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Abstract

English

This work aims to forecast rain locally in Tambarga, Burkina Faso, to be
able to fight against a worm inducing the disease called schistosomiasis.
The chosen approach relies on a machine-leaning technique called Artificial
Neural Networks, which simulates the synapses of a brain, with climatic
parameters as inputs, activation functions and outputs in the form of rain
prediction. A special case of Neural Networks using Bayesian Computations
is used, along with as a transform allowing to capture the changes in climatic
conditions, called Wavelet Transform. The precipitation is forecasted in
different manners: binary forecast on the presence or absence of rain, linear
forecast on the daily and weekly intensity, as well as a rain-class forecast.
The most successful predictions have been found to be the binary forecast, as
well as the weekly windowed cumulative rain forecast. The daily cumulative
rain, as well has the classes forecast have not produced satisfying results,
mainly because of the high temporal variability of the observations, as well
as the very unequal distribution of observations in the different rain classes.
In the end, it has been shown that it is possible to use Bayesian Networks
to forecast precipitation in some extent, and that the wavelet transform of
the inputs has a positive impact on the accuracy of the prediction.

Français

Le but de ce travail est de prédire la pluie localement à Tambarga, Burk-
ina Faso, afin de lutter de façon efficace et ciblée contre un ver induisant
une maladie appelée schistosomiase. L’approche choisie repose sur une
technique d’apprentissage automatisée appelée Artificial Neural Networks.
Celle-ci simule les synapses du cerveau, avec des paramètres climatiques en
tant que flux entrant, des fonctions d’activations et des flux sortants sous
forme de prédictions de précipitations. Un cas particulier de ces réseaux
utilisant le calcul bayésien est utilisé, ainsi qu’une transformée permet-
tant de capturer les changements dans les conditions climatiques, appelée
décomposition en ondelettes. La précipitation est prédite de différentes



manières: prévisions binaires sur la présence ou l’absence de pluie, prévisions
linéaires de l’intensité quotidienne et hebdomadaire, ainsi que prévisions de
classes de pluie. Les prévisions les plus prometteuses ont été réalisée avec
la prévision binaire ainsi que sur les prévisions de pluie hebdomadaire cu-
mulée. La prédiction de la pluie cumulée quotidienne et celle par classes
n’ont pas produit de résultats satisfaisants, principalement en raison de la
grande variabilité temporelle des observations, ainsi que de la répartition
très inégale des observations dans les différentes classes de pluie. En fin de
compte, il a été montré qu’il est possible d’utiliser des réseaux bayésiens
afin de prédire la précipitation dans une certaine mesure, et que la trans-
formée en ondelettes des paramètres a un impact positif sur l’exactitude de
la prédiction.

Deutsch

Das Ziel dieser Arbeit ist, Regen in Tambarga, Burkina Faso, lokal zu
prognostizieren um effizient und gezielt einen Wurm, welcher Schistoso-
miasis überträgt, zu bekämpfen. Der gewählte Ansatz beruht auf einer
machine-learning Technik namens Artificial Neural Networks welche die
Synapsen des Gehirns simuliert, mit klimatischen Parametern als einge-
hende Daten, Aktivierungsfunktionen und der Regenvorhersage als Output.
Es wird ein Spezialfall dieser Netze verwendet, der auf Bayes-Berechnungen
basiert, sowie eine Transformation, genannt Wavelet-Transformation, welche
die Veränderungen der Klimabedingungen erfasst. Der Niederschlag wird
auf unterschiedliche Weise prognostiziert: binäre Vorhersagen über die An-
oder Abwesenheit von Regen, lineare Vorhersage über die Tages- und Wochen-
intensität, sowie eine Prognostik der Regenklassen. Als erfolgreichste Vorher-
sagen haben sich die binären Vorhersagen sowie die wöchentlichen kumula-
tiven Regenprognosen erwiesen. Der täglich kumulierte Regen sowie die
Klassenprognose haben sich als nicht ausreichend erwiesen, vor allem wegen
der hohen zeitlichen Variabilität der Beobachtungen, sowie der sehr un-
gleichen Verteilung der Beobachtungen in den verschiedenen Regenklassen.
Schlussendlich hat sich gezeigt, dass es möglich ist, Bayes Netzwerke zu
verwenden, um Regen bis zu einem gewissen Grad zu prognostizieren, und
dass die Wavelet-Transformation der inputs eine positive Auswirkung auf
die Genauigkeit der Vorhersage hat.
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Dr. Natalie Ceperley and Dr. Théophile Mande in the Ecohydrology labo-
rartory of Andrea Rinaldo and the Sensorscope Sarl team. Financial support
was received from the Swiss Development and Cooperation Agency.



Contents

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . 1
1.2 Local Precipitation Forecasting . . . . . . . . . . . . . . . . . 2
1.3 Problematic and Objectives . . . . . . . . . . . . . . . . . . . 3
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 4
2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 4
2.2 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . 7
2.3 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Materials and Methods 18
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results 40
4.1 Binary Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Intensity Forecast . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Rainfall Classes Forecast . . . . . . . . . . . . . . . . . . . . . 47
4.4 Testing of the Results . . . . . . . . . . . . . . . . . . . . . . 49

5 Discussion 51
5.1 Overall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Solution Surface . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Input Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Overfitting, Relevance of the Prior and Automatic Relevance

Determination . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Size of the Net . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Forecasting Capability and Physicality of the Model . . . . . 55

6 Conclusion 57
6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

i



6.3 Personal Conclusion . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography i
Water Resources Engineering and Hydrology . . . . . . . . . . . . i
General Statistics and Data Analysis . . . . . . . . . . . . . . . . . ii
Artificial Neural Networks Applied to Hydrology . . . . . . . . . . ii
Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . . iii
Bayesian Neural Networks Applied to Hydrology . . . . . . . . . . iv

Annexes I

ii



Variables Symbols and
Explanation

Symbol Explanation

β Bias (addition constant) of the hidden and output layer.
D Data, input and taget data.
ε Model error, residual.
ξ Threshold.
I Precipitation.
N
(
µ, σ2

)
Gaussian distribution, with mean µ and standard deviation σ.

oi Output of hidden node i, in the ANN’s hidden layer.
p Momentum in the Hamiltonian equation.
q Parameter state (or position of the particle) in the Hamiltonian

equation.
τ Time step or time interval.
t Time
θ Network Weight. Note that the bold version represents a vector

of weights, and in the BNN chapter the ensemble of weights and
biases.

w Wind, usually characterized by an angle and a velocity.
x Artificial Neural Network’s input.
ŷ Network output, prediction.
y, ytr, yts Target data (observations), used for training and testing.

iii



Chapter 1 Introduction

1.1 Background and Motivation

In Burkina Faso, water resources have to be handled carefully. As stated
in Ceperley et al. [3], water in the form of rainfall makes up for a large
part of the water needs of agriculture. As agriculture strongly relies on
precipitation, it is interesting to be able to forecast the intensity and the
presence or absence of rain.

In Burkina Faso, two different diseases are transported by water: cholera
to small extents, and schistosomiasis. In both cases, water is a dominant
factor in the life-cycle of the disease. The main goal of the ECHO project

Figure 1.1: Schematic representation of the cycle of schistosomiasis. Source F.-J.
Perez-Saez.
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”Understanding Schistosomiasis Transmission in Burkina Faso” is to un-
derstand, model and develop strategies against schistosomiasis. The vector
of the disease is a worm which needs two main factors for its development:
humans in contact with water, and aquatic snails (see figure 1.1 for more
details). The idea is to fight against the second vector of interest, the snails.
To actively fight against these snails, one can either carry out large scale ex-
terminations, or perform targeted treatments when the snails appear. This
second solution requires a certain knowledge on the snails’ habit. It has been
shown (Poda et al. [1][2]) that the appearance of snails is largely related to
the rainfall events in the region.

For these reasons, it might be interesting to be able to predict the rainfall,
as a model could then potentially be developed to forecast the apparition of
snails.

The focus of the current work is to develop a method to forecast local
rainfalls in Burkina Faso. The idea is to use a machine learning technique
called Artificial Neural Network to forecast the precipitation, along with
Wavelet transforms and Bayesian probabilities.

1.2 Local Precipitation Forecasting

Bayesian Neural Networks have been applied in a few cases to hydrological
problems. Most of the time, though, it is used to predict variables that do
not vary in time as much as precipitation. The focus is more on modeling
runoff (Khan et al. [35]), or the salinity and concentration of cyanobacteria
in a river (Kingston [36]). Artificial Neural Networks coupled with Wavelet
transforms seem to benefit from a large appreciation in the hydrological
machine learning community (Nourani et al. [21]), but there seems to be
no trace of Bayesian Neural Networks using Wavelet transforms to forecast
hydrological events.

Coupling wavelet transforms to a Bayesian Neural Network for local
precipitation prediction is therefore something that has not been tested yet.
The advantage of the Bayesian method over a classical ANN approach is
that it is able to estimate the parameter uncertainty, which means that each
forecast is associated to a range of values which describes how confident the
model is on the prediction. This allows the user to evaluate if he trusts the
forecast, or if the model is too vague to be trusted.

Predicting local precipitation on the basis of small low-cost weather-
stations in a climatic region where rainfall has a high temporal variability
using these techniques is also something that has only been pursued in a
few cases. Precipitation prediction often relies on large networks of sensors
or satellite imaging [17] to predict precipitation at large scales, but not
necessarily on local instruments for local precipitation forecasts.

2
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1.3 Problematic and Objectives

As stated before, the focus will be on predicting precipitation. This will
occur in different manners: forecast of the presence or absence of rain (binary
output), forecast of the daily intensity, or forecast of the rain-class in which
the event might occur.

The objective of this work is to test a Bayesian Network coupled with
Wavelet Transform to predict short-term precipitation. This will be achieved
in several steps. The first step is to acquire a large enough theoretical
background so that it is possible to understand the principle in use. The
second objective is to select a suitable code/toolbox/program to run the
simulations. The third step requires to create and process a data-set which
can be used in the frame of this work. The fourth part consists of adjusting
the model according to the needs of this work. The fifth and last part will
be to assess the quality of the model and suggest improvements.

1.4 Structure

This report will first present the theoretical background for the implementa-
tion of the forecasting, then explain the methodology, present the data, and
explain the different choices of the implementation. The results will then
be presented, and discussed. The last part will be a conclusion of the work
achieved, as well as a discussion about the future improvements.

3



Chapter 2 Theoretical
Background

This section serves as theoretical background to the notions used in the
framework of this project, namely Artificial Neural Networks, Bayesian com-
putation, and Wavelet transforms.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are a class of probabilistic and statistical
models used to link inputs to their corresponding output in a non-linear
way. This section explains the mechanism of ANNs.

2.1.1 General

Artificial Neural Networks use weights, as well as biases, to act on inputs.
The result is then passed through an activation function, which can either
be a linear function, a tangent hyperbolic, or a sigmoid function. This layer
of activation functions is called hidden layer, and each of these activation
functions is called node. A neural network can be composed of several hidden
layers, all linked together with different weight sets and biases. The results
from these nodes are then again multiplied by weights and summed together
with a final bias to produce the output of the net. Figure 2.1 shows the way
an ANN with one hidden layer works (as used throughout this work).

As can be seen, the first step consists of multiplying the chosen inputs
by adequate weights, which are then passed through an activation function,
tanh in this case (Neal [23]):

oi = tanh

βhi +

Nx∑
j

θhi,j · xj

 (2.1)

where oi denotes the output of hidden node i, βhi , the addition constant
(bias) of hidden node i, xj the jth input, and θhi,j the weight multiplying input
j at hidden node i. The activation function (tanh) has the particularity to
take values between −1 and 1, therefore allowing inputs to either influence

4
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Hidden LayerInput LayerInput 1 Input 2 

Input j 1 

Node 1 

1 

Output LayerOutput 1 Output 2 

Output k 
Node 2 
Node i 

Figure 2.1: Schematic representation of the mode of operation of an ANN. Note
that the β and θ symbols represent vectors containing weights, respectively
biases, for every line they are connected to. The first symbol of each hidden
node represents the sum of the inputs multiplied with their respective weights,
and the second symbol represents the activation function.

positively, negatively or not at all the given nodes. The result from each
node is then used to produce the net’s outputs:

ŷk = βok +

No∑
i

θoi,k · oi (2.2)

where ŷk denotes the output of node k. Depending on the final purpose of
this output, different functions can then be used (Lampinen et al. [26]):

Logistic Output: The purpose of this type of output is to create a binary
result which can be interpreted as ”true” or ”false”. The output of
the net is simply passed through a Sigmoid function:

P (ŷ = 1|x,θ) =
1

1 + exp (−ŷ)
(2.3)

This function ranges from 0 to 1. By applying a threshold to the
result, the value takes a binary form.

