
CoShare: A Cost-effective Data Sharing System for
Data Center Networks

Hao Zhuang, Imen Filali, Rameez Rahman, Karl Aberer
LSIR, École Polytechnique Fédérale de Lausanne (EPFL)

hao.zhuang@epfl.ch, imen.filali@epfl.ch, rameez.rahman@epfl.ch, karl.aberer@epfl.ch

Abstract—Numerous research groups and other organizations
collect data from popular data sources such as online social
networks. This leads to the problem of data islands, wherein
all this data is isolated and lying idly, without any use to the
community at large. Using existing centralized solutions such as
Dropbox to replicate data to all interested parties is prohibitively
costly, given the large size of datasets. A practical solution is
to use a Peer-to-Peer (P2P) approach to replicate data in a
self-organized manner. However, existing P2P approaches focus
on minimizing downloading time without taking into account
the bandwidth cost. In this paper, we present CoShare, a P2P
inspired decentralized cost effective sharing system for data
replication. CoShare allows users to specify their requirements
on data sharing tasks and maps these requirements into resource
requirements for data transfer. Through extensive simulations,
we demonstrate that CoShare finds the desirable tradeoffs for a
given cost and performance while varying user requirements and
request arrival rates.

Keywords—data sharing, cost-effective, small data center, trade-
off management

I. INTRODUCTION

In the era of Big data, heterogeneous data are generated
at a huge scale from many different domains, such as online
social networks (OSNs), sensor networks, medical images,
scientific measurements (e.g., CERN [1]) and Internet-wide
measurements. This brings new challenges on how efficiently
share these big data for research community and industry.
Hereafter, we consider two typical examples of applications
that highlight big data sharing scenarios.

Example 1: The social data generated from online social
networks such as Twitter, Facebook and FourSquare is rich
in semantic content on almost every aspect of human life,
which has a broad appeal for academia, industry and gov-
ernments. Due to the openness of social network platforms,
researchers can obtain the social data through Open APIs to
verify their hypotheses, to mine the interesting patterns, and
to develop business models for real applications. Invariably
different organizations undertake such efforts in isolation. The
generated datasets, ranging from hundreds of Megabytes to
several Terabytes, are stored in local data centers and isolated,
resulting in many small data islands. The value of these small
data islands. e.g., in data analytics, is also limited, in that they
only serve the immediate purpose of data collectors. If the
data collected by different organizations is shared together,
the community at large can have access to a larger data source
allowing them to not only validate their hypotheses but also
expedite wider collaboration and foster scientific progress.

Example 2: Similar to peer-produced systems like Youtube
or Wikipedia, consider a collaborative sensor network system

(e.g., SenseWeb in Microsoft [2]) to enable peer production of
sensing applications. The contributors in the sensor network
system deploy their own sensors or sensor networks for their
own dedicated applications, such as environmental monitoring
system for air pollution, surveillance camera network for
security, heart rate monitor and step counter for runners, road
safety for Intelligent Transportation Systems (ITS), etc. All
these data are isolatedly stored in many Small Data Centers
(SDCs) in diverse geographical areas. However, if these data
can be efficiently shared together, many more applications can
be developed. Thus, we need an effective data sharing system
to coordinate data transfers among different applications and
collaborators.

However, this data sharing process among different data
islands incurs a large amount of data traffic as well as a
huge cost on network bandwidth. These two main issues
may discourage individual data centers from sharing their
data. This process becomes more challenging because of the
lack of a cost-effective data sharing system which is able
to coordinate the data transfer. A client-server approach like
Content Distribution Networks (CDNs) [3] for data sharing,
requires servers that have high storage capacity and bandwidth
to maintain a centralized repository. On the other hand, sharing
data in a P2P manner can distribute the high cost of ownership
to different peers [4]. Nevertheless, current implementations
of P2P data sharing systems such as BitTorrent, focus on fast
data dissemination based on incentive compatible data sharing
strategies, e.g., Tit for Tat. Their main aim is to maximize the
utilization of peer’s bandwidth without considering the cost of
data transfers [5].

What is needed is an approach that allows individual
data centers to collaborate in a lightweight manner while
providing cost and performance-effective data transfers, i.e.,
the system should find the most cost-effective solution given
the performance requirements. Traditional P2P file swarming
solutions [5] are lightweight, but delegate upload duties to all
involved nodes. In a system that seeks to transfer massive
amounts of data1 between data centers ideally only those
nodes that are less costly should be selected for upload duties.
Furthermore, the scheme should respect users’ requirements
in terms of data transfer time. For example, if multiple data
centers based in Switzerland, Poland and Tunisia are sharing
data, and if the dataset to be replicated does not require to
be shared urgently, then the most relevant solution would be
choose data centers based in Tunisia as the uploading nodes
(assuming cheap bandwidth cost is in Tunisia). On the other

1Which is of higher orders of magnitude in size than the smaller sized
software updates and media files, usually served by P2P systems

AWS AZure Google
Location \Usage 1GB 10TB 50TB 5GB 10TB 50TB 1TB 10TB 10TB+ Destination

US/Europe 0 0.09 0.085 0 0.087 0.083 0.23 0.22 0.20 China
Asia (Tokyo) 0 0.14 0.135 0 0.138 0.135 0.19 0.18 0.10 Austraila

Sao Paulo 0 0.25 0.23 0 0.181 0.175 0.12 0.11 0.08 Others

TABLE I: Price Models of Three Cloud Providers (dollars per GB)

hand, if the data is required to be replicated crucially in the
network, then data centers in Switzerland and Poland should
also be included among the uploading nodes.

