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Abstract

The aim of this paper is to analyze and to improve the current planning process of the passen-
ger railway service in light of the recent railway market changes. In order to do so, we introduce
the Passenger Centric Train Timetabling Problem. The originality of our approach is that we
account for the passenger satisfaction in the design of the timetable. We consider both types of
timetable(s): cyclic and non-cyclic. The problem is modeled as a Mixed Integer Linear Program-
ming (MILP) problem with an objective of maximizing the train operating company’s profit while
maintaining ε level of passenger satisfaction. By solving the model for various values of ε, the
Pareto frontier is constructed. The analysis, based on an experiment using realistic data, shows
that an improvement of passenger satisfaction while maintaining a low profit loss for the railway
company can be achieved. A sensitivity analysis on passenger congestion illustrates a quantitative
evidence that the non-cyclic timetables can account better for high density demand in comparison
to cyclic timetables.

Keywords: Railway Timetable, Passenger Satisfaction, Profit, Cyclic, Non-cyclic, MILP
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1 Introduction
The main product of a Train Operating Company (TOC) is a train timetable, with its consumers being
the passengers. It is then important to account for the passengers’ preferences during the timetable
design, especially with the new legal modifications in the railway markets in Europe (EU Directive
91/440) that allow for competition.

Up to this point, the European national carriers were subsidized by local governments and their
purpose was to offer the accessibility and mobility to the public (passengers). With this new market
settings, the subsidies are removed and the operators compete not only for the passengers, but also
for the infrastructure. The railway network is to be separated from the TOC who has built it (usually
the national carrier) and to be handled by an independent Infrastructure Manager (IM). Each TOC
will then be obliged to submit its preferred timetable to the IM, who will then adjust the proposed
timetables, in order to secure the safety of the network. No common decision rule, on which TOC
should gain advantage in case of a conflict, yet exists, but an economic instrument such as bid-auction
is expected. Adding everything up, the above facets of the problem put a high pressure on the timetable
design and ask for a quantitative method that would provide TOC with an insight about a precise yet
functional timetable design that could take into account operational constraints as well as passengers’
satisfaction.

Line 
Planning

Demand

Non-Cyclic 
Train 

Timetabling

Rolling 
Stock 

Planning

Train 
Platforming

Crew 
Planning

Platform 
Assignments

Train 
Assignments

Crew 
Assignments

STRATEGIC - several years TACTICAL - >= 1 year OPERATIONAL - < 1 year

TOC

IM

Cyclic 
Train 

Timetabling

Ideal 
Timetables

Lines

Actual Non-cyclic Timetables

Actual Cyclic Timetables

Figure 1: Planning overview of railway operation

The new planning horizon as described in Caprara et al. (2007) is visualized in Figure 1. In the
previous market settings, all the stages were solved by one TOC, whereas now the interaction between
several TOCs and IM is required. The timetable design itself consists of two well-known sequential
problems: the Line Planning Problem (LPP) and the Train Timetabling Problem (TTP). In the first
stage, each TOC solves the LPP based on a pre-processed pool of potential lines and the estimated
aggregated demand between every Origin Destination (OD) pair. The LPP selects the most suitable
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combination of the lines and their frequencies with an objective of maximizing the number of direct
travelers and/or minimizing the operating cost. In the next stage, the IM collects the timetable requests
of each TOC and resolves potential conflicts by solving the TTP. As discussed above no universal
objective function is defined. Two versions of the TTP exist: non-cyclic and cyclic. In the non-cyclic
model, the IM receives ideal timetables as an input. They are defined as the most profitable schedules.
The objective of the problem is to maximize the profit of the adjusted conflict-free timetables (Caprara
et al. (2002)). The problem does not take into account connections between the trains and thus the
timetable adjustments might disconnect the trains and cause discomfort to the passengers. In the cyclic
model the focus is on the cyclicity (i.e. feasibility) of the proposed timetable rather than on optimizing
profit (Caprara et al. (2007)). Although, some user-defined objective functions exist (Peeters (2003)).
In the cyclic TTP, the connections between the trains are always secured. However, it is not known
if these connections are actually used by the passengers. By the definition of cyclicity, i.e. repeating
pattern that is easy to remember, the approach is considered passenger oriented. Note that the TTP
models in the current literature often deal with the old market settings even though the non-cyclic TTP
could be suitable for the IM (as described in Caprara et al. (2007)). All the problems in the above
planning horizon are offline, i.e. they are solved before the planned operation.

We identify here a gap between the LPP, that focuses on passengers (minimize travel time) and
operator (minimize cost), and the timetable problem, that focusses on profit or cyclicity. The incon-
sistency between the several objectives may be counter productive (as we show later in this paper).
The operator’s goal is to maximize his profits and the passengers’ goal is to receive the best possible
service from their origin(s) to their destination(s). The two goals are in competition: the best possible
service for passengers may also be the most costly alternative for the operator. Therefore, we pro-
pose to address the problem of designing the timetable, taking into account both satisfaction of the
passengers and the profit of the operator.

The operator’s profit as such is usually well defined. The passenger satisfaction needs specific
modeling, based on utility theory. The (dis)utility of traveling for an individual is a function of
various features of the trip: the time spent in the train, the time spent waiting, the number of transfers
from one train to another and the timeliness at the destination.

In the published literature, passenger satisfaction based on the first three elements already exists
and is assessed together using the results of discrete choice models (i.e. the passenger perception): the
waiting time has a larger relative weight than the in-vehicle-time, the transfer from one train to another
is penalized by adding extra in-vehicle-time (Kanai et al. (2011), Sato et al. (2013)). The presented
application (Kanai and Sato) is from the delay management, where the passengers are already in the
network and the goal is to minimize dissatisfaction. In the offline version of train timetabling, the
time of arrival at the origin station is crucial for timetable design. Since people plan their arrival to
the destination rather than the origin, the scheduled delay at the destination can be used as a good
measure (Small (1982)) to quantify this aspect. Further on, to achieve the full impact of the passenger
satisfaction method, the model has to take into account all possible paths between an origin and a
destination. In the literature, it is often assumed that the passengers take only their shortest path,
which in the end might not be the case as it is dependent on the exact timetable as shown in Schmidt
and Schöbel (2015).

In this research, we further extend the concept of the passenger satisfaction by including the
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scheduled delay that accounts for the preferred arrival time at a passenger’s destination. The over-
all passenger satisfaction may be expressed in the monetary units. Apart from that, we allow the
passengers to take any path between their OD pair that is their most satisfying path.

We propose to introduce an additional step in the railway planning process called the Passenger
Centric Train Timetabling Problem (PCTTP). The PCTTP is formulated as a Mixed Integer Linear
Problem (MILP) and it is using the output of the LPP and serves as an input to the traditional TTP.
Hence, it is placed between the two respective problems (Figure 2). The PCTTP is capable of design-
ing both cyclic and non-cyclic timetables. The IM operated TTP is now considered as a one universal
problem that should take the base of the non-cyclic TTP and add extra constraints that would secure
cyclicity for the operators that wish to run the cyclic timetables (not in the scope of this research).
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Figure 2: Modified overview of railway operation

The structure of the manuscript is as follows: in the literature review (Section 2), we consider
different state-of-the-art objectives in the design of timetables. In Section 3, the problem definition,
different objectives, mathematical model and procedure to construct the Pareto frontier is given. The
case study on which we test the model is shown in Section 4. The paper is finalized by drawing some
conclusions and discussion of possible extensions in Section 5.

