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ABSTRACT 

This paper presents a bi-level optimisation process for the design and operation of a 

distributed energy system taking into account non-linear electrical grid constraints. It includes 

the optimal selection of various distributed energy resources (micro combined heat and 

power, photovoltaic, air source heat pump, gas boiler and heat storage) and the optimal 

operation of the selected resources at the neighbourhood level. The objective is to explore the 

tradeoff between cost and carbon emissions over the lifespan of the selected resources while 

satisfying the heat and electrical demands of the buildings as well as avoiding the violation of 

existing electrical grid constraints. This is accomplished by using two optimisation “levels” 

within one optimisation process. The main level uses a multi-objective genetic algorithm 

(GA) to optimise a set of design variables (capacities of technologies in each building). The 

evaluation of each candidate solution of the GA has two steps. First, the optimal operation of 

all distributed energy resources is determined using the energy hub approach (a mixed integer 

linear programming model); the results are passed back to the main level where they are 

summed to give the objective function value. This is followed by a non-linear power flow 

calculation to check if the proposed operation violates existing electrical grid constraints. The 

optimisation framework is applied to a case study consisting of several buildings at the low 

voltage distribution network level. The optimal design and operation of distributed energy 

system is determined. The impact of the existing electrical grid in limiting integration of 

distributed energy resources is shown to be highly significant. The effect on the solutions 

proposed and how limitations can be decreased are also discussed.  

Keywords: bi-level optimisation, power flow constraints, MILP, GA, energy hub 

INTRODUCTION  

The Swiss energy strategy 2030 set a target of at least 50% reduction of greenhouse gas 

reduction compared to 1990. Distributed energy systems (DES) that satisfy simultaneously 

various energy demands (heat and electricity) can be a key enabling factor for meeting the 

targets. They provide potential for large energy savings but with the downside of energy 

networks becoming more complex to design and operate. Various authors have looked at the 

optimal design and operation of DES while taking into account building systems [1] [2] [3]. 

The models used for optimising DES are largely based on mixed-integer linear programming 

formulations (MILP). However, they all assume that the distribution grid capacity is big 

enough to integrate any amount of renewables. This is not always a valid assumption since 

most of the electrical grids were design before renewables were an influencing factor. On the 

other hand, a number of publications address optimal power flow and/or placement of 
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distributed generation in the distribution grid while assuming building systems as predefined 

[4] [5] [6]. Such optimisations are mostly based on heuristics such as genetic algorithm. 

In this paper, we present a multi-objective bi-level optimisation framework for the optimal 

design and operation of DES which takes into account building systems and non-linear power 

flow constraints. We analyse how much the existing electrical grid is limiting integration of 

distributed energy resources and how this limitation can be decreased. 

BI-LEVEL OPTIMISATION FRAMEWORK 

A bi-level optimisation framework uses two optimisation “levels” within one optimisation 

process. An overview is given in Figure 1. Here the main level uses a multi-objective genetic 

algorithm to optimise a set of design variables (equipment capacities) for each building. The 

evaluation of each candidate solution has two steps. The first is a MILP model, where optimal 

operation is determined and the cost and emissions calculated. This is followed by a power 

flow calculation to check if the proposed operation violates existing electrical grid constraints. 

If the proposed solution violates a grid constraint, it will be penalised in the constraint 

function of genetic algorithm. 

 

Figure 1: Flowchart of the bi-level optimisation process.  

The genetic algorithm – design optimisation 

Genetic algorithms are a metaheuristic belonging to the class of evolutionary approaches 

based on iteratively improving solutions by use of recombination and mutation. Solution 

population based on their fitness and used to form a new population. In this paper the multi-

objective Non-dominated Sorting Genetic Algorithm NSGA II [7] is used. The two objectives 

used are minimization of total cost and carbon emissions over the lifespan of the technologies. 

The design variables are the capacities of the considered technologies for each building: 

combined heat and power (CHP), photovoltaics (PV), air-source heat pump (ASHP), gas 

boiler and heat storage. There are 5 buildings giving a total of 25 decision variables. If a 

decision variable is equal to 0 it means that that technology will not be installed. Capacities 

are passed to the MILP secondary level optimisation model (described below) where optimal 

operation as well as operating costs and emissions objectives is determined. Proposed 
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solutions are checked if they violate grid constraint by solving power flow equations (see next 

section). If they violate grid constraints, they are penalised proportionally by how much limits 

are exceeded. In the sorting step, solutions without violations are always dominating solutions 

with violations and solutions with smaller violations dominate solutions with larger 

violations. This way non-violating solutions are always selected and eventually violating 

solutions will not be included in the current population. 

The optimisation was run for 100 generations with a population size of 100, crossover 

probability 0.9, mutation probability 0.5 and mutation distribution ηm 10.  

Mixed integer linear programming – operational optimisation 

Optimal operation for each solution by proposed the main level is solved using a MILP 

model. The formulation is based on the energy hub framework [8] where each technology is 

represented by a conversion efficiency between different energy streams. Each building is 

represented by an energy hub as shown in Figure 2. Additional constraints included are 

minimum load for CHP (50%) and ASHP (40%), and daily heat storage. For more details 

about the model, the reader is referred to [9]. 

 

Figure 2: Representation of conversions between various energy streams within one building. 

The buildings were modelled in EnergyPlus and simulation was run using weather data for 

Zürich, Switzerland in order to obtain hourly heating and electricity demand. In the MILP 

model, electricity and heat demand are represented by 24 hourly demand curves for each 

month in order to decrease computational time (in total 288 timesteps). The model uses the 

design variables proposed by NSGA as capacity constraint and aims to minimise total costs 

(investment and operational cost) while satisfying the electricity and heat demand of each 

building. Carbon emissions are calculated by applying the following carbon factors: grid 

electricity 0.5 kgCO2/kWh and natural gas 0.2 kgCO2/kWh.  It is assumed that carbon is 

accounted for electricity exported to the grid with the same grid carbon factor. This is the 

reason why negative net carbon emissions can be obtained in the result section. Operational 

cost and carbon emissions were calculated for 20 years (the assumed lifespan of the 

equipment). The efficiency, capacity bounds and cost of each technology is shown in Table 1 

based on data from [1] [2] [3]. 

