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A B S T R A C T

Functionalization of a soft or liquid-liquid interface by a one gold nanoparticle thick “nanofilm” provides
a conductive pathway to facilitate interfacial electron transfer from a lipophilic electron donor to a
hydrophilic electron acceptor in a process known as interfacial redox catalysis. The gold nanoparticles in
the nanofilm are charged by Fermi level equilibration with the lipophilic electron donor and act as an
interfacial reservoir of electrons. Additional thermodynamic driving force can be provided by
electrochemically polarising the interface. Using these principles, the biphasic reduction of oxygen by
a lipophilic electron donor, decamethylferrocene, dissolved in a,a,a-trifluorotoluene was catalysed at a
gold nanoparticle nanofilm modified water-oil interface. A recently developed microinjection technique
was utilised to modify the interface reproducibly with the mirror-like gold nanoparticle nanofilm, while
the oxidised electron donor species and the reduction product, hydrogen peroxide, were detected by ion
transfer voltammetry and UV/vis spectroscopy, respectively. Metallization of the soft interface allowed
the biphasic oxygen reduction reaction to proceed via an alternative mechanism with enhanced kinetics
and at a significantly lower overpotential in comparison to a bare soft interface. Weaker lipophilic
reductants, such as ferrocene, were capable of charging the interfacial gold nanoparticle nanofilm but did
not have sufficient thermodynamic driving force to significantly elicit biphasic oxygen reduction.

ã 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

An interface between two immiscible electrolyte solutions
(ITIES) or a “soft” interface is an attractive platform at which to
assemble nanoparticles (NPs) due to its electrochemical polar-
isability, inherent defect-free nature, mechanical flexibility and the
ease with which NPs may be manipulated and precisely tuned
therein [1–8]. A burgeoning area of research is concerned with the
biphasic electrocatalysis of redox reactions of interest for energy
research, including the oxygen (O2) reduction reaction (ORR) [9–
19] and the hydrogen (H2) evolution reaction (HER) [20–28], using
soft interfaces functionalized with molecular species, metallic NPs
or inorganic non-precious metal-based materials. The use of
adsorbed solid particulate electrocatalysts at electrochemically
polarisable soft interfaces has recently been reviewed by Dryfe and
co-workers [29].

Whereas several reports have highlighted the catalysis of
biphasic reactions by (i) facilitating the transfer of protons
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[12,30,31], or other ions [17], across the soft interface and (ii)
the use of interfacial species, either molecular [12,32,33] or solid
particulates [22,26], to coordinate reactants to enable electro-
catalysis, far less common is (iii) the use of NPs as bipolar
electrodes to facilitate catalysis via direct interfacial electron
transfer (IET) between a lipophilic electron donor and a
hydrophilic electron acceptor or vice versa [8]. Such a process is
termed interfacial redox catalysis.

The nature of an adsorbed metallic NP in terms of its ability to
store or discharge electrons significantly influences its effective-
ness to facilitate interfacial redox catalysis. Gold NPs (AuNPs) can
be regarded as multivalent redox species with a wide range of
oxidation states that may be charged or discharged by Fermi level
equilibration with redox couples in solution [34]. Recently, we
highlighted the use of soft interfaces functionalized with one AuNP
thick “nanofilms” to catalyse IET between a lipophilic electron
donor (D) redox couple, ferrocenium cation/ferrocene (Fc+/0), and a
hydrophilic electron acceptor (A) redox couple, ferri/ferro-cyanide
([Fe(CN)6]3�/4�) [8]. Similarly, Dryfe and co-workers catalysed IET
between the same lipophilic electron donor and hydrophilic
electron acceptor redox couples by functionalizing the soft
interface with adsorbed conductive carbon nanomaterials, such
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as few-layer graphene and carbon nanotubes [35]. Furthermore,
they exploited IET mediated by these adsorbed carbon nano-
materials to functionalize the latter with metallic NPs by in situ
electrodeposition at the soft interface [35–37]. Finally, in situ
generated reduced graphene oxide (RGO) at soft interfaces was
shown to facilitate IET and enhance the kinetics of biphasic O2

reduction in the presence of lipophilic electron donors [18].
Herein, we demonstrate that AuNP nanofilms catalyse IET

across a soft interface from an electron donor in the organic phase
to O2 dissolved in the aqueous phase, allowing biphasic O2

reduction to proceed via an alternative mechanism with a much
lower overpotential to that reported at bare soft interfaces. O2 is
biphasically reduced to H2O2, followed by further reduction or
decomposition of the latter to water. Voltammetry studies
revealed that while both strong, i.e., decamethlyferrocene (DMFc),
and weak, i.e., Fc, lipophilic electron donors were capable of
injecting electrons into the AuNP nanofilm, thereby charging it,
only DMFc was capable of significantly reducing aqueous O2 by
interfacial redox catalysis. The latter is discussed in terms of Fermi
level equilibration of the redox couples in solution with the AuNPs
at the soft interface.

2. Experimental

2.1. Chemicals

All chemicals were used as received without further purifica-
tion. All aqueous solutions were prepared with ultra-pure water
(Millipore Milli-Q, specific resistivity 18.2 MV�cm). Bis(triphenyl-
phosphoranylidene)ammonium chloride (BACl, 98%), tetrapropy-
lammonium chloride (TPropACl, 98%), LiCl, >99%, LiOH�H2O, HCl
(32% solution) and ferrocene (Fc, 98%) were purchased from Fluka.
Lithium tetrakis(pentafluorophenyl)borate ethyl etherate (LiTB-
DEE purum) was purchased from Boulder Scientific. Hydrogen
tetrachloroaurate(III) hydrate (HAuCl4�3H2O, 99.999%, 49% Au),
and decamethylferrocene (DMFc, 99%) were provided by Alfa
Aesar. Silver nitrate (AgNO3, 99%) was bought from Chempur and
ascorbic acid (C6H8O6) from Reidel-de-Haem. Trisodium citrate
dihydrate (Na3C6H5O7�2H2O, 98%), tetrathiafulvalene (TTF, �99%)
and the organic solvent a,a,a-trifluorotoluene (TFT, 99%+) were
purchased from Acros. Bis(triphenylphosphoranylidene)ammoni-
um tetrakis(pentafluorophenyl) borate (BATB) was prepared by
metathesis, as described previously [38].
Fig. 1. (A) Picture of a soft water|TFT interface in a 4-electrode electrochemical cell fun
methanol suspended AuNPs (note the TFT phase on the bottom contains 1 mM Fc in this i
configurations used for 4-electrode cyclic voltammetry measurements at (B) the ITIES
determine the amount of H2O2 generated by interfacial redox catalysis.
2.2. Functionalization of the soft interface with a AuNP nanofilm

Citrate-stabilised colloidal AuNP solutions were synthesised by
either Turkevich and Fren’s method [39,40], for 12 nm mean
diameter NPs, or Park’s method [2], for 38 nm mean diameter NPs.
Comprehensive details of the synthesis and characterisation of
both colloidal AuNP solutions used herein are available in
reference [8]. Additionally, the methodology required to function-
alize the water|TFT interface in a 4-electrode electrochemical cell
with a flat mirror-like nanofilm of AuNPs (see Fig. 1A) by controlled
interfacial microinjection of methanol suspended AuNPs to the
vicinity of the interface was described in detail previously [8].

