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Abstract—Renewable energy resources, such as photovoltaic
panels, typically have very volatile power-injection character-
istics, which poses a number of challenges to the real-time
control of electrical grids that contain a significant fraction
of these resources. Recently, a new paradigm for controlling
such grids, termed COMMELEC, was proposed; it uses explicit
power setpoints instead of droop-control. Central to this new
paradigm is an abstract message format that enables resources
to delegate the decisions related to their control actions to a grid
controller. This is essential to the feasibility of the approach,
as it makes the grid controller device-independent. However, it
leaves to the resource agents the burden of translating device-
specific information into this abstract format. In this paper, we
present a solution to this problem; more specifically, we present
a very simple Application Programming Interface (API) that can
be used to design a COMMELEC-compliant resource agent. We
present an easy-to-use High-Level API, which supports a pre-
defined set of resources, such as a battery or a photovoltaic panel.
We also describe a Low-Level API that provides full access to
the underlying message format, and allows to design a resource
agent that is not supported by the High-Level API. For message
serialization, we use the Cap’n Proto framework, which allows
for efficient manipulations of the mathematical objects used in
COMMELEC.

Index Terms—Smart-Grid Control, Commelec, Renewable En-
ergy

I. INTRODUCTION

THE traditional approach for real-time control of electri-
cal grids is voltage and frequency droop control. The

method is simple yet very effective for controlling “classical”
synchronous-generator-powered grids. The advent of using
renewable energy sources gives rise to a new grid type, for
which droop control is no longer the most suitable control
method. This is most relevant in the low and medium volt-
age power distribution networks, where distributed renewable
energy resources (DERs) enable the creation of microgrids
with little or no mechanical inertia. The main problem with
applying droop control to grids that encompass various non-
inertial resources, like photovoltaic panels, is that the method
cannot properly deal with the volatile power-injection charac-
teristics of those devices. Indeed, these resources can cause
an unpredictable reduction in the quality-of-supply (QoS) of
the grid (e.g., undesired drop or raise in voltage magnitudes in
the network). In this case, the droop controllers cannot utilize
any information on the internal state of the different resources
in the grid, and might be not able to assess the overall
QoS correctly. Concretely, this means that DERs typically get
curtailed by the grid’s safety mechanisms to restore the QoS.

Recently, an alternative framework for the real-time control
of power grids, and in particular microgrids with little or
null inertia, was proposed [1], [2]. With the COMMELEC

framework, electrical resources in the grid are under the
control of one or several grid agents, which define explicit
power setpoints in real-time (every ∼ 0.1 sec). Contrary to
classic droop control strategies, this mode of operation exposes
the state of all resources, and in particular storage devices,
to the local grid controller, which enables an efficient and
stable operation without large rotating masses. The frame-
work is designed to be robust (i.e., it avoids the problems
inherently posed by software controllers) and scalable (i.e., it
easily adapts to grids of any size and complexity). It uses a
hierarchical system of software agents, each responsible for
a single resource (loads, generators and storage devices) or
an entire subsystem (including a grid and/or a number of
resources). The hierarchy of control (“who controls who”)
in COMMELEC coincides with the electrical interconnection
topology. This gives rise to the terminology of leader and
follower: a leader always represents a grid agent that is the
parent of all its followers, where each such follower can be
either another grid agent or a resource agent.

One of the main features of COMMELEC is that it is
an abstract framework in the sense that there is a simple
device-independent protocol for message exchange between
the agents that hides the specific details of the resources and
exposes only the essential information needed for real-time
control. In response to a request message from the leader,
each follower replies with an advertisement message, which
expresses (in an abstract way) the flexibility and constraints of
that follower. In this way, COMMELEC essentially provides a
Grid Operating System (Grid OS), similarly to a computer OS.
Here, a grid agent can be viewed as an OS kernel, while the
resource agents are the different applications running on the
OS. The device-independent protocol thus provides a way for
the applications (resource agents) to interact with the kernel.
We note that, as in a regular OS, the kernel is generic. Namely,
there is only one (generic) version of software for the grid
agent that can manage any given grid.

The device-independence property is essential for the de-
ployment of COMMELEC, however, it leaves to resource agents
the burden of translating device specific information into the
abstract format. In this paper, we provide a generic solution to
this problem. Specifically, we present in detail how a resource
agent can translate the internal objectives and constraints
of the resource into COMMELEC advertisements and how to
send these to the leader grid agent. To accomplish this, we
propose a concrete (byte-level) representation for COMMELEC
advertisements and requests, as well as a simple application
programming interface (API) to use this novel message-format
representation, with which one can build a COMMELEC-
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compliant resource agent. (While the contents of an advertise-
ment and a request had been defined mathematically already
in [1], it had not yet been specified how these contents, certain
mathematical objects, should be represented on a computer or
inside a network packet, i.e., as a sequence of bytes.)

In fact, our API consists of two parts. The High-Level API
is an easy-to-use API that allows to construct advertisements
for a predefined set of resources, and to parse requests. It is
aimed at those who want to merely use COMMELEC but have
no interest in knowing the details of the actual message format.
The Low-Level API, on the other hand, gives full flexibility
for the user and allows to design a resource agent that is
not supported by the High-Level API. However, it requires
understanding the structure of the message format and hence
is targeted at expert users. The High-Level API and Low-Level
API are open-source and are freely available [3].

In order to illustrate the ideas involved, consider the fol-
lowing example. Assume that the task of controlling a battery
resource is a part of a COMMELEC-controlled microgrid.
Obviously, we want to ensure that the battery always stays
within its operating constraints. In addition, we would like
to achieve that the battery will be (almost) fully charged
near the end of the day. During the day, the battery should
provide buffer capacity to the microgrid, for example, to cope
with the volatility introduced by a PV system that is also
connected to the microgrid. Thus, in order to “plug” the battery
into COMMELEC-controlled microgrid, we should design a
battery agent that will translate the internal constraints and
objectives of the battery into COMMELEC advertisements. We
distinguish between short-term (real-time) constraints, related
to the maximum operating conditions of the battery, and long-
term objectives, i.e., achieving full state-of-charge at the end
of each day. In Section III, we explain in detail how this
translation can be done using our High-Level API, and give
an example implementation in the LabVIEW platform.

