. (a) Schematic apparatus for DNP-Water-LOGSY experi-
ments. (b) (left) Solid-state NMR signal of the DNP buildup of the
proton polarization P(1H) of water. A typical polarization P(1H) >
38% can be achieved with TEMPOL as the polarizing agent and
glycerol as the glass-forming agent. (middle) Sample dissolution,
transfer through a “magnetic tunnel”, and injection into an NMR tube
containing a mixture of a target protein such as Dot1L plus one or
more ligands like adenosine. (right) Liquid-state NMR signals of the
hyperpolarized water and adenosine. The water polarization is
transferred through NOE and/or chemical exchange in the manner
of Water-LOGSY.
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Dot1L with strong affinities (KD = 300−500 and 100 nM,
respectively) associated with slow kinetics. When added to the
adenosine/Dot1L mixture prior to injection of hyperpolarized
water, these strong binders displace adenosine from the protein
and therefore invert the sign of the LOGSY signals of
adenosine after injection. It was indeed possible to observe a
partial displacement of adenosine by stronger competitors such
as SAM or SAH. Figure 3a (3) shows how the addition of 0.1
mM SAM (i.e., with adenosine in 20-fold excess with respect to
SAM) causes a partial displacement of adenosine, while the
addition of 0.7 mM SAM (i.e., with adenosine in 3-fold excess)
causes its complete displacement (Figure 3a (4)). Knowing the
affinity of the spy ligand and the relative concentrations of the
spy and strong ligands, dissociation constants can be
determined by titration. Adenosine is more efficiently displaced
by the addition of 0.1 mM SAH than by SAM in equal
amounts, thus confirming that SAH has a higher affinity for
Dot1L than SAM (Figure 3a (5)). In this manner, relative
binding strengths of strong ligands can be determined even if

they are in slow exchange, provided that the equilibrium is
established between SAM and adenosine-bound forms of
Dot1L prior to the injection of hyperpolarized water. Due to
the slow kinetics of SAM binding to Dot1L, it may take several
seconds or minutes to establish this equilibrium. If one chooses
to hyperpolarize the ligands rather than water, such slow
equilibria cannot be studied. With DNP-Water-LOGSY, even
very slow equilibria can be probed, enabling the determination
of KD despite slow kinetics. DNP-Water-LOGSY can therefore
be applied to more advanced stages of drug discovery where
such situations frequently occur. In principle, the direct
detection of strong binders is also possible with DNP-Water-
LOGSY. This will be the subject of further studies.
Detecting Hyperpolarized Proton Signals of Proteins. Protein

aggregation is a major source of false positive results in Water-
LOGSY experiments. Protein aggregates often expose hydro-
phobic surfaces where ligands can bind in a nonspecific manner.
In conventional Water-LOGSY experiments, this leads to a
misleading indirect (positive) magnetization transfer and
therefore to false positive results. A useful secondary benefit
of our DNP-Water-LOGSY approach is the partial hyper-
polarization of the protein.18 This allows one to verify the
integrity of the protein in real time and to check that it has not
been denatured. Figure 4a shows the time course of protein
signals in a DNP-Water-LOGSY experiment. The efficiency of
the transfer of hyperpolarized magnetization from water to the
protein was even greater than the transfer to the ligands. The
protein signals were enhanced by a factor of about 20 with
respect to their thermal equilibrium. In order to illustrate the
usefulness of this feature in drug discovery experiments, a
DNP-Water-LOGSY experiment was performed using Dot1L
that was denatured by heating to 100 °C for 5 min. With the
resulting aggregated protein, a misleading positive LOGSY

Figure 2. (a) Water signals after dissolution, monitored by 0.01°
excitation pulses. Initially, the water signal is strongly broadened by
Radiation Damping RD. As the polarization decays, the integral
decreases while the lines become narrower. (b) DNP-Water-LOGSY
signals of the aromatic protons of adenosine measured in the presence
of 21.5 μM of the protein Dot1L at 500 MHz and 298 K. The DNP-
enhanced spectrum (left) arises from the magnetization transferred
from water to the ligand but also from the magnetization of the ligand
in thermal equilibrium. A spectrum measured after complete relaxation
(center) can be subtracted from the DNP-enhanced spectrum so that
the difference only contains pure DNP-enhanced Water-LOGSY
information (right). The hyperpolarized signals of the protein are
highlighted by (*).