2 Literature Review
In this study, we focus on the design of the passenger centric timetables. The literature review reports
on different definitions of the quality of a timetable. In other terms, we investigate the various objec-
tive functions that have been used in the operations research literature on timetabling. The main aim
of the Train Timetabling Problem is to remove any potential track occupation conflicts. We organize
the literature based on the point-of-view: operator, passenger or integrating both.
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2.1 Operator
In the literature, operator oriented objective functions can be found only for the non-cyclic version
of the TTP. Two formulations of this model exist: Mixed Integer Linear Programming (MILP) or
Integer Linear Programming (ILP). The MILP model uses continuous time, whereas the ILP model
discretizes the time. The ILP models use the same objective function, whereas MILP models consider
different objectives.

2.1.1 ILP Formulations of the non-cyclic TTP

In this formulation, it is assumed that the ideal timetables with the maximum profit are known a priori.
Even though there is no available formal definition or methodology of creating such timetables in the
literature, Caprara et al. (2002, 2006, 2007) mention that these timetables are defined as being the
most profitable for the train operators. The objective then is to look for a conflict free (also called the
actual) timetable for a whole railway network by minimizing the profit loss induced by changes made
to the ideal timetables.

The model allows for two modifications of the ideal timetables: shifting of the departure time
and shifting of the arrival time. Since a train can be kept waiting at a train station, the shift in the
departure time is done by adding an extra waiting time at a station. On the other hand the arrival time
is dependent on the departure from the previous station (already covered by the departure time change)
and the running time between the stations. Thus the arrival time adjustment is done by stretching
the running time, i.e. by lowering the speed of a train. Since the problem does not have access to
the original profit function, the adjustments are actually addition of an extra waiting time/delay to
the ideal timetable instead of adjustments of the real profit. However, there is a need for a more
sophisticated method that would be used by the IM in the future.

One of the first TTP papers is Brannlund et al. (1998). The authors discretize the time and solve
the problem using lagrangian relaxation of the track capacity constraints. The lagrangian relaxation of
the same constraints is used as well in Caprara et al. (2002, 2006), Fischer et al. (2008) and Cacchiani
et al. (2012). On the other hand, in Cacchiani et al. (2008), a column generation approach is applied.
This approach tends to find better bounds than the lagrangian relaxation. Subsequently, several ILP
re-formulations are introduced and compared in Cacchiani et al. (2010a). In Cacchiani et al. (2010b),
the ILP formulation is adjusted, in order to be able to schedule extra freight trains, whilst keeping
the timetables of the passengers’ trains fixed. A dynamic programming approach, to solve the clique
constraints, is used in Cacchiani et al. (2013).

2.1.2 MILP Formulations of the non-cyclic TTP

The MILP model has received less attention in the literature. A common assumption is the knowledge
of the originally planned timetable constructed by the operator without stating its properties (unlike
for the ILP models). Due to the complexity of the model, different heuristics are common solution
method.

In Carey and Lockwood (1995), the objective is to minimize the overall cost associated with allo-
cating a train path consisting of a trip time, waiting time, dwell time, and arrival and departure time.
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A heuristic, that considers one train at a time and solves the MILP, based on the already scheduled
trains, is introduced. Several more heuristics to solve the MILP model are presented in Higgins et al.
(1997), where minimization of a total weighted travel time is used as an objective. Another MILP
formulation minimizing the delays on arrivals and departures is given in Harrod (2012).

Subsequently, in Oliveira and Smith (2000) and Burdett and Kozan (2010), a job-shop scheduling
reformulations are presented. In Oliveira and Smith (2000), the objective is to minimize the deviation
from the originally planned timetable that is expressed as a delay. In Burdett and Kozan (2010), on
the other hand, the objective is to minimize the feasibility violations by penalization.

2.2 Passenger
As mentioned in the introduction, the cyclic version of the TTP is considered passenger oriented. The
reasoning behind it is that if a train line leaves from a station at the same time in every cycle, it is then
easy for the passengers to remember the timetable and thus use the railways more often.

All of the cyclic models are based on the Periodic Event Scheduling Problem (PESP), which was
first defined by Serafini and Ukovich (1989). The aim of the PESP is to schedule events in evenly
spaced intervals/periods. In the early years of the PESP models the focus was mainly on finding a
feasible solution and these problems did not have an objective function per se (Odijk (1996)), i.e.
an arbitrary feasible solution was selected. When the problem is too complex or when no feasible
solution exists, a minimization of a constraint violation can be used as an objective (Peeters (2003)).
Given the complexity of the timetabling problems some simplifications, such as the assumption that
passengers would travel only along shortest paths, have been introduced into the models. This as-
sumption reduces the objective of minimizing the total travel time into minimizing the waiting time
only (Nachtigall (1996), Peeters (2003)). This approach can be further extended by exploiting dif-
ferent waiting times and their values (Vansteenwegen and Oudheusden (2006, 2007)). In the current
publication of Schmidt and Schöbel (2015), the shortest path assumption has been relaxed and thus
the passenger routing and train timetabling is an integrated decision based on the travel time mini-
mization. The considered model is non-cyclic.

Another way of securing a higher comfort to the passengers is to maximize the robustness of a
timetable by pulling the trains apart of each other – maximizing the departure time difference (Peeters
(2003)) or to minimize the average weighted delay using simulation (Kroon et al. (2008)) or by de-
signing robust transfers (Vansteenwegen and Oudheusden (2007)).

All of the above examples take as input deterministic demand. However the demand depends on
the supply. A way to account for this phenomenon is to use discrete choice model to estimate the
number of passengers for different versions of a timetable and select the one with the highest amount
of passengers using the train as their mode of transport (Cordone and Redaelli (2011)).

A “simple” approach to account for the passengers is to weight the delay of the trains by the
amount of passengers on board (Espinosa-Aranda and Garcia-Rodenas (2013)). However, a more
sophisticated approach is to model the passenger satisfaction affected by various elements (waiting
time, running time, number of transfers) and try to minimize it (Sato et al. (2013)). This can be further
improved by taking into account passenger congestion on board of the trains (Kanai et al. (2011)).
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2.3 Integrated
Since the cyclicity constraints reduce the solution space significantly, the cyclic model has become
more suitable for exploring of advanced objectives that can combine both operator and passenger
point-of-view. One such example is a minimization of a weighted combination of the following
objectives: required number of train compositions, passenger connection times, sum of running times
and dwell times as shown in Kroon et al. (2014).

In order to further increase the potential gains in the objectives an integration with the LPP could
be suitable. This methodology with an objective of minimization of weighted sum of the total engine
time and the total passenger journey time has been tested by Kaspi and Raviv (2013).

2.4 Remarks
From our Literature Review, we have learnt that the main part of the publications is rather focused on
the operational aspect of the problem (network safety) than the search of the most suitable departure
times for the passengers. However, it can be noticed that a new direction of passenger point-of-view
problems is emerging. This class of problems aims at using passenger satisfaction as a quantitative
measure. This attribute is based upon human behavior, mathematically represented by discrete choice
(utility) theory. In our research, we further extend this concept.

3 The Model
In this section, we present a mixed integer programming formulation for the Passenger Centric Train
Timetabling Problem (PCTTP). It is a bi-objective optimization problem. We decide to treat the
operator objective function as the main objective, and to include the passenger satisfaction as an
ε-constraint (Ngatchou et al. (2005)).