Linear Output: In this case, the output is simply taken as is. Sometimes,
if the observations are scaled for training (explained below), the output
has to be scaled back:

ŷunscaled = α0 + α1 · ŷ (2.4)

where α is the parameter used for scaling.

Classification Output: This type of function is used when several outputs
are computed to differentiate between multiple classes. The outputs

5
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are transformed in such a way that they sum to 1 when put together,
using a ”softmax” function:

P (ŷ = k|x,θ) =
eŷk∑Nŷ
l eŷl

(2.5)

This allows to create a probability of a given output to be part of class
k.

2.1.2 Training

Of course, to produce a correct estimation of the network’s output, the
weight and biases of the network need to be fitted. This process, called
”training”, consists of minimizing the error, or residual, of the model [26,
36]:

y = f (x,θ) + ε (2.6a)

= ŷ + ε (2.6b)

where ε is the model residual, and ŷ the model prediction for the observation
y, using the inputs x, and the network’s weights (including the biases) θ.
For classical ANNs, there are different ways of fitting the weights. The one
most used is backpropagation, and consists of assessing the error at the
output of the network, and then ”backpropagate” the error to each weight
and bias (see ASCE Task Committee [17] for a more detailed explanation
on this process).

For the training phase, the data-set is separated in two sub-sets: the
training and testing set (ytr, respectively yts). The training set is used to
train the data. The testing set, also called validation set, is then used to
see if the computed model also explains data outside of the computation
domain, which tests the prediction capacity, or if is is only valid for the
training data, which would probably mean that the model has has been
overfitted (further explained in section 2.2.4).

2.1.3 ANN Applied to Hydrology

ANNs have been applied to hydrology for different problems. The ASCE
Task Committee [18] gives a good overview on the different applications
in the context of hydrology. These vary from rainfall-runoff modeling, to
streamflows modeling, over water quality, ground water and finally precip-
itation modeling. Most works on precipitation have been focused on pre-
dicting short term precipitation of a couple of hours. Precipitation is also
often forecasted over a region, rather than locally, using multiple stations
or satellite imaging. The biggest hustle in predicting rainfall is the high
temporal variability of the data. Indeed, rain might fall on one day, but be

6
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completely absent on the next day, producing extreme peaks in the observa-
tions, and therefore in the data to predict. To overcome this problem, Partal
et al. [19] and Nourani et al. [21] propose to use wavelet transforms associ-
ated with neural networks. The wavelets allow to characterize the changes
in climatic conditions and therefore to capture the moment at which the
conditions might assemble for rain to fall. Section 2.3 will further introduce
this concept.

2.2 Bayesian Neural Networks

As said before, the ANN in a classical way is not used in this work. Instead,
a variation of this principle using Bayesian probabilities is used. These
networks are called Bayesian Artificial Neural Networks, or simply Bayesian
Neural Networks (BNN).

2.2.1 General

Bayesian Neural Networks differ from ANNs in the way that instead of pro-
ducing one specific value, they produce a range of possible values for each
output, allowing therefore to assess the uncertainty, or the confidence in-
terval which the prediction can handle. Each of the weights and biases
described in 2.1.1 are expressed as a distribution, producing multiple possi-
ble outcomes for each network output. The probability density distribution
of the weights given the data is called the ”posterior” and is expressed using
Bayes’ theorem ( Neal [23], Kingston [36], Khan et al. [35]):

P (θ|D) =
P (D|θ)P (θ)

P (D)
=

P (D|θ)P (θ)∫
P (D|θ)P (θ) dθ

(2.7)

where D is the available data, which consists of the inputs of the net, as
well as the target data. Note that in this chapter, θ represents the weights
as well as the biases to simplify the notation.

This equation contains three important concepts:

• P (D|θ) is called the ”likelihood” and describes the error of the model
(ε in equation 2.6).

• P (θ) is called the ”prior”, and describes the a priori belief that one
has on the weight distribution.

• P (D) is called the ”normalization factor”, or evidence of the model
considered, and can be expressed as

∫
P (D|θ)P (θ) dθ. According to

Khan et al. [35], this allows to make sure that ”the left hand side gives
unity when integrated over all weight space”.

7
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When expressed in terms of the input x to the net and the observations
y used for training, equation 2.7 takes the following form [12, 28]:

P (θ|xtr,ytr) =
P (ytr|xtr,θ)P (θ)∫
P (ytr|xtr,θ)P (θ) dθ

(2.8)

The result from this equation can then be used to predict a value using
new inputs to the system [12, 28, 34]:

P (ŷnew|xnew,xtr, ŷtr) =

∫
P (ŷnew|xnew,θ)P (θ|xtr,ytr)dθ (2.9)

This process is called ”marginalization”, and consists in drawing a new
prediction with regards to the knowledge about the sampled weights, as
well as the data and previous predictions.

2.2.2 Gaussian Approximation

The prior and likelihood in equation 2.7 need to be given a suitable distri-
bution. This is, in the simplest case, done by Gaussian approximation. The
following section explains how this is done.

2.2.2.1 Modeling of the Residual and Weights Distribution

The likelihood, which is also the noise of the model, is generally modeled by
a Gaussian with 0 mean and standard deviation σy [36, 23]:

P (y|x,θ) =
∏
k

1√
2πσ2y

exp

(
−(yk − f (xk,θ))2

2σ2y

)
(2.10a)

=
∏
k

1√
2πσ2y

exp

(
−
ε2k

2σ2y

)
(2.10b)

In the same way, the weight’s prior can also be modeled as a Gaussian [36]:

P (θ) =
∏
j

P (θj) =
∏
j

1√
2πσ2θ

exp

(
−
θ2j

2σ2θ

)
(2.11)

with mean 0 and standard deviation σθ.

2.2.2.2 Hyperparameters

Both standard deviations in equations 2.10 and 2.11 can be expressed by a
fixed value, or can be modeled by a distribution. These standard deviations
are called ”hyperparameters” as they are parameters influencing the way
the parameters (weights) of the model are distributed, but are a level above

8
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θk θk θk

σθk

θk+n θk+n θk+n

σθk+nσθ1

θ1 θ1 θ1Layer 0: Weights

Layer 1: Hyperparameter            Governing Weights            Distribution
σθ  νθLayer 2: Hyperparameter            Governing Layer 1                Hyperparameters

Layer 3: Fixed Hyperparameter            Governing Layer 2                Hyperparameter σσθ σθ  ν
, 
,

Figure 2.2: Schematic representation of the hierarchical model for the weights. The
blue parameters indicate values which are modeled and vary with sampling. The
red parameter indicate fixed constants.

the other parameters. Of course, expressing these hyperparameters as a
distribution makes more sense, since the exact value of the residual and
weights is not known from the start. The natural prior for this distribution
is the conjugate of the Gaussian distribution with known mean (with known
variance it’s a gaussian), the inverse Gamma distribution (which is the same
as the scaled inverse chi-squared distribution) [26, 36]:

σ2θ,y ∼
(
σ2
)−(νσ/2 + 1)

exp

(
−1

2

νσσ
2
σ

σ2θ,y

)
(2.12)

where νσ is the number of degrees of freedom, and σσ the scale parame-
ter. When choosing a value for these two parameters, one defines the prior
distribution of the possible values that the standard deviation of the un-
derlying model can adopt. Lampinen et al. [26] and Vanhatalo et al. [29],
show that taking one standard deviation to express the distribution of all
the parameters may result in poor modeling of the posterior distribution of
the weights. To assess this problem, they propose to express each feature’s
weight distribution by its own standard deviation. The distribution of this
resulting collection of standard deviations is then as well modeled using an
inverse Gamma distribution. Depending on the implementation, there is one
more level of hyperparamter modeling the scaling parameter of the inverse
Gamma distribution.

Figure 2.2 is a schematic representation of the way these different layers
of modelisation work together when considering weights. The first layer
describes how each weight is modeled separately by a Gaussian, where the
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standard deviations are then modeled by an inverse Gamma distribution,
which is then in turn modeled by an inverse Gamma [26]:

θk ∼ N
(
0, σ2θk

)
(2.13a)

σ2θk ∼ Inv − gamma
(
νθ, σ

2
θ

)
(2.13b)

σ2θ ∼ Inv − gamma
(
νσθ , σ

2
σθ

)
(2.13c)

The hyperparameters νθ, νσθ and σσθ have fixed chosen values, while the
other parameters are picked from the governing distributions. This way of
handling the weights distribution is called ”Automatic Relevance Determi-
nation” (ARD) [26, 23].

The modeling of the error distribution is done in the same way[26]:

ε ∼ N
(
0, σ2εk

)
(2.14a)

σ2εk ∼ Inv − gamma
(
νε, σ

2
ε

)
(2.14b)

σ2ε ∼ Inv − gamma
(
νσε , σ

2
σε

)
(2.14c)

The usage of a Gaussian as a model for the error and the weights distribu-
tion is the simplest possible way of doing. Lampinen et al. [26] propose other
distributions for the residual modeling, like the student’s t distribution, but
this has not been used in this work and will not be further explained.

2.2.3 Markov Chain Monte Carlo

For complex multidimensional problems, solving equation 2.9 analytically is
not possible. As described in Neal [23], Andrieu et al. [27] as well as Khan
et al. [35], the Markov Chain Monte Carlo method allows for a numerical
integration of this integral:

P (ynew|xnew,xtr,ytr) =
1

N

N∑
n=1

P (ynew|xnew,θ) (2.15)

where the network’s weights are generated by sampling from the posterior
distribution of P (θ|D) knowing the prior distribution. This process of sam-
pling and then analytically integrating is called the Markov Chain Monte
Carlo Method. As it is impossible to sample directly from the posterior
distribution, the samples are drawn from the prior distribution, until the
distribution has reached an equilibrium.

2.2.3.1 Training

The training process in Bayesian Networks is very different than a classical
ANN. Instead of trying to reach the perfect set of weights allowing for an
exact modeling of the observed process, the Bayesian approach generates

10
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qi

Figure 2.3: Schematic representation of the way the Hybrid Monte Carlo sampling
and the Gibbs sampling work together. The red arrows represent the Gibbs
sampling when the hyperparameters are changed and thus the total energy.
The black dots and arrow represent the sampling of the HMC. The schema is
inspired by the figures in Neal [30] and Hanson [24].

samples from the solution space, which are then all together solutions to the
problem. In the methodology followed in this work, which is mainly influ-
enced by the choice of software (see section 3.3.1), the sampling is done in
two parts, using two different Markov Chain Monte Carlo Methods. Gibbs
sampling to sample the hyperparameters, and Hybrid, also called Hamilto-
nian, Monte Carlo to sample the weights (see figure 2.3).

2.2.3.2 Gibbs Sampling

As mentioned, Gibbs is used to sample the hyperparameters. As stated
in Neal [23], Gibbs allows to ”sample from a distribution over a multi-
dimensional parameter, θ = {θ1, ..., θp}”. What this means, is that Gibbs
allows to generate a new sample for each dimension given the other dimen-
sions and the data, one dimension at a time [36]:

θ1t+1 ∼ P
(
θ1t+1|θ2t , ..., θ

p
t ,y
)

(2.16a)

θ2t+1 ∼ P
(
θ2t+1|θ1t+1, θ

3
t , ..., θ

p
t ,y
)

(2.16b)

...

θpt+1 ∼ P
(
θpt+1|θ

1
t+1, θ

2
t+1, ..., θ

p−1
t+1 ,y

)
(2.16c)

Expressed in the case of the hyperparameters, this means that the sampling
for each hyperparameter is done with regards to the other hyperparame-
ters, each of which is changed in turn. This is possible because the joint

11
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conditional distribution of the hyperparameters can be expressed by the
inverse-gamma distribution.

2.2.3.3 Hybrid Monte Carlo

The two main problems faced when optimising parameters for Neural Nets
are the danger to get trapped in local maxima, or to undergo random walk.
The first problem is solved with the sole fact of using BNNs. As the purpose
of the training is not to find one perfect solution, but a set of possible
solutions, the state space is continued to be sampled even when an optimal
solution is found.

A possible solution to the second problem has been developed by Neal
[23], and is called the Hybrid Monte Carlo Method (HMC). The method
takes advantage of the prior samplings as well as the direction of the gradient
and the momentum to move along the state space in directions which are
decorrelated from the previous samples. This makes it a very efficient way
of avoiding random walk. The full concept is explained in this section.

