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Abstract—In this paper we propose a novel dimensionality
reduction method that is based on successive Laplacian SVM pro-
jections in orthogonal deflated subspaces. The proposed method,
called Laplacian Support Vector Analysis, produces projection
vectors, which capture the discriminant information that lies in
the subspace orthogonal to the standard Laplacian SVMs. We
show that the optimal vectors on these deflated subspaces can be
computed by successively training a standard SVM with specially
designed deflation kernels. The resulting normal vectors contain
discriminative information that can be used for feature extraction.
In our analysis, we derive an explicit form for the deflation
matrix of the mapped features in both the initial and the Hilbert
space by using the kernel trick and thus, we can handle linear
and non-linear deflation transformations. Experimental results in
several benchmark datasets illustrate the strength of our proposed
algorithm.

I. INTRODUCTION

In many applications of pattern classification one has
to deal with data of high dimensionality. However, many
dimensions of the feature vectors are often highly correlated
and the data can usually admit a low-dimensional represen-
tation. Furthermore, dealing with high-dimensional data has
disadvantages, both in terms of complexity and classifica-
tion performance. Due to the above reasons, the problem of
Dimensionality Reduction has attracted much interest in the
scientific community. Many algorithms, which handle both
linear and non-linear projections, have been proposed so far.
Among the most popular and successful linear ones are the
Principal Component Analysis (PCA) [6], Linear Discriminant
Analysis (LDA) [4] and Locality Preserving Projections (LPP)
[5]. By taking advantage of the kernel trick [11], we can
reformulate the above approaches as kernel algorithms. The
corresponding algorithms are the Kernel Principal Component
Analysis (KPCA) [10], Kernel Discriminant Analysis [9] and
Laplacian Eigenmaps (LE) [2]. Another approach that has
been proposed and uses successive projections using a stan-
dard SVM is the Margin Maximizing Discriminant Analysis
(MMDA) and the corresponding Kernel Margin Maximizing
Discriminant Analysis (KMMDA) [7], which applies the kernel
trick on MMDA.

Manifold Regularization [1] was recently proposed as a
general framework for learning from labeled and unlabeled
data. A regularization term that takes into account the geometry
of the data distribution has been proposed. For this purpose,
the graph-Laplacian of a graph G = (V,E) has been used,
with vertex set the data points and similarity matrix W.
The whole framework has been developed in a Reproducing
Kernel Hilbert Space (RKHS) setting and a new Representer

Theorem has been proved. As a result of the above framework,
novel algorithms, such as Laplacian Regularized Least Squares
(LapRLS) and Laplacian Support Vector Machines (LapSVM)
have been proposed.

Furthermore, in [12] a discriminative semi-supervised fea-
ture selection model was proposed based on Manifold Regular-
ization. As in [1], an extended SVM formulation is proposed
by using an additional regularization term based on the graph
Laplacian. This problem formulation selects features that are
most discriminative in terms of the classification margin and
at the same time exploits the geometry of the data distribution
that generates both labeled and unlabeled data.

In this paper, we propose a novel technique for dimen-
sionality reduction that integrates the geometry of the data
distribution into the optimization problem of a SVM. The
proposed approach is inspired by the Laplacian SVMs in [1],
where the manifold regularization term ensures smoothness
along the underlying manifold of the initial space. The main
idea is to use the discriminative information contained in the
subspace (i.e., the hyperplane) that is orthogonal to the initial
Laplacian SVM vector for successive feature extraction. The
maximum margin formulation guarantees the discriminative
ability of the additional projection vectors that are orthogonal
to the successive hyperplanes. In order to extract the additional
discriminative dimensions we use an iterative deflation proce-
dure that allows us to compute projections using the deflated
samples. The contribution of our work is summarized in the
following:

1) We propose a novel Laplacian SVM formulation in
deflated subspaces that incorporates knowledge of the
geometry of the data based on manifold regularization
and we extend it to the non-linear case.