2.3. Electrochemical measurements

Cyclic voltammograms (CVs) at bare and AuNP nanofilm
functionalized water|TFT interfaces were recorded in duplicate
under both ambient aerobic conditions and anaerobic conditions
using a PGSTAT101 (Metrohm, Netherlands) potentiostat and a
four-electrode electrochemical cell. Anaerobic conditions were
achieved using a nitrogen filled glove box. Also, CVs were recorded
in a configuration whereby the aqueous and organic phases were
physically separated but electrically connected by 3 mm diameter
gold disk electrodes, enabling the selective observation of electron
transfer alone across the interface without interference from ion
transfer. This is a variant of the “electronic conductor separating
the oil-water interface” (ECSOW) configuration reported by Osakai
for studying simple electron transfer processes at the ITIES without
interference from ion transfer [41]. The electrochemical cell
configurations used are outlined in Fig. 1B and C. The effect of
pH on the interfacial electron transfer was studied by tuning the
initial pH value in the aqueous phase of the electrochemical cell
depicted in Fig. 1B by addition of freshly prepared HCl or LiOH
solutions with final concentrations of 1 mM each. This resulted in
pH values of ca. 3 and 11, respectively.

2.4. “Shake-flask” experiments to quantify biphasic H2O2 generation

A shake-flask experiment was designed (see Fig. 1D) to (i)
identify if the biphasic O2 reduction product H2O2 was formed and,
if so, (ii) quantify the amount of H2O2 generated as a result of
interfacial redox catalysis in the presence of a AuNP nanofilm. A
sub-monolayer film of 38 nm mean diameter AuNPs with a similar
ctionalized with a mirror-like nanofilm of AuNPs after interfacial microinjection of
nstance). Schematic representations of the compositions of the electrochemical cell

 and (C) with separated phases. (D) Schematic of the “shake-flask” experiment to
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AuNP surface coverage to that investigated electrochemically by
CV was self-assembled at the water|TFT interface, as described
previously [7], with some minor adjustments. Firstly, to minimise
the influence of tetrathiafulvalene (TTF; 0.18 mM) on the biphasic
O2 reduction, the DMFc concentration in the TFT organic phase was
approximately 20 times higher (4 mM). Then, once a large droplet
of TFT was functionalized with a AuNP nanofilm, a 1 mM aqueous
LiTB-DEE solution was added to the shake-flask, followed by
stirring for 5 minutes. Partition of hydrophobic TB– polarised the
soft interface positively to ca. 0.6 V [12,42]. After 5 minutes the TFT
phase turned green, indicating the generation of DMFc+. The
mixture was immediately transferred to a polypropylene tube and
centrifuged at 2000 RPM for 10 minutes in order to obtain
complete phase separation. The amount of H2O2 produced and
present in the aqueous phase was analysed by the iodide method,
as described in detail previously [18], and the % conversion of DMFc
to DMFc+ (lmax = 779 nm) was determined by UV/vis spectroscopy
(the optical path was 1 cm). The short timescale of the experiment
minimised the influence of the uncatalysed ion transfer – electron
transfer (IT – ET) biphasic ORR mechanism, discussed vide infra, as
that reaction typically takes more than 30 minutes [43].

3. Results and discussion

3.1. Biphasic O2 reduction by the ion transfer – electron transfer
mechanism

To date, the vast majority of biphasic O2 reduction studies have
been carried out under acidic conditions involving an ion transfer –

electron transfer (IT – ET) mechanism (see equations (1) and (2))
whereby the soft interface acts as proton pump, i.e., proton IT is
initiated by varying the interfacial Galvani potential difference
across the water|organic interface, Dw

o f, externally using a
potentiostat or chemically by distribution of a salt [19]. The ET
reduction step then proceeds homogeneously with reduction of O2

dissolved in the organic phase by a suitable lipophilic electron donor,

D0
o; typically TTF or Fc and its derivatives, dimethylferrocene

(DiMFc) and DMFc.

2Hþ
wA

IT
2Hþ

o ð1Þ

2D0
o þ 2Hþ

o þ O2;o !ET 2Dþ
o þ H2O2;o ð2Þ

where w and o denote the water and organic phases, respectively.
The IT step can be catalysed by the presence of various aniline
derivatives [9,30] and free-base- or metalloporphyrins [44,45],
porphines [42] or phthalocyanines [31] in the organic phase and
the desired reduction product (H2O versus H2O2) can be favoured
by interfacial assemblies of cobalt porphyrins [12,32,33] or choice
of electron donor [10].

Recently, biphasic O2 reduction has been achieved under
neutral and alkaline conditions [17]. Therein, the ET reduction of
organic solubilised O2 was facilitated by IT of hydrated metal
cations (M+) across the soft interface (see equations (3) and (4)).

M H2Oð Þm
� �þ

wA
IT

M H2Oð Þm
� �þ

o ð3Þ

2D0
o þ 2 M H2Oð Þm

� �þ
o þ O2;O !ET 2Dþ

o þ 2½MðH2OÞm�1ðOHÞ�o
þH2O2;o ð4Þ

where m is the number of water molecules within the metal ion
hydration sphere. However, to initiate such an IT required a
substantial positive polarisation of the soft interface (Dw
o f�

+500 mV) [17].