The second main contribution of the paper is the definition
of the actual message format, and the corresponding Low-
Level API that allows to design a resource agent that is
not supported by the High-Level API. Although our message
format is in principle independent of the chosen serialization
framework, in this paper we use the modern Cap’n Proto
framework in order to represent a message as a sequence of
bytes that is ready to be sent over the network. The choice
of this framework is motivated by a number of benefits that
are important for the real-time control system, such as low
processing complexity and small message size. Further, it
supports various programming environments and platforms.
Finally, it is possible to extend the message format without
breaking the compatibility with older versions of resource
agents.

We evaluate the performance of our approach and compare
it to other methods to encode and serialize mathematical
objects. We also outline how our method can be easily made
compatible with the IEC 61850 communication standard for
substation automation [4].

The paper is structured as follows. Section II recalls the
mathematical definition of a COMMELEC advertisement. Sec-
tion III gives a step-by-step example of using the High-

Level API for controlling a battery. Section IV discusses
the High-Level API’s support for a PV system. Section V
covers details of the message format and Low-Level API.
Section VI evaluates the performance of our message format
representation by means of some experiments.

II. MATHEMATICAL DEFINITION OF AN ADVERTISEMENT

In this section we recall the mathematical definition of an
advertisement as given in [1]. A power setpoint is a tuple
u = (P,Q) ∈ R2, where P denotes real power and Q
denotes reactive power. Let B(R2) denote the collection of
all bounded non-empty closed subsets of R2, and let C(R2)
denote the collection of all convex sets in B(R2). A PQ Profile
A ∈ C(R2) of a follower F represents the collection of power
setpoints that F claims to be able to implement.

The convexity requirement on the PQ profile can be viewed
as a limitation that originates from the control algorithm that
we currently use in the grid agent.1 Nonetheless, we want
to stress that convexity is not an intrinsic property of the
PQ profile, hence, there might be suitable alternative control
algorithms (to be run in the grid agent) that do not require the
PQ profile to be convex.

A Belief Function is a function BF : A → B(R2). For every
setpoint u ∈ A, the belief function represents the uncertainty
in this setpoint implementation: when the follower is requested
to implement a setpoint u ∈ A, the follower states that
the actually implemented setpoint (which could depend on
external factors, for example on the weather in case of a PV)
lies in the set BF(u).

A Virtual Cost Function is a continuously differentiable
function CF : A → R. It represents the follower’s aversion
(corresponding to a high cost) or preference (respectively, low
cost) towards a given setpoint. For example, a battery agent
whose battery is fully charged will assign high cost to setpoints
that correspond to further charging the battery. We have used
the adjective virtual to make clear that we do not mean a
monetary value. However, from now on, we will omit this
adjective and simply write “cost function”.

An Advertisement of a follower F is the quadruple
(A,BF,CF, s), where s = (P,Q) is the currently implemented
power setpoint. We note the an advertisement is typically valid
only for one COMMELEC cycle and is thus periodically sent
by the follower to its leader.

III. DESIGNING A BATTERY RESOURCE AGENT USING THE
HIGH-LEVEL API

To motivate the use of COMMELEC, and, in particular, to
demonstrate the use of the High-Level API, we consider the
task of controlling a battery that is part of a COMMELEC-
controlled microgrid. Obviously, we want to ensure that the
battery always stays within its operating constraints. In addi-
tion, we would like to achieve that the battery will be (almost)
fully charged near the end of the day. During the day, the
battery should provide buffer capacity to the microgrid, for
example, to cope with the volatility introduced by a PV system

1This particular control algorithm computes orthogonal projections onto the
PQ profile, which are well-defined only if that set is convex.
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Fig. 1. The daemon acts as gateway to the grid agent and hides details of
the device-independent message format as well as the transport protocol from
the user.

that is also connected to the microgrid. In this section, we will
see a step-by-step example that explains how we can turn this
goal into a resource agent for the battery.

A. High-Level API

The High-Level API is aimed at those who want to merely
use COMMELEC but have no interest in knowing the details of
the message format. The High-Level API currently supports
receiving requests and sending advertisements for commonly
used resources, including a battery, a fuel cell, and a PV.

Concretely, the High-Level API is provided by a daemon (a
background process) that runs on the resource agent’s machine
as a middleman between the resource agent and the leader grid
agent, see also Figure 1. The main benefits of this approach
are a) that the transport protocol (between the daemon and the
grid agent) is hidden from the user, and b) that the interface
between the resource agent and daemon becomes very simple.

The daemon is configured by means of a small configuration
file, through which the user can set static parameters like the
resource type (battery, PV, etc.) and the (unique) ID number
of his resource, as well as the relevant IP addresses and port
numbers. Dynamic parameters (i.e., those that are repeatedly
updated in real-time) are exchanged between the daemon and
the resource agent over UDP, encoded as a JSON2 object [5].
(Most programming environments have out-of-the-box support
for reading and writing JSON objects.)

For requests, the daemon acts as a translator: it translates
the requests as encoded in COMMELEC’s Cap’n Proto-based
wire format into JSON objects. For advertisements, however,
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Fig. 2. The battery PQ profile (capability curve).

the daemon acts as a compiler: the resource-dependent ad-
vertisement parameters, along with some static parameters (as
set in the configuration file) are compiled into a COMMELEC
advertisement (see Section II), which is device-independent.

B. Translating the Desired Behavior into an Advertisement

The first step is to formalize the description of the desired
behavior into a COMMELEC advertisement. Note that this
desired behavior is two-fold: we distinguish between short-
term (real-time) constraints, related to the maximum operat-
ing conditions of the battery, and long-term objectives, i.e.,
achieving full state-of-charge at the end of each day.

1) Short-Term Constraints: The real-time constraints of the
battery are depicted in Figure 2, as proposed in [2]. They
consist of an upper and lower bound on the active power and a
“disk” constraint of a power converter. Observe that the power
converter constraint is static, while the active power bounds
change dynamically according to the battery state; see [2] for
details. These constraints are to be encoded in the advertised
PQ-profile.