Motivated by this problem, we design a Cost-effective
data Sharing system, CoShare, which allows users to specify
these high-level performance goals. As an example, for a data
sharing task, users can attach a priority such as high, medium,
low to the task.The priority indicates their preference on the
data sharing such as completion time and monetary cost. The
system will map the user’s requirements on data sharing tasks
into resource requirements and determine which and how many
resources need to be assigned to the tasks. Existing systems
[4], [6], [7] lack efficient mechanisms for translating users’
requirements into resource requirements. CoShare provides
such a mechanism for a data sharing network of collaborating
data centers. The key idea of CoShare is to efficiently manage
the tradeoff between cost and performance in such a network.
Specifically, our contributions can be summarized as follows:

• We analyze the tradeoff curve between time and cost
in a data sharing network based on different sharing
plans and present a system interface that allows users
to specify their requirements.

• We formulate the problem of finding a sharing
plan with both cost and performance constraints and
present our algorithm to find a sharing plan that
matches user’s preferences.

• Through extensive experiments based on our simu-
lator, we demonstrate that CoShare is able to find
the desirable tradeoffs between cost and performance
given varying user requirements and request arrival
rates.

II. DATA SHARING NETWORKS

In this paper, we consider a data sharing network of
small data centers (SDCs) which represent local SDCs of
different research organizations and companies [8]. Each SDC
generates a dataset and then replicates this dataset to SDCs
that already expressed their interest to it. This sharing process
continues until all interested SDCs receive this dataset. In the
following, we briefly present two typical network architectures
for data sharing and discuss the tradeoff between conflicting
cost metrics in a data sharing network.
A. Network Architecture for Data Sharing

Dropbox [9] is a representative of commercial cloud-based
solutions that provide users with file synchronization services.
As it has a centralized architecture, all the data needs to be
uploaded to the cloud first and then other interested clients can
download the data from the cloud. This client-server approach
for data sharing requires dedicated servers and high network
bandwidth, which leads to high cost for data sharing. This
architecture is not suitable for our scenario since participant
SDCs are self-organized, and with limited budgets for data
sharing. On the other hand, P2P-based data sharing approaches

distribute the large volume of data between peers directly
without a central entity and thus there is no up-front cost
on building the network. Nonetheless, current P2P swarm
protocols such as BitTorrent and Avalanche fail to provide
guarantees on the cost and performance of data sharing [4].

In this paper, we design CoShare inspired by P2P network
architecture. To manage the tradeoffs between performance and
cost in the data sharing network, we add a centralized entity
called sharing manager which coordinates the data transfer
among SDCs2. The coordination is performed in terms of the
sharing mode which determines the direction of data exchange.
There are three types of sharing modes between SDCs: 1)
sharing: SDCs can upload/download from each other; 2)
downloader: download only; and 3) uploader: upload only.
The communication between the sharing manager and SDCs
belonging to the data sharing network can be summarized
as follows. After receiving the sharing request from a given
SDC, the sharing manager will ask each interested SDC to
report its current bandwidth usage and generate a sharing
plan considering both performance and cost of data sharing.
Here, the sharing plan is defined as a set of sharing modes
corresponding to each SDC in the network. The sharing plan
will be sent to all SDCs. Once it is received by SDCs, they
can communicate with each other directly by using BitTorrent-
like protocols. The shared dataset is divided into small data
blocks and then indexed by block hashes. After establishing
connections, interested SDCs will exchange their indexes and
then synchronize the dataset by requesting missing blocks from
others.
B. Cost Metrics in Data Sharing

The goodness of a data sharing network can be measured in
terms of several metrics such as monetary cost, link utilization,
network congestion, etc. In this paper, we discuss two main
metrics: monetary cost and completion time.

We define the monetary cost of serving a sharing request as
the total bandwidth cost of all SDCs that contribute to the data
sharing. Greenberg et al. [10] have revealed that the network
cost amounts to around 15% of operational costs to a data
center. The bandwidth cost is usually charged based on the
percentile-based charging scheme. For example, the common
billing method is referred to as the “95th Percentile Rule”
[1] in which an Internet Service Provider (ISP) measures the
traffic volume that a data center generates every 5 minutes.
At the end of a charging period, all 5-minute samples will be
sorted and the highest 5% samples will be discarded. However,
when it comes to the charging scheme between data center
and users, the 100-percentile charging scheme is applied. This
implies that data center providers will charge all the data
traffic without removing the peak traffic. Table 1 summarizes
the piece-wise linear price models for network bandwidth of

2We note that this is a lightweight component and need not be centralized. If
nodes use gossip protocols or Distributed Hash Table (DHT) services to keep
abreast of the state of the network, and the sharing node runs a lightweight
tracker, then no central entity is needed.

three cloud data centers, namely Amazon, Google and Azure.
For instance, for AWS data center in Asia, the price of data
traffic within 1GB is free while that of traffic between 1GB
and 10TB is charged at 0.14$/GB. Table 1 clearly shows that
besides the total volume of data traffic, geographic location
is also a crucial factor that influences the bandwidth cost.
For example, the price of bandwidth in Sao Paulo is nearly
two times than that in US/Europe area in Amazon data center.
In particular, the price of bandwidth in Google also depends
on the location of data traffic destination regardless of source
location. Furthermore, it is worth to mention that all the cloud
data centers only charge on upload links while downloading
from external Internet is usually free. Thus, in our scenario,
we assume that the participating data centers are located in
different areas with various bandwidth price models. This
setting gives us the opportunity to optimize the total cost of
data sharing.

