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Abstract

Evaluation of aging infrastructure has been a world-wide concern for decades due to its economic, ecological

and societal importance. Existing structures usually have large amounts of unknown reserve capacity that

may be evaluated though structural identification in order to avoid unnecessary expenses related to the

repair, retrofit and replacement. However, current structural identification techniques that take advantage

of measurement data to infer unknown properties of physics-based models fail to provide robust strategies

to accommodate systematic errors that are induced by model simplifications and omissions. In addition,

behavior diagnosis is an ill-defined task that requires iterative acquisition of knowledge necessary for exploring

possible model classes of behaviors. This aspect is also lacking in current structural identification frameworks.

This paper proposes a new iterative framework for structural identification of complex aging structures based

on model falsification and knowledge-based reasoning. This approach is suitable for ill-defined tasks such

as structural identification where information is obtained gradually through data interpretation and in-

situ inspection. The study of a full-scale existing bridge in Wayne, New Jersey (USA) confirms that this

framework is able to support structural identification through combining engineering judgment with on-site

measurements and is robust with respect to effects of systematic uncertainties. In addition, it is shown that

the iterative structural-identification framework is able to explore the compatibility of several model classes

by model-class falsification, thereby helping to provide robust diagnosis and prognosis.

Keywords: Systematic errors, model falsification, knowledge-based reasoning, model-class exploration,

behavior diagnosis, prognosis

1. Introduction1

Due to conservative strategies that are fueled by high risks associated with the construction of large civil2

structures, most structures today have significant amounts of unknown reserve capacity. In the context of3
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structural health management of existing aging structures, structural identification is attractive for decision-4

making support. The goal of model-based data interpretation is to increase the knowledge of real behavior of5

complex structures using information provided by behavior measurements. In order to interpret measurement6

data, physics-based models are used to connect hypotheses of structural behavior to observed behavior7

and to identify uncertain parameter values of physical properties. This interpretation serves to improve8

behavior diagnosis and reduce uncertainties associated with behavior prognoses, such as remaining-fatigue-9

life evaluation. However, diagnosis is an ill-defined task that is performed under conditions of high modeling10

and measurement uncertainty. In addition, modeling errors are usually systematic, also called epistemic11

errors as opposed to random errors, thereby increasing interpretation difficulty.12

Single-model-updating approaches such as residual minimization have already shown to be inaccurate in13

the presence of systematic errors since a single optimal model is intrinsically imperfect due to parameter-value14

compensation [1–4]. Instead, there are always multiple models that are able to explain observations of the15

behavior of complex structures. Approaches such as probabilistic Bayesian inference accounts for multiple16

solutions through updating posterior probabilities of parameter values, thereby estimating the uncertainty17

associated with the parameter values. However, a common assumption in these approaches is that modeling18

and measurement errors are adequately described by a joint independent zero-mean Gaussian probability19

density function (PDF) [5–7], which is incompatible with the systematic nature of several modeling uncer-20

tainty sources. In addition, some applications incorporate the variance of the joint PDF as a parameter21

in the identification process [8–10] and others assign an arbitrary value to the variance [11–13]. However,22

in complex civil structures, modeling uncertainties are often biased and correlated spatially. In addition,23

defining a statistical model of errors that is not compatible with the true errors leads to biased diagnostics24

and prognosis [3, 14]. While Bayesian inference may provide useful support when statistical model of errors25

is known, it is not robust when aspects such as correlations cannot be quantified.26

For the purposes of this paper a model class is defined as a parameterized physics-based model, where27

parameters are variables whose values need to be identified. Models are instances of model classes. In28

the context of Bayesian inference, proposals exist to select an optimal model class among a set of possible29

model classes that gives the best trade-off between data fitting and model-class complexity in order to30

solve diagnosis and prognosis tasks [9, 15–17]. Some approaches link to Ockham’s razor [17, 18], also31

called principle of parsimony, which asserts that simpler models that are compatible with measurements32

are preferred over complicated ones. However, simpler models may imply over-idealization of reality and33

consequently modeling uncertainties. Despite undeniable benefits of this principle to simplify modeling and34

data-interpretation tasks, the question of the presence of systematic errors in the model class has not been35

treated explicitly. Although several authors in various fields have pointed out the importance of providing36

an adequate description of modeling uncertainties associated with the model class [4, 19–22], proposals for37

robust alternatives to existing approaches are lacking.38
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Goulet and Smith [3] proposed an approach that is robust when knowledge of the joint PDF of modeling39

and measurement errors is incomplete. This approach, named error-domain model falsification (EDMF),40

combines PDFs of each source of modeling and measurement error and determines conservative probabilistic41

thresholds that are used to falsify inadequate models. Modeling errors are estimated using engineering42

heuristics and field observations. They have shown that this approach leads to robust parameter identification43

in the presence of systematic errors without precise knowledge of the dependencies between modeling errors.44

