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Abstract A new method for robust fixed-order H., controller design for uncertain
time-delay systems is presented. It is shown that the H., robust performance condi-
tion can be represented by a set of convex constraints with respect to the parame-
ters of a linearly parameterized primary controller in the Smith predictor structure.
Therefore, the parameters of the primary controller can be obtained by convex op-
timization. The proposed method can be applied to stable SISO and MIMO mod-
els with uncertain dead-time and with multimodel and frequency-dependent uncer-
tainty. It is also shown that how the design method can be extended to unstable
SISO models. The design of robust gain-scheduled dead-time compensators is also
investigated. The performance of the method is illustrated for both SISO and MIMO
systems by simulation examples.

1 Introduction

Most industrial processes present dead time in their dynamics. Generally, dead times
are caused by the time needed to transport energy, mass or information, but they also
can be caused by processing time or by accumulation of time lags in a sequence of
simple dynamic systems interconnected in series ([16]).

The presence of dead times in the control loops has two main consequences:
it greatly complicates the analysis and the design of feedback controllers and it
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makes satisfactory control performance more difficult to achieve ([19]). Dead-time
compensators can be used to improve the closed-loop performance of classical con-
trollers (PI or PID controllers) for processes with delay. The Smith Predictor (SP)
(See Fig.1), proposed in the late 1950s by [24], was the first dead-time compensation
structure used to improve the performance of the classical controllers and became
the most known and used algorithm to compensate dead time in the industry.

Although the SP offers potential improvement of the closed-loop performance of
process with large dead-time, it requires a good model since small modeling errors
can lead to very poor performance. For this reason, research efforts have been fo-
cused on robustness issues of the SP. A tuning method for models with one uncertain
parameter is proposed by [1]. Easy tuning rules for SP in the presence of dead-time
uncertainty is addressed in [22] and a guideline for selection the closed-loop band-
width based on the dead-time uncertainty bound is proposed. In [20], a robust tuning
rule is developed which considers the modeling error in the dead time. Robust PID
tuning for SP considering model uncertainty is proposed by [10]. In particular, first
and second order plus dead-time systems which may contain uncertainty in multiple
parameters of the model are considered. In [13], tuning guidelines are presented for
setpoint tracking considering model mismatches in the dead-time.

Many researchers are interested in the optimal control of dead-time systems, es-
pecially H. control, i.e., to find a controller to internally stabilize the system and
to minimize the H..-norm of an associated transfer function. Many relevant results
have been presented in this framework using modified versions of the SP. See, for in-
stance, [14], [13] and [26]. Recently, the SISO SP has been extended and generalized
for MIMO systems. In [21], a structured uncertainty approach was implemented for
SP’s with diagonal delay matrices. This method, however, does not consider general
and distinct time delays for each element of the plant transfer matrix. A diagonal
H, optimal controller for non-square plants is designed by factorization methods
in [25]. In [15], a generalized predictive control (GPC) method is implemented on
MIMO SP systems with multiple delays. Nonetheless, these control techniques are
quite complex and their implementation can be involved.

This paper presents a new method to design fixed-order SP controllers that con-
siders uncertainty simultaneously in the dead-time and in the rational part of the
model. The performance specification, like the standard H.. control problem, is a
constraint on the infinity norm of the weighted sensitivity function and is repre-
sented by a set of convex constraints in the Nyquist diagram. The extension to
MIMO systems will be based on the idea presented in [5] for designing decou-
pling MIMO controllers. In [5], a convex optimization approach was implemented
to design a linearly parameterized controller for a MIMO system. In this paper, this
concept will be extended to MIMO SP’s with process plants that possess uncertain
time delays.

This paper is organized as follows: In Section 2 the class of models, controllers
and the control objectives for SISO systems are defined. Section 3 will extend the
class of controllers and control objectives to MIMO systems. Sections 2 and 3 will
also discuss the control design methodology and stability conditions for the SISO
and MIMO Smith predictor configurations, respectively. This methodology is based
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on the convex constraints in the Nyquist diagram. In Section 4 the results are ex-
tended to unstable time-delay SISO systems. Gain-scheduled SP is designed for
time-delay systems in Section 5. Each section will end with an illustrative example.
Finally the concluding remarks are given.

