
PCA USING GRAPH TOTAL VARIATION

Nauman Shahid, Nathanael Perraudin, Vassilis Kalofolias, Benjamin Ricaud, Pierre Vandergheynst

Ecole Polytechnique Federale de Lausanne

ABSTRACT

Mining useful clusters from high dimensional data has received sig-
nificant attention of the signal processing and machine learning com-
munity in the recent years. Linear and non-linear dimensionality
reduction has played an important role to overcome the curse of di-
mensionality. However, often such methods are accompanied with
problems such as high computational complexity (usually associated
with the nuclear norm minimization), non-convexity (for matrix fac-
torization methods) or susceptibility to gross corruptions in the data.
In this paper we propose a convex, robust, scalable and efficient Prin-
cipal Component Analysis (PCA) based method to approximate the
low-rank representation of high dimensional datasets via a two-way
graph regularization scheme. Compared to the exact recovery meth-
ods, our method is approximate, in that it enforces a piecewise con-
stant assumption on the samples using a graph total variation and
a piecewise smoothness assumption on the features using a graph
Tikhonov regularization. Futhermore, it retrieves the low-rank rep-
resentation in a time that is linear in the number of data samples.
Clustering experiments on 3 benchmark datasets with different types
of corruptions show that our proposed model outperforms 7 state-of-
the-art dimensionality reduction models.

Index Terms— PCA, graph total variation, low-rank feature ex-
traction, clustering

1. INTRODUCTION

In modern signal processing and machine learning applications one
often needs to manipulate data for which the hidden structure can
be synthesized in the form of a graph. In some cases, this type of
structure reveals itself naturally for real life networks, such as the
citations (of scientific articles) or social interactions. In addition,
graphs are able to model a manifold embedded into a high dimen-
sional space leading to many application for the data mining com-
munity [1]. Based on spectral graph theory and computational har-
monic analysis [2], graph techniques are nowadays a traditional tool
to extract low dimensional features from the data [3].

Our work is focused on PCA which is the most widely used fea-
ture extraction tool for linear dimensionality reduction and cluster-
ing. Given a data matrix X ∈ Rp×n with n p-dimensional data vec-
tors, PCA can be formulated as learning the projection Q ∈ Rn×d
(principal components) of X in a d-dimensional linear space char-
acterized by an orthonormal basis V ∈ Rp×d (principal directions).
The product V Q> is known as the low-rank approximation U ∈
Rp×n of X . The dimensionality reduction and clustering properties
of PCA have significantly benefited from the graph structured data
representation in the past decade. Several PCA based models which
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benefit from the graph smoothness assumption of the principal com-
ponentsQ have been proposed recently [4], [5], [6]. These methods,
however, are non-convex and susceptible to gross corruptions.

The techniques presented in the above mentioned works ex-
tract features based on the assumption that the data is low rank and
evolves smoothly over the graph of n × n samples. However, we
could also assume that the representation is piecewise constant over
the graph. Imagine for instance a dataset made from noisy faces
of 5 different people. Ideally, the low rank representations of the
same person’s faces should not just be close to each other (following
a traditional smoothness assumption) but actually the same. This
leads to the new assumption we adopt, namely that the low rank
representation is piecewise constant on the underlying graph.

We propose a convex, fast and efficient clustering algorithm
for corrupted low-rank signals. Our model is inspired by the two-
way graph regularization scheme introduced in the context of matrix
completion by Kalofolias et.al. [7]. In contrast to [4], [5], [6] and [7]
which use Tikhonov graph regularization tr(xTLx) = ‖∇Gx‖22)
(G-TIK) w.r.t. the data samples, we propose to use the graph total
variation (G-TV) regularization (‖∇Gx‖1) w.r.t the data samples
which enforces our piecewise constant assumption. Additionally
and unlike [4], [5], [6], we also propose to use a G-TIK w.r.t. the
features of the data matrix. This two-way graph regularization
scheme helps in 1) the extraction of a fast low-rank approximation
U of the data matrix X without using the expensive nuclear norm
operator (as in [8]) and 2) better clustering in the low-dimensional
space due to piecewise constant assumption enforced by the G-TV.
Furthermore, in contrast to the L2 data fidelity term of [4], [5],
[6], we propose to use the L1 fidelity term which makes our model
robust to outliers or gross corruptions in the dataset. Finally, our
model can be solved efficiently, in time linear in the number of data
samples, with a forward-backward based primal dual algorithm. We
point out here that the G-TV framework has been used in previous
works, such as [9], [10]. However, to the best of our knowledge it
has never been used in the context of PCA.