2) We use the discriminative information of the con-
structed hyperplanes of the SVM optimization prob-
lems to successively generate orthogonal projection
directions onto deflated subspaces for Dimensionality
Reduction. We also extend the method to non-linear
deflation transformations.

3) We incorporate the above deflation procedures, linear
and non-linear, into the SVM formulations to obtain
the final projection vectors.

4) We extend our approach to the multiclass case.

The manuscript is organized as follows. The proposed Lapla-
cian Support Vector Analysis (LSVA) in deflated subspaces
is described in detail in Section II. In Section III we extend
our approach to address problems that include multiple data
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classes. Experimental results in several benchmark datasets are
given in Section IV. Finally, conclusions are drawn in Section
VI.

II. LAPLACIAN SVM ANALYSIS

In this Section we introduce initially the linear deflation
procedure in Subsection II-B and the corresponding Linear
LSVA (LLSVA) formulation on deflated subspaces in Subsec-
tion II-C. We begin our analysis for the linear case in order
to better present and clarify the proposed framework and then
we proceed to the more general non-linear case in Subsections
II-D and II-E respectively.

A. Notation

We assume that we have in total n data points assembled
in a matrix X = [x1, . . . ,xn]

� ∈ R
n×d with label vector

y = [y1, . . . , yn]
� ∈ R

n and label set Y = {−1,+1}. In the
remaining we denote by L = D −W the graph Laplacian
that corresponds to a graph with nodes the data samples in
X, weight matrix W ∈ R

n×n and diagonal degree matrix D
with entries Dii =

∑n
j=1Wij . We denote by φ : X → H the

non-linear mapping from the initial data space to a RKHS and
by K the corresponding Mercer kernel. The kernel function
is denoted by k(x,y) : Rn × R

n → R. With slight abuse of
notation we use the same characters φ,K, k(·, ·) for different
kinds of mappings, kernels and kernel functions throughout
the paper. However, their forms will be clear from the context.

B. Linear Deflation Transformation

It is well-known that any SVM formulation proposed in
the literature produces a projection vector that optimizes a
specific objective function. Usually, this projection is the only
one used for discriminality and the subspace that is orthogonal
to this projection is discarded by the classification procedure.
However, it is obvious that this orthogonal subspace (called
hereafter deflated subspace) may contain also discriminant
information for the given task. Thus, it would be desirable
to have an algorithm that can successively extract all the pro-
jection vectors in these deflated subspaces. That is, in order to
project our data into successive orthogonal hyperplanes we use
a deflation transformation algorithm [7]. If w̃k = wk/ ‖wk‖
is the orthonormal vector of the hyperplane in iteration k of
the algorithm, the projection matrix that projects (i.e., deflates)
the data samples on the corresponding hyperplane is given by
Pw̃k

= Id×d − w̃kw̃
�
k , where Id×d ∈ R

d×d is the identity
matrix. Now, the deflated data along the direction of w̃k are
Xk = XPw̃k

. That is, in each iteration we project the data
onto the subspace described by w̃k. In order to obtain more
discriminative projection directions, we proceed in an iterative
manner: In each iteration k, we construct a new normal vector
w̃k, which is orthogonal to all the previously constructed
vectors w̃j , j < k. That is, 〈w̃k, w̃j〉 = 0, j < k. The
above statement can be justified by taking into acount the fact
that w̃k, w̃j belong to subspaces that are orthogonal to each
other and consequently, it holds that w̃k, w̃j are orthogonal
∀k �= j. The multiple deflation can now be done in a
successive way by projecting the data onto new subspaces, that
is X1 = XPw̃1

, . . . ,Xk = Xk−1Pw̃k
. However, this iterative

procedure is equivalent to directly applying the deflation matrix
Pk = Pw̃1

· · ·Pw̃k
to the initial data X and thus there is no

need to explicitly deflate all the data. From the orthogonality
property of the normal vectors, the final projection matrix can

also be written as Pk = Id×d−
∑k

j=1 w̃jw̃
�
j . Let us note here

that the matrix Pk is symmetric and not invertible, since for
a projection matrix it holds P2

k = Pk.