The other metric we consider is the completion time of
serving a sharing request. For each sharing request issued by
a SDC, the completion time is measured from the time that
the source SDC starts to upload the dataset until the time that
all interested SDCs finish downloading all the dataset. Many
factors have an impact on the completion time. This includes
the dataset size, bandwidth and monetary cost constraints.

C. Tradeoff in Cost Metrics

As we mentioned in Section 1, there exists a tradeoff
between cost and performance (in terms of transfer time) in
a data sharing process. For better understanding, consider the
scenario depicted in Figure 1 where we have a swarm of four
SDCs with the same bandwidth capacity but different prices.
The SDC 1 wants to share a dataset with the other three
SDCs. To achieve this goal, different plans can be employed
as is shown in Figure 1. Specifically, Figure 1 (a) shows
that in the Client-Server plan (P1), three client SDCs (with
downloader modes) only download the data from the server
SDC 1 (with the sharing mode) while Figure 1 (b) depicts the
Carry-Forward plan (P2) according to which SDC 1 shares the
dataset with SDC 4 first and then SDC 2 and SDC 3 download
the data from SDC 4. The benefit of P2 is that it can reduce
the cost if the price of SDC 4 is lower than that of SDC 1.
As we assume that the bandwidth capacity is the same, the
completion time of plans P1 and P2 is also the same. Without
the loss in completion time, the cost of P2 is lower than that of
P1. In this sense, we say that P1 is dominated by P2. The plan

Fig. 1: Different sharing plans

P2 can even be the best plan in terms of cost if we assume
that the price of SDC 4 is the lowest among all four SDCs.
On the other hand, to reduce the completion time, we can add
more upload capacities to transfer the data. This is depicted
in Figure 1 (c) which shows the Multi-Server scenario (P3) in
which two more links are added compared to P2 to accelerate
the data sharing. Thus, SDC 2 and SDC 3 can download from
SDC 1 and SDC 4 simultaneously. We can observe that P3 is
better with respect to the completion time, whereas P2 is better
in terms of cost. In this case, we say that P2 and P3 are non-
dominated sharing plans, i.e., there is no single plan better than
the other in both cost and performance. Figure 1 (d) depicts
the P2P sharing plan (P4), in which the best completion time
can be achieved since all SDCs’ bandwidth are fully used;
however this makes it costlier.

t1 t2 t3 t4 t5

C1

C2

C3

Time

C
o
s
t

MinCostP3

BitTorrent

P4

CoShare

P2

P1

Fig. 2: Tradeoff management by CoShare in terms of cost and time. While
BitTorrent and MinCost are two extremes on the tradeoff curve (e.g., the most
fastest but expensive versus the slowest but cheapest), CoShare aims at finding
a desirable tradeoff and adapting to bandwidth usage.

From Figure 1, we can see that each sharing plan represents
a tradeoff between performance and cost. Given a sharing plan,
we can plot its cost and performance on a 2-dimensional plane.
In Figure 2, the four sharing plans with different cost and
performance are presented. Given a target performance on the
completion time, we define a non-dominated sharing plan as
the one with the minimal cost for that target performance. We
refer to the curve in Figure 2 as the ‘tradeoff curve’, which
is comprised of all the possible non-dominated sharing plans.
In Figure 2, P1 is not on the tradeoff curve because the cost
of P1 is not the minimal one given the completion time t5.
P2 has the same completion time at a lower cost, and thus
dominates P1. In this sense, only non-dominated plans are of
interest. Selecting a sharing plan from all non-dominated plans
largely depends on user’s preferences. In CoShare, we design
three priority levels, namely high, medium and low, for users
to specify their preferences in order to manage their tradeoff
on the data sharing. The priority indicates users’ preference on
the performance metric, i.e., completion time in our system.
For example, if a user assigns high priority to a sharing
request, CoShare will choose a non-dominated sharing plan
with relatively faster completion time.

Thus, the key questions that we aim to answer can be
reformulated as follows: Given a swarm of SDCs with different
bandwidth capacities and price models, 1) how can we find
all the non-dominated sharing plans? 2) From these plans,
which is the desirable sharing plan that satisfies the user’s
requirements?

III. COSHARE : COST-EFFECTIVE DATA SHARING

In this section, we present the design of CoShare. Firstly,
we discuss how to generate all non-dominated sharing plans
on the tradeoff curve. Then, we will evaluate the goodness
of sharing plans from the tradeoff curves in terms of users’
preferences. Finally, we will present the algorithm in CoShare
that selects the desirable sharing plan.

A. Generating Non-dominated Sharing Plans

We consider a data sharing network composed of a set P of
heterogeneous SDCs, which is denoted by P = {p1, . . . , pn}.
Each SDC pi ∈ P , is characterized by its maximum upload
and download capacities, denoted respectively by ui and di.
We adopt the 100-percentile price model with free charge on
ingress traffic, i.e., the data center only charges on the egress
links. Thus, the cost function can be defined as a piecewise
linear nondecreasing function C(x), where x indicates the
total volume of data. A sharing task is specified as a tuple
{psrc,S(psrc), Q} where psrc is the SDC of data source,
S(psrc) = {pj |pj ∈ P ∧ j 6= src} is the set of SDCs which
subscribe to the dataset from the psrc and Q is the size of the
dataset. The data sharing process follows the one-to-many data
transfer model, i.e., dataset is replicated from one SDC to the
interested SDCs in the network. Suppose ps ∈ P proposes
a sharing task {ps,S(ps), Q}. Given the current available
bandwidth ratio ρ, we formulate the optimization problem to
minimize the total sharing cost as:

min

n∑
i=1

Ci(
∑
j

xij) (1)

subject to ∑
i

∑
j

xij = (|S(ps)| − 1) ∗Q (2)