3.1 Data and Variables
The input of the PCTTP is the demand that takes the form of the number of passengers nti that want to
travel between OD pair i ∈ I and that want to arrive to their destination at their preferred arrival time
t ∈ Ti. The actual value of the preferred arrival time is stored in the parameter ati and the set Ti is used
for indexing, i.e. each pair i has several preferred arrival times (indexed by t) each of them different.
Subsequently, there is a pool of lines ` ∈ L. Each line ` can be further decomposed into an ordered
set of segments S`, a segment is a part of the line between two stations, where the train does not stop.
The segments are unique part of an infrastructure irrespective of the lines. Each line has an assigned
frequency expressed as the available trains v ∈ V ` (lines, segments and frequencies are the output of
the LPP). Based on the pool of lines, the set of paths between every OD pair p ∈ Pi can be generated.
Each path p between an origin and a destination consists of several attributes: a sequence of lines in
order that they are being traversed Lp, running time from the origin of the line to the origin of the OD
pair bp`i (where ` = 1), the running time from an origin of the OD pair to a transferring point between
two lines rp`i (where ` = 1), the running time from the origin of the line to the transferring point in
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the path bp`i (where ` > 1 and ` < |Lp|), the running time from one transferring point to another rp`i
(where ` > 1 and ` < |Lp|) and the running time from the last transferring point to a destination of the
OD pair rp`i (where ` = |Lp|). Note different lines using the same track might have different running
times. For more explanations of what a path is, refer to the Appendix B.

Part of the PCTTP is the routing of the passengers through the railway network. Using a decision
variable xtpi , we secure that each passenger (combination of indices (i, t)) can use at most one path. If
there is no path assigned to a given passenger (due to the limited capacity of the trains), it is assumed
that the passenger would travel outside of the planning horizon h. In such a case, the revenue this
passenger would generate, is not accounted for in the objective function and different satisfaction
function will be applied (detailed explanation further below).

Within the path itself, passenger can use exactly one train on every line in the path (decision
variable ytp`vi ). These decision variables, among others, allow us to backtrace the exact itinerary
of every passenger. The timetable is understood as a set of departures for every train on every line
(values of d`v). The timetable can take form of a non-cyclic or a cyclic version (depending if the
cyclicity constraints are active, see below).

Since we know the exact itinerary of every passenger, we can measure the train occupationω`
vs of

every train v of every line ` on each of its segment s. Derived from the occupation, number of train
units µ`v is assigned to each train. This value can be equal to zero, which means that the train is not
running and the frequency of the line can be reduced. The model also keeps track of the number of
train drivers α`v needed to realize the timetable.

The list of all inputs can be found in Table 1. The used acronyms are: min for minutes, CHF for
Swiss Franc (any other currency can be used).

Name Description Units Purpose
I set of origin-destination pairs – set
Ti set of preferred arrival times for OD pair i – set
Pi set of possible paths for OD pair i – set
L set of operated lines – set
Lp set of lines in the path p – set
V ` set of available trains for the line ` (frequency) – set
S` set of segments on line ` – set
h end of the planning horizon min parameter
M sufficiently large number (can take the value of h) – parameter
m minimum transfer time min parameter
c cycle min parameter
ati preferred arrival time of a passenger (i, t) to her destination min parameter
rp`i running time for OD pair i on path p using line ` min parameter
bp`i time to arrive from the starting station of the line ` to the

origin/transferring point of the OD pair i in the path p
min parameter

nti number of passengers wishing to travel between OD pair i at
time t

– parameter

VOT value of (in-vehicle-) time (VOT) CHF/min parameter
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βW value of the waiting time in the relation to the VOT – parameter
βL coefficient of being late in the relation to the VOT – parameter
βE coefficient of being early in the relation to the VOT – parameter
βT penalty for having a train transfer min parameter
es ticket price of a segment s CHF parameter
f cost of a train driver CHF/train-km parameter
o operating cost of a single train unit CHF/km parameter
q capacity of a single train unit – parameter
g maximum length of the train train units parameter
k` length of the line ` km parameter
ε current minimum level of passenger satisfaction CHF parameter
r1i in-vehicle-time of the shortest path between OD pair i min parameter
ui number of transfers in the shortest path between OD pair i – parameter
Vti generalized time when not serving passenger (i, t) within h CHF parameter
T ti generalized time of a passenger (i, t) when served within h min decision
T tpi generalized time of a passenger (i, t) using path p when

served within h
min decision

δtpi the scheduled delay of being early in path p of a passenger
(i, t)

min decision

γtpi the scheduled delay of being late in path p of a passenger
(i, t)

min decision

xtpi 1 – if passenger (i, t) chooses path p; 0 – otherwise binary decision
ytp`vi 1 – if a passenger (i, t) on the path p takes train v of the line

`; 0 – otherwise
binary decision

d`v the departure time of a train v on the line ` (from its first
station)

min decision

z`v dummy variable to help modeling the cyclicity correspond-
ing to a train v on the line `

N decision

ω`
vs train occupation of a train v of the line ` on a segment s – decision
µ`v number of train units of a train v on the line ` – decision
α`v 1 – if a train v on the line ` is being operated; 0 – otherwise binary decision
wtpi waiting time of a passenger (i, t) using path p min decision
wtp`i waiting time of a passenger (i, t) using path p on a line ` min decision

Table 1: Inputs of the PCTTP model

3.2 Objective Functions
The aim of this section is to define an objective function for the PCTTP. Since the operator and the
passengers have different goals, we define two objectives: profit maximization for the operator and
satisfaction maximization for the passengers. In both cases, we assume that a forecasted demand
consisting of the location of the origin, the location of the destination, and the preferred arrival time
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at the destination is known for each trip. In this research, we do not take into account the elasticity of
the demand, but rather aim at exploration of different trade-offs.

3.2.1 Operator

Given the free market settings, the goal of the operator is to maximize the profit. The profit itself is a
well defined function: revenue minus the operating cost. In our formulation, we assume a basic fare
structure: the price of a ticket es on a segment s is irrespective of a line. To assess the total ticket price
between OD pair i it is sufficient to add up the prices of every segment s in the path p traversed via
every line in the path (Lp). We denote the train occupation ω`

vs for every line `, train v and segment
s. By multiplying this value with the respective fares, we can estimate the revenue (first term of the
Equation 1).

max
∑
`∈L

∑
v∈V`

∑
s∈S`

ω`
vs · es −

∑
`∈L

∑
v∈V`

(
α`v · f · k` + µ`v · o · k`

)
(1)

The operating cost (second term of the Equation 1) can be split into two parts: the cost of a driver
and the cost of the rolling stock operations. The train driver salary f is given in monetary units per
kilometer (standardized to our case study, different formulations for different countries might apply),
k` is the length of the line ` in kilometers. α`v is a binary decision that is equal to one if the train is
being operated or to zero where the train is being dropped from the timetable.

As for the rolling stock itself, we consider a homogenous fleet of train units and each train can
consist of several units. The operating cost for a single train unit o is in monetary units per kilometer.
The number of units used per train v on a line ` is given by the integer variable µ`v. The overall profit
maximization objective function is given by the Equation 1.

3.2.2 Passenger

Each passenger is traveling between her origin and destination. She also knows the point in the time
at which she would like to arrive at her destination. Suppose, we have a given timetable, how can we
assess which exact trains would she take?

A widely used method to predict travel demand is discrete choice analysis (Ben-Akiva and Lerman
(1985)). The basic assumption in discrete choice models is that each traveler maximizes her own
utility function. Given a set of available alternatives, the traveler chooses the one with the highest
utility related to her. The utility function of each alternative depends on various attributes of the
alternative, such as travel time and travel cost, and characteristics of the traveler, such as income,
gender or trip purpose. We denote the utility function U tpi for each passenger (i, t) with different
alternatives being different paths Pi to get from an origin to a destination. In this research, we assume
the passengers to be homogenous. On the other hand, the alternatives/paths differ in the attributes as
follows:

• in-vehicle-time (weighted by β ′
V): (total) time in minutes that passengers spend within the

various trains along the path.
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• waiting time (weighted by β ′
W): time in minutes that passengers spend waiting between two

consecutive trains in their respective transfer points.

