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Abstract

This paper focuses on the problem of voltage control of islanded inverter-
interfaced microgrids consisting of several distributed generation (DG) units
with parallel structure. The main objectives are to (i) design a decentral-
ized/distributed voltage controller with minimum information exchange be-
tween DG units and their local controllers (ii) design a fixed-/low-order dy-
namic output feedback controller which ensures stability as well as desired
performance of the microgrid system in spite of load parameter uncertainties.
To this end, the problem is formulated as an optimization problem which is
the minimization of the cardinality of a pattern matrix subject to an H∞ per-
formance constraint. Since the problem is intrinsically non-convex, a convex
design procedure for the controller synthesis is proposed in this paper. The
effectiveness of the proposed controller is evaluated through simulation stud-
ies and Hardware-In-the-Loop (HIL) verifications. The simulation and ex-
perimental results demonstrate that the effectiveness of the proposed control
strategy.

Keywords: H∞ control, Distributed/decentralized control, Control
structure design, Fixed-order controller, Islanded inverter-interfaced
microgrids, Linear Matrix Inequality (LMI)

1. INTRODUCTION

Nowadays the growth of electricity demand, the critical shortages of fos-
sil fuels, and global warming caused by greenhouse-gas-effect have negatively
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impacted on conventional power systems. The problems have been tackled al-
ternatively through an efficacious integration and coordination of distributed
generation (DG) units such as photovoltaics (PV), wind power, etc.

Reliable integration of DG units into power systems can be achieved by
means of microgrids which are small electrical networks heterogeneously com-
posed of DG units, loads, and energy storage systems [1]. Renewable energy
sources are normally interfaced to the microgrid through power electronic
converters acting as voltage sources [2].

Microgrids normally operate in grid-connected mode where they are con-
nected to the main grid at Point of Common Coupling (PCC). Under this
connection scheme, the microgrid voltage and frequency are predominantly
determined by the main grid while the microgrid control system accurately
shares active and reactive power among DG units and controls the power
exchange between the microgrid and the main grid. Due to intentional
(scheduled)/unintentional reasons, the microgrids can experience islanding
conditions where they are disconnected from the main grid [3]. In this case,
due to the power mismatch between the DGs and the loads, voltage and
frequency of the loads deviate from their rated values and the islanded mi-
crogrid eventually becomes unstable. This operation mode of microgrids is
more challenging than the grid-connected mode because accurate load shar-
ing mechanisms are required to balance the power mismatch [1]. Therefore,
upon the islanding condition, a new microgrid control strategy must come
into service in order to provide voltage and frequency stability as well as a
proper power sharing among DG units [4].

A control strategy ubiquitously used for the control of microgrids is droop
control which relies on the principle of power balance of a classical syn-
chronous generator in conventional power networks (see, e.g., [5, 6, 7, 8, 9,
10, 2, 11, 12, 13, 14]). In the power systems based on rotating generators,
frequency (rotor speed) is dependent on active power balance, i.e. the fre-
quency is dropped when the injected active power increases [15]. The idea
of the so-called “droop” controllers has been developed by Chandorkar et
al [16]. From a control point of view, droop control is a decentralized pro-
portional controller maintaining the voltage and frequency stability of the
microgrids [17]. The main advantage of droop-based control is the elimina-
tion of the communication links among DG local controllers. Nonetheless,
the droop-based approaches suffer from several drawbacks including (i) poor
transient performance, (ii) poor performance for mixed-line microgrids with
resistive-inductive line conditions, and (iii) coupled dynamics between active
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and reactive power.
In addition to the droop-based control strategies, non-droop-based ap-

proaches for voltage and frequency control of the islanded microgrids have
also been developed, e.g. [18, 19, 20, 21, 22, 23, 24, 25, 26]. The proposed
methods regulate the voltage of single-DG-unit [19, 20, 21, 24, 25] and/or
multi-DG-unit microgrids [23, 26]. In these methods, the frequency of each
DG unit is controlled through an internal oscillator in the open-loop manner
with ω0 = 2πf0, where f0 is the nominal system frequency. All oscillators
are synchronized by a common time reference signal according to a global
positioning system (GPS) [26].

Although extensive research has been carried out on the development
of non-droop-based control of micorgrids, they suffer from one or more of
the following drawbacks: (i) inability to guarantee robust stability and/or
robust performance with respect to load parameter variations [24, 20, 23].
(ii) inapplicability to multiple-DG microgrids, e.g. [24, 20], (iii) high-order
controllers, e.g. [21, 25], and (iv) centralized control strategy, e.g. [18].

To overcome the disadvantages of the existing microgrid control approaches,
various challenges associated with robustness to load parametric uncertain-
ties, design of decentralized/distributed controllers with minimum commu-
nication links among DGs, and low-complexity of the local controllers must
be addressed. Therefore, the problem of microgrid control is translated into
fixed-/low-order decentalized/distributed controller design of interconnected
systems with parameter uncertainties.

In the distributed control strategy, there exist several communication
links between the local controllers and the subsystems according to the con-
trol structure. Most of available distributed control approaches assume that
the control structure is given a priori [27]. However, it is possible that the
assumed control structure is not the best one which can be taken into con-
sideration. Moreover, it is generally difficult to select the structure of the
controller in advance. Therefore, the question arises is that in an intercon-
nected system, what is the best control structure, in terms of the connections
between the local controllers and the subsystems, to satisfy the given control
objectives?

This question has been recently addressed by some researchers in [28, 29,
30, 31, 32]. They have focused on the problem of sparse static output/state
feedback controller design where the gain between the subsystems’ inputs
and outputs/states is sparsified [28, 29, 30, 31]. In this way, the amount of
information exchange between subsystems and the controller is reduced. The
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results of [28] is extended to sparse dynamic output control design in [32].
However, in [32] some parts of the controller structure, i.e. the structure of
matrices Ac, Bc, and Cc, have been specified a priori. In all these approaches,
the sparsity is formulated in terms of the cardinality of the gain matrix
defined as the number of its non-zero elements. The communication links
between the local controllers has not been considered in these approaches.
Moreover, the robustness of the controller to system parameter uncertainties
is another important issue which has not been taken into consideration. In
an uncertain interconnected system, the control structure and the control
parameters have to be designed for a prescribed family of models.

In this paper, a new LMI-based approach to the problem of fixed-order
decentralized/distributed H∞ control of interconnected systems subject to
polytopic uncertainty is proposed. In this approach, the controller struc-
ture as well as the controller parameters are simultaneously designed. The
objectives are achieved by transforming the problem into a non-convex op-
timization problem in which the number of non-zero elements (cardinality)
of a pattern matrix is minimized subject to an H∞ performance constraint.
The non-convex cardinality of the pattern matrix is relaxed by a weighted `1
norm [33] and an inner convex approximation of fixed-order H∞ controllers
for polytopic systems is then given. Therefore, the problem of fixed-order de-
centralized/distributed H∞ controller design can be solved by finding a feasi-
ble solution of an iterative convex optimization problem. Then, the proposed
robust fixed-order decentalized/distributed control strategy is applied to an
LTI model of a microgrid in a rotating reference frame (dq-reference frame).
The designed controller is able to overcome the limitations of the existing
droop-based controllers which are only appropriate for microgrids with dom-
inantly inductive and/or resistive power lines. Furthermore, opposed to most
non-droop-based control methods, the controller guarantee the robust stabil-
ity and robust performance against the load parameter changes. Simulation
studies in MATLAB and experimental results using real-time hardware-in-
the-loop (HIL) environment demonstrate the effectiveness of the designed
controllers.