The Hybrid Monte Carlo Method is based on a physical concept of energy
conservation, a Hamiltonian system. A Hamiltonian describes a system
where the total energy of the system is always constant and is the sum of
two components, the potential and the kinetic energy:

H (q, p) = Epot (q) + Ekin (p) (2.17)

In such a system, the variation of one of the component is described by the
variation of the total energy with respect to the other component:

dq

dt
=

∂H (q, p)

∂p
(2.18a)

dp

dt
= −∂H (q, p)

∂q
(2.18b)

As explained in Neal [23], in the framework of Bayesian Networks, the vari-
able q represents the parameters of the network. The potential energy of
the Hamiltonian system is then expressed as [23, 30]:

Epot (q) ∝ − log (P (q)) (2.19)

The variable p is an artificial variable introduced to describe the momentum
of the sampling, and has one component per parameter of the system. When
combining equation 2.17 and 2.19, it is possible to see that the distributions
for q and p are independent (Neal [30]):

P (q, p) ∝ exp (−H (q, p)) (2.20a)

= exp (−Epot (q)− Ekin (p))) (2.20b)

∝ P (q)P (p) (2.20c)

12
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which makes it possible to sample from the joint distribution and then ignore
the momentum to get the posterior network parameters. The kinetic energy
is expressed as follow [30]:

Ekin (p) = p>Mp =
∑ p2i

2mi
(2.21)

where M , repectively mi, represents the mass of the system, respectively
the importance of each component, usually one, as the same importance is
accorded to each component. Using this information, equation 2.18a can be
rewritten as follow:

dqi
dt

=
∂H (q, p)

∂pi
=

pi
mi

(2.22)

As can be read from equation 2.19, the potential energy is the negative log of
the posterior distribution, which has been defined in section 2.2.2. Recalling
this, the potential energy can be expressed as follow:

Epot (q) ∝ − log [P (θ|D)] (2.23a)

∝ − log [P (D|θ)P (θ)] (2.23b)

Gaussian
approx. ∝ − log

exp

(
−
∑
k

ε2k
2σ2yk

)
exp

−∑
j

θ2j
2σ2θj

 (2.23c)

=
∑
k

ε2k
2σ2yk

+
∑
j

θ2j
2σ2θj

(2.23d)

where the normalization constant in equation 2.7, as well as the constants
in equations 2.10 and 2.11 are neglected. Equation 2.18 is of course a con-
tinuous equation. To be able to update (or sample) the momentum and pa-
rameters, one needs to discretise this equation. This is done with a method
called ”leapfrog” discretisation, which is derived from the Euler scheme. The
process consists of performing half a step on the momentum equation in one
direction, then to perform one step for the parameter equation using the
result of the momentum equation, and finally to perform a second half step
for the momentum [23, 29]:

pi (t+ τ/2) = pi (t)− τ

2

∂Epot (q (t))

∂qi
(2.24a)

qi (t+ τ) = qi (t) + τ
pi (t+ τ/2)

mi
(2.24b)

pi (t+ τ) = pi (t+ τ/2)− τ

2

∂Epot (q (t+ τ))

∂qi
(2.24c)

with the partial derivation of equation 2.23d being:

∂E (q (τ))

∂qi
=
εj
σ2y

+
θj
σ2θj

(2.25)
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where εj corresponds to the network error backpropagated to each weight.
The initial momentum p0 is chosen randomly from a standard normal distri-
bution. The leapfrog can be performed L times, so that it reaches the target
time t + L · τ (Neal [23]). This discrete method will produce a numerical
error, leading to a variation in the total energy which is not zero, as it ought
to be in a Hamiltonian system. To reduce this error, Neal [23] proposes to
introduce two more steps: negate the momentum (p = −p), and evaluate if
the new state is good enough using a method introduced in the Metropolis
algorithm, by accepting the new state with probability:

min (1, exp (− (H (q (t+ L · τ) , p (t+ L · τ))−H (q (t) , p (t))))) (2.26)

otherwise the old state is reused.
As can be taken from all of this, the Hamiltonian Monte Carlo method

intends to sample from a distribution with same total energy, which is de-
fined by the hyperparameters. As stated before, the hyperparameters are
sampled using the Gibbs sampler, and it is therefore important to follow
this two-steps scheme, where the hyperparameters are sampled using Gibbs,
and then the parameters using Hybrid Monte Carlo, and to do this multiple
times.

2.2.4 Overfitting

Overfitting is characterised by the fact that a model fits the training data
well, but performs very poorly on the test set. As stated in Neal [23], because
of the way they sample the data, BNNs should not overfit, no matter the
number of hidden nodes, nor the number of input features. In classical
Artificial Neural Networks, to avoid overfitting the user is forced to introduce
the concept of weight regularization. The weight regularisation adds a term
to the error of the model which penalises the complexity of the network[36]:

Eregularised = Ey + αEw (2.27)

This regularization occurs naturally in Bayesian Neural Networks, as the
probability distribution of the weights with respect to the data already ac-
counts for these two components (see equation 2.23d).

2.2.5 Feature Selection

Although overfitting should not occur in Bayesian Networks, selecting the
correct inputs can still be of advantage, as it can speed up convergence. Too
many inputs can lead to a slow process, as the network complexity increases,
and certain inputs might just add more noise, and not necessarily much more
information. As introduced in Neal [23] and elaborated in Vanhatalo et al.
[29], to choose the right parameters, two processes have been developed:
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Automatic Relevance Determination and Reversible Jump Markov Chain
Monte Carlo (RJMCMC).

2.2.5.1 Automatic Relevance Determination

As described in section 2.2.2.2, ARD consists of assigning a Gaussian dis-
tribution with mean zero and standard deviation σθk to each parameter.
These standard deviations are then controlled by a hyperparameter, which
can increase or decrease the range on which the weights can be drawn from.
The narrower the Gaussian, the smaller the weights are going to be, and
therefore the less impact they will have. This process is active during the
training, and can thus account for more or less useful inputs on the fly. A
posteriori, it is possible to assess the importance of an input by observing
the distribution of the standard deviation for each weight. The larger the
distribution, the more important the input. Removing the less significant
inputs is not necessary, but can improve the computation speed.

2.2.5.2 Reversible Jump Markov Chain Monte Carlo

RJMCMC is a modified version of the MCMC which allows to sample in
a space with changing dimensionality. This makes it possible to change
the number of inputs on the fly. Each input is then granted a probability
to be used in the model based on similar concepts of energy as previously
explained. As RJMCMC has not shown significant improvements in the
forecasting capability of the model, it will not be explained in greater lengths
here.

2.2.6 BNN Applied to Hydrology

Kingston [36] has dedicated a whole thesis to the problem of predicting
hydrological phenomena with Bayesian Networks. As she states, the most
considerable advantage of BNNs compared to ANNs is the capacity to as-
sess the confidence interval of the model. This allows to predict a value,
and to explain to which extent the model can actually be trusted. The
bigger the confidence interval, the more certain the chance to mispredict is.
Her applications are the forecast of river salinity and the concentration of
cyanobacteria in different rivers in Australia. Both these forecast might have
a lesser variability than precipitation, but are strongly related to climatic
and hydrological processes, and show that it is possible to work with BNNs
in that framework.

Khan et al. [35] have also developed a Bayesian Network to model a
hydrological process. In their work, they successfully elaborated a rainfall-
runoff model, which overperforms the physical, as well as the ANN model
that had been developed for the same case-study. In their work they use
Gaussian priors in the same way than described before.
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2.3 Wavelet Transform

As mentioned in section 2.1.3, multiple studies seem to corroborate the use
of wavelet transform to improve the forecasting capacity of the net. This
section will serve as a brief introduction to this transform.

2.3.1 General

As stated in Nourani et al. [21], the Fourier analysis of a signal has a major
drawback: the loss of time information. After performing a Fourier analysis,
one might know which frequencies characterise the signal the best, but it is
not possible to know where these frequencies actually influence the signal
most. Wavelet transform allows to perform a pointed analysis at a given
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Figure 2.4: Schematic representation of the difference between wavelet transform
(left) and windowed Fourier transorm (right), by making the frequency of the
underlying data vary. Reproduced from Cazelles et al. [11].

time step. Given the lower, or higher frequency at which the analysis needs
to be performed, the window, or domain of influence of the transform is
adapted, leading to a specific information on what frequencies play a major
role at the given time step. Figure 2.4 shows how the scale and dilatation of
the wavelet transform are influenced when observing signals with different
frequencies. While the domain and amplitude of the Fourier transform stays
the same for all the cases, the wavelet transform adapts the scale and the
dilatation of the wavelet to the underlying frequency. The discrete wavelet
transform is computed as follow [21]:

Tm,n = 2−
m/2

N−1∑
i=0

g
(
2−mi− n

)
xi (2.28)

where g describes the ”mother wavelet”, the function, for example a sinc,
that is used to sample the signal. Tm,n represents the wavelet coefficient for
a scale 2m, and a location n2m. The wavelet can have different scales, called
levels, which will embrace more data, and therefore explain the variation at
different time-scales.
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2.3.2 Causal Wavelets

As the focus of the current experiment is on forecasting an event, it is of
importance to consider that the wavelets need to be computed using only
the time frame t ∈ [−∞, t], as no information should be available on future
observations. Such a case is called causal wavelet. To do so, the wavelet
transform for each time-step is computed using only the data gathered until
then. The problem with this method is that the coefficient of interest is
always located at the end of the window. and therefore exactly in the border
effect. Indeed, the closer to the border, the harder it is to compute a correct
wavelet transform. The technique used to compute the wavelet transform
anyway, is to perform a symmetry on the data available, and to then perform
the transform on this new data-set. Chaplais et al. [9] have tried to reduce
this border effect using various filters, but have not been able to reduce the
delay (the distance to the border) to zero, which makes it not of much use
in the current application.

2.3.3 Wavelet Transform and Hydrology

As stated before, the wavelet transform captures changes in the signal struc-
ture. As rain is related to changes in atmospheric conditions, assessing these
state alterations might be useful.

Nourani et al. [21] explain that the wavelets are especially important
for rainfall forecasting since it is characterized by variations between zero-
precipitation and high peaks of rain. The wavelets help the fitting of the
model in this case. The difficulty relies in extracting the non-linearity of
the process. They also state that the improvement in performance when
using wavelet is ”greater for large scales such as monthly or seasonal data
compared to hourly, daily or weekly”.

As stated before, Partal et al. [19] praise the usage of wavelets to pre-
dict daily precipitation. In their work, they state that higher levels (bigger
windows) of wavelet transforms seem to have a great impact on the qual-
ity of the prediction. The fact that they do not talk about the usage of
causal wavelets seem to indicate that the whole time-series has been used
for the wavelet transform, which might allow for a model to use informa-
tion that it is not suppose to have for a prediction. Their results vary from
very satisfying to inconclusive, rendering the assessment of the utility of the
wavelet difficult. A further statement they make is that the wavelet model
allows to significantly improve the quality of the prediction during times
with no rain, which might come in handy for discriminating between dry-
and rainy-season.
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Chapter 3 Materials
and Methods

This section starts by presenting the methodology used in the project, con-
tinues with a review and a description of the available data, as well as the
different ways they have been treated. The last part will explain the different
steps involved in performing the experiments.

3.1 Methodology

The methodology for this work is separated in different steps, which are
presented in figure 3.1.Data Gathering Data Preprocessing Model DevelopmentQuality AssessmentImprove ModelAssess Validity Outside of Model Scope

Figure 3.1: Schematic representation of methodology of the project.

The different steps will involve collecting and treating, as well as prepro-
cessing the data necessary for the experiment. How this is done is explained
in the next section. The next steps will involve developing the correct model
for the experiment at hand, which strongly relies on the theory explained
in last chapter, and a toolbox described later. This model will then be fine-
tuned, as well as assessed using test sets in an iterative process. The last
step will involve assessing the quality of the model outside of the scope of
the fitting, meaning on stations or data sets which have not been used in
the process of fine-tuning the model.

3.2 Data

This section describes the different locations and sensors deployed in Burkina
Faso. The Focus will then be on how the data is treated to be used in the
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experiment. Some statistics and characteristics of the data will then be
shown.

3.2.1 Climate in Burkina Faso

The climatic condition in Burkina Faso is characterized by a strong North
to South gradient of temperature and rainfall intensity. As explained in
Couttet [6], Burkina Faso is characterized by three distinct climatic regions:
the Sahelian zone in the North, the Sudoan-Sahelian zone in central Burkina
Faso, and the Sudanian zone in the south. The avarage rainfall as well as
the rainy-season duration increase when moving down to the south of the
country. Ceperley et al. [3], as well as Mande [5] mention that the climate
is strongly characterized by seasonality, meaning that there are mainly two
seasons: a rainy season which makes up for most of the rain during the year,
and a dry-season. The rainy season comes from May to September [6]. A
small rain event called ”pluie des mangues” often occurs in may and is a
precursor of the start of the real rainy-season which starts around a month
later.

TambargaPanamasso Lioulgou
Tougou

Figure 3.2: Satellite image of Burkina Faso with the four different villages of inter-
est1. Note that the three different climatic regions can be guessed by the degree
of vegetation displayed in the image.