C. Linear Laplacian Support Vector Analysis

We are now in a position to propose a new LSVA for-
mulation in deflated subspaces. In this new formulation, we
integrate an additional regularization term which incorporates
information about the geometry of the data distribution. This
information is encoded in the graph Laplacian L of a specific
graph G = (V,E) with nodes the data points X and edges
defined by a weight matrix W. Furthermore, we assume
that our data are deflated onto already computed subspaces
from k − 1 previous iterations of our algorithm, that is our
current data have the form Xk = XPk−1. The final combined
optimization criterion solved in each iteration k is

min
wk

1

2
w�k wk +

λ

2
w�k Pk−1X

�LXPk−1wk + C

n∑
i=1

ξi, (1)

s.t. yi(w
�
k Pk−1xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

The solution to the above problem is given by the saddle point
of the Lagrangian

L(wk, b,γ,β, ξ) =
1

2
w�k (I+ λPk−1X

�LXPk−1)wk+

C
n∑

i=1

ξi −
n∑

i=1

γi(yi(w
�
k Pk−1xi + b)− 1 + ξi)−

n∑
i=1

βiξi.

Defining the matrix

Ak−1 = (I+ λPk−1X
�LXPk−1), (2)

the modified Karush-Kuhn-Tucker (KKT) conditions are

∇wk
L(wk,o, bo,γo,βo, ξo) = 0

⇔ Ak−1wk,o =
n∑

i=1

γi,oyiPk−1xi,

∂

∂b
L(wk,o, bo,γo,βo, ξo) = 0⇔

n∑
i=1

γi,oyi = 0,

∂

∂ξi
L(wk,o, bo,γo,βo, ξo) = 0⇔ βi,o = C − γi,o,

yi(w
�
k,oPk−1xi + bo)− 1 + ξi ≥ 0,

0 ≤ γi,o ≤ C, βi,o ≥ 0, ξi ≥ 0, βi,oξi,o = 0, i = 1, . . . , n,

γi,o(yi(w
�
k,oPk−1xi + bo)− 1 + ξi) = 0, i = 1, . . . , n.

(3)

By using the KKT conditions the dual becomes

max
γ

n∑
i=1

γi − 1

2

n∑
i=1

n∑
j=1

γiγjyiyjx
�
i Pk−1A

−1
k−1Pk−1xj , (4)

s.t. 0 ≤ γi ≤ C and

n∑
i=1

γiyi = 0.

The optimal weight vector is given by

wk,o = A−1
k−1

n∑
i=1

γi,oyiPk−1xi, (5)
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and the corresponding separating hyperplane by

f(x) = sgn(w�k,oPk−1x+ b)

= sgn(

n∑
i=1

γi,oyix
�
i Pk−1A

−1
k−1Pk−1x+ b). (6)

We can easily see that the above dual corresponds to a standard
SVM formulation using the deflation kernel matrix

K = XPk−1A
−1
k−1Pk−1X

�. (7)

The resulting vector wk has to be normalized, that is w̃k =
wk/ ‖wk‖. The new projection matrix that adds an addi-
tional discriminative projection direction is given by Pk =
Pk−1(Id×d − w̃kw̃

�
k ). The above procedure is repeated until

we reach the desired dimensionality d′. We have now obtained

an orthogonal matrix W̃ ∈ R
n×d′

whose columns contain
the orthonormal vectors w̃j , j = 1, . . . , d′. These vectors
provide discriminative information and can be used for feature
extraction. Finally, the resulting projected data are given by

Xd′ = XW̃ ∈ R
n×d′

. The complete algorithm for linear
projections is described in Algorithm 1.