The organization of the paper is as follows. The problem formulation
is presented in Section 2. A convex solution to the problem of fixed-order
decentralized/distributed control of polytopic systems with guaranteed H∞
performance is provided in Section 3. Section 4 is devoted to the design of
robust fixed-order voltage controllers for islanded inverter-interfaced micro-
grids. Section 5 concludes the paper.
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Throughout the paper, matrices I and 0 are the identity matrix and the
zero matrix of appropriate dimensions, respectively. The symbols T and ?
denote the matrix transpose and symmetric blocks, respectively. For sym-
metric matrices, P > 0 (P < 0) indicates the positive-definiteness (negative-
definiteness).

2. PROBLEM FORMULATION

2.1. System model
Consider a linear time-invariant interconnected system consisting of N

subsystems described by the following state space equations:

ẋgi(t) = Agiixgi(t) +
N∑

j=1(j 6=i)

Agijxgj (t) +
N∑
j=1

Bwijwj(t) +Bgiui(t)

zi(t) =
N∑
j=1

Czijxgj (t) +
N∑
j=1

Dzwijwj(t) +Dzuiui(t)

yi(t) = Cgixgi(t) +

N∑
j=1

Dwijwj(t)

(1)

where xgi ∈ Rn, ui ∈ Rni , wi ∈ Rr, yi ∈ Rno , and zi ∈ Rs are the state, the
control input, the exogenous input, the measured output, and the controlled
output of the ith subsystem, respectively. The state space matrices Agii , Agij ,
Bgi , Cgi , Bwij , Czij , Dzui , Dzwij , and Dwij are of appropriate dimensions.
Matrix Agij = 0 if and only if there is no interaction between the subsystems
i and j. It is assumed that the state space matrices either (Agii , Agij , Bgi) or
(Agii , Agij , Cgi) belong to a polytopic uncertainty region as follows:

(Agii(λ), Agij(λ), Bgi(λ), Cgi(λ)) =

q∑
l=1

λl(A
l
gii
, Algij , B

l
gi
, C l

gi
) (2)

for i, j = 1, . . . , N , where λ = [λ1 · · ·λq]T is in the following unit simplex Λ:

Λ =

{
λ

∣∣∣∣∣
q∑
l=1

λl = 1, λl ≥ 0; l = 1, . . . , q

}
(3)

where q is the number of vertices of the polytopic system and matrices Algii ,
Algij , B

l
gi

, and C l
gi

are the lth vertex of the polytope. In what follows, we
assume that (Agii , Agij , Bgi) belongs to the polytopic uncertainty domain.
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The whole network of N subsystems is presented by the following equa-
tions:

ẋg(t) = Ag(λ)xg(t) +Bg(λ)u(t) +Bww(t)

z(t) = Czxg(t) +Dzuu(t) +Dzww(t)

y(t) = Cgxg(t) +Dww(t)

(4)

where

xg(t) = [xTg1(t), . . . , x
T
gN

(t)]T , u(t) = [uT1 (t), . . . , uTN(t)]T

w(t) = [wT1 (t), . . . , wTN(t)]T , z(t) = [zT1 (t), . . . , zTN(t)]T

y(t) = [yT1 (t), . . . , yTN(t)]T
(5)

and the state space matrices are given as follows:

Ag(λ) =

 Ag11(λ) . . . Ag1N (λ)
...

. . .
...

AgN1(λ) . . . AgNN (λ)

 , Bw =

 Bw11 . . . Bw1N

...
. . .

...

BwN1 . . . BwNN


Cz =

 Cz11 . . . Cz1N
...

. . .
...

CzN1 . . . CzNN

 , Dzw =

 Dzw11 . . . Dzw1N

...
. . .

...

DzwN1 . . . DzwNN

 ,

Dw =

 Dw11 . . . Dw1N

...
. . .

...

DwN1 . . . DwNN


(6)

and

Bg(λ) = diag (Bg1(λ), . . . , BgN (λ))

Cg = diag (Cg1 , . . . , CgN )

Dzu = diag (Dzu1 , . . . , DzuN )

(7)

2.2. Dynamic output feedback controller
It is assumed that there is one local controller corresponding to each

subsystem described by:

ẋci(t) =
N∑
j=1

Acijxcj(t) +
N∑
j=1

Bcijyj(t)

ui(t) =
N∑
j=1

Ccijxcj(t) +
N∑
j=1

Dcijyj(t)

(8)
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for i = 1, . . . , N , where xci ∈ Rm is the state vector of the ith local controller.
The controller matrices Acij , Bcij , Ccij , and Dcij are of appropriate dimen-
sions. According to this structure, each local controller uses the outputs of
its own subsystem and other subsystems as well as the states of other local
controllers. The centralized controller K with this structure is given by:

ẋc(t) = Acxc(t) +Bcy(t)

u(t) = Ccxc(t) +Dcy(t)
(9)

where
xc(t) = [xTc1(t), . . . , x

T
cN

(t)]T (10)

Ac =

 Ac11 . . . Ac1N
...

. . .
...

AcN1 . . . AcNN

 , Bc =

 Bc11 . . . Bc1N
...

. . .
...

BcN1 . . . BcNN


Cc =

 Cc11 . . . Cc1N
...

. . .
...

CcN1 . . . CcNN

 , Dc =

 Dc11 . . . Dc1N
...

. . .
...

DcN1 . . . DcNN


(11)

2.3. Control Structure Selection

To select an appropriate control structure, it is important to determine
whether there exists any link between the local controller i and the subsys-
tem j as well as the local controller j. In other words, the outputs of the
subsystem j do not contribute to the construction of the control inputs i if
and only if both Bcij = 0 and Dcij = 0. Moreover, there is no communication
link between the local controllers i and j if and only if both Acij = 0 and
Ccij = 0.

The main objective is to design a controller such that each local controller
uses a minimum amount of information exchange between the subsystems
and the local controllers. In order to design such controller, the following
pattern matrix Z(K) = [zij] is defined:

Z(K) =


card

([
Ac11 Bc11
Cc11 Dc11

])
. . . card

([
Ac1N Bc1N
Cc1N Dc1N

])
...