0 ≤
∑
j 6=i

xij ≤ ui ∗ ρ ∗ T, ∀i, j (3)

∑
i6=j

xij = Q ≤ dj ∗ ρ ∗ T, ∀i, j (4)

Q ≤
∑
j 6=s

xsj ≤ us ∗ ρ ∗ T (5)

∑
i

xis = 0,∀i (6)

xij ≥ 0,∀i, j, i 6= j (7)

where xij is the total amount of data uploaded from pi
to pj and T is the expected transfer performance in terms
of completion time. As we mentioned in Section II-B, we
evaluate the performance of data sharing not only in terms
of completion time but also in terms of the cost which refers
to the monetary fees for bandwidth cost. The objective of
problem 1 is to minimize the total cost with the performance
constraints on completion time T . Constraint 2 guarantees that
all interested SDCs have downloaded this data of size Q.
Constraints 3 and 4 specify the bandwidth constraints for both
upload and download capacities. With constraints 5 and 6, we
ensure that the SDC of data source ps uploads at least all the

data without any data downloading. The parameter ρ indicates
the mean available bandwidth ratio of the data sharing network,
which reflects the current load in the network. Thus, given a
target performance T , we can compute the optimized cost of
data sharing by solving problem 1. By varying all possible
values of T , we can derive the tradeoff curve. Considering
this curve as an input, the remaining issue that we have to
resolve is to determine the data sharing plan with desirable
tradeoff that satisfies user’s requirements.

B. Goodness of Sharing Plan

Through solving problem 1, we can obtain the tradeoff
curve with all non-dominated sharing plans. No single plan on
the tradeoff curve has both lower cost and lower completion
time. Our system will evaluate the goodness of a sharing plan
with respect to users’ preferences. To map users’ preferences
to the sharing plan, we define an adjustable tradeoff factor
tf as the marginal utility which indicates the marginal im-
provement in completion time by adding additional unit costs.
For example, given two sharing plans spi, spj with different
completion time and cost < ti, ci > and < tj , cj >, the
marginal utility of two plans is computed as absolute value
of tf = |(cj − ci)/(tj − ti)|. In this sense, tf is the slope
of two points, which evaluates the rate of change of sharing
cost with respect to the sharing completion time. Taking the
tradeoff curve given by Figure 2 as an example, a sharing
plan with tf in the curve is the point where the slope of the
curve becomes higher than tf when going from right to left. tf
equals to 0 indicating a sharing plan with the lowest cost while
higher value of tf means less completion time at the higher
cost. Based on this analysis, different priorities of sharing tasks
correspond to different values of tf . We have to note that the
value of tf is influenced by the system configurations, such as
the total available bandwidth, request arrival rate and dataset
size.

C. Searching Desirable Sharing Plan

To determine the tradeoff factor tf , we firstly identify
two main factors in problem 1, dataset size Q and mean
available bandwidth ratio ρ, which exert great influence on the
generation of tradeoff curves. The exact values of these two
factors can only be known at the time of sharing while other
factors such as upload/download capacities and bandwidth
cost can be derived when the SDC joins the network. Given
the varying available bandwidth in the system over time, the
same task may generate different tradeoff curves while on the
other hand, tasks of different sizes may also present similar
performance. For example, if the tradeoff factor tf is set as a
fixed value, the first task of size Q1 can achieve this tradeoff
as long as the available bandwidth reaches ρ < 1 while the
second task of the larger size Q2 > Q1 can reach the same
tradeoff only when all the bandwidth is available, i.e., ρ = 1.
Thus, if we fix the value of tf for all tasks, some tasks have
to wait until there is enough available bandwidth to satisfy
the user-specified tradeoff. To avoid this issue, we relax the
tradeoff factor into an interval and map user’s preference to
the corresponding tradeoff interval. For instance, if the tradeoff
factor interval is [tf1, tf2], the task can be served as long
as the system can search a sharing plan with the tradeoff
factor tf ∈ [tf1, tf2]. The final intervals for different priorities
are derived based on the whole system configurations. We

Algorithm 1 Sharing plan search algorithm

Require: a sharing request req = {ps,S(ps), Q}, request priority
l ∈ {high,medium, low}, request arrival rate λ

Ensure: a sharing plan sp
1: tstart = max{Q/us, Q/min{di}}; //lower bound
2: texp = meanReqInterArrival(λ); //upper bound
3: peerDCStatus = getPeerDCStatus(); //obtain each SDC status
4: while tmin <= tmax do
5: tmid = midtime(tstart, texp);

//apply linear programming solver
6: solverResult = LPSolver(req, l, peerDCStatus, tmid);
7: if solverResult.accept < 0 then
8: tstart = tmid + 1
9: else if solverResult.accept > 0 then

10: texp = tmid − 1
11: else
12: break;
13: end if
14: end while
15: return solverResult.sp

will provide a comprehensive discussion regarding the tradeoff
factor in Section IV.