2) Long-Term Objectives: For illustration purposes, we
present a simplistic long-term objective that aims at bringing
the battery to maximum state of charge (SoC) at the end of
the day. This objective can be encoded in the advertised cost
function. In particular, the cost function shape depends on the
current SoC of the battery as well as on the time of the day.
We adopt a simplified version of the cost function from [2]
using a quadratic function in P :

(P,Q) 7→ αP 2 + βP, α, β ∈ R, (1)

In particular, the coefficients are set to

α = |SoCtarget − SoC|/S2
rated,

β = 2(SoCtarget − SoC)/Srated,

where SoCtarget is the target SoC (see below), SoC is the
current SoC, and Srated is the rated power of the battery. The
target SoC, SoCtarget, is set according to the current time of
the day. Specifically, in the afternoon, it set to SoCtarget = 0.9
with the objective to fill the battery, while in the evening it
is set to SoCtarget = 0.1 with the objective to use the battery.
Figure 3 shows different possible shapes of this cost function.

We have not yet discussed the choice of the belief function;
however, like in [2], we will assume the battery to have an
ideal belief function (the identity belief function): (P,Q) 7→
{(P,Q)}.
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Fig. 3. Illustration of the battery agent cost function that encodes long-term
objectives.

C. Configuring and Running the Daemon

Next, we will setup the daemon. The daemon is a command-
line program, invoked as

$ commelecd configfile.json

where configfile.json is a file with a single JSON
object that contains several configuration parameters:

{"resource-type":"battery",
"agent-id":1000,
"remote-RA-ip-address":"127.0.0.1",
"remote-RA-port":12345,
"local-daemon-port":12346}

As can be deduced from the file above, we can set the
resource type, the (resource) agent ID, the IP address (either
and IPv4 or an IPv6 address) and port number of the resource
agent, and on which ports the daemon is listening to packets
from the resource agent. Instead of specifying the IP address
of the resource agent, one can specify its hostname using the
remote-RA-hostname field, for example:
"remote-RA-hostname":"batt-agent1.epfl.ch".

D. Receiving Requests

Once the daemon is running, it listens for incoming re-
quests from the grid agent, which it will translate into
JSON objects and transmit to remote-RA-ip-address :
remote-RA-port over UDP. A request in JSON format as
transmitted by the daemon has the following fields:

Name Type

senderId integer (32-bit unsigned)
P double
Q double
setpointValid boolean

The senderId contains the (unique) Agent Id number of
the leader that sent the request. If setpointValid is true,
the resource agent is supposed to implement the setpoint

(P,Q) (specified in Watts and VAR, respectively) and reply by
sending an advertisement. Otherwise (if setpointValid is
false), the resource agent should ignore the setpoint and reply
by sending an advertisement.

For example, a request in JSON format might look as
follows:

{"senderId": 500, "P": 10.0, "Q": 20.0,
"setpointValid": true}

E. Sending Battery Advertisements

Our High-Level API can be used to encode and send the
PQ profile and the cost function illustrated in Figures 2 and
3. Note that we have already configured the daemon to send
battery advertisements to the grid agent by means of appropri-
ately setting the resource-type field. Now, to trigger the
transmission of a battery advertisement to the grid agent, we
need to send the necessary parameters in JSON format over
UDP to the daemon (to port local-daemon-port). These
necessary parameters are listed below.

Name Type Name Type

Pmin double coeffPsquared double
Pmax double Pimp double
Srated double Qimp double
coeffP double

First, note that α and β of (1) correspond respectively to
coeffPsquared and coeffP. It should be no surprise that
Pmin, Pmax and Srated correspond to the same names in
Figure 2. The parameters Pimp and Qimp should be set to the
real and reactive power that the resource is currently producing
(or consuming, if P is negative). As noted before, the belief
function of the battery agent is assumed to be ideal. Hence,
there are no parameters in the High-Level API for the battery
agent that are related to the belief function.

F. Example: Partial Implementation in LabVIEW

Motivated by the popularity of graphical programming envi-
ronments like Simulink and LabVIEW in the power-systems-
research community, we outline in this section how the previ-
ously discussed steps could be implemented in LabVIEW. In
Figure 4 we show a concrete example of a LabVIEW circuit
that uses our High-Level API. Below, we describe different
aspects of this example.

1) Daemon: Configuration via LabVIEW GUI and Auto-
matic Start/Stop: On the left side of Figure 4, we demonstrate
how the daemon can be configured via LabVIEW’s graphical
user interface, and how it can be started automatically (from
LabVIEW). By making use of the Flat Sequence Structure ,
we ensure that the daemon is started before the Main Loop is
executed.

The “Daemon Configuration” block, visible on the left side
of Figure 4, is a cluster (a LabVIEW data structure) whose
fields are shown on the right. Note that the names of the
cluster elements must be identical to the names of the daemon
configuration parameters discussed in Section III-C. The data
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Fig. 4. Example of using the JSON-High-Level API from LabVIEW. In the Initialize-phase (left), the UDP socket is opened and the daemon program is
started automatically (the daemon’s configuration parameters can be altered via a graphical user interface). In the Main Loop (middle), the circuit receives
requests, and simulates perfect implementation of the setpoint (P,Q) by sending the same values back as the implemented setpoint (Pimp, Qimp). (We omit
setting the remaining advertisement parameters in this example.) In the Close-phase (right), the daemon process is stopped and the UDP socket is closed.

in the cluster is translated into JSON format via the built-
in Flatten to JSON function, and this JSON data is provided
to the daemon’s standard input via a “pipeline”: we set the
“command line” parameter of the System Exec function to
echo ’<JSON data>’ | commelecd - (using string
concatenation). Note the single quotes around the JSON data,
and the dash behind commelecd that lets the daemon obtain
its configuration data from the standard input, instead of from
a file. The Boolean constant (visible on the left side) is set to
False to disable the “wait until completion” option from the
System Exec function.

Note that we assume in the example that the commelecd
executable is installed in a location that is included in the
PATH environment variable of the target system. If this is not
the case, then the full path should be specified.

When stopping the resource agent (using the Stop Button),
the daemon process is automatically stopped by executing
killall commelecd (here, we assume that the resource
agent runs on Linux).

2) Receiving and Parsing Requests and Sending Advertise-
ment Parameters: To parse incoming requests as sent by the
daemon, data is read from a UDP socket using the LabVIEW’s
built-in UDP Read function, and converted into a cluster (a
LabVIEW data structure) using the built-in Unflatten from
JSON function (see Figure 4). The cluster “ReqType” specifies
the fields and their types that should be extracted from the
request; the field names (and their types) are identical to
those listed in Section III-D. The extracted parameters are
available to the user at the “value” output terminal of the
Unflatten from JSON function; in Figure 4 we have connected
the “ReqParams” indicator to this output.