Figure 3. (a) Water-LOGSY signals of the two aromatic protons of
adenosine, which binds weakly to the protein Dot1L. The thermal
equilibrium signals were subtracted as described in Figure 2. (1) In the
absence of protein, free adenosine yields negative LOGSY signals. (2)
In the presence of protein, bound adenosine yields positive LOGSY
signals. Stronger competing binders displace adenosine from the
binding site of Dot1L, so that negative LOGSY signals are seen,
characteristic of the free ligand, in the presence of (3) 0.7 mM SAM
and (4) 0.1 mM SAM or (5) 0.1 mM S-(5′-adenosyl)-L-homocysteine
(SAH). (b) Molecular structures of SAM and SAH.
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signal was obtained for adenosine (five times stronger than with
the intact folded protein). However, the protein signals
recorded with the same experiment were distinctly different,
thereby revealing extensive degradation of the protein (Figure
4b). Thus, false positive results of DNP-Water-LOGSY due to
protein degradation can be readily identified, conferring a very
high robustness to this methodology. The high signal-to-noise
ratio obtained at a protein concentration of only 21.5 μM
Dot1L suggests that concentrations as low as 1 μM should be
accessible.
We are currently taking steps to build an injection system31

to reduce the transfer and injection time below 2 s, which will
boost the DNP enhancement of water after transfer. The
separation of radicals18 would also provide a net improvement
by suppressing paramagnetic relaxation. Another promising
route is the use of hybrid polarizing materials (HYPSO)32 that
would have to be optimized for the hyperpolarization of water.
The Water-LOGSY technique is particularly well suited for
DNP, especially in terms of reproducibility. Regardless of the
variety of ligands and proteins under investigation, only water
needs to be hyperpolarized. This greatly simplifies the D-DNP
experiments. By contrast, if different ligands are to be
hyperpolarized, one has to take into account variations in
their enhancements and relaxation rates. Furthermore, one
needs not fear that any ligands could precipitate in the magnetic
tunnel during transfer, so that there is no risk of clogging the
transfer line. Another major advantage of Water-LOGSY is the
high contrast between binding and nonbinding ligands because
their signals have opposite signs, while other techniques require
comparing line widths or lifetimes or rely on subtle differences
between pairs of spectra.33 The distinction of negative and
positive signals is not hampered by B0-field inhomogeneity that
can be associated with D-DNP.
In summary, DNP-Water-LOGSY enables simple and robust

hyperpolarized drug screening experiments because only water
needs to be hyperpolarized. The method can be applied to a
broad range of situations relevant for drug discovery, and it is
highly robust with respect to artifacts. The direct detection of

weak binders by DNP-Water-LOGSY is particularly well suited
for primary screening in FBDD. On the other hand, if
performed in competition mode, DNP-Water-LOGSY can also
be applied to confirm “hits” in HTS campaigns, where one
seeks to identify strong interactions. In addition to drug
screening, the transfer of hyperpolarized magnetization from
water to proteins can be used for various studies of proteins.
This feature provides DNP-Water-LOGSY with a unique
advantage over other ligand-based screening techniques.
Because of the efficient polarization transfer from the solvent
to the protein, the integrity of the protein can be determined,
and false positives due to nonspecific binding to aggregated
proteins can be discarded.

■ ASSOCIATED CONTENT

*S Supporting Information
Additional details are supplied as Supporting Information: (1)
the preparation of hyperpolarized water, (2) the adaptation of
Water-LOGSY experiments to D-DNP, and (3) preparation of
the protein Dot1L. This material is available free of charge via
the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Authors
*E-mail: sami.jannin@epfl.ch (S.J.).
*E-mail: alvar.gossert@novartis.ch (A.D.G.).

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We would like to thank Marcel J. J. Blommers from Novartis
for helpful discussions, and Anto Barisic and Dr. Pascal Miev́ille
from EPFL for valuable assistance. This work was supported by
the Swiss National Science Foundation (SNSF), the Ecole
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