• number of transfer(s) (weighted by β ′
T ): how many times passengers have to change from one

train to another.

• scheduled delay (early) (weighted by β ′
E): time in minutes indicating how early a passenger

has arrived to her destination as compared to her preferred arrival time, if she is on time or late,
it is then equal to zero.

• scheduled delay (late) (weighted by β ′
L): time in minutes indicating how late a passenger has

arrived to her destination as compared to her preferred arrival time, if she is on time or early, it
is then equal to zero.

We have omitted the price of a ticket from the utility function (i.e. from the passenger point-
of-view), as in our case study the prices among the paths for same ODs do not differ and thus no
difference among alternatives in the utility function can be achieved. Note that the utility theory deals
only with marginal differences among alternatives. Given the above information, we can now assess
the utility function of a single passenger (i, t) for a given path (alternative) p as follows:

U tpi = −β ′
V ·

∑
`

rp`i + β ′
W ·w

tp
i + β ′

T · (|Lp|− 1) + β ′
E · δtip + β ′

L · γtip (2)

The above utility function, which is to be maximized is unitless. The values of βs are unknown
for the moment and have the following signes: β ′

V > 0, β ′
W < 0, β ′

T < 0, β ′
E < 0, and β ′

L < 0.
The first variable of the equation is the sum of the in-vehicle-time spent on board of each of the
trains. Its coefficient has a negative value, since the higher the time the less attractive the path is. The
second variable is the total waiting timewtpi of a path p. Constraints (19) in Section 3.3 show, how to
calculate its value. The third variable is the number of transfers (i.e. the number of lines in a path p
minus one). The fourth and the fifth variables are the scheduled delay. The scheduled delay for being
early is calculated by constraints (17) and for being late by constraints (18), both in Section 3.3.

We can divide the whole utility function by −β ′
V and thus obtain a quantity in minutes: the

generalized time. As we divide by a negative number, this quantity has the opposite sign as the utility,
and is therefore minimized by the passengers.

U tpi =
∑
`

rp`i − (β ′
W/β

′
V) ·w

tp
i − (β ′

T/β
′
V) · (|Lp|− 1) − (β ′

E/β
′
V) · δtip − (β ′

L/β
′
V) · γtip [min] (3)

In order to obtain the values of βs that can be understood as a weight of an attribute an estimation
using real choice data is needed. We have surveyed the published literature and found the already
estimated values of the βs:

• β ′
W/β

′
V = βW = −2.5 is the perception related to the waiting time and is evaluated as double

and a half of the in-vehicle-time (see Wardman (2004)).
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• β ′
T/β

′
V = βT = −10 is the penalty for having to change a train, expressed as an additional

in-vehicle-time. The value of ten minutes is used by Dutch Railways (de Keizer et al. (2012)).

• β ′
E/β

′
V = βE = −0.5 is the willingness to arrive to the destination earlier then the preferred

arrival time, in order to reduce the in-vehicle-time. As shown in Small (1982), the travelers are
willing to shift their arrival time by 1 to 2 minutes earlier, if it would save them 1 minute of
in-vehicle-time.

• β ′
L/β

′
V = βL = −1 is the willingness to arrive to the destination later then the preferred arrival

time, in order to reduce the in-vehicle-time. As shown in Small (1982), the travelers are willing
to shift their arrival time by 1/3 to 1 minute later, if it would save them 1 minute of in-vehicle-
time.

Note that there is no estimate for the in-vehicle-time. Indeed there is no need for such estimate as
all the other βs where estimated in relation to the in-vehicle-time. Also note that all of the estimates
have negative value, as expected. Since both β ′

V and β ′
W were 1/min, the βW has then no unit (this

rule applies to all of the βs). Replacing the ratios by the βs from the literature, we get the final form
of the generalized time function to be minimized:

T tpi =
∑
`

rp`i + βW ·wtpi + βT · (|Lp|− 1) + βE · δtip + βL · γtip [min] (4)

The resulting quantity is in minutes. We can also monetarize it by multiplication with the Value
Of Time (VOT). The VOT is the willingness-to-pay for travel time savings. The average VOT for
commuters using public transport in Switzerland is 27.81 Swiss francs per hour (Axhausen et al.
(2008)), it basically means that the swiss travelers are willing to pay in average 27.81 CHF to save
one hour of travel time. Using the VOT, we can obtain the generalized cost:

Ctpi = VOT · T tpi (5)

By calculating it for all passengers, we get the following objective function:

min
∑
i∈I

∑
t∈Ti

nti · Cti (6)

Since a passenger uses only one path (one with the highest value – constraints (8)), the path index
is omitted from the objective function. The minimization of the generalized cost is equivalent to the
maximization of its opposite quantity - passenger satisfaction. Thus from now on, we will refer to the
passengers’ objective as to the maximization of the passenger satisfaction (with an opposite sign of
its value).

3.3 Constraints
Feasibility Constraints The PCTTP model can be decomposed into 2 parts: feasibility constraints
and satisfaction estimation. The first takes care of the feasibility of the solution, whereas satisfac-
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tion estimation takes care of the passenger satisfaction attributes. At first, we present the Feasibility
Constraints:

−VOT ·
∑
i∈I

∑
t∈Ti

nti · T ti ≥ ε, (7)

T ti ≥ T
tp
i −M ·

(
1− xtpi

)
, ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, (8)

T ti ≥ Vti ·

(
1−

∑
p∈Pi

xtpi

)
, ∀i ∈ I, ∀t ∈ Ti, (9)∑

p∈Pi

xtpi ≤ 1, ∀i ∈ I, ∀t ∈ Ti, (10)∑
v∈V`

ytp`vi = xtpi , ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀` ∈ Lp, (11)(
d`v − d

`
v−1

)
= c · z`v, ∀` ∈ L,∀v ∈ V ` : v > 1, (12)

d`v ≤ d`v+1 − 1, ∀` ∈ L,∀v ∈ V ` : v < |V `|, (13)

ω`
vs =

∑
i∈I

∑
t∈Ti

∑
p∈Pi

ytp`vi · nti, ∀` ∈ L,∀v ∈ V `,∀s ∈ S`, (14)

µ`v · q ≥ o`vs, ∀` ∈ L,∀v ∈ V `,∀s ∈ S`, (15)

α`v · g ≥ µ`v, ∀` ∈ L,∀v ∈ V `, (16)

The constraints (7) assure that a certain level of the total passenger satisfaction (ε) will be main-
tained. The constraints (8) select the path with the best generalized time for each passenger (i, t).
Due to the capacity constraints (14), some passengers might not be served within the planning hori-
zon h. If such a case happens, first possible shortest path outside of the planning horizon is being
offered (constraints 9). Since the passenger will have to wait for the whole cycle, the trains in the
shortest path are assumed to be perfectly connected as the prospective waiting time would be in any
case marginal to the cycle and there might be earlier path offered as lines in the railway networks
often overlap. Constraints (10) secure that every passenger is using at most one path to get from her
origin to her destination. Similarly constraints (11) make sure that every passenger takes exactly one
train on each of the lines in her path, if this path is being used. Constraints (12) model the cyclicity
using integer division. When solving the non-cyclic version of the problem, these constraints have
to be removed. Constraints (13) aim at reducing the solution space in terms of the departure time
combinations, i.e. the departures of the trains are in ascending order with a difference of at least one
minute. Constraints (14) keep track of a train occupation. Note that if ytp`vi is equal to zero (no path
assigned to a passenger) then this passenger is not accounted for in the profit of the operator and she
has a different satisfaction function (constraints 23). Constraints (15) verify that the train capacity is
not exceeded on every stretch/segment of the line. Constraints (16) assign train drivers, i.e. if a train
v on the line ` is being operated or not.
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Satisfaction Estimation To make the PCTTP complete, we need to expand the Feasibility Con-
straints with the satisfaction estimation. We will add the constraints related to the passenger satisfac-
tion in blocks of attributes that constitute it.