3.2. Interfacial redox catalysis

Following on from our previous work on interfacial redox
catalysis at AuNP nanofilm functionalized soft interfaces [8], this
work focuses on interfacial redox catalysis of biphasic O2

reduction. The general mechanism for interfacial redox catalysis is:

D0
o þ AuNPZ

intADno
o þ AuNPZ�no

int ð5Þ

A0
w þ AuNPZ�nw

int AA�nw
w þ AuNPZint ð6Þ

where A0
w is an aqueous electron acceptor (O2 in experiments as

discussed below), int denotes the interface, and z is the charge on
the AuNP. As we have shown previously, at equilibrium the Fermi
level of the electrons in the aqueous redox couple (EwF ) is equal to
that in the organic redox couple (EoF). EwF is given by the Nernst
equation and the Galvani potential of water (also called the inner
potential; fw) on the absolute vacuum scale (AVS) taking the
electron at rest in vacuum as the origin (in kJ mol�1):

EwF ¼ �F E0A0
w=A

�
w

h iw
SHE

þ RT
nwF

ln
cb
A0
w

cbA�
w

0
@

1
Aþ fw þ E0Hþ= 1=2H2

h iw
AVS

2
4

3
5 ð7Þ

where E0Hþ= 1=2H2

h iw
AVS

= 4.44 V is the potential of the standard

hydrogen electrode (SHE) on the AVS, E0A0
w=A

�
w

h iw
SHE

is the standard

redox potential of the aqueous electron acceptor, nw is the number
of electrons exchanged in equation (6), cb

A0
w
and cbA�

w
are the bulk

concentrations of the oxidized and reduced forms, respectively, of
the electron acceptor in the aqueous solution and, finally, fw the
inner potential defined by fw= xw+ cw, where xw is the surface
potential and cw is the outer potential of the aqueous phase. Note
that in ref. [8] the Fermi level of electrons was written similarly, EoF
being given by:

EoF ¼ �F E0Dþ
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0
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By polarising the soft interface using an external power supply,
i.e., varyingDw

o f, EoF is changed with respect to EoF , and ET takes place
to reach a new equilibrium at the interface [8]. In the case of the
AuNP nanofilm, the Fermi level of electrons in the nanofilm (ENPF )
adjusts so that both reactions (5) and (6) happen at the same rate. If
back-reactions can be neglected, the steady-state ENPF can be
estimated as:

ENPF ¼ 1 � awð ÞnwE
w
F þ aonoE

o
F

� �
1 � awð Þnw þ aonoð Þ

� RT
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0
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s
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o

2
4

3
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where k0 is the potential independent rate constant, A is the area
available for the reaction (being either that of a single NP or of an
“island” of electronically interacting NPs), a is the charge transfer

coefficient (commonly close to 0.5), cs
A0
w
is the concentration of A0

w

at the surface of the AuNP nanofilm on the aqueous side of the

interface and cs
D0

o
is the concentration of D0

o at the surface of the

AuNP nanofilm on the organic side of the interface. It is worth
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noting that the position of ENPF is determined by the surface
concentrations of the donor and acceptor species and not their
bulk concentrations, as concentration polarization occurs.

3.3. Insights into the mechanism of biphasic O2 reduction on AuNP
nanofilm modified soft interfaces in the presence of lipophilic electron
donor redox couples by cyclic voltammetry

Cyclic voltammograms (CVs) of the relatively weak lipophilic
electron donor Fc, with a standard redox potential in TFT vs. SHE

E0Fcþ=Fc
h iTFT

SHE

� �
of +720 mV [8], in the presence and absence of

interfacial AuNP nanofilms formed with either 12 or 38 nm mean
diameter AuNPs, at neutral pH and under either aerobic or
anaerobic conditions are shown in Fig. 2A-B.

Blank CVs, without Fc or the AuNP nanofilm present, show that
the polarisable potential window was limited by IT of Li+ and Cl– at
the positive and negative ends of the potential window,
respectively. No detectable IT response for Fc+ was observed
within the potential window in the absence of the AuNP nanofilm,
indicating that the IT-ET mechanism at neutral pH with Fc
(equations (3) and (4)) is kinetically limited [8]. Nonetheless, on
functionalization of the interface with a AuNP nanofilm, a
significant IT response was observed at the characteristic half-
Fig. 2. Cyclic voltammograms (CVs) at bare and AuNP nanofilm modified soft interfaces a
interfacial region, (A) and (B) Fc+ (Dw

o f1=2(Fc
+) = +115 mV) and (C) and (D) DMFc+ (Dw

o

38 nm mean diameter AuNPs, respectively, by Fermi level equilibration under(A
evidence of (C), (D) interfacial electron transfer between DMFc and aqueous O2 vi
Dw

o f = 50 mV under aerobic conditions only. The electrochemical cells used are de
electron donor (x = 0) at a bare soft interface. The scan rate was 25 mV s�1 in a
wave IT potential of Fc+ at the water|TFT interface (Dw
o f1=2

(Fc+) = +115 � 5 mV). The latter wave was also observed under
anaerobic conditions (Fig. 2B) indicating that interfacial Fc+ was
predominantly generated by charging of the AuNP nanofilm
(equation (5)).

Next, we considered biphasic O2 reduction by a stronger

electron donor, DMFc ( E0DMFcþ=DMFc

h iTFT
SHE

= +80 mV) in Fig. 2C. Unlike

Fc, solutions of DMFc always contain some oxidised DMFc+ species
leading to an IT response at Dw

o f1=2 (DMFc+) = –258 � 5 mV. The
peak current after the reversal of the sweep direction at the
positive end of the potential window is smaller in comparison with
the situation for a blank cell (Fig. 2C). Additionally, the magnitude
of the DMFc+ IT response diminishes considerably under anaerobic
conditions (Fig. 2D), indicating that most of the DMFc+ was
generated during biphasic O2 reduction as detailed in equations (3)
and (4). On functionalization of the interface with a AuNP nanofilm
under aerobic conditions, the magnitude of the DMFc+ IT response
increased dramatically and an irreversible wave with an onset
Dw

o f of approximately +50 mV was observed (Fig. 2C). The role of
O2 was further clarified as, under anaerobic conditions, in the
presence of an AuNP nanofilm, the enlarged DMFc+ IT response
remained but the irreversible wave disappeared, with the potential
llow the detection of the oxidised lipophilic electron donor species generated in the
f1=2(DMFc+) = –258 mV), after charging of the interfacial AuNP films of 12 and
),(C) aerobic and (C), (D) anaerobic conditions. Secondly, CVs provide clear
a the AuNP nanofilms due to the appearance of a significant current wave at
scribed in Fig. 1B, with a blank cell being a CV taken in the absence of an
ll cases. Also note in (D) Dw

o f1=2(TPropA
+) = –19 mV.



Fig. 3. Comparison of CVs (iR compensated) recorded at an ITIES separated by a
nanofilm of 38 nm AuNPs and physically separated oil-water phases electrically
connected with 3 mm diameter gold electrodes. Scan rate is 50 mV s�1 in all cases.
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window once more limited by the IT of Li+ at positive potentials
(Fig. 2D). Thus, in the absence of O2, DMFc+ was generated
predominately by charging of the AuNP nanofilm (equation (5)),
similar to the case of Fc.