1Modified from http://commons.wikimedia.org/wiki/File:Burkina_sat.png
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3.2.2 Situation

Together with 2iE2 and Sensorscope3, over the years, the ECHO and EFLUM4

laboratories have deployed several small weather stations in Burkina Faso
(see Acknowledgments for more information about the project’s partners).
Figure 3.2 shows the four locations at which mobile stations have been de-
ployed, and table 3.1 the number of active and inactive stations per locations,
as well as the commissioning date of the oldest station. The different loca-

Table 3.1: Overview of the number of active (AS) and inactive (IS) stations for
each locations, as well as the commissioning date of the oldest station (stand:
14.06.2015).

Place # AS # IS Oldest Station

Tambarga 4 23 June 2009
Lioulgou 3 - July 2014
Tougou 7 2 April 2014
Panamasso 2 1 June 2014

tions and stations have varying instruments, but a common denominator
of interest for most of the stations is given as the following environmental
parameters:

• Rain

• Solar Radiation

• Air Temperature

• Humidity

• Wind Direction and Speed

Depending on the station, several other values are measured, as for example
soil moisture and temperature, vapor pressure, etc.

3.2.3 Stations

From the four locations available, only the stations in Tambarga are in place
since more than a year, namely around six years (see table 3.1). Since for
the experiment at hand, the requirement is to have several years worth of
data to be able to perform the tests, Tambarga was chosen as a place of

2International Institute for Water and Environmental Engineering - http://www.

2ie-edu.org/
3Sensoroscope - http://www.sensorscope.ch/
4Laboratory of Environmental Fluid Mechanics and Hydrology - http://eflum.epfl.

ch/
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1000/1260
1007/1266

1005/1265

1001
Figure 3.3: Situation Map of the region around the village of Tambarga5. The

blueish dashed region indicates the location uphill, and the orange dashed region
the location in the valley. The selected stations are marked in green.

study. The twenty-seven stations mentioned in table 3.1 are not all still op-
erational. Most of them have been replaced in 2011 - 2012. The sensors have
therefore changed, but a continuity of the measures is somewhat granted.
The stations in Tambarga are located in two different environments. The
first is down in the valley, where agriculture is pursued. As described in
Ceperley et al. [3], ”the landscape is a patchwork of tall grasses, meadows,
interspersed large African ebony [..] and Baobab [..] trees, and shrub wood-
lands dominated by Combretaceae, wetlands, marshes, and riparian gallery
forests”. Mande et al. [8] describe the location as a ”large agroforestry field
used for millet and rice plantation during the rainy season”.

The second location is uphill, and is mainly covered by savanna forest
[8]. As this second site has different climatic characteristics than the first
location, the stations from this location are disregarded.

Not all the stations can be used for the experiment, because some of
them differ too much in climatic characteristics, or have been damaged over
the years. For instance, station 1001 was in a rice-field, and fell down,
leading to wrong records until it was fixed, and station 1005 was trampled
down by a donkey, also leading to unusable data (source: Dr. N. Ceperley).
Other do not have any rain measurement, which make them unsuited for
the experiment. Lastly, some of the stations are placed near, or under

5Satellite image from https://www.google.com/maps/@11.4453628,1.2173366,

2196m/
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trees, which may result in very different rain, solar and temperature readings
(stations 1012, 1013, 1003, 1262, 1263).

All in all, from all the stations located in the valley, the stations used
are:

• Station 1000, and its replacement, station 1260.

• Station 1007, and its replacement, station 1266.

• Station 1265, which has no reliable previous station, as it would be
station 1005 which was trampled down.

These stations are not too far apart (less than a hundred meters), which
makes them ideal candidates to be used together.

3.2.4 Data Aggregation and Filtering

The main problem faced with the data, is that all the stations contain miss-
ing values. As can be seen in figure 3.4, there are several gaps in the record-
ings, as well as some data that seem very suspicious at some stations. To be

Oc t  11 Apr  12 Oc t  12 Apr  13 Oc t  13 Apr  14 Oc t  140200Wind Di
rection

Figure 3.4: Wind measurements for station 1266 given in [◦]. The gaps in the
measures indicate that there has not been any recording at this moment. As
can be seen there are several gaps of relatively consequent size, which are not
always covered by other stations, leading to holes in the time-series continuity.

able to perform the simulations without too much trouble, it seemed neces-
sary to aggregate all the usable stations together and to use the resulting
time series. The following section explains how the data was first treated
and then aggregated.

3.2.4.1 Precipitation

The precipitation data are composed of filtered data of three different sources.
Dr. T. Mande and Dr. N. Ceperley both already did some extensive work
on these data sets and created some aggregated and filtered time series com-
posed of several stations. The data from Dr. Ceperley covers a time-period
from early 2009 to late 2013. Dr. Mande’s data cover the time from early
2010 to late 2012. Since the goal was to create a time series as long as
possible, the data from the stations from early 2012 to early 2015 described
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Oct 11 Oct 12 Oct 13 Oct 14Precipit
ation in

 [mm]

020406080 Rain Removed DataFiltered Data

Oct 11 Oct 12 Oct 13 Oct 14Soil Mo
isutre in

 [%]

-100
102030 Soil Moisture Sensor 1Sensor 2Sensor 3

Figure 3.5: Example on how the rain is filtered for Station 1260. The first plot
shows the rain measurements, and the second plot the soil moisture at different
depths.

before were also included, after aggregation and filtering. This process is
explained now.

The stations have a sampling frequency of 1/[minute]. The decision was
taken to use the daily cumulative rainfall as a value to be predicted, leading
to the necessity to transform these observations into a daily cumulative rain-
fall time-series. This was done by summing the precipitation over 24 hours,
ranging from midnight to midnight. To make sure that small events due to
wind, or other nuisances, are not present when merging the observations, it
is important to filter the data. To achieve this, the observations from each
station are compared to the soil moisture readings from the same station.
As shown in figure 3.5, the precipitation events are most of the time followed
by strong variations in moisture readings. This knowledge is used to filter
out ”ghost” events, as for example the rain events on Jun 2014 (see blue
oscillations in the upper plot of figure 3.5), where the data seem to indicate
a precipitation event, but the soil moisture is constantly decreasing, show-
ing that no rain occurred in this period of time. The opposite effect can be
observed in May 2012 and June 2013, when strong rain events occurred, fol-
lowed by a response of the soil moisture. To filter out these ”ghost” events,
a moving window over 2 · τ days with the following rule is used:

I (t) =

{
I (t) if ∆(SM (t± τ)) > ξ1 and σ(SM (t± τ)) > ξ2

0 otherwise
(3.1)

where I denotes the precipitation reading at time t, SM the soil moisture,
ξ the chosen thresholds, ∆ the difference between the maximum and the
minimum in the interval, and σ the standard deviation.

After different tests, the seemingly working parameters have been found
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Oct 11 Oct 12 Oct 13 Oct 14Precipit
ation in

 [mm]

050100150 1265 Removed DataFiltered Data

Oct 11 Oct 12 Oct 13 Oct 14Precipit
ation in

 [mm]

0204060 1266 Removed DataFiltered Data

Oct 11 Oct 12 Oct 13 Oct 14Precipit
ation in

 [mm]

050100150 Merged

Figure 3.6: Un- and filtered rain by stations and merged as explained in the section.

to be a window of 20 [days], an ξ1 of 5 and an ξ2 of 0.4. Figure 3.6 shows
the filtering and the merging of the three stations of interest. The noisy
data seem to be well filtered out, which is also confirmed by comparing the
result to the other sources, as can be seen in the upper plot of figure 3.7.
The merging is done by taking the maximum of the three stations for each

Jun 09 Jun 10 Jun 11 Jun 12 Jun 13 Jun 14Precipit
ation in

 [mm]

050100150 Separated Data T. MandeData N. CeperleyFiltred and Treated Station Data

May 09 May 10 May 11 May 12 May 13 May 14Precipit
ation in

 [mm]

050100150 Merged

Figure 3.7: Separate and merged data from the three sources (Dr. Mande, Dr.
Ceperley and the filtered stations).
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day. Finally the data from the three sources are merged together, again by
taking the maximum for each day. The result can be seen in the lower plot
of figure 3.7.

3.2.4.2 Climatic Parameters

Several parameters were chosen, selected for their potential precipitation
forecasting capability. The different way each of them is treated and how
the stations are aggregated is explained in the following section.

Temperature, Humidity and Solar Radiation

Temperature, Humidity and Solar Radiation are treated in the same way.
For each of the stations, the mean, min, max and standard deviations are
computed for a window of 24 hours. The stations are then merged together.
The global mean between stations is computed with regard to the number
of measurements of each station, minimizing the effect of one single mea-
surement:

x̄i,j =
Ni · x̄i +Nj · x̄j

Ni +Nj
(3.2)

where x̄ denotes the averaged climatic parameter over 24 hours, i, j station
i, respectively j, and N the number of measurements for that laps of time
for the given station.

The merged standard deviation is computed in a similar fashion. Head-
rick [13] shows a way of computing the global true standard deviation given
multiple subgroups of data:

(3.3)
σ2i,j =

(
Ni

2 σi
2−Ni σj

2−Nj σi
2−Nj σj

2−Ni σi
2+Nj

2 σj
2+NiNj σi

2

+NiNj σj
2 +NiNj (x̄i − x̄j)2

)/
((Ni +Nj) (Ni +Nj − 1))

Figure 3.8: Example on how the temperature data is aggregated by day. The data
originates from station 1266 for a chosen period of three months.

The min and max are computed by taking the minimum, respectively
the maximum of the stations for each time window.

Wind
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The wind is recorded as an angle ranging between 0 and 360 [degrees], as
well as an intensity given in [m/s]. The average wind speed and direction
can not just be computed by a mathematical mean as done for the other
parameters. Instead, as explained in Olson [14], the wind angle and intensity
are transformed into vectors, and then added together:

w =
∑

wspeed ·
[

cos (wangle)
sin (wangle)

]
(3.4)

This creates a vector with a certain speed and direction, which is then to
be translated back to an average daily angle and speed:

w̄angle = atan2 (wy, wx) (3.5)

w̄speed =
√
w2
x + w2

y (3.6)

This way, a wind blowing in one direction for most of the day with a low
speed, will have less impact than a strong wind blowing in the opposite
direction for one hour.

3.2.5 General Data Analysis

This section serves as a general explanation of the rain data, extracting some
general trends as well as correlations between parameters and precipitation,
which will allow for an initial understanding of the parameter selection.

3.2.5.1 Fourier Transform

The discrete Fourier transform allows to extract the characteristic frequencies

Oct 2008 Oct 2009 Oct 2010 Oct 2011 Oct 2012 Oct 2013 Oct 2014Rain [m
m]

050100150 Rain dataRain Growth (-0.00022231 slope)Inverse Fourier Transform (main freq: 0.51433, 1.0287, 2.9145 [/year])

Magnitu
de

Frequency [1/year]0 20 40 60 80 100 120 140 160 18001
23
4 Frequency AnalysisThreshold at 1.2796

Figure 3.9: Upper plot: rain data (blue) with trend (red line), and inverse transform
of the three main frequencies (orange). Lower plot: Discrete Fourier transform
with the two main frequencies highlighted in red.
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of a signal, as well as their corresponding magnitudes. This permits to un-
derstand the general trends behind the data. As can be seen in figure 3.9,
the main frequencies of the rain data is around 1, 0.5 and 2.9 [/year], which
clearly shows a seasonal trend. The yearly frequency explains that the rain
intensity is similar from one year to the other. It is however interesting to
notice that the frequency is not of exactly one, but 1.0287, which could be
explained by a slight shift in the rain season. The half-year period (fre-
quency of around 2.9) can be explained by the variation of rain season -
dry season. The last two-year period (frequency of 0.5) seems to indicate
that every second year is prone to have less rain. The negative general slope
indicates a generally downward trend in the amount of rain, but given the
very low value of the slope, this does not seem very relevant.