 

Technology Efficiency Capacity bounds Cost 

CHP ηel: 25%. HER: 2 0 -100 kW 500 €/kW 

Gas boiler 80% 0-150 kW 70 €/kW 

PV 15% 0-150 kWp
 

600 €/m
2
 

ASHP COP: 2.8 0 -100 kW 400 €/m
2 

Thermal storage 99% per timestep 0-60 kWh 70 €/kWh 

Table 1: Efficiency, capacity bounds and linear cost of technologies used  
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Non-linear power flow calculation – electrical grid constraint 

After solving the optimal operation in the MILP model, it is calculated how much electricity 

each building is producing or consuming for each timestep. The values are passed to the 

electric grid model where buildings are represented as nodes with known loads or injections. 

The network comprises a single 20/0.4 kV distribution transformer with a single one phase 

feeder supplying the five residential buildings. The data for the network is based on [10] 

along with cable data shown in Figure 3.  The power factor for all consumers was assumed to 

be 0.85 lagging and for distributed generation 1. For each timestep, steady-state power flow 

calculation using the Newton-Raphson method is performed in MATPOWER[11]. The 

solutions are checked to see if they violate grid constraints – voltage higher than ±10% of the 

nominal voltage and/or line current higher than 250 A. If they violate, a penalty value of 

difference between calculated value and the needed one is assigned to the solution in the main 

level. 

 

Figure 3: Electricity grid characteristics and line data. 

RESULTS 

Figure 4 shows the Pareto front obtained, consisting of 28 solutions (blue dots). In addition, 

grey dots show all evaluated solutions and red crosses solutions that violated either voltage or 

current constraints. In total there were 10,000 function evaluations. Looking at solutions that 

violated grid constraint, they are clustered at the lower part of the Pareto front. Lower carbon 

emissions optimal designs are not possible without upgrading the electrical grid in order that 

more distributed generation can be integrated. Also, it shows it is very important to include 

grid constraints in the optimisation of distributed energy systems.  

Variable and objective functions values for all 28 optimal solutions are shown in Figure 5. 

Variables for each building are summed per solution and solutions are sorted by objective 

function. An increase of cost by 23% can give savings of 47% in carbon emissions when the 

cheapest solution (1550 k€, 5201 tCO2) is compared to the most expensive (1916 k€, 2799 

tCO2). It can be clearly seen that PV capacity influences the objective functions the most. 

Looking at gas boiler, CHP and HP capacities, a small pattern can be observed. In the 

solutions where sum of CHP and HP capacity is higher than 140 kW, boiler capacity is lower 

than 300 kW. The reason is that boiler is not used anymore to cover the peak demand but only 

demand below the minimum part load of CHP and ASHP. Further decrease in carbon 

emissions is possible by installing more PV and CHP, but these solutions violate grid 

constraints. If decreasing emissions is imperative, installing batteries or upgrading the 

electrical grid is needed.  
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Figure 4: Results of the optimisation showing Pareto front, all solutions evaluated and 

solutions that violated grid constraint. 

 

Figure 5: Capacity breakdown for each technology and objective functions.  

Solution Boiler (kW) PV (kWp) CHP (kW) ASHP (kW) Heat storage (kWh) Cost (k€) Emissions (tCO2)

1 258 195 126 102 142 1916 2799

2 254 192 74 94 131 1863 2824

3 320 189 54 64 82 1830 2915

4 328 176 73 58 127 1809 3040

5 342 177 63 47 178 1809 3082

6 318 177 58 65 117 1798 3094

7 322 173 46 74 88 1789 3108

8 299 167 56 82 52 1782 3197

9 284 164 51 104 96 1775 3219

10 278 154 68 119 92 1771 3357

11 345 152 49 65 60 1750 3396

12 278 145 68 85 122 1738 3452

13 327 142 69 48 124 1738 3525

14 334 141 65 81 128 1737 3558

15 277 136 57 111 114 1717 3559

16 340 135 41 55 157 1709 3694

17 327 129 43 67 159 1703 3731

18 296 127 63 61 109 1692 3739

19 290 122 74 76 121 1685 3763

20 344 111 52 81 167 1655 3895

21 322 102 52 57 123 1649 4036

22 342 85 62 49 123 1633 4255

23 310 69 48 90 92 1618 4450

24 340 63 56 44 109 1616 4585

25 279 51 62 126 137 1591 4609

26 328 56 54 59 71 1589 4643

27 318 32 75 65 75 1580 4915

28 346 10 62 47 167 1550 5201
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CONCLUSIONS 

A bi-level optimisation framework for distributed energy systems with the inclusion of non-

linear power flow for grid constraints is presented. The framework consists of three 

interconnected parts: the NSGA-II algorithm for design, a MILP formulation for the optimal 

operation and steady-state power flow calculations for checking violation of grid constraints. 

The results showed that it is important to include grid constraints when optimising DES, 

especially of low net emissions are targeted. Optimal solutions without violation of grid 

constraints are possible only down to value of 2799 tCO2 compared to the overall possible 

minimum carbon emissions of -1980 tCO2. Compared to the cheapest, emissions can be 

decreased by 47% with an increase of cost by 23%, with PV capacity being the most 

influential parameter. Further decrease in emissions is not possible without grid upgrades or 

inclusion of batteries.  
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