IET from lipophilic DMFc to aqueous solubilised O2 is
responsible for the irreversible voltammetric wave at +50 mV,
i.e., the positive current is due to the flow of negative charge
(electrons) from the organic to aqueous phase via the conducting
AuNP nanofilm. Crucially, the observation of this wave at an
applied Dw

o f significantly below that required for IT of hydrated Li+

(a key step in the biphasic reduction of organic solubilised O2 [17])
is clear evidence that, under the experimental conditions
described herein, aqueous solubilised O2 is indeed being reduced
(discussed more below). The reaction took place much faster with
the AuNP nanofilm present (tens of minutes) than is the case for
the Li+ IT induced mechanism (equations (3) and (4)), which occurs
on the time-scale of hours. Hence, the AuNP nanofilm acts as an
interfacial redox catalyst. The charging of the AuNP nanofilm by
Fermi level equilibration is discussed in further detail vide infra.

The magnitude of the IT responses for DMFc+ were greater for
the 38 nm AuNP film probably due to the more oxidised state of the
38 nm AuNPs in comparison with the 12 nm ones (in other words,
the 38 nm AuNPs required more electron donor molecules to reach
the same Fermi-level as the 12 nm ones). Additionally, larger
particles have higher capacitance and hence more charge is
required to shift the Fermi level of electrons in the nanofilm [34].

Finally, let us consider other possible routes leading to O2

reduction in the biphasic system. Thermodynamically the homog-
enous reduction of O2 to H2O2 or H2O by Fc or DMFc in TFT is
feasible. The redox potentials in TFT can be estimated if the Gibbs
energy of transfer of protons and H2O are known, as described

previously [12,42]. DG0;w!TFT
tr;Hþ was estimated as 69 kJ mol�1 from

the linear relationship of the standard IT energies between TFT and
DCE in Appendix A (note that the standard IT transfer energies for
TFT were recalculated from data presented in reference [10],
utilising a viscosity of 0.527 mPa s instead of 0.038 mPa s for TFT,

and taking DG0;w!DCE
tr;Hþ as 53 kJ mol�1), and DG0;w!TFT

tr;H2O
was

estimated as 15.2 kJ mol�1 from liquid-liquid equilibrium data
between TFT, water and isopropanol from reference [46] assuming
no excess molar volumes and utilising the lowest isopropanol

concentration. The final results are E0O2=H2O2

h iTFT
SHE

= 1.36 V and

E0O2=H2O

h iTFT
SHE

= 1.91 V, respectively (see Appendies A and B for

further details). Additionally, the solubility of O2 in water is only
0.27 mM, while the values in DCE and chlorobenzene are 1.38 and
1.62 mM [47,48], respectively. Thus, the solubility of O2 is 5 to
7 times higher in the organic phase. However, homogenous
reduction of O2 by DMFc (and by extrapolation Fc) in TFT catalysed
by the AuNP nanofilm is unlikely as, noted earlier, the onset
potential of the catalytic wave associated with O2 reduction occurs
at applied potentials below those required to pump Li+, and the
associated hydration shell, across the interface (equation (3)). This
is key as the catalytic wave appears at applied potentials where
protons cannot be present in the organic phase, a significant
departure from the scenario detailed previously in reference [17]
and in equations (3) and (4). In the latter case we believe that the
mechanism of O2 reduction proceeds by DMFc-hydride formation,
followed by proton coupled electron transfer (PCET) to O2 to give
the HO2

� radical. From there the reaction can proceed either by ET
to give HO2

– followed by proton transfer from acid, or PCET to give
H2O2 directly [17]. However, herein, in the absence of protons in
the organic phase, the DMFc-hydride is not formed and DMFc
simply acts as an electron donor. Thus, as detailed by Koper, the
first step of the mechanism under these conditions in the presence
of gold is considered to be ET (from DMFc in our case) to O2 forming
the superoxide at the surface of the gold substrate [49–51].
However, the production of superoxide in the organic phase is very
difficult from a thermodynamic point of view: the standard redox
potential for O2

– in water is –0.330 V vs. SHE, whereas the value in
DCE, for example, becomes –0.81 V vs. SHE, as calculated by Su [9].
The latter value should be of the same order in TFT. Therefore, the
aqueous ORR is more likely via direct IET from the organic electron
donor to aqueous O2. Furthermore, as the reaction of organic
solubilised O2 with DMFc catalysed by the AuNP nanofilm would
be homogeneous, the Galvani potential difference would not play a
role in the homogeneous redox catalysis of superoxide generation.

3.4. Comparison of cyclic voltammograms obtained at an ITIES and
physically separated oil-water phases connected by gold electrodes

In order to confirm that the obtained increase of current was
due to electron transfer with subsequent O2 reduction in the
aqueous phase, an experiment with two phases separated but
electrically connected with gold electrodes was carried out.
Comparison of CVs for physically separated oil-water phases with
those recorded at an ITIES supported 38 nm AuNP nanofilm are
presented in Fig. 3.

Experiments done with the electric conductor separated oil-
water system show an irreversible wave with an onset potential of
+50 to +100 mV. As this wave can only result from direct electron
transfer from the organic phase into the aqueous phase, this
experiment confirms that IET from lipophilic DMFc to aqueous O2

is responsible for the irreversible voltammetric wave at +50 mV
also observed in the four-electrode cell. The latter confirms the
assumption that O2 reduction occurs in the aqueous phase as
depicted in Scheme 1. This assumption is also in line with the work
of Dryfe and co-workers who demonstrated in-depth that biphasic
O2 reduction could be driven between two physically separated
solutions, an acidic aqueous phase and an organic phase containing
a lipophilic electron donor, that were electrically connected by a
thermally annealed gold wire [13]. Thus, their system also
expressly precluded the possibility of IT in the mechanism and
highlighted the feasibility of O2 reduction on the aqueous side of an
adsorbed interfacial AuNP nanofilm.



Scheme 1. Representation of the mechanism of O2 reduction in the aqueous phase
at a AuNP nanofilm modified soft interface. AuNPs were charged by an electron
donor (DMFc) in the organic phase that acts as a barrier-free shortcut for electrons
to the aqueous phase.
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3.5. Effect of pH on biphasic O2 reduction at AuNP nanofilm modified
soft interfaces in the presence of a lipophilic electron donor redox
couple

Reduction of O2 at the surface of a gold electrode is known to be
strongly dependent on the pH of the medium [49,50,52]. The
catalytic activity of gold towards the ORR is higher in alkaline
rather than acidic media as under these conditions the rate-
determining step (formation of the superoxide anion by outer
sphere electron transfer) does not depend on pH and over-
potentials towards 2 e– and 4 e– reductions are lower [49]. Also, the
d-band of gold was shown to not be involved in the catalytic
process in a basic environment. The latter leads to the formation of
weakly bound intermediates, thus increasing the catalytic activity
of gold in comparison to acidic conditions. However, this behaviour
is usually a sign of decoupled proton-electron transfer step in the
mechanism [52].