δtpi ≥
(
ati −

(
d|L

p|
v + bpi |L

p|+ r
p|Lp|
i

))
−M ·

(
1− y

tp|Lp|v
i

)
, ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀v ∈ V |Lp|, (17)

γtpi ≥
((
d|L

p|
v + bpi |L

p|+ r
p|Lp|
i

)
− ati

)
−M ·

(
1− y

tp|Lp|v
i

)
, ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀v ∈ V |Lp|, (18)

The first block of constraints takes care of the scheduled delay. The constraints (17) model the
earliness of the passengers and constraints (18) model the lateness. If a train arrives early to the
destination then the earliness has a positive value and the lateness has a negative value (and thus
forced to be zero by the positivity domain constraint), vice versa in case the train arrives late. Since
scheduled delay is related to the last line in the path, we use the size of the path |Lp| to get the last
index.

wtpi =
∑
`∈Lp\1

wtp`i , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, (19)

wtp`1i ≥
((
d`1v1 + b

p`1
i

)
−
(
d`2v2 + b

p`2
i + rp`2i +m

))
∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, ∀`1 ∈ Lp :

−M ·
(
1− ytp`2v2i

)
−M ·

(
1− ytp`1v1i

)
, `1 > 1, `2 = `1 − 1, ∀v1 ∈ V `1 , ∀v2 ∈ V `2 ,

(20)

wtp`1i ≤
((
d`1v1 + b

p`1
i

)
−
(
d`2v2 + b

p`2
i + rp`2i +m

))
∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, ∀`1 ∈ Lp :

+M ·
(
1− ytp`2v2i

)
+M ·

(
1− ytp`1v1i

)
, `1 > 1, `2 = `1 − 1, ∀v ∈ V `1 , ∀v2 ∈ V `2,

(21)

The second block of constraints is modeling the waiting time. There are 2 types of waiting time:
the total waiting time of every path wtpi and the waiting time at every transferring point in every path
wtp`i . The constraints (20) and (21) are complementary constraints that model the waiting time in the
transferring points in every path. In other words, these two constraints find the two best connected
trains in the two train lines in the passengers’ path. Thus the connections between the trains will be
passenger imposed. Constraints (19) add up all the waiting times in one path to estimate the total
waiting time in a given path.

T tpi =
∑
`∈Lp

rp`i + βW ·wtpi + βT · (|Lp|− 1) + βE · δtpi + βL · γtpi ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi,

(22)
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Vti = r1i + βW · c+ βT · ui + βL ·
(
h+ c+ r1i +m · ui − ati

)
, ∀i ∈ I, ∀t ∈ Ti. (23)

At last, constraints (22) combine all the attributes together into a generalized time of a passenger
(i, t) for a path p. Constraints (23) do not involve any decision variable and are included in the model
only to show, how the generalized time of a passenger that can not be served within the planned
horizon is calculated.

Note that in our optimization model, we use the amount of available trains from the LPP as the
upper bound and allow the model to reduce the number of trains as needed (mostly due to the low
occupation). Since the goal of the PCTTP is to look for the best timetables from both point-of-views,
it leaves the safety issues to the IM operated TTP. The PCTTP formulation is an original work with
only cyclicity constraints taken from the existing literature.

3.4 Pareto Frontier
In order to construct the Pareto Frontier, the model needs to be solved for several levels of ε under
the objective of maximizing the TOC’s profit (Equation 1). At first, two extreme points are being
solved: ε = 0, where the constraint (7) is removed from the model (thus pure profit maximization, i.e.
objective (1) and constraints (10)-(23)), and ε = 100, where the passenger satisfaction level is set to
the best possible value minus one (as the satisfaction is a real number and it would have been difficult
to set it to the exact value, when using warm starts of CPLEX; objective (1) and constraints (7)-(23))
upon solving the model with objective of pure passenger satisfaction maximization (objective (6) and
constraints (10)-(23)) noted as ε = 100*. All other εs (20,40,60,80) are equally spaced intervals
with passenger satisfaction expressed as a percentage of the difference between the best and the worst
passenger satisfaction possible (objective (1) and constraints (7)-(23)), i.e. ε = 20 meaning that
passenger satisfaction is being set to the worst possible value plus 20% of the gap between the worst
and the best satisfaction level.

4 Case Study
In order to test the PCTTP model, we have selected the network of S-trains in canton Vaud, Switzer-
land during the morning peak hours as our case study. We aim at comparing the currently operated
cyclic timetable of Swiss Federal Railways’ (SBB) with the PCTTP designed cyclic and non-cyclic
timetable. The exact procedures, assumptions and further information about the data can be found in
Appendix A.

The reduced network of S-trains is represented in Figure 3 (as of timetable 2014). We consider
only the main stations in the network (in total 13 stations). The network consists of 14 bidirectional
lines (S1, S2, S3, S4, S11, S21 and S31). The SBB operated timetable of the lines can be seen in
Table 2. The table presents the 7 lines that run in both directions. Each combination of a line and its
direction has its unique ID number. Column “from” marks the origin station of the line and column
“to” marks its destination. The columns “departures” report the currently operated timetable (i.e.
departures from the origin of the line) in the morning peak hour (5 a.m. to 9 a.m.), which is the time
horizon used in our study. Trains that did not follow the cycle (marked with a star *) were set to a
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cycle value, in order to enforce the cyclicity constraints (the timetables in Switzerland are cyclic with
a cycle of one hour).
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Figure 3: Network of S-trains in canton Vaud, Switzerland

We consider three instances of the model. The instance labeled “SBB 2014” is designed to mimic
an existing timetable. The decision variables d`v are set to the values presented in Table 2. The instance
labeled “cyclic” considers the departure time d`v as decision variables, and includes the cyclicity con-
straints (12). Finally, the instance labeled “non cyclic” is the same as the cyclic one, without the
constraints (12). Furthermore, in this specific case study, we can reformulate the cyclicity constraints
(12) in the following manner:

d`v − d
`
v−1 = 60 · z`v1 + 120 · z`v2, ∀` ∈ L, ∀v ∈ V ` : v > 1, (24)

z`v1 + z
`
v2 = 1, ∀` ∈ L, ∀v ∈ V ` : v > 1. (25)

As we can notice in Table 2, we either have 4 trains over 4 hours horizon (60 minutes difference
between all consecutive trains) or 3 trains over 4 hours horizon (one train will have 120 minutes
time distance from the next train, whereas the other trains will keep the 60 minutes difference). This
attribute is modeled by adding an extra index to the cyclicity variable z, stating if the difference
between two consecutive trains is 60 or 120 minutes.
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Line ID From To Departures

S1 1 Yverdon-les-Bains Villeneuve – 6:19 7:19 8:19
2 Villeneuve Yverdon-les-Bains 5:24 6:24 7:24 8:24

S2 3 Vallorbe Palézieux 5:43 6:43 7:43 8:43
4 Palézieux Vallorbe – 6:08 7:08 8:08