Algorithm 1 Linear Laplacian Support Vector Analysis
(LLSVA)

1: Input: Data matrix X = [x1, . . . ,xn]
� ∈ R

n×d and label
vector y = [yi, . . . , yn]

� ∈ {−1,+1}n. Graph Laplacian
L ∈ R

n×n. Target dimensionality d′.
2: P0 = Id×d.

3: W̃ = [].
4: for k = 1 to d′ do
5: Compute the deflation kernel matrix K =

XPk−1A
−1
k−1Pk−1X

�, with Ak−1 as in (2).
6: Train a SVM using the above kernel.
7: Compute the normal vector wk from (5) and normalize

it as w̃k = wk/ ‖wk‖.
8: W̃ = [W̃; w̃k].
9: Pk = Pk−1(Id×d − w̃kw̃

�
k ).

10: end for
11: Final projected data Xd′ = XW̃.

D. Non-linear Deflation Transformation

We now extend our approach to handle non-linear pro-
jections. That is, we map the data to a RKHS in which
we assume that they are linearly deflated. This deflation
corresponds to a non-linear deflation in the original space.
The new non-linear projection matrix along the direction

of the mapped normalized vector w̃
(φ)
k can be written as

Pw̃(φ) = Im×m − w̃
(φ)
k w̃

(φ)�
k , where m is the unknown

(and potentially infinite) dimensionality of the feature map φ.
Analogously, the final matrix that contains all the orthonormal

vectors is P
(φ)
k = Im×m−

∑k
j=1 w̃

(φ)
j w̃

(φ)�
j . The deflated data

are Φk = ΦP
(φ)
k , where Φ is the matrix of the mapped data

points through the mapping φ. It is clear that P
(φ)
k cannot

be computed explicitly by using the above form. Therefore,
we have to take advantage of the kernel trick in order to
handle the unknown dimensionality of the feature map. To
do so, we safely assume that the projection vector can be

restricted to be in the range of Φk, since w̃
(φ)
k ∈ R

m,
which is the column space of Φk. Therefore, we can write

w̃
(φ)
k = P

(φ)
k−1

∑n
i=1 α̃k,iφ(xi) = P

(φ)
k−1Φ

�α̃k. The projection
vector is now written as a linear combination of the already
deflated data, with coefficients α̃k,i ∈ R, along the previous
orthonormal directions in the feature space. By using this form
for the projection vectors we guarantee that the normalized

vector w̃
(φ)
k = w

(φ)
k /

∥∥∥w(φ)
k

∥∥∥ is orthogonal to the previously

computed projection vectors, that is
〈
w̃

(φ)
k , w̃

(φ)
j

〉
= 0, j < k.

It is easy to show that, taking into account the orthogonality
property, the projection matrix can be written as:

P
(φ)
k = Im×m −P

(φ)
k−1Φ

�(
k∑

j=1

α̃jα̃
�
j )ΦP

(φ)
k−1. (8)

By multipling equation (8) from the left side with Φ and from
the right side with Φ� we end to the following relation:

Kk = K−Kk−1(
k−1∑
j=1

α̃jα̃
�
j )Kk−1, (9)

where Kk = ΦP
(φ)
k Φ� denotes the k-th deflated kernel. In

equation (9) it is shown that the k-th deflated kernel of the data
can be expressed as a subtraction between the kernel of the
data in the feature space and a sum of all the previous deflated
kernels. For the norm of the projection vector we have∥∥∥w(φ)

k

∥∥∥ =

√
w

(φ)�
k w

(φ)
k =

√
α�k ΦP

(φ)
k−1P

(φ)
k−1Φ

�αk

=

√
α�k ΦP

(φ)
k−1Φ

�αk =
√
α�k Kk−1αk. (10)

The new representation does not involve the explicitly mapped
feature vectors, but only the corresponding deflated kernel.
Now, for the normalized projection vector α̃k it holds

α̃k =
αk√

α�k Kk−1αk

. (11)