2 SISO Problem Formulation

2.1 Class of models

Consider the class of stable time-delay LTI-SISO systems with bounded infinity
norm. It is assumed that the plant model can be represented by:

P(s) = G(s)e ™ (1)

where the time delay 7 is unknown but belongs to a finite set {7, 7,...,7,} and
the dead-time free part of the model has unstructured multiplicative uncertainty de-
scribed as:

G(s) = Gu(s)[1 + A(s)Wa(s)] )

where W(s) is a known stable uncertainty filter, G,,(s) the nominal dead-time free
model and A (s) an unknown stable transfer function with ||A || < 1. Therefore, we
can assume that P(s) belongs to a set IP of ¢ models given by:

PE(P(s)[1+A@)Wals)lsi=1,....q) 3)

where P;(s) = G,(s)e” 5.

2.2 Class of controllers

The SP control structure shown in Fig.1 is considered. The nominal model Py(s) =
Gn(s)e™ ™ with 7, € [11,7,] is used for the implementation of the controller.
The primary controller C(s) is linearly parametrized by

C(s)=p"o(s) 4)

where p” = [p1,p2, ..., pn.] is an n. dimensional vector of the controller parameters
and @7 (s) = [91(s), $2(5), - -, du.(s)] is a vector of basis functions with ¢;(s) trans-
fer functions with no RHP poles. For instance, a PID controller could be linearly
parametrized by

1 s
T T
= |K,,K;, K, =[1,-,—
p [pa i d] ) ‘P (S) [75’1 TfS

]
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Fig. 1 Smith Predictor

2.3 Design specifications

As stated in [3], the sensitivity and complementary functions of a system are invoked
to test the robust performance and robust stability conditions. From Fig. 1, the sen-
sitivity functions for the nominal models P;(s) can be determined by obtaining the
transfer function from the output disturbance d to the system output y:

_ 1+C(s)H(s)
1+ C(s)[H(s) + P(s)]

Si(s) (5)
where H(s) = G,(s) — Py(s) = Gu(s)(1 — e ™). The complementary sensitivity
functions for the nominal models will be the transfer function from the reference
input r to y (which is also equal to 1 — S;(s)):

C(s)Pi(s)

T,(S) = 1 +C(s)[H(S) +P1(S)]

(6)

A standard robust control problem is to design a controller that satisfies ||W;S;||. < 1
for a set of models where W) (s) is the performance weighting filter. If the model is
described by unstructured multiplicative uncertainty, the necessary and sufficient
condition for robust performance is given by [3]:

[IWiSi|+ WaTil|le <1 for i=1,...,q9 (7)

The goal of the proposed approach is to design the primary controller C(s) in the SP
structure to guarantee robust performance of the closed-loop system.

2.4 Proposed method

The robust performance condition (7) can be written as:
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W (jo)Si(jo)|+ W2 (jo)T;(jo)| <1, Vo (3)

fori=1,...,q.Let Li(s, p) be defined as the open-loop transfer function of the SISO
SP. From Fig. 1, the transfer function from the input of C(s) to y,, will represent this
open-loop transfer function:

Li(s,p) = C(s,p)(H(s) + Fi(s)) ®)

The dependency on frequency @ and s will be omitted for brevity but the depen-
dency on the controller parameter p will be highlighted.
The main result of this section is given in the following theorem.

Theorem 1. Consider the set of models P in (3) with multiplicative uncertainty filter
Wa(jw), then the linearly parametrized controller in (4) in the SP structure guaran-
tees closed-loop stability and satisfy the following robust performance condition:

[[WiSi| + [WaTill|leo <1 fori=1,....q (10)
if

[Wi(jo)[1+C(jo,p)H(jo)]| + [Wa(jo)C(jo,p)P(jo)|] |1+ L(jo)]
—Re{[1+L;(jo)][1+ Li(jo,p)]} <O
Vo fori=1,....q (11)
where Ly(jo) is a strictly proper transfer function which does not encircle the crit-
ical point and L};(j®) is its complex conjugate.