To send the parameters for an advertisement to the daemon,
all required parameters (for constructing an advertisement for
a particular resource) should be bundled in a cluster, shown
here as “AdvParams”, whose structure is shown in full detail
in Figure 5. Note that the names of the cluster elements should
be identical to the names of the parameters. The data in the
cluster is translated into JSON format via the built-in Flatten
to JSON function, and sent over UDP via the built-in UDP
Write function. Note that the Main Loop is an infinite loop,
which can be terminated via the Stop Button. In this example,

we only set a subset of the parameters (Pimp and Qimp); in
reality one has to set all advertisement parameters.

hlapi_json2.vi
C:\cygwin64\home\bouman\hlapi_json2.vi
Last modified on 5/29/2015 at 5:20 PM
Printed on 5/29/2015 at 5:20 PM

Page 1
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Fig. 5. Structure of the “AdvParams” cluster appearing in Figure 4.

IV. SENDING AN ADVERTISEMENT FOR A PHOTOVOLTAIC
SYSTEM VIA THE HIGH-LEVEL API

In the previous tutorial section we have already seen how
the High-Level API can be used to receive a request, and to
send an advertisement for a battery. In this section, we would
like to highlight the High-Level API’s capability to send an
advertisement for a photovoltaic system.

The High-Level API allows to create an advertisement for
a PV system with the following parts, as suggested in [2]:
• the PQ profile as shown in Figure 6 (the grey area);
• the belief function

(P,Q) 7→ Rectangle((P,Q), (p(P ), q(P,Q))), (2)

with:

p(P ) := max{0, P −∆}
q(P,Q) := sign(Q) ·min{|Q|, p(P ) tanϕ}

where Rectangle((x1, y1), (x2, y2)) represents a rectangle
in R2 with corner points (x1, y1) and (x2, y2), and ∆ ∈ R
(in Watts) represents a possible drop in real power, which
could be caused, for example, by a cloud.

• the cost function:

(P,Q) 7→ −aP + bQ2, a, b ∈ R.

At this point, we have not yet made clear why the particular
belief function specified above should be useful or “the right
one” in some sense. Further below, we will argue that this
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Fig. 6. The PQ profile (capability curve) of the photovoltaic system that is
constructed by the makePVAdvertisement function.

belief function is actually a rectangular approximation (or, in
other words, a simplified version) of a more general belief
function, and that by using this approximation we will not
incur any loss, given the current implementation of the grid
agent.

To instruct the daemon to send PV advertisements, we need
to set the resource-type configuration parameter to pv.
The following table lists the dynamic parameters for the PV
advertisement.

Name Type Name Type

Pmax double a_pv double
Srated double b_pv double
cosPhi double Pimp double
Pdelta double Qimp double

Note that we encountered most of the parameters before
when discussing the battery advertisement. Those parameters
have exactly the same meaning here. The parameter Pdelta
corresponds to ∆ in the definition of the belief function,
and furthermore a_pv and b_pv correspond to a and b
respectively. The parameter cosPhi corresponds to cosϕ (the
“power factor”), where ϕ is the phase angle shown in Figure 6.

General Form of the Photovoltaic Belief Function and its
Rectangular Approximation

In [2], the belief function of a PV system is defined as
follows:

f(p, q) :=
⋃

ρ∈[max{0,p−∆},p]

{(
ρ, sign(q) ·min{|q|, ρ tanϕ}

)}
.

The definition of the belief function involves a parameterized
union, which we currently do not support in the message
format. Hence, we define a belief function that, for every input
u ∈ A, returns a superset of f(u) that is representable in
our message format. Note that this superset should be kept
as small as possible, otherwise the belief function will lose its
purpose and the grid agent will treat our resource too conserva-
tively. For simplicity we take the axis-aligned rectangular hull
around f(u). As a matter of fact, this approximation does not
influence the grid-control performance when using the current
implementation of the grid agent, because this implementation
also uses rect hull(BFi(u)) internally as a proxy for BFi(u),
for every u ∈ A, and for every i ∈ I, where I denotes the set

P

Q

(P,Q)

∆

P

Q

(P,Q)

∆

Fig. 7. General belief function (left) and its rectangular approximation (right),
both evaluated at (P,Q).

of all followers associated to that grid agent and BFi represents
the belief function of follower i.

In Figure 7 (left) we illustrate the shape of an evaluation of
the belief function at a particular point in the PQ plane, i.e.,
the set BF ((P,Q)). Figure 7 (right) shows the rectangular
approximation, as defined in Eqn. (2).

V. DESIGN AND STRUCTURE OF THE MESSAGE FORMAT
AND THE LOW-LEVEL API

In this section, we describe the structure of our message
format and the Low-Level API. The Low-Level API, which is
targeted at expert users (i.e., it requires the user to understand
the structure of the message format), exposes all features of
our message format. For example, it can be used to define an
advertisement for a device that is not supported in the High-
Level API. In case the resource agent uses the Low-Level API,
the resource-type field in the daemon configuration file
should be set to custom; the daemon will then operate in a
different mode in which it merely takes care of running the
transport protocol.

We will start by listing the requirements that gave rise to
our message-format design. Then, we explain that our message
format is based on an existing serialization framework, and
motivate the choice for a particular framework. We then
proceed by giving the actual definition of the message format
and the Low-Level API, and demonstrate the use of the latter
by giving some concrete examples.

A. Requirements

First and foremost, an obvious formal requirement is that
the message format should be capable of representing the
mathematical objects that appear in advertisements and re-
quests. Concretely, this means that the format should support
the description of PQ-setpoints, PQ profiles, cost functions
and belief functions.

Furthermore, we formulated a number of qualitative require-
ments.
• It should be possible to extend the message format,

without breaking compatibility with resource agents that
“speak” an older version of the format.

• One of the design goals of COMMELEC is to create a
platform that makes it easy for third parties to implement
their own resource agent. Hence, it should be straight-
forward to construct an advertisement (and to parse a
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request) from multiple programming environments, on
mainstream hardware architectures.