2. GRAPH NOMENCLATURE

A graph is a tupple G = {V, E ,W} where V is a set of vertices, E
a set of edges, andW : V × V → R+ a weight function. The ver-
tices are indexed from 1, . . . , |V| and each entry of the weight matrix
W ∈ R|V|×|V|+ contains the weight of the edge connecting the cor-
responding vertices: Wi,j =W(vi, vj). If there is no edge between
two vertices, the weight is set to 0. We assumeW is symmetric, non-
negative and with zero diagonal. We denote by i↔ j that node vi is
connected to node vj . For a vertex vi ∈ V , the degree d(i) is defined
as the sum of the weights of incident edges: d(i) =

∑
j↔iWi,j . In

this framework, a graph signal is defined as a function s : V → R
assigning a value to each vertex. It is convenient to consider a signal
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Fig. 1. Recovery of a rank 3 matrix corrupted by Gaussian noise using PCA, G-TIK and G-TV. The G-TV based model recovers the best
piecewise constant low-rank representation which is closer to the original data matrix (in Frobenius norm), whereas the G-TIK model recovers
a weaker low-rank representation due to the smoothness assumption.

s as a vector of size |V| with the ith component representing the sig-
nal value at the ith vertex. For a signal s living on the graph G, the
gradient∇G : R|V| → R|E| is defined as

∇Gs(i, j) =
√
W (i, j)

(
s(j)√
d(j)

− s(i)√
d(i)

)
,

where we consider only the pair {i, j} when i ↔ j. For a signal c
living on the graph edges, the adjoint of the gradient ∇∗G : R|E| →
R|V|, called divergence can be written as

∇∗Gc(i) =
∑
i↔j

√
W (i, j)

(
1√
d(i)

c(i, i)− 1√
d(j)

c(i, j)

)
.

The Laplacian corresponds to the second order derivative and its def-
inition arises from Ls := ∇∗G∇Gs. In this work, we use the normal-
ized graph Laplacian L defined as L = D−

1
2 (D − W )D−

1
2 =

I −D−
1
2WD−

1
2 where D is the diagonal degree matrix with diag-

onal entries Dii = d(i) and I the identity.

3. PROPOSED MODEL (PCA-GTV)

We associate two different graphs to our data X ∈ Rp×n. The
columns of X live on the first graph G1(V1, E1,W1) that con-
nects different samples of X . The rows of X live on a second
graph G2(V2, E2,W2) that connects the different features. Let
L1 ∈ Rn×n, L2 ∈ Rp×p be the graph Laplacians and∇G1 ,∇G2 be
the gradients of the graphs G1 and G2. The construction of these two
graphs is described in Section 4. Let U ∈ Rp×n be the low-rank
noiseless matrix that needs to be recovered from the data X , then
our proposed model can be written as:

min
U
‖X − U‖1 + γ1‖∇G1U

T ‖1 + γ2‖∇G2U‖
2
F . (1)

where γ1 and γ2 control the trade-off between the two regularization
terms, ‖ · ‖1 and ‖ · ‖F denote the matrix L1 and frobenius norms
respectively. The term ‖X − U‖1 helps in retrieving a low-rank
representation U that is robust to outliers or sparse gross errors in
the data set. We call model (1) graph total variation PCA (PCA-
GTV). This model has important implications in recovering robust
approximate low-rank representation of the data.