Proof. Since the real part of a complex number is less than or equal to its magnitude,
we have

Re{[1+ Lg|[1+ Li(p)]} < |1+ Lgl[1 + Li(p)]| (12)
Then, using (11) and the fact that |1+ L,| = |1+ L}, one obtains

(Wi(14+C(p)H)|+ |WaC(p)P,| — |1+ Li(p)| <0
Vo fori=1,...,q (13)

Using L;(p) = C(p)(H + P;) we have

(Wi(1+C(p)H)|+ [WoC(p)F]
[1+C(p)(H+P)|
Vo fori=1,...,q (14)

<1

that leads directly to (10). To prove that all closed-loop transfer functions are stable,
consider (11) which gives:

Re{[1 + Li(jo)][1 + Li(jo,p)]} >0 Vo (15)

or, alternatively,
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wno{[1+Ly(jo)|[1 +Li(jo,p)]} =0 (16)

where wno stands for winding number around the origin. Since both L (j®) and
L;(jo,p) are constant or zero for the semi-circle with infinity radius of the Nyquist
contour the wno depends only on the variation of s in the imaginary axis. Thus,

wno{[1 + La(jo)|} = wno{[1 + Li(j®,p)]} an

Since Ly (jo) satisfies the Nyquist stability criterion L;(j®,p) will do so and all
zeros of 1+ L;(jo,p) will be in the left-hand side of the complex plan. Since the
zeros of 1 +L;(jw, p) are the closed-loop poles, the system will be internally stable.

O

2.5 Primary controller design

The problem of minimizing the upper bound 7 of the infinity norm of the weighted
sensitivity function is considered. Therefore, the primary controller should be ob-
tained from the following optimization problem:

o
Subject to: (18)
|\|W1S,-|+ |W2Ti|||m<’)/ fori=1,...,q

This optimization can be convexified using Theorem 1 and solved by an iterative
bisection algorithm. At each iteration j, y; is fixed and W; and W, are replaced by
W, /7v; and W, /7y;. Then, a feasibility problem is solved under the convex constraints
(11). If the problem is feasible, ¥;; is chosen smaller than ;. Otherwise ¥; is
increased.

Notice that the condition (11) is defined for every frequency w leading to infinite
number of constraints. In practice, a frequency grid can be used with a sufficiently
large number of frequency points N (a finer grid can be used around the crossover
frequency). The effect of gridding on the stability and performance of the closed
loop system has been studied in [4].

Remark I: The constraint in (11) is an inner convex approximation of the non
convex constraint in (10) or (8). The quality of this approximation depends on the
choice of L. It can be shown that better approximation is achieved if L; is chosen
such that its frequency response is close to that of L;(p) ([8]).

Example 1

Consider the process described by (1) with multiplicative uncertainty as in (2) with

1

Gnls) = D105+ 1)

19)
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and

—s2 =25

T2 425+1
The unknown time delay 7 belongs to the set {4.5,5,5.5}. The nominal model used

in the SP structure is chosen as Py(s) = G,(s)e™>*. The performance specification is
defined by the following filter:

Wa(s) (20)

2

“q(s)::f§6§]fij5

21
A PID primary controller with 7y = 0.01 that minimizes |||W;S;| + |W2Tj|||. < ¥ for
i =1,2,3 should be computed.

Since the controller has an integrator, L, is chosen as Ly(s) = @./s where
@, = 0.1 rad/s which is 20% higher than open loop bandwidth. Then, the optimiza-
tion problem (18) is solved considering N = 100 equally spaced frequency points
between 103 and 103 rad/s. The resulting primary controller is:

 12.357+3.285+0.2201

C(s) 0.01s2+5

(22)

and leads to ¥ = 0.313. This controller is compared to that proposed in [9]. Kaya’s
controllers performs better than other controllers presented in the literature ([20], [6]
and [7]). Fig. 2 depicts the performance of both controller on unitary step setpoint
change considering the time-delay T =4.5s, T=5.0s and T = 5.5s. As it can be seen,
both controller performed well, however, the proposed controller achieves faster
response.

. . . . . . .
[ 5 10 15 20 25 30 35 40
Time [s]

Fig. 2 Example 1: Blue solid line: proposed; black dot-dashed line: ref [9]
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3 MIMO Problem Formulation

In this section, the SP for MIMO systems with generalized time delays will be in-
vestigated . An example of how to design a linearly parameterized MIMO controller
for such a system will be presented at the end of this section. For notation purposes,
bold face characters will represent transfer function matrices.