3.2.5.2 Wavelet Transform

The wavelet transform as explained in the previous chapter has been applied
to the rain, as well as the temperature time-series. Figure 3.10 shows this
decomposition. As can be seen, the wavelet transform captures the tran-

50100Rain [m
m]

123
456 -50050

Level

203040

Temper
ature

Level Apr 09 Apr 10 Apr 11 Apr 12 Apr 13 Apr 14123
456 -10010

Figure 3.10: From top to bottom: Rain data and the resulting wavelet transform,
temperature in [◦] and the resulting wavelet transform.

sition between dry- and rainy-season in the wavelet transform for the rain
data. The wavelet transform for the temperature also seem to follow this
logic. In the temperature transform the seasonal periodicity is clearly to be
seen. At small time-scale (lower level), the wavelet coefficients seem to be
more present when rain occurs, leading to the possible conclusion that this
transform might capture the changes occurring when rain starts.
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3.2.5.3 Cross-Correlations

The cross-correlation expresses the linear correlation between two variables
when shifted in time. It is computed as follow:

Rx1,x2 (t) = E [x1,t+τx2,t] (3.7)

where x1,2 are two parameters. The resulting value can be useful to as-
sess the linear relations between different parameters. Figure 3.11 shows
the cross-correlation between the rain measurements and the different cli-
matic parameters described previously. After a first analysis of figure 3.11,

-365 0 365Correlat
ion

-0.4-0.20
0.20.4 Humidity

-365 0 365-0.4-0.20
0.20.4Solar Radiation

Time Lag in [days]-365 0 365-0.4-0.20
0.20.4 Temperature

-365 0 365-0.4-0.20
0.20.4 Wind Speed

-365 0 365-0.4-0.20
0.20.4Wind Direction

Figure 3.11: Cross-correlation between the rain measurements and the Humidity,
Solar Radiation, Temperature, Wind Speed and Direction readings for the ag-
gregated data.

the conclusion that can be drawn is that all the parameters have a cyclic
correlation to the rain. Humidity and temperature seem to be the most
correlated with rain, but interestingly, the wind speed and direction seem
to oscillate a lot at fine time scale. This could possibly mean that at large
time-scale, or for general trends, humidity and temperature may play an
important factor, but that for the small time variations, wind, as well as
solar radiation might be of more use. Generally speaking, this cyclic trend
tends towards the conclusion that if a model might explain the precipitation
for one year, it might very well be able to predict it for an other year. Most
of the parameters seem to express the highest absolute valued correlation
around zero time-lag. This means that it might be optimal to take inputs
around the day of interest.

The attention has to be drawn to the fact that this cross-correlation is a
linear understating of the relations between parameters. Neural Networks do
not model in a linear way, but model non-linear problems. This means that
these information can be interesting, but might not be the only possible
interpretation of the relevance of the parameters, as well as the optimal
time-lag.
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3.2.6 Prior Knowledge from literature

Mande [5] has done some extensive work on the rainfall characteristics in
Tambarga. In his works, he states that the ”rainfall regime is mono-modal”,
meaning that there is one rainy season which ranges from May to October,
followed by one dry season. Rain is the main component of precipitation at
Tambarga. He also states that the temporal variability of rain in Tambarga
is enormous. As he says, there is a difference of around 50% rainfall between
2010 and 2011. He also states that extreme rainfalls are dependent on high
temperatures, and that ”rain at Tambarga is triggered by the convective
mechanism, which is mainly controlled by the sensible heat flux. The daytime
rain events [...] are convective and are characterized by their high intensities
and short durations”. In an other work, Mande et al. [8] reinforce that ”the
rainfalls are short in duration, intense, and occur mostly during daytime
primarily due to convective activities”.

With respect to this information, it it safe to assume that temperature
and humidity, as well as a method to capture the changes occurring might
be of importance to model the underlying phenomena of rainfall.

3.3 Experimental Setup

This section explains the different steps involved before the actual experi-
ment can start.

3.3.1 Software

This section will briefly explain the choice of the software and the way it
works.

3.3.1.1 Software Choice

As the focus of this work is on forecasting rain, and not on implementing
a Bayesian Neural Network, a prior selection of software had to be done.
The choice was made to use the Matlab toolbox developed by Aki Vehtari
and his team, called ”MCMC Methods for MLP and GP and Stuff (for Mat-
lab) V2.1 ”6. The toolbox comes with a comprehensive manual/publication:
“MCMC methods for MLP-network and Gaussian process and stuff – a docu-
mentation for matlab toolbox MCMCstuff” [29]. The toolbox has a complete
implementation of the Bayesian Neural Network and MCMC algorithm de-
scribed in section 2.2. Matlab itself has good tools for data processing,
as well as a toolbox for Wavelet Transforms7, and therefore meets all the
requirements for this project.

6http://becs.aalto.fi/en/research/bayes/mcmcstuff/
7http://www.mathworks.com/help/wavelet/
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3.3.1.2 Toolbox Operating Mode

The algorithms used in the toolbox are implemented according to the the-
ory explained in section 2.2. Figure 3.12 shows how the different parts fitxtest, ytestOptions TrainingHMCn samplesm steps k samples

Gibbsleapfrogs Previsionxtrain, ytrain
Figure 3.12: Schematic representation of the operating mode of the software.

together in the code. It is important to notice that there are two different
constants governing the sample process. The first is a global sampling of k
samples, and the second a sampling which is done only for the Hybrid Monte
Carlo, of n samples, which keeps the same hyperparameters (sampled with
Gibbs) between rounds.

3.3.2 Data Preprocessing

Neural Networks have technically the ability to predict any value given any
inputs by changing the weights accordingly. That being said, it has been
shown (Kingston [36]) that it helps a lot if the input, as well as the target
output are in the same range of values. The complexity of the solution sur-
face is also of great importance. The more unpredictable and the harsher the
change between time-steps, the harder it will be for the net to perform well
when a prediction has to be made. There are different solutions to trans-
form the data into a smoother solution space. Some of these transformations
have to accuse a loss or a transformation of the information, which might
result in the necessity to interpret the output differently, and can make it
less important for prediction. The following subsection briefly explains the
different possibilities to achieve these desired effects.

3.3.2.1 Normalization and Standardization

One of the solutions to get all the data in the same range is to normalize the
data. A special case of normalization is standardization, which transforms
the data so that they have an average of zero and a standard deviation of
one:

Dstd =
D − µ(D)

σ(D)
(3.8)

where D denotes the data, and the symbols σ and µ the standard deviation,
respectively the average of the data.
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An other case of normalization is to map the data between a minimum
and a maximum (usually -1 and 1):

Dnorm = a+ (b− a)
D −min (D)

max (D)−min (D)
(3.9)

where a and b are the lower, respectively the upper limits of the distribu-
tion. To distinguish between these two transforms, this second transform
will simply be referred to as normalization in the rest of the document (as
opposed to standardization).

Both of these transformations allow for an easier fitting of the parameter,
as the weights multiplying the different inputs will be distributed around the
same values.

3.3.2.2 Logarithm

When the target or input data is not normally distributed, it can help to
perform a logarithmic transformation on the data (Kingston [36]). This will
reduce the ”non-normality” of the data and allow for an easier modelling
when using normally distributed data as input.

3.3.2.3 Cumulative Sum

A further way to smoothen the solution surface it to apply a window on the
data which will perform a given operation. In the current context, taking
the sum of the windowed values seems to make sense, since it would then
mean taking the cumulative rainfall over a period of time dt.

Dwindowed [t] =
T=dt∑
τ=0

D [t+ τ ] (3.10)

For the current experiment, this would, for example, mean to take the cu-
mulative rainfall over a time laps of one week. The solution would then
move from predicting the value of a single day to the cumulated rainfall of
one week.

3.3.3 Output Choices

In the context of the current experiment, three different outputs are tested.

3.3.3.1 Binary Output

The first type of forecasting is defined as a binary output predicting the
presence or absence of rain. The statement is simply as follow:

Ibinary =

{
1 if p > ξ

0 else
(3.11)
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The threshold can be chosen to be the precision of the rain measuring in-
strument, which can be regarded as one tick of the tipping bucket of the
Davis Rain Collector8. One tick of this instrument corresponds to 0.2 [mm].

3.3.3.2 Linear Output

The second choice of output is on the linear forecast of the cumulated rain
over a given time-laps. Different time-rain setups are tested:

• Forecast on the next day (24 [hours] forecast).

• Forecast on the next week (7 [days] days forecast).

• Forecast of the daily cumulative rain ([mm] of rain fallen in 24 [hours]).

• Forecast on the weekly cumulative rain ([mm] of rain fallen in the next
7 [days]).

One of these possibilities would for example be to predict the rain fallen
over one week in 7 days, which would mean the cumulated rain fallen from
t+ 7 [days] to t+ 14 [days].

3.3.3.3 Class Output

The last output is a classification of the different intensities of rain. The rain
values are separated in different classes using the three quartiles, and the
value of one tick (abbreviated OT) explained before (see table 3.2). Figure

Table 3.2: Different categories of rain and their corresponding distribution. Note
that the quantile (q̂) refer to a distribution where the ”no rain” values are
removed, like shown in the boxplot of figure 3.13.

Class Name Statistical Limit Range [mm] Count [%]

No Rain 0.0 - OT 0.0 - 0.2 1309 64.87
Small Rain OT - q̂(25%) 0.2 - 0.5 180 8.92
Medium Rain q̂(25%) - q̂(50%) 0.5 - 2.5 177 8.77
Heavy Rain q̂(50%) - q̂(75%) 2.5 - 11.9 172 8.52
Extreme Event > q̂(75%) > 11.9 180 8.92

3.13 shows how the data used for the current experiment are divided in
classes. As can be seen, most of the data is either contained in low, or no
rain classes.

8http://www.davisnet.com/product˙documents/weather/manuals/07395-
275˙IM˙07852.pdf
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Figure 3.13: Boxplot of the distribution of rain measurements for values > 0.2 [mm]
(upper figure). Histogram of the rain measurements (lower figure). Note that
for the histogram, the limits of the x and y axis have been modified so to
improve the readability. The limits for the Boxplot remain unchanged. The bar
corresponding to the values below 0.2 [mm] contains 1309 values.

3.3.4 Error Assessment

To assess the error of the predicted data compared to the observed data,
different statistical tools are used.

3.3.4.1 Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC), as described in Fawcett [10],
is used to assess the result of binary forecast, and is a measure on how the
prediction is better or worse than a random guess. ROC is defined as a plot
of the false positive rate (FPR) against the true positive rate (TPR). The
FPR is the ratio between the false positive, the number of predictions that
give a ”true” but should actually give ”false”, and the number of negative
observations, which is the same as the number of false positive added to the
number of true negative, the number of ”false” forecasts that are actually
observed as ”false”[10]:

FPR =
FP

N
=

FP

FP + TN
(3.12)

The TPR is the ratio between the number of true positive, the number
of predictions that give a ”true” and have the same observation, and the
number of positive observations, which is equal to the number of true positive

33



J.Giezendanner: Bayesian Wavelet Neural Networks Rainfall Forecasting

0 1

1

False Positive Rate

True Po
sitive R

ate
Random GuessBetter

Worse

Figure 3.14: Schematic representation of a Receiver Operating Characteristic
graph9. The arrow showing the direction of ”worse” states the direction in
which the prediction is worse than a random guess (red dashed line), and the
arrow showing the direction of ”better” indicates the opposite.

added to the number of false negative, which is the number of prediction
stating ”false” but that should actually be ”true” [10]:

TPR =
TP

P
=

TP

TP + FN
(3.13)

The different values of FPR and TPR are then obtained by letting the
threshold between ”true” and ”false” vary. An indicator derived from the
ROC is the area under the curve (AUC). The more the area tends towards
one, the better the prediction.

3.3.4.2 Coefficient of determination

The coefficient of determination, also called r-squared (r2) is a measure on
how much the model is performing better than the average of the data, and
is computed as [36]:

r2 =

 ∑
i (yi − ȳ)

(
ŷi − ¯̂y

)√∑
i (yi − ȳ)2

(
ŷi − ¯̂y

)2
2

(3.14)

The possible outputs are between ]−∞, 1], where 1 corresponds to a 100%
accuracy of the model. This measure is used in the case of a linear output.

9Inspired from http://commons.wikimedia.org/wiki/File:ROC_space-2.png
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3.3.4.3 Relative Root Mean Square Error

The relative root mean square error (RRMSE), is a measure of the differ-
ence between the observed and predicted data. The value is divided by the
number of elements so that the number of data point does not influence the
result, which allows for a comparison between sets of varying sizes. The
value is also divided by the average of the observed data, so that the scaling
factor does not matter anymore. Results with different amplitudes can be
compared. The equation reads as follow:

RRMSE =

√
1
N

∑N
i=1 (ŷi − yi)2

ȳ
(3.15)

The possible readings are comprised between [0,∞[, where 0 is the perfect
fit between observed and predicted data.

3.3.4.4 Confusion Matrix

The confusion matrix is used in the case of a class forecast. It describes
how the data can correctly predict a class. The computation is done in
a similar way than for the ROC. The different predictions are compared

Table 3.3: Confusion Matrix Example as presented in Tuia [16]. Note that UA
stands for ”User Accuracy”, PA for ”Producer Accuracy” and OA for ”Overall
Accuracy”. ni,j stands for the number of predictions labelled as i and with true
label j.

True Class
PA

A B . . . I

P
re

d
ic

te
d A nA,A nA,B . . . nA,I nA,A/nA,A..I

B nB,A nB,B nB,B/nB,A..I
...

...
. . .