The first graph regularization term ‖∇G1U>‖1, also known
as graph total variation (G-TV), enforces sparse gradients w.r.t
G1, where the non-zeros tend to occur when there is a transition

from one cluster to another. In other words, it uses the underlying
structure between the samples encoded in G1 and then enforces a
piecewise constant assumption along the columns of U . This au-
tomatically enforces the matrix U to acquire a low-rank structure.
This is in contrast to the graph Tikhonov (G-TIK) regularization
term ‖∇G1U>‖2F = tr(UL1U

>) used in [4], [5], [6] which allows
the gradients to vary smoothly w.r.t the graph G1.

We motivate the use of G-TV over G-TIK with a small experi-
ment demonstrated in Fig. 1 where we show the recovery of a rank 3
matrix corrupted with Gaussian noise. We use the standard PCA, G-
TV with L1 data fidelity term (‖X − U‖1) and G-TIK with L1 data
fidelity term to recover the low-rank structure. Clearly, the G-TV
based model recovers a piecewise constant low-rank matrix which
has lower error as compared to other models.

The role of the second graph can be defined in a similar manner
in that it uses the underlying structure between the features encoded
inL2. The prior ‖∇G2U‖2F = tr(UTL2U), (G-TIK) on the features
then enforces smoothness of U in the Laplacian basis of L2. Used
together, these two priors push towards a matrix U that is close to
low-rank in both the columns and the rows.

4. GRAPHS CONSTRUCTION

The graphs G1 and G2 are built using a two-step standard K-nearest
neighbor strategy. In the first step the search for the closest neigh-
bours for all the samples is performed using the Euclidean distance
metric. Each xi is connected to itsK nearest neighbors xj , resulting
in |E| number of connections. In the second step the graph weight
matrix W is computed as

Wi,j =

{
exp

(
− ‖Bi,j◦(xi−xj)‖

2
2

‖Bi,j‖1σ2

)
if xj is connected to xi

0 otherwise.

where Bi,j ∈ {0, 1}p is the vector mask corresponding to the in-
tersection of uncorrupted values in xi and xj and ◦ denotes the
Hadamard product. The use of mask B (if available) makes the
graph robust to gross corruptions in the dataset. The parameter σ
can be set experimentally as the average distance of the connected
samples. Finally, the third step consists of constructing the normal-
ized graph Laplacian L = I − D−1/2WD−1/2, where D is the
degree matrix. This procedure has a complexity of O(ne) and each
Wi,j can be computed in parallel.

Depending on the values of n and p the above computation can
be done in two different ways.



Small n, p: In this case the above strategy can be used directly
for both G1 and G2. This is true for the case even when the dataset
is corrupted and we know the mask for corruptions. It is worth
mentioning here that the computation of W is O(n2) but with suffi-
ciently small n and p, the graphs G1 and G2 can be easily computed
in the order of a few seconds.

Large n, p: For this case a similar strategy can be used but the
computations can be made efficient using the FLANN library (Fast
Library for Approximate Nearest Neighbors searches in high dimen-
sional spaces) [11]. However, the FLANN library does not support
the mask operator so the corruptions are included in the graphs con-
struction. Therefore, the quality of the graphs constructed using this
strategy is slightly lower as compared to strategy 1 due to 1) the
approximate nearest neighbor search method and 2) corruptions (if
any) even if the mask information is known.

Image vs. non-image data: For the non-image datasets, the
graph G2 is simply constructed between the features ofX . However,
for the case of images it is more reasonable to enforce smoothness
on the patch level rather than on the pixel level. As a first step, the
patches that correspond to the same position for all the images in
the dataset are vectorized. Let l2 be the size of each square patch
which is centered at the pixel under consideration, then we form p
data samples each of size nl2 . These transformed data samples are
then fed into the graph construction algorithm described earlier.