. . .
...

card

([
AcN1 BcN1

CcN1 DcN1

])
. . . card

([
AcNN BcNN
CcNN DcNN

])
 (12)

where card(·) is the cardinality operator defined as the number of non-zero
elements of (·). Element zij of Z(K) represents the communication links
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between the local controller i and the subsystem and the local controller j.
The number of the non-zero elements of Z(K) is defined as the number of
the communication links of the controller. Note that zij = 0 if and only if[
Acij Bcij
Ccij Dcij

]
= 0, i.e. there exists no link between the local controller i and

the subsystem j with its corresponding controller. The control structure is
represented by a binary information flow matrix I(K) = [Iij] determined as
follows:

Iij = sgn(zij) (13)

where sgn is the signum function. When all entries of matrix I(K) are equal
to 1, the corresponding controller is centralized and when I(K) is diagonal,
the corresponding controller is fully decentralized.

To find a controller structure with minimum communication links between
the subsystems and the local controllers, matrix Z(K) should be as sparse
as possible. The sparsity of this matrix can be presented by its cardinality
which is equal to the number of its non-zero elements.

2.4. Closed-loop system

The state space representation of the closed-loop system Hzw(λ), transfer
function matrix from w to z, can be written as:

ẋ(t) = A(λ)x(t) +B(λ)w(t)

z(t) = C(λ)x(t) +D(λ)w(t)
(14)

where x(t) = [xTg (t) xTc (t)]T and

A(λ) =

[
Ag(λ) +Bg(λ)DcCg Bg(λ)Cc

BcCg Ac

]
, B(λ) =

[
Bw +Bg(λ)DcDw

BcDw

]
C(λ) =

[
Cz +DzuDcCg DzuCc

]
, D(λ) = Dzw +DzuDcDw

(15)

The closed-loop state matrix A(λ) is called robustly stable if all its eigen-
values have strictly negative real part for all λ ∈ Λ.

The transfer function of the vertices of the closed-loop polytopic system
Hzw(λ) are given as follows:

H l
zw(s) =

[
Al Bl

C l Dl

]
; l = 1, . . . , q (16)
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where

Al =

[
Alg +Bl

gDcCg Bl
gCc

BcCg Ac

]
, Bl =

[
Bw +Bl

gDcDw

BcDw

]
C l =

[
Cz +DzuDcCg DzuCc

]
, Dl = Dzw +DzuDcDw

(17)

3. LMI REPRESENTATION OF FIXED-ORDER SPARSE H∞
CONTROLLER DESIGN

The problem of fixed-order decentralized/distributed control of LTI in-
terconnected systems subject to polytopic-type uncertainty in (1)-(2) can be
summarized as:

Given a linear dynamical interconnected system consists of N subsystems
with polytopic uncertainty, design a fixed-order dynamic output feedback
controller K such that

1. The cardinality of Z(K) is minimized (Control Structure Selection).

2. Closed-loop system is robustly stable and the performance criterion
‖Hzw(λ)‖2∞ < µ is guaranteed (Controller Design).

The aforementioned conditions can be formulated as the following opti-
mization problem:

min
K

card(Z(K))

subject to ‖Hzw(λ)‖2∞ < µ
(18)

The mentioned problem is non-convex because of the noncovexity of the
cardinality operator and the non-convex fixed-order H∞ dynamic output
feedback controller synthesis problem. In the next subsections, a convex
relaxation of the cardinality and an inner convex approximation of the H∞
constraints are presented.

3.1. Convex Relaxation of Cardinality

To reduce the amount of information exchange between subsystems and
sub-controllers in an interconnected system, matrix Z(K) in (12) should be
sparse. The sparsity requirements are expressed in terms of the cardinality
which is non-convex. It has been shown that the non-convex cardinality
minimization can be relaxed by the convex one-norm (`1) minimization [33].
In fact, one-norm is the convex envelope of the cardinality [34].
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To have a better approximation of the cardinality, the weighted `1 norm
is used [33]. Therefore, the objective function in (18) can be written as:

J = ‖W ∗ Z(K)‖1 (19)

where W = [wij] is the matrix of weights. Matrix J is defined as follows:

J =
N∑
i=1

N∑
j=1

wij ‖kij‖1 (20)

where kij =

[
Acij Bcij
Ccij Dcij

]
and wij ≥ 0 is the ijth entry of W which is chosen

to be inversely proportional to ‖kij‖1, i.e.

wi =

{
1/ ‖kij‖1 , if ‖kij‖1 6= 0
∞, if ‖kij‖1 = 0

(21)

then the weighted `1 norm and the cardinality operator coincide. How-
ever, since the weights depend on the unknown controller parameters, the
above strategy cannot be implemented. An iterative algorithm for choosing
the weighting matrix W in which the weights are determined and updated
through the solution of the weighted `1 norm in the previous iteration has
been developed in [33].

3.2. Inner Convex Approximation of Fixed-order Stabilizing Controllers

In this subsection, a convex set of fixed-order stabilizing controllers is
given. The results are summarized in Theorem 1.

Theorem 1. Suppose that a slack matrix M and a non-singular matrix T are
given. Then, the fixed-order controller of (9) stabilizes the polytopic system
described by (4) if there exist Lyapunov matrices P l > 0 such that[

MTP l + P lM ?
P l −M + T−1AlT −2I

]
< 0 (22)

for l = 1, 2, . . . , q.

Proof. Convex combination of (22) for all λ ∈ Λ leads to the following
inequalities: [

MTP (λ) + P (λ)M ?
P (λ)−M + T−1A(λ)T −2I

]
< 0 (23)
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where A(λ) =
∑q

l=1 λlA
l, P (λ) =

∑q
l=1 λlP

l, and λ ∈ Λ.
Based on KYP Lemma, the inequality (23) indicates that the following

transfer function matrix is strictly positive real (SPR) with Lyapunov matrix
P (λ):

H(s) =

[
M I

M − T−1A(λ)T I

]
(24)

It can be easily shown that the SPRness of H(s) implies that H−1(s) with
the following realization is also SPR with the same Lyapunov matrix P (λ).

H−1(s) =

[
T−1A(λ)T I

−M + T−1A(λ)T I

]
(25)

The SPRness of H−1 with P (λ) implies that matrix T−1A(λ)T is stable with
Lyapunov matrix P (λ). As a result, the closed-loop state matrix A(λ) is
stable with the linearly parameter-dependent Lyapunov matrix T−TP (λ)T−1.
�

Remark: One of the performance specifications in control theory is to
optimize the spectral abscissa of the closed-loop system. This problem is
reformulated as the following optimization problem:

min
K,P l

β

s.t.

[
MTP l + P lM − 2βP l ?
P l −M + T−1AlT −2I

]
< 0; β < 0

P l > 0

(26)

for l = 1, . . . , q. The minimum value of β can be obtained by a bisection
algorithm.

3.3. Inner Convex Approximation of Fixed-order H∞ Controllers
In this subsection, an LMI representation of fixed-order H∞ controller

synthesis of continuous-time LTI systems with polytopic uncertainty is pro-
vided.