...
I nI,A nI,I nI,I/nI,A..I

UA nA,A/nA..I,A nB,B/nA..I,B . . . nI,I/nA..I,I OA:
∑

i=A..I
ni,i/Nobs

against the true label of each class, and are summarized in a table (see table
3.3 for an example). The table can be summarized with two values per
class: the user and the producer accuracy. The first term stands for the
percentage of correct classifications for one class given all the predictions
that have this class as true label. The second term stands for the percentage
of correct classifications for one class given all the predictions that have
been assigned this label. In table 3.3, this is resumed by each element of
the diagonal divided by the sum of the corresponding column or row. The
last value which can be taken from this table is the Overall accuracy of
the prediction, with is the number of correct classifications given the total
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number of observations. In table 3.3, this is the sum of the diagonal divided
by the number of elements.

Overall, these different values give precious information on the accuracy
with which each class is predicted.

3.3.4.5 Quantitative Assessment of the Confidence Interval

As explained in section 2.2, the Bayesian Neural Networks allow for a pre-
diction with a confidence interval. As this is one of the main interest of
Bayesian Networks, it is of importance to quantitatively assess the quality
of this interval. The idea developed is to compute three values. Firstly, the

Δlower,i
Δmed,i Δmed,i

Δupper,i

Figure 3.15: Schematic representation of the three characteristic dimensions of the
confidence interval. The red dots represent the observations, the blue line the
median, and the greyed surface the 95% confidence interval.

difference between the observations bigger than the confidence interval and
the border. The second value is the difference between the median and the
observations that are within the confidence interval, and the third value is
the difference between the observations which are smaller than the lower
boundary, and the boundary. The comptuation is done as follow:

∆upper =

√∑(
ŷ97.5%,i − yi

)2
ȳ

, yi > ŷ97.5%,i (3.16a)

∆median =

√∑(
ŷ50%,i − yi

)2
ȳ

, ŷ2.5%,i < yi < ŷ97.5%,i (3.16b)

∆lower =

√∑(
ŷ2.5%,i − yi

)2
ȳ

, yi < ŷ2.5%,i (3.16c)

where N is the total number of observations, and ȳ the average over all
observations. By dividing by the mean, the scaling of the observation does
not influence the value too much. Figure 3.15 shows how the values are
computed.
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3.3.5 Inputs Choice

As specified in section 2.2.5.1, the relevance of the different inputs is done
automatically. Knowing this, it is therefore interesting to use multiple inputs
and let the algorithm decide whether the given input is relevant or not. In
this optic the following inputs have been chosen:

• Temperature, humidity, solar radiation, wind speed and wind direc-
tion, using the mean, standard deviation, minimum and maximum for
all of these observations.

• Wavelet transforms of the temperature, humidity and solar radiation.

• Time lag of 0, 1 and 2 days for each parameter.

A specific analysis on which input is necessary will be made in the discussion.

3.3.6 Training and Test Sets

The entire time-series has been divided in two sub-time series, a training an
a test set. The choice has been made to take 2/3 of the data for training
and 1/3 for the testing. Every third observation is therefore assigned to the
testing.

3.3.7 Choice of Algorithm Parameters

As can be taken from section 2.2.3, as well as from figure 3.12, different
parameters influence the way the weights are sampled:

• Number of samples.

• Number of steps for the Leapfrog.

• Step size in HMC.

• Number of samples in HMC.

To choose these constants, Neal [23] proposes to do different runs with the
same number of ”supertransitions”, which is the number of steps multiplied
by the number of samples in HMC. The total number of supertransitions
stays the same, but the number of steps is varied, and the number of samples
proportionally. The process is then repeated for different steps sizes, and
the results are analysed on rejection rate, training and testing error, as
well as spreading of the weights. Figure 3.16 shows such an analysis for
the current experiment. The first analysis that can be drawn, is on the
spreading of the parameters. The spreading is computed as the root mean
square of the parameters. The larger the value, the larger the spectrum
of the analyzed weights, which means that more different combinations are
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Supertransitions
Figure 3.16: From top to bottom: RMSE on the training set, RMSE on the testing

set, rejection rate and spreading of the parameters for a network with 10 nodes
and a total number of (steps · hmc-samples) of 35’000. The legend indicates the
step size (first value) and the number of leapfrog - steps (second value).

tried out. Small values which stay small the entire process do not display an
efficient exploration of the state space. In figure 3.16, it is relatively clear
that the only settings efficiently exploring the space are the ones using step
sizes between 0.1 and 0.4.

The second interesting information is the number of rejections. The
rejection is defined as explained in section 2.2.3.3, and the ratio is drawn
from the number of samples:

ratiorejects = # rejections/# samples (3.17)

The higher the ratio, the fewer new samples are drawn. According to Neal
[30], the ratio should be around 10 - 40%. Settings featuring a step-size of
0.1 or 0.2, and a number of steps around 100 - 300 seem to works best.
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The last information that can be drawn is the value of root mean square
of the training and test set. Of course, the lower this value, the better the
fitting will be. The resulting plots seem to indicate that a too low number of
steps might result in a bad exploration of the state space, and that a higher
number is required.

All in all, it seems that a number of leapfrog-steps around 300, with steps
sizes around 0.1 and 0.2 might be the best solution. During the experiment,
this values are taken as starting point, but are then fine-tuned according to
the values of rejection, RMSE and spreading explained here.

3.3.8 Convergence Analysis

It is important to assess the convergence of the Markov Chain to be able to
use the resulting weights. In this framework, this is done as suggested in the
toolbox presented before, by using an other toolbox, ”MCMC Diagnostics
for Matlab10”. The toolbox has been developed by the same team, and is
based on the analysis of the decorrelation time through autocorrelation of the
chain. The results which are presented in next section have all been analyzed
on convergence, and are only presented if they do converge. Additionally
to that, a burn-in time is computed, which is the time the chain requires
before the samples are uncorrelated from each-other. The burn-in samples
are then removed from the weight-set.

10MCMC Diagnostics for Matlab - http://becs.aalto.fi/en/research/bayes/

mcmcdiag/
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Chapter 4 Results

This section presents the different results obtained. As several hundred runs
with fine tuning of the parameters have been launched and processed, only
the best results are presented here for each category.

4.1 Binary Forecast

As described before, the binary output is defined as the forecast of the
presence or absence of rain. The best result obtained has an area under the

FPR0 0.5 1

TPR

00.20.40.60.81 Area: 0.85331

Median97.5% quantile2.5% quantile Threshold0 0.5 1

Rate

00.20.40.60.81 TPRFPRTNRFNR

Figure 4.1: Receiver Operating Characteristic graph on the left, with area under
the curve. On the right, the different rates are plotted against the thresholds,
which allows to find the optimal threshold.

curve of 0.85 as displayed in figure 4.1. This figure also allows to obtain the
optimal threshold value, as it is the intersection between the True Positive
rate and the True Negative rate. For this case of study, the optimal threshold

Table 4.1: Confusion matrix for the binary output, for a threshold of 0.577. The
table on the left is for training, and the table on the right for testing.

Training Observed Testing

P
re

d
ic

te
d False True False True
False 384 76 0.83 175 54 0.76
True 84 376 0.82 59 173 0.75

0.82 0.83 0.82 0.75 0.76 0.75
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is found at approximately 0.577. Figure 4.2 shows the result of the forecast
after applying a threshold of 0.577 to the probability output. As can be
seen, the forecast is relatively well done during the dry-season, but seems to
struggle with the high variability of the rain measurements during the rainy
season. Table 4.1 shows the confusion matrix for the binary output. The

Training

May 09 May 10 May 11 May 12 May 13 May 14True Negative
False NegativeThreshold at 0.577False Positive
True Positive

Rain [m
m]

0
50
100
150

Jan 10 Mar 10 May 10 Jul 10 Sep 10 Nov 10 Jan 11 Mar 11 020406080100

Testing

May 09 May 10 May 11 May 12 May 13 May 14 050100150

Jan 10 Mar 10 May 10 Jul 10 Sep 10 Nov 10 Jan 11 Mar 11 020406080100PredictionThresholdAfter ThresholdRain

Figure 4.2: Binary forecast of the presence of absence of rain. The first two plots
show the results for the training set, the other two for the test set. The first
plot of each set shows an overview of the six years of data, the second plot show
a closeup of one year.

two results of 0.82 and 0.75 for the training, respectively the testing set are
quite satisfying. The majority of the false observations come from a miss-
prediction during the rainy-season. To test the accuracy during this season,
the confidence matrix is recomputed with the data from this period of time.
By comparing table 4.1 with table 4.2, it is possible to see that most of the
miss-predicted observations occur during the rainy-season. There are three
observations which are predicted true, but should be false which are outside
of the rainy-season. The rest of the error is related to observations occurring
during this time. The overall number of false observations is drastically
reduced, but the number of miss-predictions stays around the same, which
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Table 4.2: Confusion matrix for the binary output, for a threshold of 0.577. The
table on the left is for training, and the table on the right for testing. The data
selected all occur during the rainy season.

Training Observed Testing

P
re

d
ic

te
d False True False True

False 101 66 0.60 42 42 0.50
True 81 373 0.82 56 173 0.75

0.55 0.85 0.76 0.43 0.80 0.69

leads to a much poorer prediction quality during the rainy season. Still the
overall accuracy during the rainy season is around 69% for testing, which
is not too bad. At least, the prediction on when rain actually occurs is
relatively high, which is good. The other conclusion that can be drawn from
these two matrices is the fact that the model is able to discriminate between
rainy- and dry-season.

4.2 Intensity Forecast

The forecasting of a linear output has been separated in four different out-
puts: daily cumulative rain, weekly cumulative rain, forecast at one day and
one week. This section shows the best results obtained for each configura-
tion.

4.2.1 Daily Cumulative Rain

This section presents the results for the forecast of the Daily Cumulative
Rain, the forecast of the quantity of rain fallen in one day. Figure 4.3 shows
the result for such a forecast. As can be seen, the model grossly overfits the
data, leading to a very poor test result. The tests have been done with fewer
nodes, as well as fewer inputs, but the results are always either a very poor
prediction on the training, as well as the testing set, or a complete overfit of
the model. Table 4.3 shows the different statistics for the setup. As all the

Table 4.3: Summary of the statistics for the daily forecast.

τ [days] Set RRMSE r2 ∆Upper ∆Median ∆Lower

1
tr 0.60 0.95 3.22 15.33 1.19
ts 3.23 0.00 44.94 20.85 11.62

setups were performing very poorly, as well for the seven day forecast than
for the one day forecast, only one result is shown here.
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Training

Jan 10 Mar 10 May 10 Jul 10 Aug 10 Oct 10 Dec 10 Feb 11

[mm] 020406080100

Testing

Jan 10 Mar 10 May 10 Jul 10 Aug 10 Oct 10 Dec 10 Feb 11

[mm] 050100150 Confidence IntervalMedianObservation

Figure 4.3: The plots show the rainfall forecasting of one day of cumulative rain
for a year worth of data. The first plot shows the result for training, and the
second for testing.

4.2.2 Weekly Cumulative Rain

The results for the weekly cumulative rain intensity forecast are separated
in different setups: normal wavelets (transform over the whole time-series),
causal wavelets, no wavelets, for a forecast time of one day, and for a forecast
time of one week. For all the sets, the computation was stopped when the
error for the testing set seemed to increase too much for too long. Table
4.4 shows the statistical results for the different configurations. As it can be

Table 4.4: Statistical summary of the different configurations for the weekly cu-
mulative rain. ”τ” stands for the time at which the predictions is done in the
future, ”tr” stands for training set and ”ts” for testing set.

Wavelet τ [days] Set RRMSE r2 ∆Upper ∆Median ∆Lower

Normal
1

tr 0.13 0.99 0.08 3.67 0.13
ts 0.57 0.79 1.63 6.68 4.28

7
tr 0.30 0.94 1.50 7.39 0.83
ts 0.74 0.65 5.02 5.61 6.90

Causal
1

tr 0.60 0.76 5.74 8.72 3.68
ts 0.78 0.61 7.12 5.93 6.42

7
tr 0.56 0.81 3.66 10.54 2.30
ts 0.85 0.55 5.53 7.86 7.90

None
1

tr 0.87 0.52 16.17 5.29 8.07
ts 0.95 0.43 11.94 2.62 9.86

7
tr 0.72 0.66 5.37 11.08 3.48
ts 0.94 0.44 8.92 5.31 8.30
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seen, the best configuration is the one involving a normal wavelet transform
performed over the whole data-set. The one setup involving causal wavelets
is close to the best prediction. The configurations without wavelets clearly
misses the mark. Generally speaking, the predictions seem of better quality
for a one day in the future prediction, except for the cases without wavelets,
which are around the same values. The normal wavelet transform seems to

Training

May 09 May 10 May 11 May 12 May 13 May 14

[mm] 050100150200

Jan 10 Mar 10 May 10 Jul 10 Aug 10 Oct 10 Dec 10 Feb 11

[mm] 050100150200
Testing

May 09 May 10 May 11 May 12 May 13 May 14

[mm] 050100150200

Jan 10 Mar 10 May 10 Jul 10 Aug 10 Oct 10 Dec 10 Feb 11

[mm] 050100150200 Confidence IntervalMedianObservation

Figure 4.4: Results for the normal wavelet decomposition. As indicated, the first
two plots show the results for the training set, while the two last show the result
for the test set. The first plots from each set is an overview of the whole time-
series. The second plot is a zoom on one year of the time-series which allows for
a better view on the results.

be more able to embrace the observations in the confidence interval than
the other configurations, as it can be taken from the different values of ∆.
Generally the normal wavelet transform seems to produce a better fitting.
The fitting for the causal wavelet on a one day prediction is acceptable,
but it is to notice that the training set hasn’t the same values than for the
normal set. The set without wavelets seems to perform much worse than the
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other sets, for both training and testing. Figure 4.4 shows graphically the
results for the training and testing set for the normal Wavelet transform.
The figure shows how the model seems to perform a good transition between
dry- and rainy-season. Most of the observations for the six years seem to be
explained by the model, within the confidence interval. The zoom on the
year shows that the model nicely bounds the observations most of the time.
As said before, the transition between the dry- and rainy-season seems to
be very well modeled.

