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ABSTRACT 

This paper presents a comparison of two multi-objective optimization processes used to 

simultaneously select and size the components of an energy hub and to determine their 

optimal operation according to net present value and carbon emissions. The first is a single-

level optimization process that uses a mixed-linear integer programming (MILP) model based 

on the energy hub concept in which time-varying demands and supply availabilities must be 

matched using conversion and storage options. The second is a bi-level optimization process 

composed of a multi-objective genetic algorithm (GA) as the upper level to optimize selection 

and sizing of components. A linear programme is nested within the GA as the lower level to 

optimize the operation of each proposed system. 

The study uses measured data from the Empa research campus in Dübendorf, Switzerland for 

the heating, cooling and electricity demands that must be met. Appropriate values for solar 

availability, energy prices and equipment costs were used. The optimization process is 

conducted for a whole year, allowing the consideration of seasonal storage. The energy hub 

includes electricity, gas, solar power, and medium temperature and high temperature thermal 

networks. The technologies considered include boilers, chillers, photovoltaic panels, 

combined heat and power plants, heat pumps and storage. 

Results presented give trade-off fronts of the competing objectives (carbon emissions and 

discounted costs) that reveal a set of optimal design solutions, including their optimized 

hourly operational schedules. The effectiveness of the two approaches is compared, including 

the convergence of the optimization, necessary computing time and the identification of 

solution characteristics. It is shown that the single-level optimization finds a better Pareto 

front in much shorter time than the bi-level approach for this problem instance.  

Keywords: Multi-objective, Bi-Level, Optimisation, Energy Hub, Measured data 

INTRODUCTION  

Research facilities often consume large amounts of energy for heating, cooling and operation. 

Budget constraints and environmental considerations make it necessary to minimise costs and 

emissions of the energy consumption. As shown in [1], optimization techniques are 

increasingly used to design and operate multi-carrier energy systems. The optimization 

methods are used in combination with modelling frameworks such as the energy hub concept 

of [2]. District systems that also include cooling and operate on different temperature levels 
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can reduce energy consumption and emissions of buildings [3]. The design of a new energy 

system is a multi-objective problem as costs and environmental impacts must be considered 

together.  

A single-level optimization process was compared to a bi-level optimization process in order 

to address the multi-objective problem based on monthly samples in [4]. In [5], a bi-level 

optimization process in combination with the energy hub model operating on an hourly basis 

was proposed. The contribution of this paper is the comparison of a single-level optimization 

process to a bi-level optimization process for a large energy system including short- and long-

term storage based on hourly measurement data for a whole year, including time-varying 

electricity prices. 

METHOD 

The energy system of the research facility is modelled using the energy hub approach. The 

model consists of energy streams for electricity, gas, solar power, medium temperature and 

high temperature thermal networks, and represents their interdependencies via conversion and 

storage technologies. The model expresses these energy system constraints as a mixed-integer 

linear programming (MILP) model implemented in Matlab using Yalmip [6] and solved using 

IBM CPlex. 

The optimization process is conducted for a whole year, allowing the consideration of 

seasonal storage. The temporal resolution is hourly. The objective is to minimize the net 

present value of the capital and operational costs. A single-level multi-objective optimization 

process, composed of a mixed-integer linear program, is compared to a bi-level multi-

objective optimization process. The single-level optimization process is extended with the ε-

constrained technique in order to obtain a multi-objective Pareto front. 

Problem formulation 

The energy hub concept [2] allows the modelling of multi-carrier energy systems in terms of 

power flows. In this paper, a slightly modified representation is used. A carrier node k  

connects different storage devices, expressed as ,

store

t kq (storing) and ,

dis

t kq (discharging), 

conversion devices, expressed as ,

in

t kp and ,

out

t kp ,  supply grids ,t kg  and loads ,t kl . The power 

flows of a carrier node must be balanced at every time step t  as in equation (1). Conversion 

devices are represented by a linear input-output relationship determined by the efficiency 

matrix A , as shown by equation (2). The state-of-charge of storage devices are represented by 

a dynamic discrete linear equation (3) and characterized by the charging and discharging 

matrices A and A  and the loss coefficient a . The operational decision variables are 

constrained by the design variables (i.e. equipment capacities) (4). 