5. OPTIMIZATION SOLUTION

5.1. Forward-backward based primal dual

We use proximal splitting methods in order to solve problem (1).
The particularity of these methods is that they cut a complex problem
into smaller and easier subproblems which are solved using proximal
operators. The proximal operator of a function λh is defined as

proxλh(y) = argmin
x

1

2
‖x− y‖22 + λh(x).

General information about these methods can be found in [12, 13].
Let us cast our problem in the general form

argmin
x

f(x) + g(Ax) + h(x). (2)

The first term of (2), f : Rnp → R is a convex function defined as
f(U) = ‖X − U‖1. The proximal operator of the function f is the
`1 soft-thresholding given by the elementwise operations.

proxλf (U) = X + sgn(U −X) ◦max(|U −X| − λ, 0). (3)

The second term of (2), g : R|E1|p → R, where |E1| denotes the
cardinality of E1, is a convex function defined as g(D) = γ1‖D‖1.
The proximal operator of function g is

proxλg(D) = sgn(D) ◦max(|D| − λγ1, 0). (4)

The third term of (2), h : Rnp → R is a convex, differentiable
function defined as h(U) = γ2‖∇G2U‖2F = γ2 tr(U>L2U). This
function has a β-Lipschitz continuous gradient

∇h(U) = 2γ2U
>L2U.

Note that β = 2γ2‖L2‖2 where ‖L‖2 is the spectral norm (or max-
imum eigenvalue) of L. Finally, in (2), A is a linear operator, in our
case∇G1 .

Using these tools, we can use the forward backward based pri-
mal dual approach presented in [12] to define Algorithm 1 where
τ1, τ2, τ3 are convergence parameters (we use τ1 = 1

β
= 1

γ2‖L2‖2
,

τ2 = β

2‖∇G1
‖22

= γ2‖L2‖2
‖L1‖2

and τ3 = 0.99), ε the stopping tolerance

and J the maximum number of iterations. δ is a very small number
to avoid a possible division by 0.

Algorithm 1 Forward-backward primal dual for PCA-GTV
INPUT: U0 = X , V0 = ∇G1X , ε > 0
for j = 0, . . . J − 1 do

Pj = proxτ1f
(
Uj − τ1

(
∇h(Uj) +∇∗G1Vj

))
Tj = Vj + τ2∇G1(2Pj − Uj)
Qj = Tj − τ2 prox 1

τ2
g

(
1
τ2
Tj
)

(Uj+1, Vj+1) = (Uj , Vj) + τ3 ((Pj , Qj)− (Uj , Vj))

if ‖Uj+1−Uj‖2F
‖Uj‖2F+δ

< ε and ‖Vj+1−Vj‖2F
‖Vj‖2F+δ

< ε then
BREAK

end if
end for

6. COMPUTATIONAL COMPLEXITY

Complexity of Graph Construction: The computational complex-
ity of the FLANN algorithm for n p-dimensional vectors and fixed
K and l2 isO(pn log(n)) for the graph G1 between the samples and
O(pn log(p)) for the graph G2 between the features [11].

Algorithm Complexity: Let J denote the number of iterations
for the algorithm to converge (usually independent from the number
of samples), p the data dimension, n the number of samples and d
the rank of the low-dimensional space. For K-nearest neighbours
graphs, the computational cost of our algorithm is linear in the num-
ber of data samples n, i.e. O(JKnp).

Final SVD: In order to preserve convexity, our model finds an
approximately low-rank solution U without factorizing it. However
for clustering applications we might need to provide explicitly the
low dimensional representation in a factorized form. This can be
done by computing an “economic” SVD of U for p � n. Let U =
V ΣQ> the SVD of U . The orthonormal basis V can be computed
by the eigenvalue decomposition of the small p× p matrix UU> =
V EV > that also reveals the singular values Σ =

√
E since UU>

is s.p.s.d. and therefore E is non-negative diagonal. Given V and
Σ the sample projections are computed as Q = Σ−1V >U . The
complexity of this SVD is O(np2).