S3 5 Allaman Villeneuve – 6:08 7:08 8:08
6 Villeneuve Allaman – 6:53 7:53 8:53

S4 7 Allaman Palézieux 5:41 6:41 7:41 8:41
8 Palézieux Allaman – 6:35 7:35 8:35

S11 9 Yverdon-les-Bains Lausanne 5:26* 6:34 7:34 8:34
10 Lausanne Yverdon-les-Bains 5:55 6:55 7:55 8:55

S21 11 Payerne Lausanne 5:39 6:39 7:38* 8:39
12 Lausanne Payerne 5:24 6:24 7:24 8:24

S31 13 Vevey Puidoux-Chexbres – 6:09 7:09 8:09
14 Puidoux-Chexbres Vevey – 6:31* 7:36 8:36

Table 2: List of S-train lines in canton Vaud, Switzerland

All of the tested instances have been run in CPLEX Interactive Optimizer (CPLEX version 12.5.1)
on a Unix server with 8 cores of 3.33 GHz and 62 GiB RAM. The CPLEX time limit has been set to 2
hours as most of the gap improvement is covered in this horizon (we have tested several models over
a 6 hour horizon, the gap improvement in the additional 4 hours was less than 1 percent). In order to
speed up CPLEX, we would first solve the SBB 2014 timetable and give its solution as a warm start
to the cyclic model and solve it. Further along, we would give the solution of the cyclic model as a
warm start to the non-cyclic model.

4.1 Results
In this section, we present the results of our case study. The detailed numerical results can be found
in Tables 3, 4 and 5. The first row of the tables represents the level of the passenger satisfaction in
percentage with respect to the gap between the best and the worst level of the satisfaction. The row
cs provides the consumer surplus, i.e. how many Swiss francs can be gained in passenger satisfaction
per one franc of profit loss as compared to the ε at level 0. The row lb provides lower bound on
satisfaction for the case 100* and lower bound on profit for all other cases. We report the gap in
percentage and in Swiss francs. Note that the value and the sign of the satisfaction has no meaning
as such and should be used only for comparison across instances. Following rows state number of
needed drivers, rolling stock and the percentage of served passengers.

From the tables, the cyclic and the non-cyclic timetables yield lesser profit than the SBB 2014
timetable for ε between 20 and 100. However, since the SBB 2014 timetable is cyclic, its result can
be a feasible solution for the other two cases as well (cyclic timetable is a feasible solution for the
non-cyclic timetable) and thus, if CPLEX is given infinite time, it would find at least as good solution
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ε [%] 0 20 40 60 80 100 100*

profit [CHF] 53 067 52 926 50 730 49 564 13 826 4 211 -27 168
satisfaction [CHF] -588 934 -505 899 -422 864 -339 828 -256 793 -173 759 -173 758

cs [CHF] – 589 71 71 8 8 –
lb [CHF] 54 046 54 598 54 776 54 394 54 600 51 195 168 016
gap [%] 1.84 3.16 7.98 9.74 294.91 1115.74 3.30

gap [CHF] 979 1 672 4 046 4 830 40 774 46 984 5 742
drivers [-] 17 17 22 22 46 48 49

rolling stock [-] 32 32 32 32 46 55 98
covered [%] 99.35 99.34 100.00 100.00 100.00 100.00 100.00

Table 3: Computational results of the SBB 2014 timetable

ε [%] 0 20 40 60 80 100 100*

profit [CHF] 53 145 41 565 15 543 13 833 4 917 -27 200 -27,200
satisfaction [CHF] -523 367 -452 808 -382 249 -311 691 -241 132 -170 574 -170,573

cs [CHF] – 6 4 5 6 4 –
lb [CHF] 54 805 55 026 54 513 54 759 54 555 54 470 129 258
gap [%] 3.12 32.39 250.72 295.86 1009.52 300.26 24.22

gap [CHF] 1 660 13 461 38 970 40 926 49 638 81 670 41 315
drivers [-] 17 25 47 47 48 49 49

rolling stock [-] 32 36 47 47 54 98 98
covered [%] 99.35 97.42 99.91 100.00 100.00 100.00 100.00

Table 4: Computational results of the cylic timetable

ε [%] 0 20 40 60 80 100 100*

profit [CHF] 53 159 17 791 12 573 11 871 6 584 4 479 -27 257
satisfaction [CHF] -516 011 -462 005 -376 000 -305 994 -235 989 -165 984 -165 983

cs [CHF] – 2 3 5 6 7 –
lb [CHF] 54 465 54 955 54 927 54 862 54 824 54 682 124 693
gap [%] 2.46 208.89 336.86 362.15 732.69 1120.85 24.88

gap [CHF] 1 306 37 164 42 354 42 991 48 240 50 203 41 290
drivers [-] 17 46 48 48 48 48 49

rolling stock [-] 32 48 49 49 52 54 98
covered [%] 99.35 100.00 100.00 100.00 100.00 100.00 100.00

Table 5: Computational results of the non-cylic timetable

for the cyclic and non-cyclic timetable. At the ε = 0, the timetables give similar profit. Indeed almost
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all of the passengers get served while using the same number of trains. In case of the ε = 100*, we
can see a difference for the passenger satisfaction between the models: the cyclic model achieves 3
185 CHF of savings and the non-cyclic timetable improves this value further by 4 590 CHF. Moreover,
if we consider the maximum profit while securing the minimum passenger satisfaction (ε = 100), the
non-cyclic timetable needs one driver and 43 train units less for operation.
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Figure 4: Pareto frontier of the SBB 2014 timetable

Lastly, we plot the trade-off between the profit and the satisfaction as a Pareto frontier (Figure
4) for the SBB 2014 timetable. In this Figure, we can spot an almost vertical line consisting of four
points (ε = 0, 20, 40, 60). This means that large increase in passenger satisfaction can be achieved
without having a significant change in the TOC profit. However the TOC might choose even the points
with lower profit as the passenger satisfaction difference between points 60 and 100 is 166 069 CHF.
Since the difference is quite large, it can justify running of the ε = 100 percent solution for public
operators or to give an incentive on how to increase the ticket prices to private operators. Running of
the whole fleet (ε = 100*), on the other hand, would not make sense as the current demand can be
operated efficiently with less resources and achieve at least a small profit. It is worth mentioning that
the consumer surplus has the highest value at ε = 20. It can be seen in Figure 4 that there is almost
vertical line between the points ε = 0 and ε = 20, i.e. almost no profit loss and large satisfaction
gain.

Overall, the insignificant difference among the three instances has two causes: low level of pas-
senger demand and historical evolution of timetables. By the historical evolution, we mean that the
operators have been offering their service for decades and thus learned how to match their supply with
demand by trial and error.
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4.2 Impacts of Passenger Congestion
In this section, we further investigate what would be the effect of a passenger congestion on the results
from both points-of-view: operator’s and passengers’. In order to do that, we gradually increase the
demand (by multiplying the arrival rates by the same factor (Appendix A)) up until the point where
the coverage decreases to a level of 70%. The passenger coverage as a function of the demand for the
SBB 2014 timetable (the coverage is more or less the same for the other two timetables) can be found
in Figure 5(a). As it can be seen, the congestion starts at the amount of cca. 27 000 passengers and
that the coverage goes down almost linearly. All of the discussed sensitivity analysis results can be
found in Figure 5.