A series of experiments in acidic and alkaline conditions were
carried out in order to reveal the effect of pH on O2 reduction at
Fig. 4. Cyclic voltammograms (CVs) at AuNP (38 nm) nanofilm modified soft
interfaces showing the strong effect of pH on the onset potential of the irreversible
electrocatalytic wave. The concentration of DMFc in TFT was set to 0.5 mM. The scan
rate was 75 mV s�1 in all cases.
AuNP nanofilm modified soft interfaces. As expected, pH has a
major effect on the cyclic voltammograms presented in Fig. 4.

In acidic conditions (pH 	3) the onset potential of the
electrocatalytic wave was shifted left, to more negative potentials,
by ca. 120 mV in comparison with neutral conditions. Meanwhile,
in an alkaline environment the onset potential was shifted right, to
more positive potentials, by ca. 90 mV. If the electrocatalytic
performance of the gold film did not depend on pH, the expected
shift would be ca. 60 mV per pH unit, so, from a thermodynamic
point of view, the shift of the onset potential in acidic conditions
should have been 240 mV instead of 120 mV. This is because the
kinetics of oxygen reduction is slower on gold in acidic conditions,
so the increased thermodynamic driving force is compensated
with additional overpotential required to drive the reaction. The
same applies to alkaline conditions. The thermodynamic driving
force for the reaction decreases by 240 mV, but the onset potential
decreases by only 90 mV, because less overpotential is required for
oxygen reduction in alkaline conditions on gold.

3.6. Quantification of H2O2 formation by the biphasic O2 reduction
under neutral conditions at AuNP nanofilm modified soft interfaces in
the presence of a lipophilic electron donor redox couple

The yield of H2O2 for the shake-flask outlined in Fig. 1C with
DMFc was ca. 22% (see reference [18] for a detailed description of
this methodology) verifying that kinetically rapid biphasic O2

reduction occurred in the presence of a AuNP nanofilm. This value
represents the ratio of the detected H2O2 concentration (0.10 mM;
from the iodide titration method, see inset Fig. 5) to the theoretical
H2O2 concentration (0.45 mM; calculated stoichiometrically from
the concentration of DMFc+ of 0.9 mM detected post-reaction by
UV/vis spectroscopy, see Fig. 5). The detection of H2O2 well below
the theoretical maximum concentration indicates that biphasic O2

reduction proceeds by both the 2 e– and 4 e– reduction pathways
generating H2O2 and H2O, respectively, or more likely, by (i) direct
reduction of H2O2 to H2O in the 2 + 2 electron mechanism [11,12,53]
and/or (ii) disproportionation of two H2O2 molecules to H2O and
O2 [11,12].

3.7. Mechanism of biphasic O2 reduction by interfacial redox catalysis
under neutral conditions at AuNP nanofilm modified soft interfaces

Herein, two different redox couples are present in separate
immiscible phases, O2/H2O2 in the aqueous phase and DMFc+/
DMFc in the organic phase. At equilibrium, the Fermi levels of the
electrons in both phases are aligned but thermodynamic
equilibrium may not be reached due to kinetic limitations.
Adsorption of a nanofilm of metallic AuNPs has two key effects:
(i) acting as a conductor (or a bipolar electrode due to relatively
large diameter of the AuNPs, 12 nm and 38 nm, respectively, in
comparison to the interfacial region, 	1-2 nm) facilitating IET
across the soft interface and (ii) providing a catalytic surface to
significantly enhance the rate of reaction for the reduction of
aqueous solubilised O2. Thus, the AuNP film facilitates Fermi level
equilibration between the lipophilic donor, DMFc+/0, and an
acceptor, O2/H2O2 or O2/H2O redox couples (Scheme 2), overcom-
ing the kinetic limitations at bare soft interfaces and thereby
achieving interfacial redox catalysis.

Initially, ENPF is lower than the Fermi level of electrons in the Fc+/0

couple, as evident from the increased interfacial concentration of
Fc+ (detected by CV at the soft interface, Fig. 2A) after ET from Fc to
the AuNP nanofilm under either aerobic or anaerobic conditions.
The initial low ENPF may be due to Fermi level equilibration between

the AuNPs and O2 EO2=H2O
� �w;pH7;inair

SHE ¼ þ805mV
� 	

post-synthesis.

The charge on the interfacial AuNP nanofilm, under either aerobic



Fig. 5. Identification of the presence, and determination of the yields, of the biphasic O2 reduction reaction products, DMFc+ and H2O2. Main graph: UV/vis spectra of an
organic solution of 4 mM DMFc in TFT before (t = 0 minutes) and post-reaction for the shake-flask reaction outlined in Fig. 1C. The oxidation product of the biphasic O2

reduction reaction, DMFc+ was quantified from the magnitude of its absorption peak using the Beer-Lambert Law; lmax for DMFc+ is 779 nm and the extinction coefficient of
DMFc+ in a similar organic phase,1,2-dichloroethane, is 0.632 mM�1 cm�1 [21]. Inset: Characteristic UV/vis spectra of the two distinguishing absorption peaks of the I3– cation
in the aqueous phase diluted by half (lmax = 288 and 354 nm) formed after interaction of the H2O2 generated during the biphasic O2 reduction reaction with an excess of KI
over 30 minutes [18].

Scheme 2. Interfacial redox catalysis: equilibration of the Fermi level of the electrons in a AuNP nanofilm (ENPF ) adsorbed at a soft interface with those of two redox
couples in solution, one in the aqueous phase and the other in the organic phase. The AuNP is charged during this process by the electron donors, Fc or DMFc,

such that it acts as an “interfacial reservoir of electrons”, and the final position of ENPF (a turquoise line for Dw
o f = 0 V and a red line for Dw

o f = 0.1 V, respectively)
is determined by the kinetics of both the oxidation half-reaction on the organic side of the interfacial AuNP nanofilm (equation (10)) and the reduction half-
reaction on the aqueous side (equations (11) and (12)) [8]. Interfacial electron transfer (IET) between the two redox couples viathe conductive AuNP and the
provision of a catalytic surface to facilitate O2 reduction both combine to significantly enhance the kinetics of the otherwise sluggish biphasic O2 reduction
reaction (ORR). The standard redox potentials of all redox couples are expressed versus both the Standard Hydrogen Electrode (SHE) and Absolute Vacuum Scale
(AVS), respectively. The values for oxygen reduction reactions are expressed at pH 7, in air, and for unity of activity for H2O2 The black and red dotted lines
show the shift of the Fermi levels of electrons in redox couples dissolved in the organic phase in relation to aqueous redox couples, when Dw

o f = 0 V and 0.1 V,
respectively.
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or anaerobic conditions, was immediately imposed by the DMFc+/0

redox couple on contact due to an electrostatic charging process
(Scheme 2):

nDMFco þ AuNPz
intAnDMFcþo þ AuNPz�n

int ð10Þ
It should be emphasised that EoF , and therefore the position of

ENPF , may lie at more negative (reducing) potentials than EoDþ
o =Do

h io
SHE

(as shown for the DMFc+/0 redox couple in Scheme 2 even when
Dw
o f = 0 V). This is because the redox potential of the Dþ

o =Do couple
at the AuNP surface is determined by the Nernst equation and
therefore relies explicitly on the ratio of the surface concentrations
of Dþ

o and Do. As initially only DMFc is present and no oxygen
reduction takes place, the Fermi level of the NP increases above the
standard redox potential.