Finally, our regularization term becomes

w̃
(φ)�
k P

(φ)
k−1Φ

�LΦP
(φ)
k−1w̃

(φ)
k =

α̃�k ΦP
(φ)
k−1Φ

�LΦP
(φ)
k−1Φ

�α̃k = α̃�k Kk−1LKk−1α̃k.
(12)

E. Kernel Laplacian Support Vector Analysis

Proceeding as in the linear case, we formulate a Laplacian
SVM on the non-linearly deflated data. The SVM optimization
problem at iteration k takes the form

min
αk

1

2
α�k Kk−1αk +

λ

2
α�k Kk−1LKk−1αk + C

n∑
i=1

ξi,

(13)

s.t yi(α
�
k k

(i)
k−1 + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

The Lagrangian is given by

L(αk, b,μ,ν, ξ) =
1

2
α�k (Kk−1 + λKk−1LKk−1)αk+

C
n∑

i=1

ξi −
n∑

i=1

μi(yi(α
�
k k

(i)
k−1 + b)− 1 + ξi)−

n∑
i=1

νiξi.

(14)
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By defining the matrix

Bk−1 = Kk−1 + λKk−1LKk−1 = Kk−1(I+ λLKk−1),
(15)

the modified Karush-Kuhn-Tucker (KKT) conditions are

∇αk
L(αk,o, bo,μo,νo, ξo) = 0

⇔ Bk−1αk,o =

n∑
i=1

μi,oyik
(i)
k−1,

∂

∂b
L(αk,o, bo,μo,νo, ξo) = 0⇔

n∑
i=1

μi,oyi = 0,

∂

∂ξi
L(αk,o, bo,μo,νo, ξo) = 0⇔ νi,o = C − μi,o,

yi(α
�
k,ok

(i)
k−1 + bo)− 1 + ξi ≥ 0,

0 ≤ μi,o ≤ C, νi,o ≥ 0, ξi ≥ 0, νi,oξi,o = 0, i = 1, . . . , n,

μi,o(yi(α
�
k,ok

(i)
k−1 + bo)− 1 + ξi) = 0, i = 1, . . . , n. (16)

By using the KKT conditions the dual becomes

max
μ

n∑
i=1

μi − 1

2

n∑
i=1

n∑
j=1

μiμjyiyj(k
(i)
k−1)

�B−1
k−1k

(j)
k−1, (17)

s.t. μi ≥ 0 and

n∑
i=1

μiyi = 0.

The optimal weight vector is given by

αk,o = B−1
k−1

N∑
i=1

μi,oyik
(i)
k−1, (18)

and the corresponding separating hyperplane is

f(x) = sgn(α�k,okx + b)

= sgn(

n∑
i=1

μi,oyi(k
(i)
k−1)

�B−1
k−1kx + b), (19)

where kx = [k(x1,x), . . . , k(xn,x)]
�. We can easily see that

the above dual corresponds to a standard SVM formulation
using the deflation kernel matrix

K′ = Kk−1B
−1
k−1Kk−1. (20)

The resulting vector αk is normalized using (11) to obtain α̃k.
The above procedure is repeated until we reach the desired

dimensionality n′. A matrix Ã ∈ R
n×n′

is constructed, whose
columns are the vectors α̃k, k = 1, . . . , n′. The resulting

projected data are then given by Kn′ = KÃ ∈ R
n×n′

. The
complete algorithm for the non-linear case is described in
Algorithm 2.

III. EXTENDING TO MULTI-CLASS DATASETS

The most straightforward approach to extend our proposed
technique to the multi-class case is to use the One versus All
approach. That is, in each deflated subspace (i.e., iteration of
our algorithm) we consider a different binary problem setting,
which involves one class against all the others. Obviously, by
adopting this approach, each one of the created projection vec-
tors will discriminate the current unitary class involved against

Algorithm 2 Kernel Laplacian Support Vector Analysis
(KLSVA)

1: Input: Data matrix X = [x1, . . . ,xn]
� ∈ R

n×d and label
vector y = [yi, . . . , yn]

� ∈ {−1,+1}n. Graph Laplacian
L ∈ R

n×n. Target dimensionality n′.
2: Compute the kernel matrix K from X.
3: K0 = K.
4: Ã = [].
5: for k = 1 to n′ do
6: Compute the kernel matrix K′ = Kk−1B

−1
k−1Kk−1,

with Bk−1 as in (15).
7: Train a SVM using the above kernel.
8: Compute the normal vector α̃k from (18) and (11).