Theorem 2. Suppose that two slack matrices M and T are given. Then,
the fixed-order controller of (9) guarantees the robust stability and the robust
performance ‖Hzw(λ)‖2∞ < µ of the closed-loop system given in (14)-(17) if
there exist Laypunov matrices P l > 0 such that

MTP l + P lM ? ? ?
P l −M + T−1AlT −2I ? ?

0 (T−1Bl)T −I ?
C lT 0 Dl −µI

 < 0 (27)
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for l = 1, . . . , q.

Proof. See Appendix A. �
The inequalities given in (27) are LMIs in terms of output feedback con-

troller parameters (Ac, Bc, Cc, Dc), µ, and matrices P l; l = 1, . . . , q.

Lemma 1. The following set of inequalities is equivalent to (27):
Al

T
P lT + P lTA

l ? ? ?
P lT +MT −XAl −2X ? ?

−BlTMT +BlTXAl BlTX −I ?
C l 0 Dl −µI

 < 0 (28)

where MT , P l
T , and X are defined as follows:

MT = T−TMT−1

P l
T = T−TP lT−1

X = T−TT−1
(29)

for l = 1, . . . , q.

Proof. See Appendix B. �
The non-convexity of the fixed-order controller design problem can be

overcome by means of the slack matrices M and T . However, one of the
main sources of conservatism in the proposed approach is the choice of these
matrices. In the following, a heuristic approach for choosing the slack matri-
ces is given.

Generally, one approach to the choice of the slack matrices M and T
is to use a set of initial fixed-order stabilizing controllers designed for each
vertex of the polytopic system using the existing methods in the literature,
e.g. [35, 36, 37, 38, 39, 40].

Suppose that (Āl, B̄l, C̄ l, D̄l) is the closed-loop state space realization of
the lth vertex with its corresponding controller K l. Then, matrices M and T
can be obtained as follows:

T = (chol(X))−1

M = T TMTT
(30)
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where chol denotes Cholesky factorization and (MT , X) is a feasible solution
of the following convex optimization problem:

min
MT ,X,P

l
T ,µ

µ

s.t.


Āl

T
P l
T + P l

T Ā
l ? ? ?

P l
T +MT −XĀl −2X ? ?

−B̄lTMT + B̄lTXĀl B̄lTX −I ?
C̄ l 0 D̄l −µI

 < 0

P l
T > 0

l = 1, . . . , q

(31)

3.4. Convex Set of Fixed-order Decentralized/Distributed H∞ Controllers

The problem of fixed-order decentralized/distributed H∞ control of LTI
interconnected systems subject to polytopic uncertainty can be solved by the
following convex optimization problem:

min
K,P l,µ

µ+ α‖W ∗ Z(K)‖1
MTP l + P lM ? ? ?

P l −M + T−1AlT −2I ? ?
0 (T−1Bl)T −I ?
C lT 0 Dl −µI

 < 0

P l > 0

l = 1, . . . , q

(32)

where α determines a trade-off between the number of communication links
in the distributed control and the H∞ performance criterion. In following, a
systematic algorithm for the problem of fixed-order decentralized/distributed
H∞ controller design of LTI polytopic systems is given.

3.5. Fixed-order Decentralized/Distributed H∞ Controller Design Algorithm

In this subsection, an iterative LMI-based algorithm for the problem of
fixed-order sparse H∞ controller design is presented. The iterative procedure
can be summarized by the following steps:

Step 1 (Initialization): Design some initial controllers for each vertex

of the polytope (K l[0]). Put the iteration number h = 1, a small tolerance
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for ε > 0, and w
[1]
ij = 1, i, j = 1, ..., N . Determine α based on the desired H∞

performance and the sparsity of the controller.
Step 2: Solve the convex optimization problem given in (31) and deter-

mine M
[h]
T and X [h].

Step 3: Find the slack matrices M [h] and T [h] from (29).
Step 4: Solve the convex optimization problem given in (32) to obtain

a sparse fixed-order H∞ controller K [h].
Step 5: Find ‖kij‖[h]1 , i, j = 1, . . . , N based on the current controller

K [h].
Step 6: Update the ijth elements of the weighting matrix W [h+1]:

w
[h+1]
ij =


1

‖kij‖
[h]
1 +ε

, i 6= j

0, i = j

(33)

for i, j = 1, ..., N .
Step 7: Terminate on convergence or when maximum number of itera-

tions hmax reaches. Otherwise, use the obtained controller in Step 4 as an

initial controller (K l[h] ← K [h]; l = 1, . . . , q) and go to Step 2 with h← h+1.
Step 8 (Polishing): Design a fixed-structure H∞ controller by solving

the optimization problem in (32), where α = 0 is considered.
Remark: It can be easily shown that the fixed-order H∞ controller design

algorithm (α = 0) leads to monotonic convergence of the upper bound of the
H∞ norm. The proof stems from the fact that (27) and (28) are equivalent.
Therefore, for h > 1, K [h−1] and µ[h−1] are always feasible solutions to the
optimization problem in Step 4. On the other hand, M

[h]
T , X [h], µ[h] are

always solutions to the optimization problem in Step 2 at iteration h + 1.
Thus, µ[h+1] ≤ µ[h] which confirms that the upper bound of the H∞ norm
is not increasing. Weighted `1 norm also converges to a local minimum
[33]. Nevertheless, the convergence of the proposed algorithm cannot be
guaranteed.

In the next section, the proposed results are applied to the problem of
voltage control of islanded inverter-interfaced microgrids.

4. INVERTER-INTERFACED MICROGRIDS

4.1. Microgrid System Description

Consider an islanded inverter-interfaced microgrid consisting of N DG
units. Each DG unit is modeled by a DC voltage source, a voltage-source
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Vdc
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Rlj

Rj

LjiLj

Figure 1: Configuration of two DG units connected via line ij

converter (VSC), a series RL filter, a step-up transformer with transformation
ratio k, and a local load modeled by a three-phase parallel RLC network.
For the sake of simplicity, first we consider the configuration of a microgrid
system with two DG units as shown in Fig. 1. However, the proposed voltage
control method in this paper is general and it can be applied to the microgrids
composed of N DGs. The system is described by the following dynamical
equations in dq-frame:

DG i


dVi,dq
dt

+ jω0Vi,dq = − 1
RiCti

Vi,dq + k
Cti
Iti,dq − 1

Cti
iLi,dq + 1

Cti
Iij,dq

dIti,dq
dt

+ jω0Iti,dq = − k
Lti
Vi,dq − Rti

Lti
Iti,dq + 1

Lti
Vti,dq

diLi,dq
dt

+ jω0iLi,dq = 1
Li
Vi,dq − Rli

Li
iLi,dq

(34)

DG j


dVj,dq
dt

+ jω0Vj,dq = − 1
RjCtj

Vj,dq + k
Ctj
Itj,dq − 1

Ctj
iLj ,dq − 1

Ctj
Iij,dq

dItj,dq
dt

+ jω0Itj,dq = − k
Ltj
Vj,dq − Rtj

Ltj
Itj,dq + 1

Ltj
Vtj,dq

diLj,dq

dt
+ jω0iLj ,dq = 1

Lj
Vj,dq − Rlj

Lj
iLj ,dq

(35)
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Line ij:
dIij,dq
dt

+ jω0Iij,dq = −Rij
Lij
Iij,dq + 1

Lij
Vj,dq − 1

Lij
Vi,dq (36)

where (Vi,dq, Vj,dq), (Iti,dq, Itj,dq), (iLi,dq, iLj ,dq), (Vti,dq, Vtj,dq), and Iij,dq respec-
tively are the dq components of the load voltage at PCCs, the current filters,
the load inductance currents, the VSC terminal voltages, and the transmis-
sion line current.