Subsequently, the charged AuNP nanofilm was capable of
reducing aqueous O2 under neutral conditions with some driving
force (Dw

o f = +50 mV) provided by polarisation of the soft
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interface:

AuNPz�n
int þ O2;w þ 2Hþ

w ! AuNPz�nþ2
int þ 2H2O2; w ð11Þ

AuNPz�n
int þ O2;w þ 4Hþ

w ! AuNPz�nþ4
int þ 2H2Ow ð12Þ

Additionally, any H2O2 generated can be further reduced to H2O
or disproportionate:

AuNPz�n
int þ H2O2;w þ 2Hþ

w ! AuNPz�nþ2
int þ 2H2Ow ð13Þ

2H2O2;w ! O2;w þ 2H2Ow ð14Þ
Theoretically, the equilibrium Galvani potential difference

required to drive biphasic O2 reduction can be calculated from
equations (15) and (16) [8]:

D
w
o feq ¼ EDþ=D

h io
SHE

� EO2
þ=H2O

h iw
SHE

ð15Þ

EO2
þ=H2O

h iw
SHE

¼ E0O2=H2O

h iw
SHE

þ RT
4F

ln
fO2

p0

� �
þ RT

F
ln aHþð Þ ð16Þ

Inthis case the pH of the solution is 7 and the fugacity of O2 can be
taken as the partial pressure of O2 in air, giving a final value of

EO2=H2O
� �w;pH7;inair

SHE ¼ þ804mV. For O2 reduction to H2O2 the final

value of EO2=H2O2

� �w;pH7;inair
SHE = +261 mV, considering activity of unity

for H2O2 and T = 298 K. If we consider the onset potential as the
potential where 1% of DMFc has been oxidized, then

EDMFcþ=DMFc
� �TFT

SHE ¼ �38mV, so we should see the onset of O2

reduction to H2O at Dw
o f = –724 mV and to H2O2 at Dw

o f = –337 mV
(considering the Nernst potential for an aqueous solution of 5 mM
of H2O2 or 2.5 mM of H2O and 10 mM OH� produced by oxidation of
10 mM of DMFc, as calculated in Appendix C). Hence, the required
overpotential for the reactions are 774 mV for the 4 e– reduction
pathway and 387 mV for the 2 e– reduction pathway, respectively,
as Dw

o f = +50 mV is required for the onset of reaction. The latter
indicates that further scope to improve the efficiency of biphasic O2

reduction remains. However, these overpotential values are
comparable to typical onset potentials of O2 reduction on gold
electrodes [50].

Additionally, as the overpotential for O2 reduction at the surface
of a AuNP nanofilm is identical for experiments involving either
DMFc or Fc, any current wave due to IET for an electrochemical cell
containing Fc lies outside the polarisable potential window at
+690 mV. Thus, the wave at the edge of the polarisable potential
window for an electrochemical cell containing Fc and the AuNP film
(Fig.1A)could be eitherdueto slight catalysis of the homogeneous ET
step in the IT-ET mechanism (an unlikely possibilityas discussed vide
supra) or slight catalysis of IET from Fc to aqueous O2.

As discussed in section 3.3, the rate-limiting step of the ORR on
gold is considered to be the irreversible formation of the
superoxide (equation (17)), followed by fast formation of H2O2

(equation (18)), while the AuNP nanofilm is charged by oxidation of
DMFc (equation (19)):

O2;w þ e� ! O�
2;w ð17Þ

O�
2;w þ 2Hþ

w þ e� ! H2O2;w ð18Þ

DMFco? DMFCþ
o þ e� ð19Þ
For simplicity, O2 reduction is considered as one reaction to give
H2O2. If we assume that aw= ao = 0.5, and because the total
number of electrons in the aqueous and organic reactions are n

w= 2 and no = 1, ENPF can be estimated from equation (9). In addition,
the active area available for electrochemical reactions can be
considered as the projected area available for diffusion. This area is
roughly equal on both sides of the interface (most likely, particles
are split equally by the interface due to stability reasons [1,54,55]),
so Aw=Ao was chosen equal to unity. As the bulk concentrations of
both DMFc and O2 are of similar magnitude, and considering that
O2 is present in both phases and at least two DMFc molecules are
needed for each reacted O2 molecule, the surface concentration
ratio cO/cDMFc� 1. Herein, O2 reduction on the AuNP nanofilm
(equations (11) and (12)) is a relatively sluggish process [50] in
comparison to charging of the AuNP nanofilm with DMFc+/0

(equation (10)), a very facile outer-sphere one-electron reaction.

Thus, we can consider that k0w=k
0
o �1 
10�5, and equation (9)

becomes:

ENPF � 2 EwF þ EoF=2
� �

3
� 2RT

3
ln 2 
 10�5
� 	

ð20Þ

Equation (20) indicates that ENPF is close to the Fermi level of the

electrons in the DMFc+/0 redox couple (i.e. EoF). Indeed, ENPF was
raised to the extent that the AuNPs acted as an “interfacial reservoir
of electrons”.