3.1 Class of models

Let n, and n; represent the number of outputs and the number of inputs of a sys-
tem, respectively. The set of all LTI-MIMO strictly proper uncertain models with
uncertain time delays can be defined as follows:

P = {P(s)[I+AW,];c=1,....m} (23)

where each element in P.(s) possesses a time delay that can vary over a range of
specified values, and W is a matrix that represents the multiplicative input uncer-
tainty of the system. For simplicity, one model from the set & will be investigated,
and the subscript ¢ will be omitted. The uncertain n, x n; time delayed plant has the
following form:

Gui(s)e ™15 o Gy (s)e ™"
P(s) = : g : (24)

Gry1(s)e™ 1% - Gy (s)e™ i

where G, (s) is a strictly proper delay-free transfer function, and 7, is the uncertain
time-delay of the process forp=1,....,n;andg=1,...,n,.

3.2 Class of controllers

As stated in [5], an n; X n,, matrix can be formed to represent the controller K(s,p).
The elements of K(s,p) will possess linearly parameterized elements K, (s) =
p[{qd)pq(s), where p[{q is a vector of parameters, and @,,(s) is a vector of stable
transfer functions chosen from a set of orthogonal basis functions. The non-diagonal
elements of K(s, p) strive to decouple the system, while the diagonal elements aim
to control the single-loop subsystems. As with the SISO case, the main purpose of
parameterizing the controller in this manner is due to the fact that the components
of the open loop transfer function can be written as a linear function of the control
parameters p,

p:[p117---;pl,,l.w--;pnolw--;pnun,-] (25)
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3.3 Design specifications

Fig. 3 displays the SP for the MIMO case, where G, (s) is an n, X n; nominal delay-
free transfer function matrix with elements G, (s), and Py, (s) is an n, x n; nominal
transfer function matrix which includes the nominal values of the time delays, which
is comprised of elements qu(s)e_cfﬂ’ (where {,, represents the gp-th nominal time
delay). Both Y(s) and X(s) are n, x 1 column vectors that possess elements y,(s)
and x,(s), respectively. The transfer function from the inputs of C(s) to Y, (s) will
represent the open-loop transfer function,

L(s) = [P(s) + H(s)]C(s) (26)

where H(s) = G, (s) — P, (s). Notice that if P(s) = P, (s), then L(s) = G,(s)C(s).
Since the class of controllers to be designed for this system are linearly parameter-
ized, the elements of the controller C(s) will actually be a function of the controller
parameters p. Therefore, C(s) will be represented as C(s,p).

D(s)
X(s) 4 U(s) + Y(s)
—()— € Pe) —=O——
—{

Yp(s) +
)
N\

Fig. 3 MIMO representation of the Smith Predictor

The transfer function from the output disturbance D(s) to Y(s) is the output sen-
sitivity function S(s,p), while the transfer function from X(s) to Y(s) is the com-
plementary sensitivity function T(s,p):

S(s.p) = I+ H(s)C(s,p)Z"'(s,p)
T(s,p) =P(s)C(5,p)Z ' (s,p) @7
where Z(s,p) = [I+L(s,p)]. As with the SISO case, the goal here is to determine

the controller C(s, p) that will guarantee the robust performance and robust stability
of the closed-loop SP system.
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3.4 Proposed method

Suppose that S(s,p) and T(s, p) are diagonal transfer matrices (the closed-loop sys-
tem is fully decoupled). Then the MIMO sensitivity and complementary functions
can essentially be treated as functions containing independent SISO subsystems. Let
Wi (s) be a diagonal filter with diagonal elements Wy, and a diagonal filter W (s)
with diagonal elements W>, representing, respectively, the nominal performance and
multiplicative uncertainty for the SISO subsystem. Therefore, the robust criterion
that was proved for the SISO case in section (2.4) will be satisfied for each SISO
subsystem of the decoupled MIMO system. Thus it is judicious to express the robust
criterion for the decoupled system as follows:

[[[W1,Sqql + W2, Tyqll|o < 1
forg=1,...,n, (28)

where S, and T, are the g-th diagonal elements of S(s,p) and T(s, p ), respectively.