 , , , , , , 0 ,out in store dis

t k t k t k t k t k t kp p q q l g t k         (1) 

 out in

t tp A p   (2) 

 1

store dis

t t t te ae A q A q t        (3) 

 max max max0 , 0 ,0out

t t tp p q q e e        (4) 

The operational decision variables at every timestep are the inputs and outputs of storage and 

conversion devices and the grid supply. The design variables are the output capacities of the 

conversion devices, the input and output capacities of the storage devices, the storage 

592 CISBAT 2015 - September 9-11, 2015 - Lausanne, Switzerland



capacities and the binary variables that state if devices are present in the energy hub. 

Equations (1) to (4) express the constraint set of the optimization problem. 

The single-stage optimization process incorporates both the design decision variables and the 

operational decision variables in the MILP model. In order to conduct a multi-objective 

optimization, the carbon dioxide emissions are constrained by a maximum amount ε that is 

consecutively reduced to give a spread of solutions. 

In the bi-level optimization process, the design variables are determined by the genetic 

algorithm NSGA-II [7] and the operation variables by a MILP model. Because the MILP does 

not contain capacities it solves much faster. The objective functions of the genetic algorithm 

are the net present value of the total costs and the carbon emissions. The linear program in the 

inner loop optimizes the operational costs. The GA runs for 50 generations, with a population 

size of 50. 

Case Study 

The case study is based on the Empa/Eawag research facility in Dübendorf, near Zürich, 

Switzerland. The energy demand data used for this study originates from hourly 

measurements for 2012 of electricity, cooling and heating demand. The annual total demand 

is found in Table 2. The demand for the medium temperature heating power has been 

estimated based on the profile from the high temperature grid.  

Figure 1 illustrates all possible technology options of the energy hub. The high temperature 

(HT) grid is at 65°C. The medium temperature (MT) grid is at 38°C. The different 

temperature gaps of the heat pumps lead to different coefficients of performance (see Table 

1). A varying percentage of biogas can be added to the gas consumption of the CHP and the 

boiler. The cooling towers ensure that excess power in the medium temperature grid is 

exhausted. 

 

Figure 1: Energy hub of the Empa research facility 

The efficiency coefficients, the unit costs and fixed costs of the equipment are listed in Table 

1. The costs of the geothermal storage depend only on the input/output capacity and not on 

the storage capacity. The hot water tank costs depend on both the input/output capacity and 

the storage capacity. The costs and efficiency values are based on industry estimates. 

Operational costs of 0.046 CHF/kWh and carbon emissions of 0.099 tCO2/MWh are added to 

the objective function for the photovoltaic panels. 

The electricity prices are varying on a daily, weekly and seasonal basis. All pricing data is 

taken from the local distribution company. Carbon emissions are based on the European 

UCTE electricity mix. The time frame of the total net present costs is 20 years. The discount 

rate is 2.5%. Energy costs are assumed to increase by 2.5% per year. 
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Equipment Efficiency/COP Unit costs [CHF/kW] Fixed costs [CHF] 

CHP εel : 0.3, εth : 0.4 500 500000 

PV 0.18 300 [CHF/m
2
] 100000 

Boiler 0.7 200 50000 

Chiller εcool : 4.9, εth : 5.8 400 100000 

HP MT-HT 5 550 120000 

HP Ground-HT 3 550 120000 

HP Ground-MT 4.5 550 120000 

Heat exchanger 0.9 200 - 

Pump MT-Ground 45 10 5000 

Cooling tower - 240 - 

Ground storage 0.003%/hour 2000 - 

MT storage 0.5%/hour 10 [CHF/kW], 4 [CHF/kWh] 10000 

HT storage 0.5%/hour 10 [CHF/kW], 2 [CHF/kWh] 10000 

Table 1: Parameters of the devices in the energy hub 

Carrier Price [CHF/MWh] Carbon emissions [tCO2/MWh] Load [MWh/yr] 

Electricity 0.0951-0.1361 0.594 10204 

Natural gas 0.0632 0.237 - 

Biogas 0.1452 0.125 - 

MT heat - - 1369 

HT heat - - 5627 

Cooling - - 3899 

Table 2: Parameters of the carriers, including loads to be met. 