To search a sharing plan that satisfies a desired tradeoff,
we apply the binary search over the performance space,
i.e., the space of completion time. Algorithm 1 shows the
skeleton of sharing plan searching algorithm. The bandwidth
Constraints 3 and 4 in problem 1 show that the completion
time may be constrained either by the upload bandwidth of
data source or the minimal download bandwidth of other
SDCs. In other words, the completion time of data sharing

satisfies tstart ≥ max{Q
us
,

Q

min{di}
}. This gives the start

value of the completion time (line 1 in Algorithm 1). On the
other hand, we expect that the current sharing request can be
served before the next request arrives in the system. Thus,
the expected completion time texp can be the average inter-
arrival time of requests (line 2 in Algorithm 1). Given start
time tstart and expected completion time texp, we can carry
out the binary search over the time interval [tstart, texp] (lines
4-14 in Algorithm 1). For each search, the system will apply
a linear programming solver to solve problem 1. In practice,
texp can be extended to a hard deadline by a scale factor if
we cannot seek for sharing plan in the interval [tstart, texp].
After extension, if there is still no sharing plan with desirable
tradeoff, the sharing request will put back into the request
buffer to wait for more available bandwidth.

IV. EVALUATION

In this section, we will introduce the evaluation methodol-
ogy of our system by presenting the simulator, the workload
as well as the performance metrics. Then, we will illustrate
detailed experiments and results under different settings.
A. Simulator

We developed a discrete event simulator to simulate the
interactions between entities forming the data sharing network.
More specifically, two entities in CoShare are implemented:
the sharing manager and SDCs. The sharing manager is
responsible for coordinating the data sharing process among
different SDCs. The incoming sharing requests generated by

SDCs will be buffered in a queue and be processed by the
sharing manager in a first-come-first-served manner. To serve
the sharing request, the manager will firstly ask each interested
SDC to report their current bandwidth usage. Based on this
information, it searches for a sharing plan by solving problem
1. Without loss of generality, we assume the cost function to be
linear, i.e., c(x) = ax where x is total volume of egress traffic.
To solve problem 1, the sharing manager employs MOSEK
[11] to solve the linear programming problem and generate
the tradeoff curve. After finding a desirable plan, it will send
the sharing plan to each interested SDC in the network. Once
the sharing plan is received, interested SDCs can start the data
sharing process. From the network performance perspective,
we assume that the bandwidth of each SDC is equally shared
by all the links for both download and upload. Each SDC
calculates the download/upload throughput as the ratio of the
total size of data download/upload at a regular measurement
interval, i.e., 100ms. As mentioned in Section II-A, the data is
transferred in a unit of small data block and the size of small
block in our simulator is set to 1 MB. To compute the transfer
delay, the system will first find out the minimal rate between
local upload rate and remote download rate. Then, the transfer
delay is calculated as the ratio between the size of a data block
and this minimal rate.
B. Simulation Setup and Metrics

Setup: We simulate a swarm of 50 SDCs with the
download and upload bandwidth uniformly distributed in the
intervals [80Mbps, 160Mbps] and [40Mbps, 80Mbps] respec-
tively. The price of bandwidth is obtained from public cloud
providers and CDN providers. The most expensive price is
0.25 $/GB from Amazon data center in south America (Sao
Paulo) while the cheapest one is 0.06 $/GB from MaxCDN
in Europe area. The average price of all 50 SDCs is about
0.153 $/GB. The size of datasets for each sharing request is
uniformly distributed in the interval [300MB, 500MB]. For
each dataset, we randomly generate the number of interested
SDCs which belongs to the interval [16, 32] (i.e., the average
size of interested SDCs is about 24). Unless otherwise stated,
the default priority of the sharing request is low. We simulate
a total of 200 requests with a total aggregated data size of
nearly 2TB. Requests are generated according to a Poisson
distribution with a mean arrival rate of λ. We tune the system
bandwidth utilization by varying λ. For each experiment, we
run the simulator 10 times with different random seeds and
the variance in results is as low as about 5%.

Metrics: The efficiency of CoShare is evaluated through
two groups of performance metrics: 1) Sharing cost and
completion time: Sharing cost is the monetary fees on the

50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

(a) Sharing Time (seconds)

C
D

F

tf=1

tf=2

tf=3

tf=6

Bittorent

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(b) Sharing Cost ($/request)

C
D

F

tf=1

tf=2

tf=3

tf=6

Bittorent

Fig. 3: CDF of tasks with fixed tradeoff factors

90 180 270 360 450
0

0.2

0.4

0.6

0.8

1

(a) Sharing Time (Seconds)

C
D

F

0.5 0.7 0.9 1.1 1.3 1.5 1.7
0

0.2

0.4

0.6

0.8

1

(b) Sharing Cost ($/request)

C
D

F

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(c) Task Throughput (MB/s)

C
D

F

0.06 0.08 0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

d)Task Price ($/GB)

C
D

F

Low

Medium

High

Fig. 4: Tradeoffs for tasks with high, medium and low priority.

bandwidth and completion time is the total time consumed by
serving a sharing request; 2) Task throughput and price: Since
individual sharing requests are of different sizes, i.e., each task
replicates different amount of data with interested SDCs, we
compute the task throughput as the ratio between the total
amount of data transferred and the completion time. The task
price is calculated as the ratio between the total sharing cost
of a task and the total amount of data transferred.
C. Simulation Results

Hereafter, we present the performance evaluation of
CoShare. In particular, we are interested in answering the
following questions: how to determine the value of tradeoff
factors tf? What is the effect of priority levels specified
by different users on the performance of tasks? What is
the impact of the system workload on the average cost and
aggregated throughput of the whole system? What are the
benefits achieved by our design? To answer all these questions,
we have conducted three groups of experiments.