Overall Complexity: The complexity of our algorithm is
O(J max{pn, |E1|n}), the graph G1 is O(pn log(n)), G2 is
O(pn log(p)) and the final SVD step isO(np2). Given that p� n,
the overall complexity of our algorithm isO(pn(log(n)+p+JK)).

7. RESULTS

We use clustering experiments to validate the quality of the low-
rank features extracted using our model. In fact such types of ex-
periments have become a standard practice in the PCA community
[5], [14], [4], [6], [15]. We perform our clustering experiments on 3
benchmark databases: CMU PIE, ORL and COIL20 using two open-
source toolboxes: the UNLocBoX [16] for the optimization part and
the GSPBox [17] for the graph creation.



In order to evaluate the robustness of our model to gross corrup-
tions we corrupt the datasets with two different types of errors 1)
block occlusions and 2) random missing pixels. Block occlusions
of three different sizes, i.e, 15%, 25% and 40% of the total size of
the image are placed uniformly randomly in all the images of the
datasets. Similarly, all the images of the datasets are also corrupted
by removing 15%, 25%, and 35% pixels uniformly randomly. Sep-
arate clustering experiments are performed for each of the different
types of corruptions.

We compare the clustering performance of our model with 7
other models: 1) k-means on original data 2) Laplacian Eigenmaps
(LE) [3] 3) Standard PCA 4) Graph Laplacian PCA (GLPCA) [5]
5) Manifold Regularized Matrix Factorization (MMF) [4] 6) Non-
negative Matrix Factorization (NMF) [18] and 7) Graph Regularized
Non-negative Matrix Factorization (GNMF) [19].

We transform all datasets to zero-mean and unit standard de-
viation along the features. For MMF the samples are additionally
normalized to unit-norm. For NMF and GNMF only the unit-norm
normalization is applied to all the samples of the dataset.

We use clustering error as a metric to compare clustering per-
formance of various models. LE, PCA, GLPCA, MMF, NMF and
GNMF are matrix factorization models that explicitly learn the prin-
cipal components Q. The clustering error for these models is eval-
uated by performing k-means on the principal components. Our
model on the other hand learns the low-rank matrix U . Thus, the
clustering error for our model is evaluated by performing k-means
on the principal components Q obtained by the economic SVD of
the low-rank matrix U = V ΣQ>, as described in Section 6. Fur-
thermore, our model does not recover an exact low-rank representa-
tion. It only shrinks singular values and therefore only recovers an
approximate low-rank representation U . Thus, the dimension of the
subspace (number of columns ofQ) is decided by selecting the num-
ber of singular values such that the lowest selected singular value is
10% of the maximum singular value. Due to the non-deterministic
nature of k-means, it is run 10 times and the minimum error over all
runs is reported.

Each model has several parameters which have to be selected in
the validation stage of the experiment. To perform a fair validation
for each of the models we use a range of parameter values. For a
given dataset, each of the models is run for each of the parameter
tupples and the parameters corresponding to minimum clustering er-
ror are selected for testing purpose. Furthermore, PCA, GLPCA,
MMF, NMF and GNMF are non-convex models so they are run 10
times for each of the parameter tupple, whereas our model is convex
so it is run only once.

As mentioned in Section 4, there are two different strategies for
graph construction. To perform a fair evaluation of our proposed
model for different datasets we use the first strategy (small n, p) for
the construction of both graphs for all the experiments reported in
this work. We use normalized graph Laplacians and the following
parameters for graphs G1 and G2: K-nearest neighbors = 10, σ2 =
1 and patch size l2 = 25. It is important to point out here that
different types of data might call for slightly different parameters
for graphs. However, for a given dataset, the use of same graph
parameters (same graph quality) for all the graph regularized models
ensures a fair comparison.