Confidence Interval in [%]5 15 35 55 75 95Ratio in
 [%]

00.20.40.60.81

00.050.10.150.20.25

Confidence Interval in [%]5 15 35 55 75 9500.20.40.60.81

00.050.10.150.20.25
Average

 Confide
nce Inte

rval Wi
dth

Observation0 100Predicti
on

050100150200 Normal TrendMedian97.5% quantile2.5% quantile

Observation0 100050100150200

Figure 4.5: The first two plots show the percentage of observations that the given
confidence interval (x-axis) can explain. The red curve shows the mean width
of the confidence interval (in [mm] of rain), and the dashed red curve the mean
width but only during the rainy season. The first plot is for training, the second
for testing. The third and fourth plots show the distribution of forecasted vs
observed data, again for training and testing. The values are given in [mm] of
rain.

Figure 4.5 on the left shows the percentage of the observations that can
be explained by an increasing size of confidence interval. It is interesting to
see that the model can account for around 90% of the data for the training
set with an average confidence interval width of around 0.25 [mm] of rain.
The dashed red curve indicates the size of the confidence interval when only
the rainy-season is considered. It is interesting to see that the confidence
of the model during this time is lower than when considering the whole
time-series. The model seems to be able to predict with better accuracy
the intensity during the dry season, when no rain occurs. The figure on
the right shows the distribution of the observations when plotted against
the modelled values for the median and the 95% confidence interval. Here
the difference between a model that perfectly fits the data (the training set)
and a model which performs a bit less well can be assessed. For the training
set, the values of the mean of the model plotted against the observations
nicely follow a 45◦ slope which indicates that the model performs fairly well.
The confidence interval seems to be the most spread around observations
with low, or no intensity of rain, which indicates that the difficulty resides
in assessing the absence or presence of rain during the rainy-season. The
confidence interval narrows towards higher values which indicates that the
certainty of the forecast raises with the intensity of the rain. This can
be associated to the fact that very different conditions arise during dry and
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rainy-seasons, but both have periods without rain. The model has to account
for these differences and find weights which can predict with certainty that
there won’t be any rain during a rainy season day, but as well during the
dry-season.
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Figure 4.6: Figure showing the relative relevance of each input. The relevance is
computed from the variance of the kernel density of the first layer of hyperpa-
rameters. The first plot shows the case of a one day prediction with all wavelets,
the second with causal wavelets. The ∼n symbol represents the wavelet trans-
form of level n, µ the average, and the σ symbol the standard deviation.

Figure 4.6 shows the relative relevance of each input for the two systems
using wavelets (normal and causal) and forecasting on one day. As can
be seen in the first plot, the main feature seems to be, by far, the solar
radiation wavelet transform of level 6. The other important inputs are the
mean humidity with lagged values of up to three days. This may indicate
that the variation in humidity, as well as the long term variation in solar
radiation may significatively improve the model, as they allow to understand
the difference in atmospheric conditions.

The second plot shows the importance of the parameters for the causal
wavelets case. Here the wavelet transform of level 6 with a time-lag of three
days seems to make the difference, as well as the minimum solar radiation
with a lag of two days. The first result confirms that inputs which can assess
the changes in conditions seem important. The second parameter is harder
to interpret, as the other time-lags for the same category are not deemed
important.

To assess the importance of the other parameters, the simulations have
been rerun with only the parameters exceeding a threshold of 0.2 relative
relevance for the two scenarios forecasting on a one day time-lag. Table 4.5
shows the results of these re-runs. As can be seen, the results for the first
system is approximately the same, which points in the direction that the
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Table 4.5: Statistical summary of the runs with reduced number of inputs. The
runs correspond to a threshold of 0.2 for the relative importance of parameters
as presented in figure 4.6.

Wavelet τ [days] Set RRMSE r2 ∆Upper ∆Median ∆Lower

Normal 1
tr 0.42 0.88 3.64 7.69 2.50
ts 0.61 0.76 3.85 5.02 6.01

Causal 1
tr 0.78 0.61 12.47 7.46 6.99
ts 0.90 0.50 10.64 3.59 9.07

result strongly relies on these parameters.
The result for the second setup is further away from the setup with

full range of parameters than the other result, which tends to show that
the model with causal wavelets relies more on other parameters to fit the
observations.

4.3 Rainfall Classes Forecast

The last possibility of forecast is the prediction of intensity classes in which
the rain might be. The rain observations have been separated according to
the description in section 3.3.3.3.

Table 4.6: Confusion matrix for the classes output. ”N.R.” means ”No Rain”,
”R.C.#” means rain class 1-5, which correspond to the values described in
section 3.3.3.3.

Observed

P
re

d
ic

te
d

N.R. R.C. 1 R.C. 2 R.C. 3 R.C. 4
N.R. 498 43 23 57 55 0.74
R.C. 1 1 10 5 0 0 0.63
R.C. 2 3 30 60 22 20 0.44
R.C. 3 1 1 5 9 3 0.47
R.C. 4 1 0 1 1 6 0.67

0.99 0.12 0.64 0.10 0.07 0.68
Training

N.R. 238 26 20 20 39 0.69
R.C. 1 0 3 2 0 1 0.50
R.C. 2 4 16 29 10 10 0.42
R.C. 3 1 0 0 5 2 0.63
R.C. 4 1 1 0 0 0 0.00

0.98 0.07 0.57 0.14 0.00 0.64
Testing
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Figure 4.7 shows the results for a rainfall class forecast. As can be seen,
the forecast of the ”No Rain” class almost always benefits from a higher
probability than the other classes. The class forecast is done based on these
probabilities, where the class with the highest probability is taken as the
class being predicted. Table 4.6 shows the confusion matrix for the different

Training

00.51 No Rain
00.51 Rain up to 0.5 [mm]
00.51 Rain up to 2.5 [mm]
00.51 Rain up to 11.9 [mm]

May 09 May 10 May 11 May 12 May 13 May 1400.51 Extreme EventObservation 95 % Confidence Interval Median
Testing

00.51
00.51
00.51
00.51

May 09 May 10 May 11 May 12 May 13 May 1400.51

No Rain
Rain up to 0.5 [mm]
Rain up to 2.5 [mm]
Rain up to 11.9 [mm]

Extreme Event
Figure 4.7: Training and testing results for the five classes of rain predicted. The

orange bars show where the prediction should be assigned to this class. The
prediction is assigned to the class displaying the maximum value for the median.

classes. As can be seen, and as it was already to be assumed from figure 4.7,
the ”No Rain” class has the most forecasted data, with also the most false
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predictions which are assigned to this class. The other classes are predicted
in a way worse manner, with the ”Extreme Event” class exhibiting a 0%
accuracy for the testing set. Globally the overall accuracy of around 60%
can deemed relatively bad, especially since most of the correctly forecasted
data is in the same class.

4.4 Testing of the Results

To assess the the model outside of the scope of training and testing, and to
see if a the model can also explain rain with a completely different climatic
setup, different tests are performed. The first test is to run the training
on the same data-set, but with a different division of the two sets. As
expressed before, the data has been divided in two by using every third
observation for the testing set. To test the capability of the algorithm to
train the model, the data has been subdivided in a different manner: the set
consists of then consecutive measurements assigned for testing, followed by
twenty measurements assigned to training, and so on. This allows to assess
how much the training relies on a continuous time-series to perform a good
prediction.

Jan 10 Mar 10 May 10 Jul 10 Aug 10 Oct 10 Dec 10 Feb 11

[mm] 050100150200

Jan 10 Mar 10 May 10 Jul 10 Aug 10 Oct 10 Dec 10 Feb 11

[mm] 050100150200 Confidence IntervalMedianObservation

Figure 4.8: Zoom on one year of the result when training using 10-20 subdivision
of testing and training. r2 for training is around 0.99, and for testing around
0.15.

Figure 4.8 shows the result when training the model with this new di-
vision. As can be seen, the model has much more difficulty to predict the
correct values for the testing set. The algorithm might rely too much on
continuous data to be able to train the model with data that sparse, and
produce a model which can explain the test set. The effect of this subdi-
vision is that a large portion of the test set is not included in the model
fitting, and this might remove relevant information for the training. In any
case, due to this result, the forecasting capability of the best model might
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have to be rethought.
The second test that is proposed is to apply the weights and configuration

of the best model on a data-set outside of Tambarga, which has a completely
different climatic setup. The model has been applied on data from Tougou
(see 3.2), which is located in the North of Burkina Faso, and is subject to
much higher temperature and lower rain intensities. Figure 4.9 shows the
result from this experiment. As can be seen, the model does not predict the

May Jul Sep Nov Jan Mar May

[mm] 02004006008001000 Confidence IntervalMedianObservation

Figure 4.9: Best model applied to data from the location of Tougou for the year
2014 - 2015.

precipitation values correctly. The model is therefore subject to strong local
conditions and not a generally valid physical model.
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Chapter 5 Discussion

This section discusses the different results obtained and assesses the strength
and weaknesses of the approach.

5.1 Overall

From the different results displayed in the previous chapter, the best working
ones were the binary output, as well as the weekly windowed cumulative rain
forecast. The daily rain forecast performed very poorly, which renders it
unusable. The classes output seems to be unable to efficiently discriminate
between rain classes, which makes it not very promising. The classes forecast
might be subject to the same issue than the daily forecast; the high rain
values variability between days might be of too high complexity for the
model to accurately make a prediction. One might ask the question on why
the binary output was able to mostly successfully forecast the absence or
presence of rain. The main difference between the class, as well as the daily
forecast, and the binary forecast is the range of data which has to be taken
into account. In the binary forecast, there is no discrimination between an
extreme event and a small rain event, so if a combination of parameters
allows to generally explain the absence or presence of rain, the forecast can
be of good quality. For both the classes forecast and the daily prediction,
the task is much more complicated. The prediction has to account for all the
variations. The daily forecast has an even greater burden, as it has to predict
the exact value. The other problem with the classes forecast compared to
the binary, is that the class ”No Rain” has much more observations than
all the other classes (see table 3.2). The training algorithm, in its eagerness
to reduce the error, will be able to greatly reduce it by fitting the model to
the ”No Rain” class. This is why the confusion matrix displays such a high
correctness for this class, and not the others. To overcome this problem, the
algorithm should take into account the number of observations, by weighting
the error proportionally to the number observations per class.

Generally, the discrimination between dry- and rainy-season seems to
have worked well, as can be taken from the evaluation of the binary output.
For the linear output, the size of the confidence interval only varies in a
small manner when taking into account all the data or only the rainy-seaon,
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which indicates that the error on the dry-season is really low, and therefore
well modeled.

5.2 Solution Surface

The characteristics of the solution surface seem to matter a lot in the qual-
ity of the prediction. Figure 5.1 shows how the daily variability and the
smoothness of the observations vary when the daily cumulled rain is taken,
or when it is passed through a moving weekly filter, as used in this work. As

May 09 May 10 May 11 May 12 May 13 May 14Rain [m
m]

050100150200 Daily RainMoving Weekly Sum

Jan 10 Mar 10 May 10 Jul 10 Aug 10 Oct 10 Dec 10 Feb 11Rain [m
m]

050100150200

Time Lag [days]0 100 200 300 400 500 600 700 800 900Correlat
ion

00.20.40.60.81

Figure 5.1: Plot of the daily rain and the rain passed through the moving summing
window, overview and close-up. The third plots shows the autocorrelation of
each of the two sets.

it can be seen, the data after filtering is much smoother, and the temporal
variability much lower. The third plot shows the autocorrelation of both
time-series. As shown, the daily values have a much higher variation at
fine time-scales than the filtered, which indicates that the changes between
days are much harsher than for the filtered data. Predicting a smoother
surface seems definitely easier than a rough surface, as it can be seen from
the results. Indeed, the lower variability in the observations makes it easier
to express general trends as well as general assumptions about the data.
The inputs can be better generalized by the net and therefore allow to ex-
press configurations as cases which have approximately already occurred,
therefore allowing a prediction of much better quality.
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The scaling of the inputs as well as the observations using normalization
has shown a significant improvement in the model accuracy. The other
modification of the solution space introduced previously (logarithm, etc.)
have not shown particularly better results. These transform only rescale the
solution space, which means that they do not allow for a smoother solution
space. The normalization has helped because it brings the different time-
series in the same range.