We can substitute the expressions for the Fermi levels of the
electrons of the redox couples at the AuNP surface in the aqueous
phase (O2 reduction, see equation (17)) and organic phase (DMFc
oxidation, see equation (19)), respectively, into equations (7) and
(8) to get:

EwF ¼ �F E0O2=H2O2

h iw
SHE

þ RT
2F

ln
f sO2

p0

  !
þ RT

F
ln asHþ
� �� RT

2F
ln asH2O2

� 	"

þfw þ E0Hþ=1=2H2

h iw
AVS

� ð21Þ

EoF ¼ �F E0DMFcþo =DMFco

h io
SHE

þ RT
F
ln

asDMFcþo
as
DMFc0o

  !
þ fo þ E0Hþ=1=2H2

h iw
AVS

" #

ð22Þ
The driving forces for O2 reduction and DMFc oxidation are:

ENPF � EwF � F
3

EO2=H2O2;w

h iw
AVS

� EDMcþo =DMFco

h io
AVS

� 	
þ F fw � foð Þ

3
� 2RT

3
ln 2 
 10�5
� 	

ð23Þ

EoF � ENPF � 2F
3

EO2=H2O2

� �w
AVS � EDMFcþ=DMFc

h io
AVS

� 	
þ 2F

3
fw � foð Þ þ 2RT

3
ln 2 
 10�5
� 	

ð24Þ

For example, now the current for O2 reduction can be expressed
as:

iw ¼ �2AwFk
0
wc

w;s
O2 ;w

e2 1�awð Þ ENPF �EwFð Þ=RT

¼ �2AwFk
0
wc

w;s
O2

e
2 1�awð Þ F

3 EO2;w =H2O2

h iw
AVS

� EDMFcþo =DMFco

h i� 	
þF fw�foð Þ

3 �b

� 	
=R

ð25Þ

where b ¼ 2RT
3 ln

2Awk
0
wc

s
O2;w

Aok
0
oc

s
DMFco

" #

These equations show that the driving forces for both O2

reduction and DMFc oxidation depend on the Galvani potential



Table A1
The corrected standard transfer potentials and energies between water and TFT
based on experimental half-wave potentials from ref. [54].

Ion Df1/2, V Df0, V DGw!TFT
tr;i , kJ mol�1

TPAs+ �0.2625 �0.2189 �21.12
TPB� 0.2625 0.2189 �21.12
TMA+ 0.2675 0.3111 30.01
TEA+ 0.1055 0.1491 14.38
TPropA+ �0.0215 0.0221 2.13

+
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difference. As O2 reduction and DMFc oxidation take place with the
same current, and bulk concentrations are similar, surface
concentration ratios of both redox species in equations (21) and
(22) are similar. In a case this ratio is 1/100 for DMFc+/DMFc,
(corresponding to 5 mM H2O2 and 10 mM OH�), and Galvani
potential difference is 0, the Fermi level of electrons in the
nanofilm can be estimated as �429 kJ/mol (or �4.44 eV). Now the
driving force for oxygen reduction is 298 mV while the driving
force for DMFc oxidation becomes 40 mV. Of course, these
calculations give only approximate relations, as back-reaction
for DMFc oxidation should not be neglected at such low
overpotentials. Additionally, the rate equation for oxygen reduc-
tion used herein is probably too simple, even for alkaline
conditions.

Metallization of the soft interface with AuNPs, as described
herein, effectively allows the soft interface to mimic neutral O2

reduction at a conventional solid gold electrode, with DMFc acting
at the electron source and the potential at the soft “electrode”
surface being adjustable by manipulatingDw

o f.

4. Conclusions

In summary, the interfacial redox catalysis of a key energy
related reaction, the O2 reduction reaction, is demonstrated using a
biphasic approach with O2 dissolved in the aqueous phase, the
electron donor species dissolved in the organic phase and the soft
interface functionalized with a conductive catalytic nanofilm of
AuNPs. The utility of interfacial redox catalysis at functionalized
soft interfaces as an ideal model system to probe catalytic reactions
without the need for solid substrates is enabled by the ease of
functionalization of the interface with solid conductive catalytic
(nano) materials, the experimental flexibility provided by the
solubility of reactants or products in either phase and the
additional driving force provided by electrochemical polarisability
of soft interfaces. In this regard new biphasic electrocatalytic
pathways are expected to emerge with the soft interface allowing
their facile interrogation by voltammetric and spectroscopic
techniques.
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Appendix A.

Standard transfer potentials of ions between water and
trifluorotoluene

The standard transfer potentials and energies of a group of ions
were recalculated from the data presented in reference [54]. The
standard transfer potentials of ions can be estimated from the
experimental half-wave potential values from the following
equation:

Dw
o f1=2 ¼ Dw

o f
0
i þ

RT
ziF

ln
go
i

gw
i
� RT
ziF

ln

ffiffiffiffiffiffiffi
Do
i

Dw
i

s
ðA1Þ

As the diffusion coefficients of the species in the oil phase are
difficult to determine experimentally, they can be estimated
instead with Walden’s rule [54], stating that

Do
i

Dw
i
¼ hw

ho ðA2Þ

However, this relation is not completely accurate for ions in
aqueous solvents due to strong hydration. The activity coefficients
in Eq. (A1) can be estimated for example with the Debye-Hückel
theory [54]. Following the calculations of ref. [54], but utilising a
viscosity of 0.527 mPa s instead of 0.038 mPa s for TFT [55], and
avoiding the sign error in the original paper, the resulting values
are presented in the Table A1. The transfer energy is calculated as
follows:

Dw
o f

0
i ¼ DGw!o

tr;i

ziF
ðA3Þ

Now these transfer energy values can be plotted as a function of
corresponding transfer energies measured at water-1,2-dichloro-
ethane interface [56] in Fig. A1.

The equation of the line in Fig. A1 was utilized to evaluate the

standard transfer energy of protons from water to TFT, DG0;w!TFT
tr; Hþ ,

as 69 kJ mol�1 when and taking DG0;w!DCE
tr; Hþ is 53 kJ mol�1 [56].

Unfortunately, the correlation of the standard transfer energies
between DCE and TFT obtained by this method and by droplet
electrodes [16] differ significantly. As these two data sets contain
only three common ions, further measurements are required to
confirm the standard transfer energies between water and TFT.

Appendix B.

Standard redox potentials of oxygen reduction in trifluorotoluene
(TFT)

The standard redox potentials of the oxygen reduction reactions
in trifluorotoluene can be estimated with the thermodynamic
cycle [56]. In general, the reduction of O to R in phase a is
expressed as

O að Þ þ ne� ! R að Þ ðB1Þ
where the standard redox potential can be expressed as [57]:

E0O=R
h ia

SHE
¼ �DG0

nF
¼ 1

nF
m�;a

O � m�;a
R � n m�;w

Hþ � 1
2
m�;w

H2

� �� �
ðB2Þ

So, the standard redox potentials of the reaction (B1) in TFT and
aqueous phase are

E0O=R
h iTFT

SHE
¼ 1

nF
m�;TFT

O � m�;TFT
R � n m�;w

Hþ � 1
2
m�;w

H2

� �� �
ðB3Þ

E0O=R
h iw

SHE
¼ 1

nF
m�;w

O � m�;w
R � n m�;w

Hþ � 1
2
m�;w

H2

� �� �
ðB4Þ
TBA �0.1485 �0.1049 �10.12



Fig. A1. Linear dependence of transfer energies between DCE and TFT.
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When Eq. (B3) is subtracted from Eq. (B4), Eq. (B5) is obtained:

E0O=R
h iTFT

SHE
¼ E0O=R
h iw

SHE
þ 1
nF

m�;TFT
O � m�;TFT

R � m�;w
O þ m�;w

R

� 	
¼ E0O=R
h iw

SHE
þ 1
nF

Dw
o G

0
tr;R � Dw

o G
0
tr;O

� 	
ðB5Þ

where D
w
o G

0
i is the Gibbs energy of transfer of the species i from oil

phase to aqueous phase. Standard redox potentials of the following
reactions in TFT were calculated with Eq. (B5)

Hþ þ e� ! 1=2H2 ðB6Þ

O2þ 2Hþ þ 2e� ! H2O2 ðB7Þ

1=2 O2þ 2Hþ þ 2e� ! H2O ðB8Þ

E0Hþ=H2

h iTFT
SHE

¼ E0Hþ=H2

h iw
SHE

þ 1
F
Dw

o G
0
H2

� Dw
o G

0
Hþ

� 	
ðB9Þ

E0O2=H2O2

h iTFT
SHE

¼ E0O2=H2O2

h iw
SHE

þ 1
2F

Dw
o G

0
H2O2

� Dw
o G

0
O2

� 2Dw
o G

0
Hþ

� 	
ðB10Þ

E0O2=H2O

h iTFT
SHE

¼ E0O2=H2O

h iw
SHE

þ 1
2F

Dw
o G

0
H2O � 1=2Dw

o G
0
O2

� 2Dw
o G

0
Hþ

� 	
ðB11Þ

In trifluorotoluene, Dw
o G

0
Hþ was estimated as 69 kJ/mol, and

DG0;w!TFT
tr; H2O

was estimated as 15.2 kJ mol�1 from liquid-liquid

equilibrium data between TFT, water and isopropanol from
reference [46] assuming no excess molar volumes and utilising

the lowest isopropanol concentration. Dw
o G

0
H2O2

was estimated to

be close to the value for Dw
o G

0
H2O. The final results are

E02Hþ=H2

h iTFT
SHE

= 0.717 V, E0O2=H2O2

h iTFT
SHE

= 1.36 V and

E0O2=H2O

h iTFT
SHE

= 1.91 V, respectively, when transfer energies of gasses

were considered to have little effect on the standard redox
potential.
Appendix C.

Calculations of the Fermi Level of the Gold Nanofilm

The Nernst equations for oxygen reduction to water and to H2O2

are

EO2=H2O
� �w; pH 7

SHE ¼ E0O2=H2O

h iw
SHE

þ RT
4F

ln
fO2

p0

� �
þ RT

F
ln aHþð Þ ðC1Þ

EO2=H2O2

� �w; pH 7
SHE ¼ E0O2=H2O2

h iw
SHE

þ RT
2F

ln
fO2

p0

� �
þ RT

F
ln aHþð Þ

� RT
2F

ln aH2O2

� � ðC2Þ

and the Nernst equation for DMFc oxidation is

EDMFcþ=DMFc

h io
SHE

¼ E0DMFcþ=DMFc

h io
SHE

þ RT
F
ln

aDMFcþ

aDMFc

� �
ðC3Þ

If we consider that the Fermi level of electrons in the aqueous
phase is determined by the H2O2/O2 redox couple and the Fermi
level in the organic phase is determined by the DMFc+/DMFc, and
the positions of the Fermi levels can be calculated with equations
(21) and (22) from the main text:

EwF ¼ �F E0O2=H2O2

h iw
SHE

þ RT
2F

ln
csO2

cp
0

O2

0
@

1
Aþ RT

F
ln asHþ
� �� RT

2F
ln asH2O2ð Þ

2
4

þfw þ E0Hþ=1=2H2

h iw
AVS

� ðC4Þ

EoF ¼ �F E0DMFcþo =DMFco

h io
SHE

þ RT
F
ln

asDMFcþo
as
DMFc0o

  !
þ fo þ E0Hþ=1=2H2

h iw
AVS

" #

ðC5Þ
Herein the fugacity and pressure of oxygen in Eq. (C2) are

changed to concentrations with Henry’s law, so that cp
0

O2
= 1.28 mM

is the solubility of oxygen in water equilibrated with oxygen at a
partial pressure of 1 atm, and activity coefficient for oxygen is
assumed as 1.

Now we consider a case where we initially have 1 mM of DMFc
in the organic phase and 0.27 mM of O2 in the aqueous phase at pH
7. If we assume that 1% of DMFc (10 mM) is oxidized at the gold
nanofilm, reducing 5 mM of O2 into H2O2 and consuming 10 mM of
protons, assuming that this happens fast enough that negligible
diffusion takes place the pH of the solution at the nanofilm surface
changes to 9.00. The Nernst potentials at the nanofilm surfaces are
then 0.299 V vs. aqueous SHE on the water side and �0.038 V vs.
aqueous SHE in the organic side, assuming that the effects of
activity coefficients are negligible. Now the Fermi level of electrons
in water and TFT can be calculated from Eq. (C4) and (C5) as
�457.2 kJ mol�1 and �424.8 kJ mol�1 or �4.74 and �4.40 eV,
without the effect of the inner potentials. Now the Fermi level
of electrons in the gold nanofilm can be estimated from equation
(20) of the main text, as �428.5 kJ mol�1 or �4.44 eV (neglecting
the inner potentials). Now the driving forces for both reactions can
be calculated from equations (23) and (24) of the main text:

ENPF � EwF � F
3

EO2;w=H2O2;w

h iw
AVS

� EDMFcþ0 =DMFc0

h io
AVS

� 	
þ F fw � foð Þ

3
� 2RT

3
ln 2 
 10�5
� 	

ðC6Þ
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EoF � ENPF � 2F
3

EO2=H2O2

� �w
AVS � EDMFcþ=DMFc

h io
AVS

� 	
þ 2F

3
fw � foð Þ þ 2RT

3
ln 2 
 10�5
� 	

ðC7Þ

The driving force is 298 mV for oxygen reduction and 39 mV for
DMFc oxidation. If the interface is polarized, 2/3 of the additional
driving force due to the Galvani potential difference goes to the

organic phase. Interestingly, if we set the ratio k0w=k
0
o � 1 
10�6,

the driving force for the DMFc oxidation becomes negative at 0 V
Galvani potential difference, and the aqueous phase needs to be
polarized slightly positive to drive DMFc oxidation. Of course, this
analysis does not take into account mass transport effects
especially for the local pH, and the back-reaction for DMFc
oxidation should not be neglected at such low overpotentials, but it
works as a qualitative model to help to understand how the system
works.
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