The objective is to effectuate decoupling while simultaneously optimize the diag-
onal elements to achieve the desired single-loop performance. The proposed method
will be to define a diagonal open-loop transfer function matrix Lp(s), where the
diagonal elements satisfy the desired single open-loop response. Therefore, by min-
imizing the objective function ||L(s,p) — Lp(s)||3, a controller can be designed to
simultaneously minimize the magnitudes of the off-diagonal elements of L(s,p)
and drive the diagonal elements to be approximately equal to Lp, (s) (where Lp,(s)
is the ¢-th diagonal element in Lp(s)).

However, the resulting controller will stabilize the closed-loop system only if it
is fully decoupled. In practice, with a finite order controller, it is not always possible
to make the off-diagonal elements of L(j®,p) equal to zero. In this case, the gen-
eralized Nyquist stability criterion should be used to guarantee the stability of the
MIMO system. According to this theorem, the eigenvalues of the open-loop transfer
function (26) should not encircle the critical point. However, these eigenvalues are
non-convex functions of the linear control parameters, which complicates the design
process. A possible solution to this problem is to implement the Gershgorin band
theorem in order to approximate the eigenvalues of L(j®, p). The Gershgorin bands
represented by disks centered at the diagonal elements of a matrix that include the
eigenvalues. For the open-loop transfer matrix L(j®,p), the radius of these disks

are computed by:
o

rg(@np) =Y, |Lop(jor.p) (29)

p=Lp#q
which is convex with respect to the control parameter p. Therefore, the closed-loop
stability of the MIMO system is guaranteed if these disks do not encircle the critical
point. This condition can be approximated with a convex constraint as it is shown in

[5].
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3.5 Primary controller design

In designing the controller C(s,p) for the MIMO SP, one must consider all of the
possible combinations of the uncertain delay parameters 7,,. Suppose that the car-
dinality of 7, is B;,. Then the total number of possible combinations that must be
considered in the design of the controller is,

m:HﬁqP

Vg=1,....np; p=1,....n; (30)

Therefore, one can define the following optimization problem for the multimodel
system:

m N
H})inz Y ILc(jox,p) — Lo, (jox) | F
c=1k=1

Subject to:

|rg. (jow, p)[1+Lp,, (jox)]| = Re{[1+Lp, (j@)][1+ Log.(jx, )]} <O
{IW1,, GO [1+ Mg (jox, )| + [Way, (jO)Ngg: (j@k; p)[}1+ Lp,, (j@r)|
—RA[1+Lpy, (JO)[1 + Lyg (jo. p)]} < 0

fork=1,...,N; g=1,....n,5c=1,....m 31)

where

quc (ja)k’ p) = Z GqZC (Ja)k)(l - e_jwquZ(' )CZl]c (ja)kﬂ p)
=1

o

quc (ja)k’ p) = Z quc (ja)k)cﬂh (ja)k’ p)

z=1

ni . .
L‘I[’c (]wk ; p) = Z Gl]Zc (]wk)(l + E_Jw/"rqzc _ e_kaquc )CZPC (]wkvp)

z=1

and || - || is the Frobenius norm of a matrix. Note that the first inequality shows
that the Gershgorin bands do not encircle the critical point and so the MIMO system
remains stable even if it is not fully decoupled. The second inequality guarantees the
robust performance for the SISO subsystems of the decoupled MIMO system. Note
also that My, (jay,p) represents the diagonal elements of He.(jwy)C.(joy,p) and
Nyq. (jox, p) represents the diagonal elements of P.(jay )C.(jay, p). The objective
function in (31) is convex with respect to the controller parameters p.
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Example 2

The proposed optimization problem will now be applied to an uncertain time de-
layed MIMO system. Consider a 2 x 2 plant model (i.e., x,4(s) and y,(s) forg =1,2),
similar to the system defined in [5], with uncertain time delays as:

10e~ M1 5~ 128
P(S) — SS+ 1 3OS+ 1 (32)
— Qe RIS D28

40s+1 10s+1

where the time delays 7., possess values in the following sets:

T11 :{3,9} 1121{7,13}
1 2{9,15} ‘522:{5,11} (33)

The nominal model with time delays is defined as:

10 —6s 5 —10s
G11(s)e™® Gia(s)e10s ‘ c

B _86712_; 2678.9
G —12s G —8s
21(s)e 2(s)e 40511 10s+1

where the time scale is defined in minutes. The elements G, (s) for ¢ = 1,2 and
p = 1,2 represent the strictly proper delay-free transfer functions in Gy (s). The
relative gain array (RGA) analysis of this system shows that this process is not
diagonally dominant.