RESULTS AND DISCUSSION 

The single-level optimization requires two optimization runs (one minimising emissions, the 

other costs) to determine the minimum and maximum emissions to use as bounds for the ε-

constraints. The single-level outperforms the bi-level optimization for this type of problem, as 

seen in Figure 2. The computation time for the single-level problem with 16 ε points was 2.15 

hours, whereas the bi-level algorithm took 28 hours for 50 generations. From the evolution of 

the hypervolume shown in Figure 3, it appears that the bi-level algorithm has not yet fully 

converged. The solutions obtained by the bi-level method after 5 generations are also shown, 

as this corresponds to the same runtime as the single-level case. It is clear that the 

optimisation has not progressed at all by this point. 

Figure 4 presents the design variables of the single-level optimization solutions. The 

dominant mitigation measure to reduce the carbon emissions is the use of biogas in 

combination with the CHP. The UCTE electricity mix includes a lot of power generated by 

coal plants, giving very high carbon emissions for electricity. The installation of storage and 

heat pumps results in only a limited reduction of emissions because the heat pumps increase 

the electricity demand to some degree. Hence, only the use of biogas and electricity 

production through the CHP can reduce the emissions further. Lots of heat is wasted for very 

low levels emissions due to the overproduction of heat by the CHP. This mode of operation is 

not permitted in many countries. High capacities of the heat exchanger and the cooling tower 

are good indicators that excess heat from the CHP is wasted. These points on the Pareto fronts 

should not be considered for the implementation of the energy system. The high electricity 

base load and the high electricity prices favour the use of photovoltaics panels, which are 
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installed at the maximum capacity for all solutions (even the cheapest, since the capital cost is 

easily paid back through lower electricity bills within the timeframe considered).  

 

 

Figure 2: Pareto front for the single and bi-

level optimizations 

 

Figure 3: Hypervolume of the Pareto 

front and the change in hypervolume 

for the bi-level optimisation 

 

Figure 4: Design variables (Input/output capacities of conversion and storage devices, 

storage capacities and biogas use) of selected Pareto solutions. 

 

Figure 5:Operation of the medium 

temperature grid 

 

Figure 6: Operation of the high temperature 

grid 

Figures 5 and 6 illustrate a year of operation of the medium temperature grid and the high 

temperature grid for the single-level solution with emissions of 4600 tCO2/yr. The low level 
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of high temperature heat needed in summer is supplied by a heat pump using the waste heat 

from the chiller as a source. The boiler and a small heat pump using the ground as a source 

are switched on to meet peak demands. The necessity of reducing the emissions of the UCTE 

electricity mix does not allow the replacement of CHP by large heat pumps. Hence, a lot of 

waste heat of the chiller is exhausted via the cooling towers. 

CONCLUSION 

The single-level optimization finds a better Pareto front in much shorter time than the bi-level 

approach for this problem instance. Further investigation is needed to establish whether this is 

true for many types of problem (e.g. if the runtime of the MILP with sizing is higher), or if 

improvements to the bi-level process can overcome this (e.g. seeding with good solutions).  

The case study illustrates the importance of a multi-carrier perspective on the reduction of 

carbon emissions. The high carbon emissions of the European electricity mix lead to high 

biogas consumption and costly operational solutions. PV is installed at the maximum 

permitted level of 15,000m
2
 in all cases due to high energy prices. 

Further research that considers scenarios with different electricity generation mixes is 

required. A more accurate modelling of the geothermal and short-term storages using 

temperature nodes is suggested, along with constraints on dumping excess heat from CHP if 

applicable. 
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