• Resource agents as well as grid agents will typically run
on resource-constrained embedded platforms. Hence, the
time and space complexity (i.e., CPU clock cycles and
memory usage) of creating and interpreting messages
should be low. This is especially important for the grid
agent, which needs to process advertisements from sev-
eral resource agents.

• The byte size of the encoded messages should be
small, while respecting the low-processing-complexity
constraint. Preferably, requests as well as most adver-
tisements should fit in a single Ethernet packet (< 1500
bytes).

• The message format should reflect the capabilities of the
interpreter (the grid agent), which enforces the resource-
agent designer to express the advertisement in an “inter-
pretable” way.

B. Selection of a Serialization Framework

We have designed our message format on top of an existing
serialization framework. A serialization framework provides a
programming-language-independent and platform-independent
way to convert structured data to bytes and vice versa and
typically consists of three parts: 1) a schema language, being a
strongly-typed language in which one can define the data struc-
tures, 2) a schema compiler which can generate source code
(typically, for several mainstream programming languages) for
easily reading and writing those data structures, and 3) an
encoding specification that defines how the data structures will
be encoded on the bit- or byte-level.

Many serialization frameworks exist, ranging from estab-
lished standards like ASN.1 [6] to newer frameworks like
Protocol Buffers , Thrift , Avro , or yet newer frameworks
featuring “zero-copy” like Cap’n Proto [7], Simple Binary
Encoding and FlatBuffers . Here, “zero-copy” roughly means
that the data format “on the wire” is the same as (or closely
related to) the in-memory data format.

Out of these alternatives, we have selected Cap’n Proto,
which satisfies our needs and provides several of our re-
quirements as a feature: most notably, schema evolvability,
a compact encoding through a very simple yet effective com-
pression method called packing, and, because of its zero-copy
design, a low encoding and decoding complexity (compared
to non-zero-copy frameworks). Also, we have chosen to use
this framework because its C++11 reference implementation
and documentation are of high quality, the schema language
is intuitive and convenient, and because the framework has
a permissive software license (MIT). The latter implies in
particular that Cap’n Proto can be used free of charge in
commercial products. For an in-depth explanation of Cap’n
Proto’s schema language and encoding specification, we refer
to Cap’n Proto’s online documentation [7].

IEC 61850 Interoperability: IEC 61850 is a communication
standard for substation automation [4] (or, as from Edition
2, for power utility automation). Although IEC61850 uses
ASN.1 (with the Basic Encoding Rules , i.e., BER) to serialize

data, we can easily achieve interoperability with IEC61850 by
embedding Cap’n Proto-serialized COMMELEC advertisements
and requests into ASN.1 data structures via ASN.1’s OCTET
STRING field type.

C. Message Format Definition and Low-Level API

Our proposed message format is formally defined by the
schema shown in Appendix A, which is expressed in Cap’n
Proto’s schema language [7]. It defines the data structures
for representing (numerical approximations of) requests and
advertisements, where the latter is defined mathematically in
Section II. Some of these data structures can be linked to
other data structures, by which one can build tree-like data
structures.

The Low-Level API consists of the automatically generated
API for C++11 (generated by Cap’n Proto’s schema compiler)
based on our schema (Appendix A), augmented with some
(manually written) convenience functions, which should make
it particularly easy to write a resource agent or to extend the
High-Level API in C++11. Note, however, that Cap’n Proto
is supported in several other programming languages as well.

Further details about the message format and the Low-Level
API can be found in Appendix B.

VI. PERFORMANCE EVALUATION

A. Comparison of Format: Cap’n Proto/RealExpr vs. Content
MathML

We start by comparing the byte size of encoding a cost
function in our format, i.e., as a RealExpr, versus the same
expression in Content MathML . Content MathML is a W3C
standard for encoding the semantics of mathematical objects,
and is supported by some computer algebra systems like
Mathematica and Maple. Because our aim is merely to get
a rough indication of the byte-size difference between these
two approaches, we restrict here to real-valued expressions.
To encode an entire advertisement in Content MathML, one
probably has to use the Strict Content MathML profile (or,
alternatively, OpenMath, which is compatible to the latter),
and one would have to carefully design a custom Content
Dictionary first, which is beyond the scope of this paper.

The fragment below was created with the help of Mathe-
matica.
<math
xmlns=’http://www.w3.org/1998/Math/MathML’>
<apply>
<plus />
<apply>
<times />
<cn type=’real’>-10</cn>
<ci>P</ci>

</apply>
<apply>
<power />
<ci>Q</ci>
<cn type=’integer’>2</cn>

</apply>
</apply>

</math>
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TABLE I
COMPARING REALEXPR TO CONTENT MATHML: BYTE SIZES OF

SERIALIZED COST FUNCTION (−10p+ q2)

Method Byte size

RealExpr / Cap’n Proto (with packing) 82
RealExpr / Cap’n Proto (without packing) 280
Content MathML (plain text XML) 196
Content MathML (gzip’ped XML) 164

Here, we see quantitatively that Cap’n Proto’s packing feature significantly
influences the byte size of a message: without packing, the representation
of a simple real-valued function in our format is larger than a representa-
tion of the same function in Content MathML (which is an XML-based
format). With packing enabled, our message format yields the smallest
encoding.

TABLE II
BYTE SIZE OF A REQUEST AND OF TYPICAL ADVERTISEMENTS

Method Request Batt. Adv. PV Adv.

Cap’n Proto (with packing) 18 182 425
Cap’n Proto (without packing) 48 760 1544
Cap’n Proto (JSON) 48 514 1153

We conclude from these numbers that for our scenario, Cap’n Proto’s
packing algorithm achieves a compression ratio of around 3. Further, we
see that by using the packed encoding, a typical advertisement fits easily
in a single Ethernet packet.

The results of the size comparison are shown in Table I. For the
Cap’n Proto-related entries, we compare the packed versus the
unpacked encoding. Note that the exact byte size of the packed
encoding depends on the coefficients of the cost function (for
the unpacked encoding this is not the case). To obtain the
Content-MathML-related entries, we have counted the byte
size of the above fragment (where we omitted whitespace
and newline characters around the XML tags). We have also
applied standard gzip compression to this fragment, however,
due to the small size of the fragment the compression factor
achieved here (which is rather low) will not be representative
for larger fragments.