Table 1 presents a comparison of the clustering error of our
model with various other state-of-the-art dimensionality reduction
models for three datasets. The best result (lowest clustering error)

Table 1. A comparison of clustering error of our model with vari-
ous dimensionality reduction models. The image data sets include:
1) CMU PIE 2) COIL20 and 3) ORL. The compared models are:
1) k-means 2) Laplacian Eigenmaps (LE) [3] 3) Standard Princi-
pal Component Analysis (PCA) 4) Graph Laplacian PCA (GLPCA)
[5] 5) Non-negative Matrix Factorization [18] 6) Graph Regularized
Non-negative Matrix Factorization (GNMF) [19] and 7) Manifold
Regularized Matrix Factorization (MMF) [4]. Two types of corrup-
tions are introduced in the data: 1) Block occlusions and 2) Random
missing values. The best results are highlighted in bold.

Data Model No Full Corruptions
set Corru- Occlusions Missing

ptions (% of image size) (% of image pixels)
15% 25% 40% 15% 25% 35%

C k-means 72.1 84.3 84.4 84.1 70.7 71.6 73.2
M LE 83.7 79.3 80.3 79.3 84.5 82.9 83.4
U PCA 24.2 68.7 76.9 74.0 28.9 31.6 39.9
P GLPCA 25.5 31.7 33.2 31.8 26.7 26.0 26.4
I NMF 45.8 84.9 84.2 85.7 48.3 51.8 55.7
E GNMF 35.8 53.7 42.3 85.7 31.7 32.0 35.2

MMF 57.6 53.7 55.2 52.4 52.0 48.7 45.8
proposed 22.4 29.3 30.6 27.3 22.6 22.3 25.3

C k-means 39.2 54.8 64.9 69.8 39.4 41.4 42.3
O LE 83.7 80.7 81.8 81.5 79.2 85.3 81.5
I PCA 38.2 57.2 57.0 63.7 44.3 47.2 47.7
L GLPCA 17.2 19.2 31.9 38.2 20.4 20.2 21.2
2 NMF 38.9 59.6 69.4 73.4 38.0 39.4 35.7
0 GNMF 12.7 13.6 27.9 40.9 13.6 12.8 14.9

MMF 25.3 32.1 34.9 38.2 30.2 28.8 33.0
proposed 12.4 14.2 27.1 38.2 13.2 13.5 14.2

O k-means 29.7 67.9 70.7 72.4 31.3 36.2 42.3
R LE 21.3 18.3 15.7 22.3 21.7 20.3 19.3
L PCA 35.3 66.3 69.0 70.7 38.7 38.3 42.0

GLPCA 13.7 11.7 14.7 16.0 14.7 14.3 14.3
NMF 28.7 76.0 76.0 76.3 30.7 34.3 41.3

GNMF 24.7 25.0 28.0 30.0 20.3 23.3 21.3
MMF 18.0 17.0 16.3 76.3 14.7 13.7 15.0

proposed 13.0 11.3 14.3 15.3 14.0 14.0 13.0

for each case of the corruption is highlighted in bold. It is quite
obvious that our proposed model outperforms other models in most
of the scenarios. Another observation is that the clustering error of
our model is quite stable as compared to other models even for the
large fraction of random missing pixels. This is an interesting result
because even with a higher fraction of missing pixels the graphs
G1 and G2 play their respective roles and help in attaining a low
clustering error. This proves that good quality graphs possess the
ability to recover the data samples even in the presence of a large
fraction of gross corruptions.

8. CONCLUSION

In this paper we present a fast, efficient, scalable and convex dimen-
sionality reduction algorithm for clustering on the low-rank signals.
The proposed method benefits from the two-way graph regulariza-
tion scheme along the rows and columns of the data matrix. We
propose to use a total variation graph regularization along the sam-
ples and a graph Tikhonov regularization along the features of the
data matrix. The underlying assumption is that the low-rank repre-
sentation of the signals is piecewise constant on the graph between
the samples and piecewise smooth on the graph between the features
of the data matrix. The proposed algorithm has a linear complexity
with respect of the number of data samples. Furthermore, it outper-
forms several state-of-the-art methods in clustering task.
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