4.2.1 Impacts on Operator(s)

At first, we consider the operator point-of-view, i.e. how increase in demand affects the profit. The
profit as a function of demand can be seen in Figure 5(c). We plot the results for the SBB 2014
timetable only (as from the previous section this timetable gave the smallest gap given its restrictions
on the decision variables). Both minimum (ε = 100) and maximum (ε = 0) profit tend to grow (as ex-
pected). The difference between the two respective profit functions tends to decrease with the size of
the demand (Figures 5(c) and 5(d)). The function becomes less steep when the network is experienc-
ing the congestion. This seems logical accounted to the fact that when the trains become completely
full (i.e. equally occupied), the profit should stabilize on the same values for both cases of ε. Note
that if a passenger can not realize her complete journey due to the capacity limits, she would abandon
the whole trip, thus when the congestion starts, some trains are not yet at full capacity. Moreover, the
model changes its behavior under the congestion: in the profit maximization, passengers who travel
longer distances and thus pay more are given advantage, whereas in the satisfaction maximization,
large groups of passengers are given advantage. This fact allows to increase the profit difference at
the beginning of the congestion (Figure 5(d)). A more realistic model for the selection of passengers
during congestion would reduce this bias.

4.2.2 Impacts on Passengers

Subsequently, we consider the effects of congestion on the passenger satisfaction. In all of the plots,
we consider the satisfaction at the ε = 100* as these are the best possible values. The satisfaction
of the passengers, in the SBB 2014 timetable, as a function of the demand can be found in Figure
5(e). This function for the other two timetables yields similar result. In opposition to the profit, the
passenger satisfaction decreases rather exponentially and its function can be split into two linear parts:
non-congested (gradual slope) and congested (steep slope). This might be useful for practitioners as
it would allow them to predict the passenger satisfaction.

Subsequently, we plot the relative difference of cyclic and non-cyclic timetables as opposed to
the SBB 2014 timetable in Figure 5(f). In general, the cyclic timetable tends to find slightly better
timetables than the SBB 2014 model (in the congested cases the benefit even dramatically increases).
The non-cyclic timetable, on the other hand, is more flexible and achieves significantly higher sat-
isfaction. This is due to the fact that the trains do not have to follow the cyclic frequency and thus
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(a) Passenger coverage as a function of the demand
for the SBB 2014 timetable
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(b) Pareto frontiers of the most congested case
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(c) Profit as a function of the demand for the SBB
2014 timetable

0 10 20 30 40 50
0

20

40

60

Number of Passengers [thousands]

D
iff

er
en

ce
in

Pr
ofi

t[
kC

H
F]

(d) Difference in profit as a function of the demand
for the SBB 2014 timetable
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(e) Passenger satisfaction as a function of the de-
mand for the SBB 2014 timetable at ε 100*%

0 10 20 30 40 50
0

50

100

150

200

Number of Passengers [thousands]

D
iff

er
nc

e
in

Pa
x

Sa
tis

fa
ct

io
n

[k
C

H
F]

non-cyclic
cyclic

(f) The difference in passenger satisfaction of the
cyclic and non-cyclic timetable as compared to the
SBB 2014 timetable at ε 100*%

Figure 5: Impacts of Passenger Congestion
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are more densely scheduled, for instance in the most congested case (cca. 45 000 passengers), the
average headway between two consecutive trains on same lines is 22.6 minutes, with minimum value
of 1 minute and maximum value of 238 minutes.

It could be objected that the relative difference is rather marginal compared to the total satisfaction
level (in the best case 165 000 CHF against 2.5 million CHF), however we still consider it to be a
significant value, especially since the network is quite dense (the demand goes towards Lausanne area
and most of the trains pass through Lausanne and overlap in the network). In a less dense network the
difference between the cyclic and the non-cyclic timetable is expected to be much larger.

4.2.3 Analysis of Trade-off(s)

The final step, in our sensitivity analysis, is the exploitation of the pareto frontiers in the most con-
gested case (Figure 5(b)). The three frontiers are vertically spaced as they yield different levels of
satisfaction (previous paragraphs). Shape-wise, the SBB 2014 timetable, as compared to the base de-
mand scenario, has a frontier with one base point (ε = 100) and direct transition to an almost vertical
line of solutions, which now contains one more point (ε = 80). The cyclic timetable, on the other
hand, has a transition period consisting of ε = 80− 60− 40, before moving to the same solutions as
the SBB 2014 timetable. This means that ε other than 100, 20 or 0 is not a good trade-off solution
as it would lead to a worse profit than the SBB 2014 solutions. Lastly, frontier of the non-cyclic
timetable has a longer transition period than the other two frontiers and it stops at a higher level of
passenger satisfaction (ε = 0 of the non-cyclic timetable is at the same level as ε = 20 of the other
two timetables), however with a slightly worse profit.

The best trade-off between the two objectives lies with the region of cyclic timetable at ε = 20,
SBB 2014 timetable at ε = 20 and non-cyclic timetable at ε = 40. Solutions in this area lead to
approx. 1 million CHF of passenger satisfaction increase with a profit loss of cca. 15 000 CHF.

5 Conclusions and Future Work
In this research, we introduce the passenger centric train timetabling problem. In this problem, we take
into account both the TOC(s) and the passengers. The passengers’ interests are modeled as a passenger
satisfaction using utility theory. We consider all the possible paths between passenger’s origin and
destination. The connections between two trains are then passenger induced. The resulted timetables
are trade-offs between the two stakeholders. The operator can select, if the designed timetables are to
be cyclic or non-cyclic. We have tested the model using an experiment on a realistic railway network.
The model is able to handle 1000 passenger groups (combination of OD pairs and preferred arrival
time to the destination).

The results show that it is possible to achieve large improvements in passenger satisfaction, while
keeping a low profit loss for the operator. We have shown that in a dense railway network with low
volume of passengers, running cyclic or non-cyclic timetable has marginal impacts on the passengers.
However, when the volume of passengers is high, the non-cyclic timetable outperforms the cyclic one.
In a less dense networks, the impacts are expected to be larger.
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In order to assess the benefits of the cyclic timetable properly, we would need to include in the
model the fact that a cyclic timetable is easy to remember. This would need to be quantified in the
context of utility theory, like the other variables discussed above. To the best of our knowledge, such
a quantification has not been performed yet, and we could not include this attribute in the utility func-
tion. Another interesting future extension would be accounting for the elasticity of the total demand.
In this study, we assumed that the passenger would use the railway as his mode of transport, no matter
the value of his satisfaction. In the real world however, the passenger would switch to another TOC
(if available) or to a different mode. This could be investigated by introducing a discrete choice model
into the PCTTP. Similarly, a discrete choice model taking into account several competing TOCs could
be yet another interesting extension. Lastly, since we have omitted the solution methodology side of
the problem and rather focused on the concept, a future work should aim at the efficient solving of the
problem that could allow larger time horizons (preferably whole day) and larger networks.
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A Data Description
The data used in this case study were taken directly from the SBB’s website (www.sbb.ch) and from
the SBB’s annual report for 2013 (Swiss Federal Railways (2013)). However, not all of the data
required to solve the PCTTP were available and thus some assumptions and approximation techniques
have been used. The synthetic data consist of the passenger demand (OD flows estimated based on
demographic data and observation, ideal departure times estimated based on the SBB report and
statistical theory, volume of the passengers estimated on demographics and statistical theory), the
ticket fare distribution (several fare reduction schemes exist in Switzerland, distributed using simple
assumption), maximum number of train units per train (based on observation) and the operator’s cost
structure (based on the aggregated value from SBB report and broken down by external knowledge).