B. Comparison of Encoding and Software Implementations:
Cap’n Proto with and without packing vs. (Rapid-) JSON

In Table II we compare the byte sizes of requests and
advertisements when represented in our message format, but
encoded in various ways. The JSON encodings were obtained
by converting messages encoded in Cap’n Proto’s encoding
to JSON via Paryani’s Python wrapper for Cap’n Proto [8].
Table III shows the decoding performance of Cap’n Proto’s
C++ reference implementation, versus an open-source C++
JSON library, RapidJSON [9], for our specific examples on
an ARM-based platform.

VII. CONCLUSION

In COMMELEC, the main task of a resource agent is to
translate the resource-specific state into a device-independent
description for the grid agent. In this work, we have proposed
a practical and low-footprint solution for accomplishing this
task. We hope that our API eases the adoption of our solution;

TABLE III
UNPACKING/PARSING AND DATA-ACCESS SPEED COMPARISON ON AN

ARM CORTEX-A9 EMBEDDED PLATFORM

Method Action Batt. Adv. PV Adv.

Cap’n Proto
(without packing)

access data 24.9 µs 40.7 µs

Cap’n Proto
(with packing)

unpack + access data 58.1µs 105µs

RapidJSON parse JSON + access data 83.0 µs 164 µs

In this experiment, we measure the time spent on accessing fields (of
numerical data types) from advertisements, including parsing or unpacking
times (if applicable), on an embedded platform (NI cRIO-9068) with a
667 MHz ARM Cortex-A9 CPU. To prevent the compiler from optimizing
away critical parts of the simulation code, we sum all extracted values and
output the result. The reported figures include the time spent on summing
the (double-valued) numbers. By combining these results with Table II, we
see a) that the processing speed scales roughly linearly in the message’s
byte size, as one would expect, and b) that Cap’n Proto (with packing) is
superior to JSON/RapidJSON for our use case in terms of message size
and processing speed.

in particular, we have added a separation between the easy-to-
use High-Level API and the more general Low-Level API, to
make the right trade-off between easily sending and receiving
COMMELEC messages for common resources, while preserv-
ing the possibility of supporting non-standard resources. We
have shown an example of how the High-Level API could be
used in a simple way from LabVIEW to control a battery.

As our main technical contribution, we have proposed a
concrete representation for COMMELEC’s message format. Our
performance benchmarks show that it has attractive quantita-
tive characteristics in terms of message size and processing
speed.
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APPENDIX A
SCHEMA DEFINITION

using Cxx = import "/capnp/c++.capnp";
$Cxx.namespace("msg");

struct Message {
agentId @0 :UInt32;
union {
request @1 :Request;
advertisement @2 :Advertisement;

}
}

struct Request {
setpoint @0 :List(Float64);

}

struct Advertisement {
pQProfile @0 :SetExpr;
beliefFunction @1 :SetExpr;
costFunction @2 :RealExpr;
implementedSetpoint @3 :List(Float64);

}

struct RealExpr {
name @0 :Text;
union {
real @1 :Float64;
polynomial @2 :Polynomial;
unaryOperation @3 :UnaryOperation;
binaryOperation @4 :BinaryOperation;
listOperation @5 :ListOperation;
caseDistinction @6 :CaseDistinction(RealExpr);
reference @7 :Text;
variable @8 :Text;

}
}

struct UnaryOperation {
arg @0 :RealExpr;
operation :union {
negate @1 :Void;
abs @2 :Void;
sign @3 :Void;
multInv @4 :Void;
square @5 :Void;
sqrt @6 :Void;
sin @7 :Void;
cos @8 :Void;
tan @9 :Void;
exp @10 :Void;
ln @11 :Void;
log10 @12 :Void;
round @13 :Void;
floor @14 :Void;
ceil @15 :Void;

}
}

struct BinaryOperation {
argA @0 :RealExpr;
argB @1 :RealExpr;
operation :union {
sum @2 :Void;
prod @3 :Void;
pow @4 :Void;
min @5 :Void;
max @6 :Void;

lessEqThan @7 :Void;
# an indicator function
greaterThan @8 :Void;
# also an indicator function

}
}

struct ListOperation {
args @0 :List(RealExpr);
operation :union {

sum @1 :Void;
prod @2 :Void;

}
}

struct Polynomial {
variables @0 :List(Text);
maxVarDegree @1 :UInt8;
coefficients @2 :List(SparseCoeff);

}

struct SparseCoeff {
offset @0 :UInt32;
value @1 :Float64;

}

struct CaseDistinction(CaseType) {
variables @0 :List(Text);
cases @1 :List(ExprCase(CaseType));

}

struct ExprCase(CaseType) {
# Representation of a single case
# for use in CaseDistinction
# (the order of evaluation follows
# List ordering)
set @0 :SetExpr;
expression @1 :CaseType;

}

struct SetExpr {
name @0 :Text;
union {
singleton @1 :List(RealExpr);
ball @2 :Ball;
rectangle @3 :List(BoundaryPair);
convexPolytope @4 :ConvexPolytope;
intersection @5 :List(SetExpr);
caseDistinction @6 :CaseDistinction(SetExpr);
reference @7 :Text;

}
}

struct Ball {
center @0 :List(RealExpr);
radius @1 :RealExpr;

}

struct BoundaryPair {
boundA @0 :RealExpr;
boundB @1 :RealExpr;

}

struct ConvexPolytope {
a @0 :List(List(RealExpr));
b @1 :List(RealExpr);

}
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APPENDIX B
MESSAGE FORMAT AND LOW-LEVEL API – CONTINUED

A. The Top-Level Message Type

Every COMMELEC message has a common base type,
Message. In Cap’n Proto terminology, the Message struct
is the root struct of every COMMELEC message. As we can
see in Appendix A, a message contains, beyond an ID number
that uniquely identifies an agent, either an Advertisement
or a Request.

B. Requests

In the current version of our schema, a Request may
contain a setpoint, encoded as a list of double-precision
floating point values. Currently, we only use lists of size 2,
where the first entry corresponds to real power (P ) and the
second entry corresponds to reactive power (Q).

Whether a request actually contains a setpoint depends on
the state of our leader (a grid agent). If a grid agent wants
to receive an advertisement from a follower, to which it can
not yet provide a meaningful setpoint for implementation, the
grid agent will send a request without a setpoint. For example,
when a grid agent has just rebooted, it should first gather
advertisements from its followers, before it can compute new
setpoints that the followers should implement.