The performance and uncertainty filters chosen for this example will be identical
to those in [5],

25+ 1
Wi, =05 Wy, =05 ( ss++1 ) g=1,2 (35)

The desired diagonal open-loop transfer function Lp(s) will be chosen as simple
integrators with time constants equal to 7 minutes (i.e, Lp(s) = diag (%)) For sim-
plicity, a PI controller will be designed for this process. Since B} = B2 = Bo1 =
P22 =2, there will be a total of m = 16 possible cases to consider in the design pro-
cess. The optimization problem in (31) can now be solved by repeating the stability
constraints for each combination of the uncertainties in (33). The frequency grid will
be chosen to be between 1072 and 10! rad/min with N = 150 equally spaced points.
The PI MIMO controller obtained from the optimization problem is as follows:

0.062345+0.001464 —0.04803s — 0.005408

C(s) = s s (36)
0.15855+0.0168  0.31135+0.005995

N N
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Fig. 4 displays the closed-loop MIMO response to a step input. Notice that with this
controller, the MIMO process achieves robust performance while simultaneously
decoupling the system. The Gershgorin bands are depicted in Fig. 5 for the system
possessing the largest delay time uncertainty (7] =9, Tj2 = 13, o] = 15, 120 = 11).
The red and blue bands possess a radius of |r,(jay)| forg=1,2andk=1,...,N.

From x; From x;
Ifpmrmmmmmmmmmmmmmm
- _ 051 .
E - H '
: : E /f’x&
o =
° ] V v
o
é 0 200 400 600 0 200 400 600
o Time (minutes) Time (minutes)
g From x, From x,

0.5f4

o o
o £
e | : S
0 —'N- IV"
0 200 400 600 0 200 400 600

Time (minutes) Time (minutes)

Fig. 4 MIMO response to a unit step input: reference signal (black,dash), the remaining Q = 16
closed-loop responses are for all possible combinations of the time delay parameters in (33).

S

==

S
S=SZ

==

Su{Z(jo)}

Fig. 5 Gershgorin bands for Ly, with the largest time delay combination in (33): performance
filter with [Wy, | = 0.5 (green circle), Gershgorin bands corresponding to g = 1 (blue circles), Ger-
shgorin bands corresponding to g = 2 (red circles). Note that Z(j) is simply the complex number
representation of each circle in the plot.
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Notice how the Gershgorin bands never intersect with the performance circle
centered at (—1 + jO). This proves that the MIMO system is stable, robust, and
satisfies the optimization criterion in (31).

4 Extension to Unstable SISO Systems

The SP in the scheme shown in Fig. 1 cannot be used for unstable plants since the
controller will contain zeros in right-hand side of the s-plan which cancel the un-
stable poles in the plant and leads to instability. To avoid this unstable zero-pole
cancellation, the control structure shown in Fig.1 should be changed. Several alter-
natives are available in literature to cope with unstable processes with dead-time
(see, for example, [2, 12, 11, 16, 17]).

Consider, for instance, the SP with modified dead-time free model depicted in
Fig. 6 which is discussed in [16]. In this case, the dead-time free model is defined

L O(s) “ o Py Y

Y

Fig. 6 Smith Predictor with modified dead-time free model

as Gy, = g—’;’ and H = G, — Py = (N, —Nne_“)Din. Therefore, N,, must be tuned
such that the zeros of N,, — N,e~ ™ cancel the unstable poles in D,,. Once N,, has
been properly designed, the primary controller can be obtained by solving the opti-
mization problem in (18) redefining H = G,, — Py and Li(p) = (G, — Py + P,)C(p).
Here, care should be taken in the choice of L;. As it has been shown, the wno of
1+ L; equals the wno of 1+ L;. Therefore, L; should be chosen such that the num-
ber of encirclement of the critical point (—1+0j) by its Nyquist plot is equal to the
number of unstable poles in P;.