Fixed Tradeoff Factors. In this group of experiments, all
the tasks arrive with the same tradeoff factor tf . The request
arrival rate is set to λ = 12 requests per hour, i.e., requests
arrive about every 300 seconds. Under this configuration, we
vary the tradeoff factor tf from 1 to 6. Figure 3 depicts the
variation of the Cumulative Distribution Function (CDF) of
tasks as function of time and cost under different tradeoff
factors values. Note that for comparison, we also simulate
the BitTorrent protocol under which all SDCs contribute their
bandwidth to finish data sharing as fast as possible. As we
can clearly see, BitTorrent has the shortest completion time,
but at the avoidable high cost compared with our system. This
is explained by the fact that SDCs using BitTorrent protocol
aim to finish downloading datasets as fast as possible without
caring about the transfer cost. A closer look to Figure 3(a)
shows that BitTorrent enforces that all SDCs finish data sharing
within about 120 seconds. After this period, they stay idle for
about another 180 seconds before serving the next request,
which makes it meaningless to get fast speed at the high cost
as shown in Figure 3(b). From other side, Figure 3(a) and
3(b) also illustrate that tasks with lower tradeoff factors are
served with less bandwidth in order to reduce the sharing
cost, thus leading to longer completion time. Specifically, three
groups of tasks with tf = 2, 3, 6 can also finish the task before
the next request arrives at the much lower cost (by reducing
about 25% compared with BitTorrent’s cost). The tasks with
tf = 4, 5 are omitted in the Figure 3 since their performance
is between tf = 3 and tf = 6 and highly similar with tf = 6.
The reason for the similar performance of tasks with different
tradeoff values is that the tradeoff curve decreases slowly in
this interval. For example, as it is shown in Figure 2 (cf.

Section II-C), the sharing plans on the tail of the curve (e.g.,
time between t3 and t4) shall present similar performance since
the curve decreases slowly. Tasks with tf = 1 have the lowest
cost reduced by about 20% than that of group with tf = 3 and
by about 50% than that of BitTorrent. However, from Figure
3(a), we observe that only 85% of them can finish before the
next request arrival, which means that about 15% requests will
be scheduled on the SDCs with more expensive cost. As a
result, we can notice that about 15% of requests with tf = 1
has much higher cost than others as it is reported by Figure
3(b).

User-specified Priority. Through this set of experiments,
we aim to study the effect of the user-specified priorities on
the task performance. In this scenario, all the tasks arrive in
CoShare with different user-specified priorities. Based on the
observations deduced from Figure 3, we map these priorities,
i.e., high, medium, low to the tradeoff intervals [3,6), [2,3) and
[1,2), respectively. One criteria for selecting suitable intervals
is to find the turning points in the tradeoff curve where the
curve decreases quickly. Other criteria such as task price and
throughput can also be applied to find the interval that can
differentiate sharing plans in terms of distinctive user-specified
priorities. Then, we assign three priorities to tasks with the
same proportion (i.e., nearly 33% for each priority). Figure 4
demonstrates the tradeoff of tasks with different priorities with
respect to different metrics. It can be clearly seen that CoShare
is able to apply users’ preferable tradeoff into data sharing
effectively. Specifically, for sharing completion time and cost
depicted by Figure 4 (a) and 4(b), all tasks with high priorities
can finish within around 180 seconds at the high cost (i.e.,
about 60% of the tasks with costs large than 1.0 dollars) while
only 25% of tasks with low priorities can achieve completion
within approximately 180 seconds with low sharing costs (i.e,
80% of them have costs less than 1.0 dollars). Furthermore,
Figure 4(c) and Figure 4(d) present respectively the CDF of
task throughput and price. We can observe that the average
throughputs of tasks with high, medium, low priority are about
42, 50 and 65 MB/s at the price of about 0.093, 0.106 and
0.120 $/GB, respectively. Thus, based on these results, we
can safely conclude that CoShare provides the guarantee on
cost and performance for serving users’ sharing requests. In
particular, this guarantee is tunable by giving different values
or intervals for tradeoff factors. For example, in order to
increase/decrease the price of high priority task, we only need
to adjust the corresponding tradeoff interval.

Effect of request arrival rate. Our objective through this
group of experiments is to investigate the impact of the request
arrival rate on both throughput and price of tasks with different
priorities. For this purpose, we generate two groups of tasks

12 18 24
0

20

40

60

80

(a) Task Throughput (MB/s)

C
D

F

T_145

12 18 24
0

20

40

60

80

(b) Task Throughput (MB/s)

C
D

F

T_523

12 18 24
0

0.05

0.1

0.15

0.2

(c) Task Price ($/GB)

C
D

F

T_145

12 18 24
0

0.05

0.1

0.15

0.2

(d) Task Price ($/GB)

C
D

F

T_523

Low

Medium

High

λ = λ = λ = λ =

Fig. 5: Tasks with priorities in different proportions under various request arrival rates.