To obtain the above dynamical equations, the system is mathematically
described in the abc-frame. Then, the mathematical model is transformed to
αβ-frame using xαβ = xa + xbe

−j(2π/3) + xce
j(2π/3). Finally, they are trans-

formed to the dq-frame using xdq =
√

2/3xαβe
jθ, where θ is the transforma-

tion angle. It should be noted that the dc-side of VSC is modeled by an ideal
voltage source.

The microgrid system in Fig. 1 can be presented as a linear time-invariant
system by the following state space equations: ẋi(t)
ẋlij(t)
ẋj(t)

 =

 Ai Alij 0
−Alj,ij Al,ij Alj,ij

0 −Alji Aj

 xi(t)
xlij(t)
xj(t)

+

 Bi 0
0 0
0 Bj

[ ui(t)
uj(t)

]
[
yi(t)
yj(t)

]
=

[
Ci 0 0
0 0 Cj

] xi(t)
xlij(t)
xj(t)


(37)

where xi =
[
Vi,d Vi,q Iti,d Iti,q iLi,d iLi,q

]T
, xlij =

[
Iij,q Iij,q

]T
, xj =[

Vj,d Vj,q Itj,d Itj,q iLj ,d iLj ,q
]T

, ui =
[
Vti,d Vti,q

]T
, uj =

[
Vtj,d Vtj,q

]T
,

yi =
[
Vi,d Vi,q

]T
, yj =

[
Vj,d Vj,q

]T
, and

Ai =



− 1
RiCti

ω0
k

Cti
0 − 1

Cti
0

−ω0 − 1
RiCti

0 k
Cti

0 − 1
Cti

− k
Lti

0 −Rti

Lti
ω0 0 0

0 − k
Lti

−ω0 −Rti

Lti
0 0

1
Li

0 0 0 −Rli

Li
ω0

0 1
Li

0 0 −ω0 −Rli

Li


, Alij =



1
Cti

0

0 1
Cti

0 0
0 0
0 0
0 0

 (38)

16



Aj =



− 1
RjCtj

ω0
k

Ctj
0 − 1

Ctj
0

−ω0 − 1
RjCtj

0 k
Ctj

0 − 1
Ctj

− k
Ltj

0 −Rtj

Ltj
ω0 0 0

0 − k
Ltj

−ω0 −Rtj

Ltj
0 0

1
Lj

0 0 0 −Rlj

Lj
ω0

0 1
Lj

0 0 −ω0 −Rlj

Lj


, Alji =



1
Ctj

0

0 1
Ctj

0 0
0 0
0 0
0 0


(39)

Al,ij =

[
−Rij

Lij
ω0

−ω0 −Rij

Lij

]
, Alj,ij =

[
1

Lij
0 0 0 0 0

0 1
Lij

0 0 0 0

]
(40)

Bi =



0 0
0 0
1

Lti
0

0 1
Lti

0 0
0 0

 , Bj =



0 0
0 0
1

Ltj
0

0 1
Ltj

0 0
0 0

 (41)

Ci = Cj =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(42)

4.2. Islanded Microgrids with N DG Units

The state space model in (37) can be extended to the islanded microgrids
composed of N DG units with a parallel topology. The overall microgrid
system G(s) is described as follows:

ẋg(t) = Agxg(t) +Bgu(t)

y(t) = Cgxg(t)
(43)

where

xg =
[
xT1 xTl12 xT2 xTl23 . . . xTN

]T
u =

[
uT1 . . . uTN

]T
y =

[
yT1 . . . yTN

]T (44)

and the state space matrices are given:
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Ag =



A1 Al12 0 0 0 . . . 0
−Al2,12 Al,12 Al2,12 0 0 . . . 0

0 −Al21 A2 Al23 0 . . . 0
0 0 −Al3,23 Al,23 Al3,23 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . AN



Bg =



B1 0 0 . . . 0
0 0 0 . . . 0
0 B2 0 . . . 0
0 0 0 . . . 0
0 0 B3 . . . 0
...

...
...

. . .
...

0 0 0 . . . BN


, Cg =


C1 0 0 0 0 . . . 0
0 0 C2 0 0 . . . 0
0 0 0 0 C3 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . CN


(45)

where Ai, Alij, Alj,ij, Al,ij, Bi, and Ci are define in (38)-(42) for i, j =
1, . . . , N .

4.3. Islanded Microgrids with Polytopic-type Uncertainty

The parametric uncertainty of the microgrid system in Fig. 1 arises from
the fact that the RLC load parameters of DG unit i can vary based on
consumers demands. For the sake of simplicity, the following definitions are
used.

θ1i =
1

Ri

, θ2i =
1

Li
, θ3i =

1

Cti
It is also assumed that the RLC load parameters are bounded within the
maximum and minimum values as Rimin ≤ Ri ≤ Rimax , Limin ≤ Li ≤ Limax ,
and Cimin ≤ Cti ≤ Cimax which represents a cube in which the load pa-
rameters are allowed to change. In the general case of N DG units, it is a
hyper-cube with q = 2nθ vertices, where nθ is the number of uncertain load
parameters. It can be shown that the image of this hyper-cube in the space
of the elements of the matrix Ag is inside a polytope of q = 2nθ vertices.
This polytope covers the whole uncertainty in the RLC load parameters and
is defined as the convex combination of the vertices Alg, l = 1, . . . , q [41]:

Ag(λ) =

q∑
l=1

λlA
l
g, λl ∈ Λ (46)
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Figure 2: Block diagram of the islanded microgrid control strategy

where vertices Alg are obtained based on the maximum and minimum values
of the RLC load parameters.

4.4. Islanded Microgrid Control System

Consider a schematic diagram of the microgrid control strategy composed
of a power management system (PMS), local voltage controllers of DG units,
and a frequency control scheme in Fig. 2.

A power management strategy is required for reliable and efficient oper-
ation of a microgrid system with multiple DG units, particularly in the is-
landed mode of operation [42]. The main function of the power management
system (PMS) is to maintain an optimal operating point for the microgrid.
PMS assigns the active and reactive power set points for the DG units to
(i) properly share the real and reactive power among the DG units based on
either a cost function associated with each DG unit or a market signal [23],
(ii) appropriately respond to the microgrid disturbances and major changes
[43], (iii) balance the microgrid power, and (iv) provide the resynchronization
of the microgrid system with the main grid, if required [43]. The set points
are then transmitted to the local voltage controllers of the DG units. The
local controllers measure the voltage at their corresponding PCC or the ac-
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tive/reactive output power of their own DG unit and then enable the voltage
tracking according to the received reference set points [26].