An algorithm in Java has been coded, in order to find a set of possible paths between every OD
pair. The algorithm allowed maximum of 3 consecutive lines to get from an origin to a destination.
The traveling times have been extracted from the SBB website and they include stopping times at
the stations that are not part of the case study, thus the distinction between the slow and fast services
remains part of the problem. The minimum transfer time between two trains has been set to 4 minutes.
The β estimates used are as described in Section 3.
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A.1 Operator
The SBB is operating the Stadler Flirt train units on the lines S1, S2, S3 and S4. In our case study, we
have homogenized the fleet and thus use this type of train also for the rest of the lines. The capacity
of this unit is 160 seats and 220 standing people. The operating cost has been taken from the SBB’s
annual report for 2013 (Swiss Federal Railways (2013)), where a regional service has a cost of 30
CHF of a train per kilometer. Since no further details have been provided, we had to break down the
cost using external knowledge. From a project for a Swiss public transport operator, we know that
the driver’s salary makes up more than half of the cost, i.e. in the “worst” case it is equal to a half
(the higher the cost of the driver the cheaper the operating cost of additional train units thus the worst
case). This leads to an operating cost of 15 CHF per train unit per km. The length of the lines in
kilometers has been estimated using Google Maps. The maximum amount of train units per train is 2
(as SBB never uses more units). The amount of train units per train remains the same along the line,
but it might change at the end stations (we don’t go into further details as this is the task of the Rolling
Stock Problem).

The ticket prices have been taken directly from the SBB website. In Switzerland, many people
have a so called General Abonnement (GA) or a half-fare card. With GA, you pay yearly fee and get a
free access to almost all public transportation in Switzerland. The half-fare card also involves a yearly
fee (significantly smaller than GA) and gives access to a half price tickets for public transportation.
In our case study, we have applied the half-fare prices to all of the passengers. This approach will
balance the prices between GA users and normal users (normal user does not posses GA or half-fare
card and thus pays the full price).

A.2 Passengers
The total amount of passengers in the network has been estimated in the following manner: the
population of Switzerland is 8 211 700 habitants and the population of Canton Vaud is 755 369
habitants, which leads to a rough ratio of 1:10. Applying this ratio to a reported amount of passenger
journeys per day by Swiss Federal Railways (2013) (in total one million for the whole SBB network),
we arrive to a demand volume of 100 000 passenger journeys per day in canton Vaud. However not all
of these journeys are being realized using S-trains. Since almost all of the trains in Canton Vaud have
to pass through its capital city Lausanne, we can derive the ratio, between the S-trains and other class
trains passing through Lausanne, of 40:60 percent, which leaves us with a 40 000 passenger journeys
per day using S-trains in Canton Vaud. Furthermore, the SBB report provides hourly distribution of
passengers on a regional services from Monday to Friday. According to this report 25 percent of the
journeys are being realized in the morning peak hour, which gives us cca. 10 000 passenger journeys
in the morning peak hour for the S-train network of Canton Vaud.

In order to ease the size of the generated lp file(s), the passengers have been split into 1 000
passenger groups (indices (i, t)) of varying sizes. These groups have been divided into hourly rates
(Figure 6) according to the SBB report and smoothed into minutes using non-homogenous Poisson
process. Since we use concept of an ideal arrival time to the destination, the generated arrival time
at the origin has been shifted, by adding up the shortest path travel time between the OD pair, to the
destination of the passengers.
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5 a.m. 6 a.m. 7 a.m. 8 a.m. 9 a.m.

42 208 475 275

Figure 6: The hourly distribution of the passenger groups

In order to generate realistic OD flows (index i), we consider the following probabilities:

p(D = 7) = 0.5 – probability of a destination being Lausanne
p(D = 8) = 0.2 – probability of a destination being Renens
p(D = other) = 0.3 – probability of a destination being other than Lausanne or Re-

nens
p(O = any) = 1/12 – probability of an origin being any station (except the already

selected destination)

Since Lausanne is the biggest city in the Canton with all the lines, except the line 13 and 14,
passing through it, it has the largest probability of being a destination (many people also use Lausanne
as a transfer point to higher class trains). The city with the second highest probability is Renens,
because it is the closest station to one of the biggest universities in Switzerland and from the network
diagram (Figure 3), we can see at the most of the lines stop there, which suggests high demand. The
rest of the stations have equal probability of being a destination (0.3/11), which is rather small as in
the morning peak hour people travel towards their work/school in big cities. On the other hand, the
probability of being an origin is uniformly distributed and dependent on its destination (origin can not
be the same as a destination). The final probability p(O = o,D = d) for every OD pair can be seen
in Table 6.

In order to reach the total demand, the average size of a group should be ρ = the total demand
divided by the number of groups. In the current scenario ρ = 10 000/1 000 = 10. In our study,
we use 3 different classes of groups: small, medium and large. The size of the small group is drawn
from the uniform distribution U(1, 0.6ρ) and applied to ODs with a probability p(O = o,D =
d) ∈ [0, 1.5)%. The size of the medium group follows U(0.6ρ + 1, ρ) and is applied to ODs with a
probability p(O = o,D = d) ∈ [1.5, 3)%. The largest group size follows a distribution U(ρ+ 1, 2ρ)
and is applied to a probability p(O = o,D = d) ∈ [3, 4.5)%.

In total there are 10 077 passengers in the network for the current situation (the deviation from the
estimated value of 10 000 is due to the randomness).
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B Path Representation
In order to better understand what a path is, consider the following example of going from Allaman
(Station 10) to Villeneuve (Station 4) in our case study network (Figure 3). The set Pi (where i is the
index of the given OD pair, in our case i=134) consists of 4 paths p. Each path p consists of the lines
(Lp) ordered as they are traversed. The sets are as follows (numbered as in Table 2):

L1 = { 5}
L2 = { 7, 1}
L3 = { 7, 1}
L4 = { 7, 14, 1}

There are two ways of transferring between lines 7 and 1: either the transfer is made in Renens or
in Lausanne. The information of where the transfer is made can be extracted either from parameter
rp`i or parameter bp`i . The parameter rp`i is the in-vehicle time of every line in the path. Note that the
line id is now value in the set and that the indexing is within a set, thus ` ∈ L is different from ` ∈ Lp.

r1134 = { 58}
r2134 = { 14, 49}
r3134 = { 21, 42}
r4134 = { 37, 12, 17}

Since the decision of departure times of each train d`v is related to the starting station of each
line, we also need to know the traveling time from the origin of the line to the embarking station of a
passenger bp`i .

b1134 = { 0}
r2134 = { 0, 30}
r3134 = { 0, 37}
r4134 = { 0, 0, 62}

Each path p can be realized with different trains that have different departure times. The decision
ytp`vi relates the exact trains a passenger is taking in her path.

In order to verify that the capacity of a train is not exceeded, we need to measure train occupancy
between any two stopping stations. This is done by using segments. The Table 7 shows all the
segments in our case study. Each line then consists of a set of segments S`. For instance line 1 (from
Yverdon-les-Bains to Villeneuve) has the following segments S1 = {12, 11, 8, 6, 5, 4}.

29



Segment Station 1 Station 2

1 Payerne (1) Palézieux (2)
2 Palézieux (2) Puidoux-Chexbres (3)
3 Puidoux-Chexbres (3) Vevey (6)
4 Villeneuve (4) Montreux (5)
5 Montreux (5) Vevey (6)
6 Vevey (6) Lausanne (7)
7 Puidoux-Chexbres (3) Lausanne (7)
8 Lausanne (7) Renens (8)
9 Renens (8) Morges (9)

10 Morges (9) Allaman (10)
11 Renens (8) Cossonay (11)
12 Cossonay (11) Yverdon-les-Bains (12)
13 Cossonay (11) Vallorbe (13)

Table 7: List of segments used in the case study
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