9: Ã = [Ã; α̃k].
10: Kk = K−Kk−1(

∑k−1
j=1 α̃jα̃

�
j )Kk−1.

11: end for
12: Final projected data Kn′ = KÃ.

the remaining ones. Intuitively, the process of successively
projecting our data onto the created projection vectors can be
thought of as a process of successively separating the classes
of our initial data. The orthogonality between the projection
vectors is guaranteed, since in each step of our process the
data are already projected onto a deflated subspace that is
orthogonal to all the previous deflated subspaces considered.
Thus, by using the One versus All multi-class extension in
each iteration of the Algorithms 1 and 2 the class labels change
to +1 for the unitary class considered and to −1 for all the
remaining classes. After considering the nc problems, where
nc is the number of classes, the procedure can continue by
training the SVM on one random chosen binary problem of
the nc available, or by choosing one binary setting with some
measurable characteristic like the number of samples of the
unitary class or other.

IV. EXPERIMENTAL RESULTS

We compare our proposed linear deflation procedure
LLSVA with several state-of-the-art linear Dimensionality
Reduction methods, such as Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), Locally Preserv-
ing Projections (LPP) and Margin Maximizing Discriminant
Analysis (MMDA). Our non-linear deflation procedure is com-
pared against Kernel Principal Component Analysis (KPCA),
Kernel Discriminant Analysis (KDA), Laplacian Eigenmaps
(LE) and a modified Kernel Margin Maximizing Discriminant
Analysis (KMMDA) that we have derived using our analysis
in the previous Section. We should note that the authors in [7]
have not derived the kernel MMDA analytically. To evaluate
the above methods we use 19 benchmark datasets from the
UCI [3] and Statlog [8] repositories, 9 of which refer to binary
classification problems and the other 10 refer to multi-class
classification problems. All the features of each dataset are
scaled to the interval [−1,+1].

To evaluate the test error in each experiment we use 5-
fold Cross Validation. That is, in each fold we compute the
projection vectors based on the training set, then we project
the feature vectors of the fold’s training and test sets onto the
already computed projection vectors. Finally, we use the 1-
Nearest Neighbor classifier for the final classification of the
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TABLE I: Error rates of Linear Dimensionality Reduction methods on binary problems.

Dataset Method
1-NN LLSVA PCA LDA LPP MMDA

Australian (14) 20.15 % 16.82 % (3) 18.10 % (5) 19.43 % (1) 17.68 % (5) 17.69 % (12)
Breast (10) 4.68 % 2.49 % (5) 3.22 % (6) 4.40 % (1) 3.95 % (3) 3.66 % (8)
Diabetes (8) 29.17 % 26.96 % (8) 28.78 % (6) 31.12 % (1) 29.17 % (8) 29.69 % (4)
German (24) 32.8 % 27.20 % (2) 30.90 % (4) 29.70 % (1) 31.70 % (8) 29.80 % (6)

Heart (13) 24.44 % 18.89 % (2) 23.70 % (9) 25.19 % (1) 21.85 % (8) 20.74 % (10)
Ionosphere (34) 13.69 % 6.83 % (7) 10.26 % (18) 21.64 % (1) 8.83 % (11) 8.83 % (22)

Liver (6) 38.26 % 32.75 % (4) 38.26 % (6) 40.58 % (1) 37.97 % (6) 36.52 % (1)
Sonar (60) 12.49 % 16.97 % (45) 10.60 % (18) 31.76 % (1) 13.85 % (14) 20.71 % (22)

Transfusion (4) 32.09 % 25.54 % (3) 27.68 % (2) 26.74 % (1) 26.60 % (1) 27.81 % (3)

TABLE II: Error rates of Kernel Dimensionality Reduction methods on binary problems.