The frequency of the islanded microgrid system is controlled in the open-
loop. To this end, each DG unit includes an oscillator which generates
θ(t) =

∫ t
0
ω0dτ , where ω0 = 2πf0 and f0 is the nominal frequency of the

microgrid. The phase-angle waveform θ(t) is employed for dq/abc (abc/dq)
transformations. The DG units are then synchronized by a global synchro-
nization signal that is communicated to the oscillators of DG units through
the global positioning system (GPS) [23].

The voltage set points are communicated from PMS to local controllers
of the DG units and transformed to the dq-frame based on the phase-angle
signal θ(t) generated by their internal oscillator. The main objective is to
develop a robust voltage controller for the islanded operation of the inverter-
interfaced microgrids with load parameter uncertainties given in (46).

4.5. Robust Fixed-order Decentralized Voltage Control

A fixed-order voltage controller for the islanded microgrid system whose
dynamical equations are given in (43)-(45) with polytopic-type uncertainty
given in (46) is sought to satisfy the following performance criteria:

• The closed-loop system must be asymptotically stable for the whole
polytope.

• The closed-loop polytopic system should be able to asymptotically
track all step reference voltage signals (yref (t)).

• The closed-loop response to step reference voltage signals should be
fast with small overshoot for all values of the load parameters within
the prespecified uncertainty ranges.

• Each local controller uses the minimum information exchange and com-
munication among DG units and their local controllers.

• The local controllers are structurally simple (low-order control design).

• The coupling among the output channels should be small.

To achieve all above mentioned conditions, in following, a fixed-order
2DOF sparse controller with integral action is designed. The dynamics of

20



the controller K(s) are given by:

ẋc(t) = Acxc(t) +
[
Bc1 Bc2

] [ y(t)
yref (t)

]
u(t) = Ccxc(t) +

[
Dc1 Dc2

] [ y(t)
yref (t)

] (47)

where xc(t) is the states of the controller and matrices Ac, Bc1 , Bc2 , Cc, Dc1 ,
and Dc2 are of appropriate dimensions. The controller is a solution of the
following optimization problem:

min
Ac,Bc1 ,Bc2 ,Cc,Dc1 ,Dc2

µ+ α‖W ∗ Z(K)‖1

subject to ‖WsS(λ)‖2∞ < µ
(48)

where Z(K) is defined in (12). Transfer functions S(λ) = (I + G(λ)K)−1

and Ws are sensitivity function and a weighting filter designed based on the
desired time-domain performance [44]. The positive scalar α characterizes
the emphasis on the tracking dynamics and the sparsity of the controller
architecture.

The weighting filter Ws is responsible to shape the sensitivity function
S and provides the desirable performance characteristics of the closed-loop
system. A common choice of Ws is given as follows [27]:

Ws(s) = diag




s
Msi

+ω∗
Bi

s+ω∗
Bi
εi

0

0
s

Msi
+ω∗

Bi

s+ω∗
Bi
εi


 (49)

where ω∗Bi is approximately the desired closed-loop bandwidth, εi is the max-
imum tracking steady state error, and Msi ≥ 1 is the maximum peak value
of S. The choice of εi << 1 ensures approximate integral action S(0) ≈ 0
[27]. A large value of ω∗Bi leads to a faster response for output i. However,
there always exists a trade-off between the speed of the closed-loop system
response and the sensitivity of the closed-loop system with respect to the
measurement noise. Therefore, to have an acceptable dynamic response of
the microgrid system in terms of step signal tracking and robustness to the
measurement noise, the parameters of the weighting filter Ws(s) are selected
as follows:

ω∗Bi = 30, Msi = 1.5, εi = 3.33e− 4 (50)

21



Table 1: Parameters of islanded single-DG microgrid

Filter parameters Rt = 37.7mΩ, Lt = 5mH
DC bus voltage Vdc = 340V

VSC rated power SV SC = 10KV A
PWM carrier frequency fsw = 10KHz
Load nominal resistance Rnom = 23Ω
Load nominal inductance Lnom = 5mH
Load nominal capacitance Cnom = 850µF

Inductor quality factor ql = 120
System nominal frequency f0 = 60Hz (ω0 = 2πf0)

ω∗Bi = 30 is chosen to have a rise-time of about 50 ms, Msi = 1.5 is chosen to
have a peak value of ‖Si‖∞ ≤Msi and εi = 3.33e− 4 is chosen to have very
small steady state error with respect to a step input, i.e. less than 3.33e− 4.

4.6. Simulation and Experimental Results

In this subsection, the performance of the proposed voltage control strat-
egy is verified by a set of comprehensive simulation studies and is validated
by means of experiments.

Scenario 1: To show different performance aspects of the proposed volt-
age control design technique and for the sake of simplicity, we consider a
single-DG microgrid system which supplies a three-phase parallel RLC net-
work whose parameters are given in Table 1. It is assumed that the load
resistance R1 can vary within ±80% of its nominal value (Rnom). Moreover,
the load parameters L1 and Ct1 are assumed to be bounded in the intervals
[0.5, 1.5]×Lnom and [0.5, 1.5]×Cnom, respectively, where Lnom and Cnom are
their nominal values.

The frequency of the islanded microgrid is controlled through an internal
oscillator in the open-loop manner with ω0 = 2πf0. According to the fixed-
order H∞ controller design procedure discussed in Subsection 3.5 in the case
of α = 0, a robust sixth-order 2DOF voltage controller with integral action
is designed:
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Figure 3: Experimental setup: (A) load resistance, (B) load inductance, (C) load capaci-
tance, (D) three-phase converter and gating signal generator, and (E) OPAL-RT.

Ac =


0 114.187 200.576 0 −3.384e3 2.687e3
0 −1.281e4 8.110e3 0 −7.561e3 5.674e3
0 964.293 −1.227e4 0 −2.328e3 1.779e3
0 1.495e3 −1.003e3 0 560.633 −321.734
0 −1.581e3 2.471e3 0 −3.086e4 2.430e4
0 −6.624e3 4.181e3 0 −4.259e3 −7.559e3

 , Cc =


14.552 25.395
−1.387e3 53.608
957.818 154.008
−22.352 17.363
−1.119e3 −2.948e3
793.861 2.359e3



T

Bc1 =


−3.96 −10.813
−190.697 −7.335
−1.278e3 −23.570

20.591 −15.528
46.662 −92.329
−55.562 −1.354e3

 , Bc2 =


20.817 3.304
48.723 −34.250
28.047 2.704
−11.663 29.727
−24.629 1.592
13.016 51.422


Dc1 =

[
−20.298 −4.549

7.979 −11.005

]
, Dc2 =

[
6.238 −5.233
−1.149 1.927

]
(51)

The designed controller guarantees the robust stability as well as the ro-
bust performance criterion ‖WsS(λ)‖∞ < 1.087 in spite of the prespecified
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Figure 4: Experimental and simulation results of the islanded microgrid in voltage track-
ing (a) d-component of the load voltage, (b) q-component of the load voltage, and (c)
instantaneous load voltages

load parameter uncertainties. Moreover, the controller provides the asymp-
totic tracking of all step reference inputs.