with various priorities in different proportions. In the first
group, denoted by T 145, only 10% of generated tasks have
a high priority while tasks with medium and low priorities
represent respectively 40% and 50% of the total tasks. In
the the second group, T 523, the ratio of tasks with high,
medium and low priorities is fixed respectively to 50%, 20%
and 30%. The difference between these two task groups is
that the majority of SDCs in T 145 prefer to share the data
at the low cost while those in T 523 are weighted in favor of
sharing it in a fast way. We run the experiments by varying the
request arrival rate λ = 12, 18, 24 requests per hour. There are
two main findings that can be observed from Figure 5. First,
SDC’s assignments of different priorities in sharing requests
exert little impact on the system performance with regard to
the task throughput. As it is shown in Figure 5(a) and 5(b), we
observe that task throughput of two groups of tasks is similar.
Moreover, the system can also guarantee enough throughput
for sharing requests of each priority under different request
arrival rates. Second, keeping the same experimental settings,
Figure 5(c) and 5(d) depict the variation of the price of both
groups of tasks. As expected, we observe that the task price is
greatly affected by the request arrival rates. Not surprisingly,
we can observe that the task price increases with the increase
of request arrival rate. This can be explained by the fact that
more expensive bandwidth is utilized as more requests arrive
at the system within the same time unit. We also observe that
in Figure 5(c) where the most of tasks are with low priority,
the variation in the task price of different priorities are much
higher than these in Figure 5(d) where the majority of tasks
have high priority. In the group of tasks T 523, and under the
highest request arrival rate, most of the bandwidth resources
with lower price are occupied by requests with high priorities.
Under this situation, tasks with low priority are served by
expensive bandwidth with high probability, which results in
relatively higher task price. Thus, the difference in the task
price of various type is diminishing. This also illustrates that
the focus of CoShare is the tradeoff between the time and
cost rather than minimizing the cost only. For each request,
CoShare will find a sharing plan satisfying the corresponding
tradeoff factor rather than the one with the lowest cost.

Discussion. Based on our extensive simulation of data
sharing networks, we show that CoShare effectively helps users
to manage the tradeoff between cost and performance with
respect to three different priority levels. However, we may find
that the advantage gained by CoShare will be decreased with
the increase of the number of requests with high priorities.
Table II summarizes the cost-savings of two groups of tasks
under different request arrival rates compared with the cost

of BitTorrent. We can observe that the relative cost-savings
achieved by CoShare can decrease from 34% to 10.8% as more
requests with high priority arrive at the highest request arrival
rate (λ = 24).

λ = 12 λ = 18 λ = 24
T 145 34.0% 18.6% 11.6%
T 523 29.1% 18.3% 10.8%

TABLE II: Total cost savings of CoShare compared with BitTorrent’s cost.

On the other hand, we also observed that determining
suitable tradeoff factors for a data sharing system is an iterative
process. This suggests that the system designer will have to
experiment in order to find the suitable tradeoff factors for her
particular data sharing network. In the real network scenario,
this process could take a very long time, which may incur
time and monetary costs. Thus, our methodology provides an
easy and economical way for system designers to speed up
this process.

Finally, we discuss three major impediments that can limit
the practicality of our model. Firstly, do SDCs, especially those
that belong to areas of low bandwidth cost, have any interest
on our globally optimized solution? Our global optimization
can obtain the optimal cost-savings overall. The problem of
how to distribute these cost-savings to individual members
such that no single SDC has the incentive to leave the swarm
is an orthogonal issue to ours. Secondly, do these SDCs
report their bandwidth cost honestly? One way to solve this
issue is to employ a trust model [12] for our data sharing
system to discourage SDCs’ dishonest behavior. Thirdly, since
most researchers commonly store their data locally, can we
extend our model to a more general setting that incorporates,
besides SDCs, local hard disks? Currently, we only focus
on the data center networks in which the number of peers
is far smaller than that in traditional P2P network. Thus,
optimization in a relatively small SDC network can be easily
solved by using existing linear programming packages such
as MOSEK. However, considering individual researchers with
local hard disks will lead to a dramatic increase in the number
of peers, which will in turn will increase the number of
variables quadratically. When the number of variables is too
large, no generic linear programming solver that we are aware
of can be applied. In that case, we will have to develop a
specific approximate algorithm to solve Problem 1 presented
in Section III, e.g., a greedy algorithm. Another solution to
include local disks of individual researchers is to assign the
nearest SDC to each peer. For each instance of data sharing,
peers can upload their data to the nearest SDC first and then
the data will be replicated from this nearest SDC to the others

using the CoShare system directly.
V. RELATED WORK

Many related works focused on scheduling data transfers
among data centers with different optimization objectives. The
store-and-forward strategy adopted by [1], [13], [14], [15]
aims to schedule the data transfer in order to minimize the
cost [1], [14] and to readjust to the resource fluctuations
[13], [15]. To increase the throughput and thus minimize
the transfer time, StorkCloud [6] integrated multi-protocol
transfers aiming at optimizing the end-to-end throughput while
considering the link capacity, disk rate and the CPU capacity.
NetStitchter [13], employed a network of storage nodes to
schedule the data transfer in a store-and-forward manner based
on predictions on the available leftover bandwidth at access
and backbone links. In order to decrease the cost, Postcard [14]
formulated an online optimization problem to minimize costs
on inter-datacenter traffic by exploiting the price discrepancy
in different locations. Other works such as [7] designed a set
of transfer strategies to readjust to different network conditions
(e.g., network latency, available bandwidth) between cloud data
centers whereas [16] focused on the evaluation of different data
transfer protocols for big data. However, none of these works
considers the tradeoff between the time and the cost during
the data transfer process. Unlike previous presented works, our
work manages this tradeoff through system interfaces, which
allows users to specify their preferences, and provides an
efficient mechanism to find this tradeoff. Though Wu et al. [17]
proposed scheduling approaches for bulk data transfers with
different urgency levels. In their work, the priority assigned
to a data transfer only concerned the job scheduling without
taking into account the time-cost tradeoff.