Dataset Method
1-NN KLSVA KPCA KDA LE KMMDA

Australian (14) 20.15 % 14.93 % (1) 19.86 % (11) 17.25 % (1) 25.36 % (14) 16.24 % (7)
Breast (10) 4.68 % 2.78 % (3) 3.22 % (10) 3.66 % (1) 4.24 % (1) 3.80 % (7)
Diabetes (8) 29.17 % 23.43 % (1) 30.74 % (7) 27.87 % (1) 36.47 % (7) 23.83 % (4)
German (24) 32.8 % 28.60 % 31.50 % (21) 29.10 % (1) 28.40 % (15) 28.30 % (4)

Heart (13) 24.44 % 18.89 % (4) 29.63 % (11) 22.22 % (1) 20.74 % (11) 19.26 % (2)
Ionosphere (34) 13.69 % 5.13 % (3) 6.27 % (8) 5.71 % (1) 6.27 % (1) 5.99 % (11)

Liver (6) 38.26 % 26.96 % (1) 42.03 % (4) 36.81 % (1) 40.00 % (3) 26.67 % (4)
Sonar (60) 12.49 % 10.58 % (4) 25.89 % (30) 13.01 % (1) 12.03 % (5) 12.99 % (1)

Transfusion (4) 32.09 % 16.66 % (2) 28.88 % (3) 27.41 % (1) 29.95 % (4) 20.72 % (1)

TABLE III: Error rates of Linear Dimensionality Reduction methods on multi-class problems.

Dataset Method
1-NN LLSVA PCA LDA LPP

Balance (4) 20.00 % 8.81 % (2) 23.84 % (4) 10.40 % (2) 23.52 % (4)
Ecoli (7) 17.07 % 12.67 % (6) 17.07 % (7) 14.62 % (7) 16.22 % (6)
Glass (9) 30.30 % 24.79 % (7) 30.31 % (8) 42.52 % (3) 29.87 % (7)
Iris (4) 4.00 % 2.67 % (1) 4.00 % (4) 3.33 % (1) 4.00 % (2)

Soy (35) 8.46 % 4.56 % (25) 7.17 % (30) 8.81 % (2) 7.50 % (6)
Tae (5) 35.10 % 29.79 % (1) 31.10 % (1) 33.16 % (2) 34.47 % (3)

Thyroid (5) 4.65 % 2.79 % (3) 2.32 % (3) 5.12 % (1) 3.72 % (3)
Vehicle (18) 29.32 % 20.10 % (18) 29.32 % (16) 25.42 % (3) 21.75 % (14)
Vowel (10) 1.61 % 1.52 % (9) 1.61 % (10) 1.31 % (10) 1.92 % (10)
Wine (13) 4.56 % 0 % (8) 3.88 % (3) 1.72 % (2) 1.16 % (3)

TABLE IV: Error rates of Kernel Dimensionality Reduction methods on multi-class problems.

Dataset Method
1-NN KLSVA KPCA KDA LE

Balance (4) 20.00 % 2.24 % (3) 19.51 % (4) 4.48 % (2) 15.19 % (1)
Ecoli (7) 17.07 % 15.69 % (7) 15.73 % (6) 14.34 % (7) 22.39 % (7)
Glass (9) 30.30 % 25.62 % (6) 33.16 % (7) 27.97 % (5) 35.06 % (9)
Iris (4) 4.00 % 2.67 % (3) 4.00 % (3) 4.00 % (2) 4.00 % (2)

Soy (35) 8.46 % 5.55 % (11) 11.08 % (26) 13.37 % (2) 8.48 % (12)
Tae (5) 35.10 % 31.81 % (5) 46.99 % (5) 52.22 % (2) 43.70 % (4)