We can easily check whether a request includes a setpoint,
and if it does, extract the values for P and Q:
// req is of type msg::Request::Reader
enum{P = 0, Q = 1};
if (req.hasSetpoint()){
// request has a setpoint, let’s extract it
auto sp = req.getSetpoint();
if(sp.size() < 2) throw; // error
cout << "Setpoint: " << sp[P] << ", "

<< sp[Q] << endl;
}else{

// request does not include a setpoint
}

The comment on the first line indicates that req is a Reader ,
which is a Cap’n Proto concept (hence, see [7] for details). A
Reader is a handle that provides read-only access to its asso-
ciated object, which is a Request object in this example. In
other upcoming code examples, we will also encounter Builder
objects, i.e., objects of a type with the suffix ::Builder.
Builders are handles that provide read and write access to
their associated object.

The availability of the predicate hasSetpoint follows
directly from Cap’n Proto’s C++ API: the field setpoint
in the Request struct (Appendix A) is encoded as a List,
which is a pointer field (see [7]). Every such pointer field has
a “has[Fieldname]” predicate.

C. Advertisements

Let us start by looking at the definition of the
Advertisement struct in the schema, and printed below
for convenience.
struct Advertisement {

pQProfile @0 :SetExpr;
beliefFunction @1 :SetExpr;

costFunction @2 :RealExpr;
implementedSetpoint @3 :List(Float64);

}

In case you are not familiar with Cap’n Proto’s schema
language, note that for our discussion here we can safely
ignore the meaning of the @-prefixed numbers. Suffice it to say,
each line that is indented in the above listing defines a field
in the Advertisement data structure, where the leftmost
word defines the name of that field, and the rightmost word
(right from the colon) defines its type.

First, observe the correspondence to the mathematical def-
inition of an Advertisement that we gave in Section II: we
immediately recognize its quaternary structure. Second, note
that both the PQ profile and the belief function are of the
same type, namely SetExpr. Recall that the PQ profile is an
explicit set, while the belief function is a set-valued function,
from which we can obtain an explicit set by evaluating this
function at a specific power setpoint. As we will see below,
the definition of SetExpr is general enough to support both
explicit and parameterized sets (where we view the latter as
set-valued functions).

Third, the cost function is of type RealExpr. The
RealExpr struct represents a real-valued expression, or,
formally, the map f : Rn → R, where n ∈ N typically
depends on the context where the RealExpr is used. In
the context of representing a cost function, n = 2. We will
describe the RealExpr and SetExpr structs in more detail
further below.

Fourth, note that the implementedSetpoint is defined
in exactly the same way as setpoint in a Request, and
also here we currently only use lists of length 2 where the first
and second entry correspond to P and Q respectively.

D. Defining Real-Valued Expressions

The RealExpr struct represents a real-valued expression
Rn → R, where n ∈ N is a parameter. From the schema
(Appendix A), we see that a RealExpr contains a union,
which has the property that only one of the fields defined inside
that union can be active at a time. Hence, a RealExpr has a
“subtype” that is determined by the active field in the union.
At the time of this writing, a RealExpr can represent the
following expression types (with in parentheses the associated
fieldname(s) in the RealExpr struct):
• a constant (sometimes called immediate value), encoded

as a IEEE 754 double-precision floating-point number
(real) ;

• an operation on one or more RealExpr objects
(unaryOperation, binaryOperation, list-
Operation);

• a symbolic variable (variable);
• a reference to another RealExpr that has been given an

explicit name (reference);
• a case distinction, for selecting a particular RealExpr

out of a list of RealExpr objects, depending on the
value of the input (caseDistinction).

As some of those expressions are self-referential (they refer
to yet another RealExpr), we can define real-valued ex-

https://capnproto.org/cxx.html


11

pressions by means of building syntax trees with RealExpr
objects as building blocks.

1) Example: Encoding a Cost Function: As a first example,
let us demonstrate how to define the function

g(p, q) := −10p+ q2

as a cost function that is part of an advertisement. This
example is in fact a specific instance of the PV-agent cost
function described in Section IV; the parameters a = 10 and
b = 1 have been chosen arbitrarily.

We will start by defining this function “by hand”, that is,
solely using Cap’n Proto’s API, because defining the function
via this route provides insight into the structure of our message
format. Next, we will define the same function in a much
simpler way, using our convenience function for defining real-
valued expressions.

Using Cap’n Proto’s API, we implement g as follows,
// adv is of type msg::Advertisement::Builder
auto addOp = adv.initCostFunction()

.initBinaryOperation();
addOp.initOperation().setSum();
auto multOp = addOp.initArgA()

.initBinaryOperation();
multOp.initOperation().setProd();
multOp.initArgA().setReal(-10);
multOp.initArgB().setVariable("P");
auto sqOp = addOp.initArgB()

.initUnaryOperation();
sqOp.initOperation().setSquare();
sqOp.initArg().setVariable("Q");

Remark 1. The code above does not specify that P and Q
are the input arguments to the function. Indeed, an important
convention in our message format, which applies to the
beliefFunction as well as to the costFunction in
the Advertisement struct, is that the function arguments
P and Q are defined implicitly, and can be referred to using
symbolic variables, as shown above. More concretely, a grid
agent that evaluates this cost function at the point (p, q) ∈ A,
will substitute the value p for every occurrence of a “P”
variable and similarly, the value q for every “Q” variable, while
recursively evaluating the expression tree.

Now, let us demonstrate how we define the same function
using our convenience function:
// adv is of type msg::Advertisement::Builder
using namespace cv;
Var P("P");
Var Q("Q");
buildRealExpr(adv.initCostFunction(),

Real(-10) * P + square(Q));

Under the hood, buildRealExpr uses C++
Expression Templates to parse symbolic expressions
like Real(-10)*P+square(Q). After the parsing step,
buildRealExpr calls exactly the same Cap’n Proto API
functions as we did in our “by-hand” approach.

Note that constant values should (currently, at least)
be surrounded by the Real(·) function. Furthermore, the
buildRealExpr function makes the unary operations (as
found in the schema) accessible using functions, whose (lower-
cased) name is identical to the corresponding field name in the

union environment of the UnaryOperation struct, like
the square function in the example above.