Example 3

Consider the model studied in [13] given by:

k
P(s) = ——[1 +A(s)Wa(s)]e” ™ 37
s—a
where k=1, a=1, T = 17,+0.02 and 7, = 0.2. The interval of variation of 7 is
gridded using ¢ = 3 equally spaced points. A finer grid just increases the number of
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constraints and for this example does not change significantly the final controller.
The performance and uncertainty filters are respectively chosen as:

Wl(s):2< st ) and Wz(s)=0.2<”1'1> (38)

10s+1 s+ 1

Here, we use the SP with modified dead-time free model (Fig. 6) due to its sim-
plicity. The dead-time free model G, (s) is chosen as

Tns +1
s—1°

G (S) = (39)

T,, is computed in order to obtain H(s) = Gu(s) — Py(s) without a pole in s = 1.
Since

1
H(s) = —[Tus+1- e 0, (40)
G —
if T, = e %% — 1, then s = 1 is a zero of H(s).

A PI as the primary controller is designed. The first step is to choose the transfer
function L;(s), which must encircle the critical point in the Nyquist diagram once
and must contain one integrator. Therefore, it is chosen as

s+1

Ld(s) = IOS(S_ 1)

(41)

Optimization problem (18) is solved considering N = 100 equally spaced frequency
points between ® = 10 3rad/s and @ = 10°*rad/s and the following controller is
obtained:

Co(s) = (3.5825+0.5838) /s (42)

which yields y = 0.6854. This result can be further improved by using a new Ly(s)
based on Cy(s) in the optimization problem. With this new Ly (s) = G, (s)Co(s) the
optimal primary controller is:

C(s) = (2.9945+0.4612) /s (43)
and ¥ = 0.6074. Figure 7 depicts the function
Ii(jo) = Wi(jo)Si(jo)| + [W2(jo)Ti(jo))|

where S; and 7; are respectively given by (5) and (6) with H = G,, — Py and P is
obtained by gridding of 7. Note that the maximum value of the function is 0.6072,
which occurs when 7 = 17, +0.02 = 0.22, is close to the bound 7. It is worth to point
out that, although the conditions given in Theorem 1 are only sufficient to guarantee
II7]] < 7, with a proper choice of L, it is possible to obtain a solution with very
low conservatism. Furthermore, the resulting controller is a standard PI which can
be implemented in a straightforward manner and has great practical significance.
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Fig. 7 Example 2: Blue solid line: I" for T = 0.18; green solid line: I" for T = 0.2; black solid line:
Blue solid line: I' for T = 0.22; red dot-dashed line: y.

For the same example, controller designed in [13] leads to the optimal y = 0.9407
which is 55% higher than the value obtained with the proposed method. It should
be mentioned that the true robust performance criterion in (18) is not minimized in
[13]. Instead, the maximum singular value of [W;(jw)S(jo) Wa(jo)T (jo)] for
all @ is minimized by the H.. control theory.

5 Gain-scheduled Controller Design

Consider an uncertain plant P(s, 6) belonging to the set:
Po={G(s5,0)e "®F i=1,.. 4} (44)

where the dead-time free part of the model has unstructured multiplicative uncer-
tainty and is described as:

G(5,0) = Gn(s,0)[1 + A(s)Wa(s)] (45)

and 6 is a vector of scheduling parameters that belongs to a finite set ® = {6, 0,,...,60,,}
(corresponding e.g. to the different operating point parameters). It is assumed that
the operating point does not frequently change (the stability and performance are
achieved for the frozen scheduling parameter). The dead-time is also a function of
the scheduling parameter and uncertain, so for a given value of 6 it belongs to the
set {71(0),7(0),...,7(0)}.

We will consider the SP shown in Fig. 8 where both, the nominal model
Py(s,0) = G(s,0)e )5 and the primary controller C(s, ) are functions of the
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scheduling parameter vector 6. The goal is to compute a primary gain-scheduled
controller for this scheme that meets the H.. robust performance specification.