Thyroid (5) 4.65 % 1.40 % (3) 2.79 % (2) 4.18 % (2) 12.09 % (5)
Vehicle (18) 29.32 % 15.83 % (17) 36.40 % (18) 15.83 % (3) 19.27 % (10)
Vowel (10) 1.61 % 0.81 % (10) 2.12 % (10) 1.41 % (10) 1.01 % (10)
Wine (13) 4.56 % 2.22 % (5) 2.30 % (13) 1.70 % (2) 2.81 % (2)

projected feature vectors. For our method and MMDA the
SVM cost parameter is fixed to C = 100. The regularization
parameter λ of the proposed method is optimized in the interval
λ ∈ [0.1, 100] by grid search on 30 values. Furthermore,
the graph Laplacian is contructed from a KNN graph with

K = 10 and weights given by Wij = e−‖xi−xj‖2/2σ2

with
σ = 1. The results for the linear methods on binary problems
are shown in Table I whereas for the multi-class problems
are shown in Table III. In each column we present the mini-
mum classification error obtained by each method and in the
parentheses the dimensionality of the feature vectors for which

this error is achieved. We observe that in the linear case, for
both the binary and multi-class datasets, our approach achieves
higher accuracy than the competing methods in almost all of
the available datasets. In Table II we present the results for
the non-linear Dimensionality Reduction methods on binary
problems and in Table IV the respective results on multi-class
problems. Our method is denoted by KLSVA. As in the linear
case, the experimental setting is the same. The situation here
is again similar to the linear case. In all except two datasets
for the binary problems (i.e., German and Liver) and two
for the multi-class problems (i.e., Ecoli and Wine) we obtain

1613



better results than the other investigated methods. It is also
worth mentioning that in most cases our method outperforms
the other approaches with more than 2% difference in the
classification error, while in the non-winning datasets our
method loses slightly with less than 1% difference in the
classification error attained by the winning method.

V. VISUALIZATION

In Figures 1 and 2 we provide some 2-D visualization
results on the Thyroid dataset. We compare our linear method
with LDA, PCA and LPP. Our kernel method is compared with
KDA, KPCA and LE. In the linear case, we observe that our
method works very similar to LDA, where the goal is to make
the classes as compact and as far from each other as possible.
In the non-linear setting, we observe that our approach is
able to successfully separate all the classes. Similar results are
obtained with LE, however our method produces more compact
clusters.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
UCI Thyroid, C = 100, λ = 1, KNN = 12, LSVA

 

 

 Class A
 Class B
 Class C

(a) LSVA

−8 −6 −4 −2 0 2 4 6 8
−2

−1

0

1

2

3

4

5

6

7

8
UCI Thyroid, LDA

 

 
 Class A
 Class B
 Class C

(b) LDA

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
UCI Thyroid, PCA

 

 
 Class A
 Class B
 Class C

(c) PCA

−0.005 0 0.005 0.01 0.015 0.02 0.025
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
UCI Thyroid, KNN = 12, LPP

 

 

 Class A
 Class B
 Class C

(d) LPP

Fig. 1: UCI Thyroid Linear Methods

VI. CONCLUSIONS

In this paper a novel dimensionality reduction method
based on successive Laplacian SVM on deflated subspaces
has been proposed. The resulting normal vectors of the trained
hyperplanes are used to project the initial data points in lower
dimension and therefore, they provide new discriminative
information for feature extraction. We have shown that these
vectors can be computed by solving a standard SVM with a
specially designed deflation kernel. In our theoretical analysis
we have investigated both the linear and the non-linear case.
For the non-linear case we have provided an explicit form
for the deflation matrix on the mapped feature vectors onto
the RKHS. Experiments in benchmark datasets have illustrated
the strength of the proposed approach against the state-of-art
in Dimensionality Reduction.
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Fig. 2: UCI Thyroid Non-Linear Methods
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