Experimental Results

In this part, the performance of the designed robust H∞ voltage controller
is validated by means of an experimental test system with the parameters
given in Table 1. The voltage controller given in (51) is implemented in the
RT-LAB real-time platform of OPAL-RT Technologies1 with the sampling
time of 9 µs.

A photo of the laboratory experimental setup is shown in Fig. 3 which
includes OPAL-RT, three-phase two-level converter, and three-phase RLC

1www.opal-rt.com
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Figure 5: Dynamic responses of the experimental test system due to a resistive load
change (a) dq-components of the load voltage, (b) control inputs, and (c) instantaneous
load voltages

load. The performance of the control system is validated using several tests
including voltage tracking and sudden changes in the load parameters. In all
case studies, the system is assumed balanced and operates in the islanded
mode.

The first test demonstrates the capability of the designed controller in ref-
erence signal tracking. The d-component of the reference voltage steps down
to 0.686pu at t = 0.28s and then the q-component of the reference voltage
is suddenly changed from 0.5145pu to 0.1715pu at t = 0.743s. The experi-
mental and simulation results of the islanded microgrid system due to these
step changes in the load reference signals are shown in Fig. 4. The results
show that the proposed controller can regulate the load voltages within good
tracking performance. Moreover, Fig. 4 demonstrates that the simulation
results are consistent with experimental data. However, in the experimental
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Figure 6: Dynamic responses of the experimental test system due to an inductive load
change (a) dq-components of the load voltage, (b) control inputs, and (c) instantaneous
load voltages

results some ripples in the load voltages are observed due to switching har-
monics of the PWM-based voltage-source converter. The amount of ripples
is acceptable according to IEEE standards [45].

In the second test, the proposed voltage controller regulates the d and q
components of the load voltages at 0.8pu and 0.6pu, respectively. The load
inductance and load capacitance are also fixed at their nominal values, as
given in Table 1. The load resistances in the three phases are equally stepped
down from 5 lamps to no lamp (∆ configuration) at about t = 200ms. Fig. 5
shows the dynamical response of the test system due to this resistive load
change.

In the third test, the d and q components of the load voltages are set
at 0.93pu and 0.37pu, respectively. While the load resistances and the load
capacitances are fixed at their nominal values, the load inductances in the
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Figure 7: Dynamic responses of the experimental test system due to a capacitive load
change (a) dq-components of the load voltage, (b) control inputs, and (c) instantaneous
load voltages

three phases are suddenly stepped up from 5mH to 25mH. Then, they
suddenly decrease to 5mH at about t = 0.5s. Due to the space limitation,
the dynamic response of the system for only the second load inductance
change is shown in Fig. 6.

In the last test, a change in the load capacitance is considered. To this
end, the load capacitances in the three-phases are suddenly changed from the
nominal value 850µF to 1700µF at about t = 1.1s, while the load resistances
and the load inductances are set based on the values given in Table 1. The
dynamic response of the test system is depicted in Fig. 7.

Fig. 5 and Fig. 6 demonstrate that in spite of the large variations
in the load resistance and the load inductance, the controller successfully
regulates the load voltage with small transients in the responses. Fig. 7
also indicates that the controller adjusts the load voltages within about two
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Table 2: Parameters of the islanded microgrid system with three DG units

Parameters of RL filter 1 Rt1 = 1mΩ, Lt1 = 137.271µH
Parameters of RL filter 2 Rt2 = 1.4mΩ, Lt2 = 183.028µH
Parameters of RL filter 3 Rt3 = 2.1mΩ, Lt3 = 274.542µH

DC bus voltages Vdc = 1500V
VSC terminal voltage (line-line) VV SC = 600KV

Transformer parameters XT = 8%
Transformer voltage ratio k = 0.6/13.8KV (∆/Y )
Parameters of RLC load 1 R1 = 350Ω, Ct1 = 60µF

(nominal values) L1 = 0.11H, Rl1 = 2Ω
Parameters of RLC load 2 R2 = 375Ω, Ct2 = 65µF

(nominal values) L2 = 0.1mH, Rl2 = 2Ω
Parameters of RLC load 3 R3 = 400Ω, Ct3 = 55µF

(nominal values) L3 = 0.12mH, Rl3 = 2Ω
System nominal frequency f0 = 60Hz

Parameters of line 1 R12 = 3.35Ω, L12 = 2.97mH
Parameters of line 2 R23 = 5.025Ω, L23 = 4.5mH

cycles. Therefore, the obtained results confirm that the controller is robust
with respect to the load parameter uncertainties. In addition, the coupling
between the output signals is small.

The experimental results show that the proposed voltage controller pro-
vides satisfactory dynamic performance in terms of voltage tracking and ro-
bustness to load parameter variations according to IEEE standards [45].

Remark: It should be noted that the load parameters are uncertain and
they do not have step changes in practice. However, the step variations in
these parameters lead to the worst-case transient response of the system.
Therefore, it can be a good index for the evaluation of the robustness of the
designed controller to the load parameter uncertainties.

Scenario 2: In the second scenario, an islanded microgrid consisting of
three DG units with the voltage rating of 0.6 kV and power ratings of 1.6
MVA, 1.2 MVA, and 0.8 MVA is considered. The values and the definition
of the parameters are provided in Table 2.

It is assumed that the load resistances Ri and inductances Li, i = 1, 2, 3
are uncertain up to ±20% of their nominal values given in Table 2. Therefore,
the uncertainty in this system is in the form of a polytope built by q = 26

vertices.
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Figure 8: Number of communication link in the feedback controller versus the iteration
number

The proposed fixed-order H∞ control method with minimum communica-
tion links is used to design a controller for the islanded microgrid consisting
of 3 DG units. The final controller is resulted from the following hierarchy
of issues:

• Initial centralized controllers are designed by FDRC (Frequency-Domain
Robust Controller) Toolbox [40] for each vertex of the polytope.

• To ensure the integral action of the controller, the controller must have
six poles at zero. Therefore, one can simply consider six columns/rows
of matrix Ac to be identically equal to zero (one integrator for each
output loop).

• The feedback term of the controller is first designed such that the
closed-loop system is robustly stable and its spectral abscissa is mini-
mized.

• The feedforward term of the controller is then designed such that
‖WsS(λ)‖∞ is minimized.
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• The parameters of the algorithm given in 3.5 are set as follows: ε =
1e−10 and α = 1.

– The small parameter ε > 0 in (33) is used to ensure that the

weights are well-defined when ‖kij‖[h]1 = 0. In this case, for almost

zero-valued k
[h]
ij , a very high weight is assigned.