5.3 Input Relevance

Generally speaking, as stated in Neal [23] and Partal et al. [19], the more
inputs, the better the result. As can be taken from the runs with reduced
number of inputs (see table 4.5), the quality of the result is not quite as sat-
isfactory as the results with all the parameters, even if close. The additional
parameter seem not to add unwanted noise in the model, but rather ex-
plain small variability in the solution surface. By comparing figure 4.4 with
figure A.1, it can be seen that the setup using fewer inputs has a harder
time modelling the peaks, as well as the succession of low and high values.
The assumption can therefore be made that by using more inputs, the ex-
tremes during the rainy-season are better modeled. This is confirmed when
comparing the case of causal wavelets, figure A.3 with figure A.5, where
the succession of low and high values is better modeled with more inputs.
The fact that the causal wavelets with fewer inputs is unable to successfully
model the extremities of the distribution is confirmed in figure A.6, where
it can be seen in the scatter plots that the values are grandly modeled as
mid-values, and the lower and higher values mostly ignored. The histograms
on the right, showing the confidence interval quality shows that the interval
needs to get relatively large until around 60% of the data can be explained,
which confirmes the previously made hypothesis.

5.3.1 Wavelets

As suggested in the results, the usage of wavelets seem to significantly im-
prove the performance of the model, at least for the weekly cumulated data.
The wavelet transform seems to efficiently capture the changes in atmo-
spheric conditions and translate them into the model. When comparing
figure 4.4 (normal wavelet transform) and A.3 (causal wavelet transform) to
figure A.7 (no wavelet transform), the inability to move between high and
low predictions seem to rise again. In the case of no wavelets, the predic-
tions are all in-between the minimum and the maximum of the observations,
without being able to capture the alterations during the rainy-season. The
wavelet transform seems to be able to express these variations. By compar-
ing the figures, an other statement can be made, which is that the model
performs significantly better during the dry-season when wavelets are used.
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Again, this can be taken back to the fact that the wavelets allow to capture
the variations in climatic conditions and therefore ”understand” that there
can not be rain during the dry-season.

There is still a gap in performance between the normal and causal wavelet
transform. It would be interesting to improve the quality of the causal
wavelet transform to improve the quality of the model.

5.4 Overfitting, Relevance of the Prior and Auto-
matic Relevance Determination

As seen in the results, the prediction of precipitation for one day of cumula-
tive rain overfits grossly. As described previously, this might be because of
the complexity of the underlying non-linear phenomena. The precipitation
might be so complex to predict, that only certain combinations of weights
and inputs exactly explaining the observation produce an adequate result.
These setups, working perfectly for the training set, do not express a general
model valid for more than this set, leading to gross overfitting.

As mentioned before, Nourani et al. [21] stated that the wavelet might
not significantly improve the results for a weekly or daily forecast. The
results show that they were right for the daily forecast, but the wavelets
definitely made a huge difference for the weekly windowed case, even when
only using causal wavelets.

Neal [23] states that overfitting should not occur, except for a bad choice
of priors. As explained in Lampinen et al. [26] and Vehtari et al. [25], select-
ing an appropriate prior requires a lot of experience or a high understanding
of the underlying processes, both of which the author might not have. The
experiments have been run with different priors, which includes large non-
informative priors (priors with high scale and standard deviation). When
using large enough priors, the model did not overfit anymore, but the sam-
pling did not produce any interesting outputs, as the weights continuously
change without any improvement. With large priors, the degree of liberty of
the weights might be too big to find appropriate solutions to the problem,
and the sampling wanders around in the solution space without finding any
acceptable solution, which might correspond to a random walk behaviour.

Automatic Relevance Determination, as well as using two level of hyper-
parameters for the error modeling described in Lampinen et al. [26], made
a huge difference in the quality of the prediction for the weekly cumulative
sum, as well as the binary prediction. The model was of very poor quality
prior to introducing these concepts, and the values obtained in the results
section all use these techniques. ARD and the error hyperparameters allow
to deal with large quantity of inputs without having to worry about the
relevance of the inputs, as they are autoregulated.

54



J.Giezendanner: Bayesian Wavelet Neural Networks Rainfall Forecasting

5.5 Size of the Net

The size of the net has not made a big difference as the weights multiplying
the outputs of the hidden nodes are also regulated by hyperparameters. The
size of the net greatly negatively impacts the computational time, because
for each node, (#inputs + #outputs + 1) new weights are added to the net. For
this reason, nets with a small number of hidden nodes are preferred.

The number of weights does not either seem to be the cause of overfitting,
as greatly reducing it does not lead to better results for the linear output.
On the other hand, for the classes output, limiting the number of nodes to
a low value (5-10) seemed to produce better results.

5.6 Forecasting Capability and Physicality of the
Model

With regard to the results presented in section 4.4, the forecasting capability
of the model has to be discussed. The question that arises is whether the
model actually forecasts the precipitation in the test set, or if these values
are just found by chance. In the training process, the data used for testing
is not ”seen” by the algorithm. The algorithm therefore trains the model
to the best of its possibilities, regardless of whether the test set is actually
respected or not. The weights are therefore optimized for given situations,
or characteristical combinations of inputs. The training algorithm operates
the training regardless of the fact that the data is given as a time-series,
except for the use of lagged values and wavelet transforms. To the algorithm
everything is just input and corresponding output. The fact that the model
performs well on the training set is therefore enough to justify the forecasting
capability of the net.

The question then arises to why the net performs significantly worse
in the new selection of training set. The training algorithm optimizes its
weights so that it works for the set it is allowed to use. The problem of
this approach, is that the model can only perform well on situations that
are known. Situations that have no statistical similarity to other setups,
and climatic configurations which are unknown to the model will perform
significantly worse, as they are out of scope of the model. If a year of
data outside of training were completely different from the other years, the
model would maybe be able to show the general trend, but not the exact
rainfall. Additionally to that, using a test set which has observations that
are that much apart, the data are not representative of the overall processes,
which does not allow the model to be well trained. The model assumes that
the input and output data do not change much outside of the scope of
the training, and are therefore valid for situations which are similar. The
problem is that in the present case, the climatic parameters vary much in
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space and time, which is one reason why the best model performs very
poorly on the data from Tougou. The model is optimized and valid for local
data, with local physical phenomena, not globally for global phenomena. It
would be interesting to train a net on data from different locations to predict
spatially distributed data.
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Chapter 6 Conclusion

This chapter serves as conclusion to the project, discusses the achievements,
the lows and the highs of the implementation and provides an outlook into
the possible future work that could be done. The last part is a personal
conclusion from the author on the project.

6.1 General

The work achieved provides a good introduction and background to enable
a future use of Bayesian networks in the context of the prediction of local
rainfall, and later of snails for the fight against schistosomiasis. The po-
tential of the binary output is relatively high, as it allows to forecast with
a satisfying certainty if rain is going to fall on the next day. The weekly
cumulative rain output as well provides some insight in the precipitation
forecast. When combining both outputs, it might and should be possible to
make a decision on when to intervene on the snail population.

The potential of the Bayesian Neural Networks in terms of uncertainty
has not been used to its full extent when binary forecasts were done. It would
be interesting to develop a method to include this in the binary decision.

The goal to exactly predict the daily precipitation one day in the fu-
ture has not been achieved, but as already stated, when combining the two
working outputs, this can give good indications on future precipitation.

The forecast provided a good discrimination between dry- and rainy-
season, as most of the error observed originated from the rainy-season. This
has mostly been achieved by using the wavelet transform. Wavelet transform
is also one of the reason for the good forecast on the binary output, as well
as on the weekly cumulative rain.

6.2 Outlook

The quality of the forecast still needs to be verified in a live implementation.
For this, it could be interesting to train the network on all available data, and
to forecast one day at a time, renewing the training every day. For classical
ANNs, a technique called on-line learning has been developed, where the
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model is constantly adapted to the new inputs that are given, as opposed
to batch-learning, which is the way it is done in this framework. This way,
a model which has only to be valid for the next day could be developed,
which might be easier to train correctly than a model valid for six years.
The prediction would then be: the probability, or intensity, of rain for next
day knowing all the data available.

As stated before, wavelets did improve the quality of the forecast sig-
nificantly, and the normal wavelet transform even more. A next step to be
able to extend the power of normal wavelets to causal wavelets would be to
model the parameters used for precipitation forecasting (temperature, solar
radiation, humidity, etc.), and then to perform a wavelet transform on these
new data. This could eventually reduce the border effect, but it might also
be that the error on the parameter estimation propagates to the wavelets
transform, and therefor introduces a new error in the precipitation model.

A further development that could be made is to include other parameters
in the data set. At some stations, especially the more recent ones, the
pressure is for instance measured. It would be interesting to include this
parameter in the model, as precipitation is strongly related to pressure.
Variations in the use of the same parameter could then possibly be removed,
for instance only use the mean and standard deviation of each parameter.

For the classes output, it would be interesting to implement a condition
on the number of observations per class so that the model does not try to
only fit this class.

For the linear output, it might interesting to test other time-scales, like
hourly precipitation, or an even higher time-resolution, as the transition
between rain- and no-rain-states might be smoother. A problem with this
approach might then come from even bigger gaps in the time-series, which
are already a problem at the currently used time-scale.

As soon as enough data has been gathered, it would be interesting to
perform the same experiences on the data from the other locations. As the
climatic conditions vary a lot, it would be interesting to see the performance
of the different forecasts in this situation. Once this is done, the natural next
step would be to forecast in a spatially distributed manner, over several
locations at the same time.

6.3 Personal Conclusion

In the short time allocated to this project (4 months), I grasped at the
surface of understanding the full extent of these incredible tools which are
Bayesian Neural Networks. The power and applications of these techniques
are incredible and very large if well implemented. Getting to understand
these concepts was a real struggle, but in the end it is very satisfactory to
get to further understand a technique in machine learning as powerful as

58



J.Giezendanner: Bayesian Wavelet Neural Networks Rainfall Forecasting

Bayesian Neural Networks. Getting to work with these machine-learning
tools on environmental problems is something I wanted to be doing for a
long time. The use of time-series and real-world data in this context brings
a right amount of challenges to the table, as problems like missing values,
discontinuity in the time-series, error in the measurements etc. have to be
dealt with which are usually less part of the problem in robotics or when
using synthetic data like I was used to. But the harder the challenge, the
greater it feels when the techniques applied seem to start to work. The time
I was involved in this project was very pleasant, and I enjoyed every part of
it.
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Annexes

The annexes contain different figures and tables which were not included in
the main report to improve its readability.

The first table presented shows the different parameters used for training
for the different setups.

Table A.1: Summary of the different setups used for the experiments. ”b” stands
for binary, ”l” for linear, ”lc” for linear with weekly cumulative rainfall, ”c”
for classes, ”N,C,No” for Normal, Causal, respectively No Wavelets, ”S” for
samples, and ”L-steps” for leapfrog-steps.

Case
S S HMC L - Steps Step-size Nodes

Output Wavelet τ

b N 1 85 100 400 0.2 10
l N 1 121 20 300 0.1 10
lc N 1 134 30 500 0.2 10
lc N 7 221 20 300 0.14 10
lc C 1 241 117 300 0.2 7
lc C 7 181 20 300 0.15 10
lc No 1 221 20 300 0.15 10
lc No 7 421 20 300 0.15 10
c N 1 122 50 300 0.14 5

All the values were drawn from the results obtained and explained in
section 3.3.7.
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ANNEXES

The following figures all come from the implementation of the weekly
cumulative rainfall, with a time forecast τ of one day. The different setups
are explained in the caption of each figure.
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Figure A.1: Results for the normal wavelet decomposition after variable selection.
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Figure A.2: Error plots for the normal wavelet decomposition after variable selec-
tion.
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Figure A.3: Results for the causal wavelet decomposition.
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Figure A.4: Error plots for the causal wavelet decomposition.
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Figure A.5: Results for the causal wavelet decomposition after variable selection.
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Figure A.6: Error plots for the causal wavelet decomposition after variable selection.
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Figure A.7: Results for the case without wavelets.
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Figure A.8: Error plots for the case without wavelets.
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