Our work is not alone in managing the tradeoff between
time and cost. Works presented in [18] and [3] optimized the
time and cost performance for online services (e.g., search
engine) and content multihoming (e.g., CDNs), respectively
whereas our work focused on the data sharing networks.
Tudoran et.al [19] proposed transfer as a service for multi-
site cloud with considering the cost in both computation and
network. They did not consider the tradeoff between the cost
and time. Moreover, they also failed to provide interfaces for
users requirements. As for data sharing in P2P networks, most
of the works focus on maximizing the throughput [20], [21],
[4] using the BitTorrent protocol. Capota et al. [20] formulated
a maximum flow optimization problem while [21] improved
neighbor selection based on traffic locality. Peterson et al.[4]
presented the response curve of P2P swarm, which represents
the swarm bandwidth as a function of seeder bandwidth. Their
system assigns the seeder resources to the swarms with the
steepest response curves. However, their optimization still did
not consider the bandwidth cost. To the best of our knowledge,
ours is the first work that manages the time-cost tradeoff for
data sharing networks.

VI. CONCLUSION

This paper serves as a first step towards studying the trade-
off between cost and performance for massive data sharing
among small data centers. We proposed CoShare, a cost-
effective data sharing system that maps users requirements
into resource requirements for managing the time-cost tradeoff.
Through extensive experiments, we demonstrated that CoShare
is effective in this mapping and guarantees the desirable

cost and performance tradeoff for the data sharing process.
Future efforts will focus on implementing a real data sharing
system based on CoShare. We would also like to incorporate
a semantic component for data sharing. For instance, this
component can be able to manage the data deduplication in
transferred datasets (e.g., Twitter datasets), which further
reduces the total amount of data that have to be transferred.

REFERENCES

[1] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram, “Delay
tolerant bulk data transfers on the internet,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 37, pp. 229–238, ACM, 2009.

[2] A. Kansal, S. Nath, J. Liu, and F. Zhao, “Senseweb: An infrastructure
for shared sensing,” IEEE multimedia, no. 4, pp. 8–13, 2007.

[3] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian, “Optimizing
cost and performance for content multihoming,” in Proceedings of
the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication, ACM, 2012.

[4] R. Peterson and E. G. Sirer, “Antfarm: Efficient content distribution
with managed swarms.,” in NSDI, vol. 9, pp. 107–122, 2009.

[5] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6, pp. 68–72, 2003.

[6] T. Kosar, E. Arslan, B. Ross, and B. Zhang, “Storkcloud: Data transfer
scheduling and optimization as a service,” in Proceedings of the 4th
ACM workshop on Scientific cloud computing, pp. 29–36, ACM, 2013.

[7] R. Tudoran, O. Nano, I. Santos, A. Costan, H. Soncu, L. Bougé, and
G. Antoniu, “Jetstream: Enabling high performance event streaming
across cloud data-centers,” in Proceedings of the 8th ACM International
Conference on Distributed Event-based Systems, ACM, 2014.

[8] H. Zhuang, R. Rahman, and K. Aberer, “Decentralizing the cloud: How
can small data centers cooperate?,” in Peer-to-Peer Computing (P2P),
14-th IEEE International Conference on, pp. 1–10, Ieee, 2014.

[9] “Dropbox.” https://www.dropbox.com/.
[10] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a

cloud: research problems in data center networks,” ACM SIGCOMM
computer communication review, vol. 39, no. 1, pp. 68–73, 2008.

[11] “Mosek lp solver.” https://www.mosek.com/.
[12] L.-H. Vu, M. Hauswirth, and K. Aberer, “Qos-based service selection

and ranking with trust and reputation management,” in On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,
pp. 466–483, Springer, 2005.

[13] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-
datacenter bulk transfers with netstitcher,” in ACM SIGCOMM Com-
puter Communication Review, vol. 41, pp. 74–85, ACM, 2011.

[14] Y. Feng, B. Li, and B. Li, “Postcard: Minimizing costs on inter-
datacenter traffic with store-and-forward,” in Distributed Computing
Systems Workshops (ICDCSW), 2012 32nd International Conference
on, pp. 43–50, IEEE, 2012.

[15] Y. Wang, S. Su, A. X. Liu, and Z. Zhang, “Multiple bulk data transfers
scheduling among datacenters,” Computer Networks, vol. 68, 2014.

[16] B. Tierney, E. Kissel, M. Swany, and E. Pouyoul, “Efficient data
transfer protocols for big data,” in E-Science (e-Science), 2012 IEEE
8th International Conference on, pp. 1–9, IEEE, 2012.

[17] Y. Wu, Z. Zhang, C. Wu, C. Guo, Z. Li, and F. Lau, “Orchestrating
bulk data transfers across geo-distributed datacenters,”

[18] Z. Zhang, M. Zhang, A. G. Greenberg, Y. C. Hu, R. Mahajan, and
B. Christian, “Optimizing cost and performance in online service
provider networks.,” in NSDI, pp. 33–48, 2010.

[19] R. Tudoran, A. Costan, and G. Antoniu, “Transfer as a service: Towards
a cost-effective model for multi-site cloud data management,” in SRDS,
2014.

[20] M. Capota, N. Andrade, T. Vinkó, F. Santos, J. Pouwelse, and D. Epema,
“Inter-swarm resource allocation in bittorrent communities,” in Peer-
to-Peer Computing (P2P), 2011 IEEE International Conference on,
pp. 300–309, IEEE, 2011.

[21] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and
A. Zhang, “Improving traffic locality in bittorrent via biased neighbor
selection,” in Distributed Computing Systems, 2006. ICDCS 2006. 26th
IEEE International Conference on, pp. 66–66, IEEE, 2006.