– The scalar α ≥ 0 in (32) characterizes an emphasis on the sparsity
of the controller. A larger α leads to a sparser controller whereas
α = 0 renders a centralized fixed-order H∞ controller.

• LMI-based optimization problems are solved using YALMIP [46] as the
interface and MOSEK2 as the solver.

After 20 iterations, some control structures are obtained. Fig. 8 shows the
number of communication links versus the iteration numbers. The resulting
decentralized controller in the 20th iteration is given as follows:

Ac = diag




0 9.08e2 0 −1.07e2
0 −1.885e4 0 1.65e3
0 1.068e2 0 9.079e2
0 −1.65e3 0 −1.885e4

 ,


0 2.787e2 0 −1.122e1
0 −4.53e3 0 1.096e3
0 8.99e0 0 2.787e2
0 −1.064e3 0 −4.526e3



,


0 9.74e2 0 −1.17e2
0 −1.84e4 0 1.012e3
0 1.167e2 0 9.74e2
0 −1.0117e3 0 −1.839e4




Bc1 = diag




3.24e2 3.23e1
−3.217e3 −3.6157e3
−3.0583e1 3.227e2

3.618e3 −3.158e3

 ,

−1.518e2 7.034e2
5.711e3 −1.1076e4
−7.0023e2 −1.577e2

1.101e4 5.8155e3

 ,


3.066e2 1.8206e2
1.206e3 −5.15e3
−1.832e2 3.052e2

5.16e3 1.2445e3




Cc = diag




4.9264 2.58
2.2890 3.926
−2.5786 4.926
−3.9323 2.287


T

,


8.0376 3.368
−5.73 6.8521
−3.3725 8.0425
−6.82 −5.776


T

,


5.532 4.6948
−3.081 8.642
−4.6955 5.516
−8.6424 −3.0794


T

Dc1 = diag

([
6.8763 −9.899e− 1
1.0153 6.871

]
,

[
2.9976e1 −2.243
2.3468 3.0213e1

]
,

[
1.728e1 −1.156
1.163 1.7314e1

])
(52)

2Available online in http://www.mosek.com
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Figure 9: Reference set-point tracking: (a) d -component of the load voltage at PCC 1,
(b) q-component of the load voltage at PCC 1, (c) d -component of the control signal of
DG unit 1, (d) q-component of the control signal of DG unit 1, and (e) instantaneous load
voltages at PCC 1

The above controller provides β = −4.9219. The decentralized feedfor-
ward term of the controller is resulted after 2 iterations:

Bc2 = diag




162.22 −138.43
27.298 15.629
140.24 163.68
−15.459 27.16

 ,


315.49 117.7
−27.581 60.459
−117.98 317.01
−59.828 −28.427

 ,


351.9 −96.812
18.278 19.767
96.12 352.65
−19.944 18.106




Dc2 = diag

([
0.085 −0.014
0.013 0.086

]
,

[
0.010 −0.336
0.335 0.007

]
,

[
0.367 −0.009
0.008 0.369

])
(53)

The 2DOF feedback-feedforward controller guarantees the robust stabil-
ity as well as the performance criterion ‖WsS(λ)‖∞ < 1.547 for the whole
polytope.
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Figure 10: Reference set-point tracking: (a) d -component of the load voltage at PCC 2,
(b) q-component of the load voltage at PCC 2, (c) d -component of the control signal of
DG unit 2, (d) q-component of the control signal of DG unit 2, and (e) instantaneous load
voltages at PCC 2

To evaluate the performance of the designed controller, we consider the
capability of the nominal system in voltage setpoint tracking of each DG
units. We assume that the load voltages at PCCs are initially regulated at
1∠0◦. Then, the output power of DG unit 2 varies due to a change in its
local load. Since all three DG units contribute to compensate the total power
demand, the PMS determines the following new setpoints for each DG unit
at t = 1.5s: V1,dqref = 1.01∠0.14◦, V2,dqref = 1∠0◦, and V3,dqref = 1∠− 0.06◦.
Fig. 9, Fig. 10, and Fig. 11 show the transient response of each DG unit due
to the set-point change. The results demonstrate that the proposed controller
provides satisfactory dynamic performance according to IEEE standards [45].

Remark: Two-stage 2DOF control design restricts the achievable perfor-
mance compared to a simultaneous design [27]. However, due to the size
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Figure 11: Reference set-point tracking: (a) d -component of the load voltage at PCC 3,
(b) q-component of the load voltage at PCC 3, d -component of the control signal of DG
unit 3, (d) q-component of the control signal of DG unit 3, and (e) instantaneous load
voltages at PCC 3

of system and number of vertices in the microgrid case study, SDP solvers
encounter numerical problems in the design of one-stage 2DOF H∞ control
through Theorem 2. Therefore, the 2DOF decentralized voltage controller
for the microgrid system is designed in two steps.

5. CONCLUSION

This paper proposes a fixed-order decentralized/distributed control strat-
egy for the islanded operation of inverter-interfaced microgrids subject to
parameter uncertainties. The uncertainties are imposed by the loads whose
parameters can be uncertain. However, it is assumed that the uncertain pa-
rameters belong to some prespecified intervals. The controller is designed

33



through a solution of a convex optimization problem which relies on a con-
vex relaxation of the cardinality operator and a convex set of fixed-order
controllers. The main property of the proposed controller design strategy is
that the control structure as well as the control parameters are simultane-
ously and iteratively designed. To validate the performance of the designed
controller, several simulation case studies and experiments are carried out
using MATLAB and OPAR-RT Hardware-In-the-Loop, respectively. Both
simulation studies and experiments validate the effectiveness of the designed
controller in terms of voltage tracking and robustness to the load parameter
variations.
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APPENDICES

Appendix A: Proof of Theorem 2
Proof. Convex combination of (27) for all vertices leads to the following

inequality:
MTP (λ) + P (λ)M ? ? ?

P (λ)−M + T−1A(λ)T −2I ? ?
0 (T−1B(λ))T −I ?

C(λ)T 0 D(λ) −µI

 < 0 (.1)

where λ ∈ Λ, P (λ) =
∑q

l=1 λlP
l, and the matrices (A(λ), B(λ), C(λ), D(λ))

are given in (15). Then, the multiplication of the above inequality on the
right by U1

U1 =


I 0 0

P (λ) 0 0
0 I 0
0 0 I

 (.2)

and on the left by UT
1 leads to the following inequality: P (λ)(T−1A(λ)T ) + (T−1A(λ)T )TP (λ) ? ?

(T−1B(λ))TP (λ) −I ?
C(λ)T D(λ) −µI

 < 0 (.3)

According to bounded real lemma [41], the above inequality indicates that
‖Hzw(λ)‖2∞ < µ. �

Appendix B: Proof of Lemma 1
Proof. The inequalities of (28) are obtained by the multiplication of (27)

on the left by U2 and on the right by UT
2 .

U2 =


T−T −T−TMT +Al

T
T−T 0 0

0 T−T 0 0
0 0 I 0
0 0 0 I

 (.1)

�
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