We will see another example of the use of
buildRealExpr in the next subsection; for a fully
detailed example of using buildRealExpr and the Low-
Level API in general, we refer to the implementation of
the High-Level API [3]. Based on experience gained while
implementing the High-Level API, we claim that using
buildRealExpr makes defining real-valued expressions
easier and less error-prone, and results in more readable
source code, as the latter more closely resembles the original
mathematical expression that one wants to represent.

2) Numerically Stable Derivatives: In COMMELEC, grid
agents currently employ a control strategy that is based on
gradient descent. As a particular consequence of this, the
grid agent very frequently computes the gradient of the cost
function of each follower.

An important benefit of our proposed encoding of real-
valued expressions, is that the syntax-tree structure naturally
admits computing derivatives in a numerically stable way,
by recursive application of the basic rules for differentiation:
the sum rule, product rule, chain rule, etc. This technique is
well known; in the literature it is commonly called Automatic
Differentiation [10]. The implementation details of automatic
differentiation in the context or our message format is beyond
the scope of this paper.

E. Defining Sets and Set-Valued Functions

Sets and set-valued functions are defined using the
SetExpr struct. A SetExpr represents a, possibly parame-
terized, closed convex set of arbitrary dimension, however, we
currently merely use it to encode subsets of R (intervals) and
subsets of R2, like disks and 2-polytopes, as well as parameter-
ized versions thereof. Similar to a RealExpr, the SetExpr
definition (Appendix A) contains a union, whose active field
determines whether the SetExpr represents a singleton set,
a ball, an intersection between other SetExpressions, etc. In
the sequel, we will give some examples of how we can use
SetExpr to define PQ profiles and belief functions.

Remark 2. When defining objects using SetExpr, one must
ensure that every PQ profile, or, every evaluation of a belief
function, is bounded. A SetExpr by itself does not neces-
sarily represent a bounded set. A concrete example is the PQ
profile of the battery advertisement that we encountered in
Section III-B1 (see also Figure 2). There, we use a polytope to
represent the lower and upper bound on the real power (Pmin
and Pmax) that the battery can produce. This polytope itself is
unbounded in the dimension that corresponds to reactive power
(the Q coordinate). Only because the PQ profile is defined as
the intersection between this polytope and a disk (which is
bounded in both dimensions), the boundedness constraint is
satisfied.

1) Example: Defining the PQ profile of the PV System: Let
us demonstrate how we can specify the PQ profile of the PV
system, as shown in Figure 6, using the Low-Level API. This
PQ profile is an intersection between a disk and a polytope
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(in R2).3

The disk is centered around the origin in the PQ plane, and
its radius is equal to Srated. As we will see below, defining
a disk in our format is straightforward using the ball field.

The polytope is a isosceles triangle characterized by ϕ
and Pmax, as illustrated in Figure 6. To define this polytope
in our format, we will use our convenience function for
defining polytopes. We assume that we know the halfspace-
representation of the polytope, i.e., the matrix A ∈ Rm×2

and the vector b ∈ Rm, where m denotes the number of
constraints, that define the polytope via

Ax ≤ b, x ∈ R2.

In our example, m = 3. Note that we use matrix and vector
classes from the Eigen3 C++ library for linear algebra [11].
#include <Eigen/Core>
#include <commelec-api/polytope-convenience.hpp>
#include <commelec-api/schema.capnp.h>
// adv is of type msg::Advertisement::Builder
// Srated, Pmax, tanPhi are of type double
auto m = 3; // number of constraints
auto dimension = 2;
auto intsect = adv.initPQProfile()

.initIntersection(2);
auto disk = intsect[0].initBall();
auto diskCenter = disk.initCenter(dimension);
enum {P = 0, Q = 1};
diskCenter[P].setReal(0);
diskCenter[Q].setReal(0);
disk.initRadius().setReal(Srated);

Eigen::MatrixXd A(m, dimension);
A << 1, 0,

-tanPhi, 1;
-tanPhi,-1;

Eigen::VectorXd b(m);
b << Pmax,

0,
0;

cv::buildConvexPolytope(A, b,
intsect[1].initConvexPolytope());

2) Example: Defining a Simple Belief Function: As men-
tioned earlier, the SetExpr struct can also represent set-
valued functions, in particular, a belief function. The simplest
belief function is the identity belief function, which can be
defined using a singleton set, which itself is defined as a List
of RealExpr objects.
// ’adv’ is of type msg::Advertisement::Builder
auto bf = adv.initBeliefFunction();
auto dimension = 2;
auto idBf = bf.initSingleton(dimension);
enum {P = 0, Q = 1};
idBf[P].setVariable("P");
idBf[Q].setVariable("Q");

Note that Remark 1 applies here.
3) Example: Defining the Belief Function of the PV System:

The example below is taken from the implementation of the
High-Level API, in which we define the belief function of the
PV advertisement. As defined formally in Eqn. (2) (see page

3A well-known fact is that convexity is preserved under set intersection.
In the context of defining a PQ profile (recall that PQ profiles are defined
to be convex), this means that one can take arbitrary intersections of convex
sets, while having the guarantee that the result will be convex.

5), the belief function is a rectangle in R2, whose boundaries
in both dimensions are encoded as real-valued expressions that
depend on P and Q.
// adv is of type msg::Advertisement::Builder
using namespace cv;
auto bf = adv.initBeliefFunction();
auto rect = bf.initRectangle(2);

Ref foo("a");
Var P("P");
Var Q("Q");

buildRealExpr(rect[0].initBoundA(), P);
buildRealExpr(rect[0].initBoundB(),
name(foo, max(Real(0), P + Real(-Pdelta))));

buildRealExpr(rect[1].initBoundA(), Q);
buildRealExpr(rect[1].initBoundB(),
sign(Q) * min(abs(Q), foo * Real(tanPhi)));

First, note that the buildRealExpr function not only
supports the unary operations, like sign and abs, but also
binary operations like max and min. Then, note how, in the
second occurrence of buildRealExpr, the expression is
named foo, and how we refer back to foo on the last line.
The name foo is internal to C++; the actual the name (which
appears as Text4 in the Advertisement) is “a” (as defined
near the beginning of the fragment). It is no coincidence that
we assigned a short name here: assigning short names is good
practice as it will result in shorter message sizes.

4Text is Cap’n Proto’s string type.
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