d
AQ_., C(s,0) P(s,0) O

+
Yp &
N
Fig. 8 Gain-Scheduled Smith Predictor
The primary controller C(s, ) is linearly parametrized by: C(s,0) = pT (0)¢(s),

where the basis function vector ¢ (s) is defined as in section (2.2) and p”(0) is given
by
P’ (68)=1[p1(6).p2(6).---,pu(6)] (46)
Every gain is a polynomial function of order 6 of the scheduling parameters and is
defined as
pi(0) = (vi5) 0%+ ...+ (Vi) 0+ vig 7

and 6% denotes element-by-element power of k of vector 6. In Fig. (8), the transfer
function from the output disturbance d to y is the sensitivity function S;(s, 0), while
the transfer function from r to y is the complementary function 7;(s, 6):

14+C(s,0)H(s,0)
1+C(s,0)(H(s,0)+ P(s,0))
C(s,0)Pi(s,0)

7}(5‘,6) = 14,6‘(_9’9)(1'[(5,9)‘i’Pi(Sve))7 e

Si(s,0) = (48)

where H(s,0) = G,(s,0) — Py(s,0). The primary controller is obtained from the
following optimization problem:
min
b Y
Subject to: (49)
[W1Si(s, 8)] + [WaTi(s, )|l < ¥
fori=1,...,q, VO €O

Optimization problem (49) is again solved using an iterative bisection algorithm
as previously presented. At each iteration, a feasibility problem is solved with the
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following convex constraints:

(17 (00 1+ Clon, 8)H (o, 8)] + [ Walj)C e, )P (o 8)]|

|14 Ly(jox)| — Re{[1+ Li(jwp)][1 + Li( jox, 6)]} < 0
fork=1,....N, i=1,....q, [=1,....,m (50)

Example 4

The design method is applied on a simulated system having a resonance whose
frequency changes as a function of a scheduling parameter 6. Consider the following
plant model

P(s,0) =G(s,0)e™ ™ (51)

where G(s,0) = G,(s,0)[1 + A(s)Wa(s)] and

(2+0.20)?
Go(s,0) = 52
n0) = 5022+ 020)s + (240207 (52)
1.1337s% +6.
Wy(s) — 0.8 L1337 +6.88575+9 3

(s+ 1)(s+10)

and 6 € [—1,—0.5,0,0.5,1]. Consider also that the dead-time is within the inter-
val 7 € [2.7,3.0,3.3] but its exact value is unknown in runtime. The objective is to
design a primary gain-scheduling PID controller for the Smith Predictor structure
considering the performance filter Wi (s) = W The parameters p of the pri-
mary controller will be affine functions of the scheduling parameter 6. The filter of
the derivative action is chosen to have a time constant of 7y = 0.01s.

Finally, optimization problem (49) is solved considering L; = 1/s and N = 100
equally spaced frequency points between 1072 and 10? rad/s. The resulting gain-
scheduled controller is given by: K,,(0) = —0.01680 +0.2152, K;(6) = 0.01446 +
2.4736, K4(0) = —0.12246 4 0.6424.

This controller leads to:

[[W1Si(s, 81)| + [WaTi(s, 0r)|[|l- < v = 0.8928 (54)
1=1,....,5, i=123

The gain-scheduled controller is evaluated considering 6 = —1,0,1 and 7 = 3.3s.
The performance is compared to a fixed-gain PID designed for the nominal case
(60 =0 and 7 = 3s). Figure 9 shows the step response of the gain-scheduled con-
troller in all conditions (blue, red and green solid lines) compared with the fixed
PID controller (black dashed line, highly oscillating).
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Fig. 9 Example 3: Blue, red and green solid line: gain-scheduled PID Smith Predictor and G,
using 6 = —1, 83 =0 and 65 = 1 respectively; black dashed line: fixed PID Smith Predictor using
0=—1.

6 Conclusions

This paper presents a new method to design a robust Smith Predictor for uncertain
SISO and MIMO time-delay systems using convex optimization techniques. The
proposed approached allows one to design PI/PID as well as higher order primary
controllers in the Smith Predictor structure which provide robust H., performance
for systems with uncertain dead-time and multiplicative or multimodel uncertainty
in the dead-time free model of the system. The method is based on a convex ap-
proximation of the H., robust performance criterion in the Nyquist diagram. This
approximation relies on the choice of a desired open-loop transfer function L, for
the dead-time free model of the plant. For the SISO case, a bisection algorithm was
implemented to solve the convex constrained problem. For the MIMO case, a con-
troller was designed such that the system became decoupled and simultaneously
optimized the single-loop performances of the SISO subsystems.
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