Goulet and Smith [3] also demonstrated that the assumption of independence in the common definition of45

uncertainties in Bayesian inference may bias the posterior distribution of parameter values in the presence46

of systematic errors. This last observation has also been noted by Simoen et al. [23]. Although Goulet47

and Smith [3] have observed that EDMF can identify when initial assumptions related to the model class48

are erroneous by falsifying all model instances, taking advantage of this characteristic for exploring possible49

model classes of complex structures has not been studied.50

Choi and Beven [24] have also observed that model falsification could serve to point out model deficiencies51

in the search for a better model class. This observation resulted in the proposal of the generalized likelihood52

uncertainty estimation (GLUE) framework [25] in the field of environmental modeling which is also affected53

by large modeling uncertainties. Other examples of model-falsification procedures can be found in this field.54

Beck [26] presented a framework for analysis of uncertainty and model selection based on recursive search and55

model discrimination. An approach, called Monte Carlo filtering, is used for discarding sets of inadequate56

model instances. Also, in the field of geology, Cherpeau et al. [27] proposed a fault-scenario falsification57

approach using a misfit threshold. However in such examples, systematic errors were not included explicitly.58

In the field of civil engineering, structural identification processes are often based on residual minimization59

approaches [28–31], which may lead to biased results in the presence of unexpected systematic modeling60

errors. Moon and Aktan [32] proposed a structural identification framework composed of six steps for61

diagnosis and prognosis of complex structures. The process starts with the observation and conceptualization62

(step 1) of the structure from which an a-priori model is developed in order to design in-situ experiments.63

The data collected is then processed and used to identify the system for subsequent prediction by simulation64

(step 6). In spite of the original intention by Moon and Aktan [32] for step 6 to iterate back to step65

1, this methodology does not fully reflect the iterative aspect of data interpretation. Practice has shown66

that, prior to interpreting measurements, engineers may not fully understand all possible model classes of67

structural behavior. For complex structures, a non-linear backtracking procedure is often required because68

the diagnosis task is an exploratory process involving several iterations [33] of observation and measurements,69

data interpretation, modeling and performance predictions.70

This paper presents a new structural identification framework based on an iterative falsification process71

and knowledge-based reasoning. This framework is illustrated for the structural identification of a complex72

bridge structure where several uncertainties related to the structural behavior prevents its unidirectional73
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identification. It is demonstrated that the iterative structural identification framework is able to explore74

compatibility of several model classes of the structure by falsifying inadequate model classes. Thus, this75

approach is able to make diagnosis and prognosis of the structural conditions using engineering heuristics76

and on-site measurements, and is robust to modeling systematic uncertainties.77

Section 2 describes the iterative structural identification framework along with the tasks to be performed.78

Section 3 presents the steps of the framework applied to a full-scale bridge and a discussion of the resulting79

diagnosis and of the possibility of making prognosis.80

2. Iterative structural identification framework81

Structural behavior diagnosis is an ill-defined inverse engineering task that is carried out in open-world82

conditions and thus, under much uncertainty. For these reasons, such tasks usually lead to multiple explana-83

tions for the structural health management of existing structures. The number of possible explanations may84

be reduced by acquiring knowledge of the structural behavior. The experience and judgment of the engineer85

as well as other forms of heuristic knowledge are thus of utmost importance. In the field of knowledge-based86

reasoning, knowledge is acquired by new information obtained using data-interpretation tools [34]. Through87

these tools, the engineer may test his knowledge and his hypotheses against observations.88

Diagnosis tasks are usually solved through a process of hypothesis generation and testing. Hypotheses are89

generated at an early stage from a basic knowledge acquired from limited information. While an early-stage90

hypothesis may be revised or discarded if subsequent data fail to confirm it, it is likely that at least some91

hypotheses are correct. Hypotheses are used to organize engineering knowledge and they help to reduce the92

size of diagnosis task search space. Because it would not be possible to guide an efficient diagnosis task93

without some hypothetical purpose, hypotheses serve to transform an open-world ill-defined task into a set94

of well-defined deductive tasks. This process is done iteratively while gradually acquiring knowledge from95

new observations and from rejected hypotheses.96

In this context, the structural identification framework is governed by the principle of falsification, which97

has been well known by scientists for centuries. However, this principle has only been popularized in the98

1930’s by Popper [35]. His philosophy stipulates that hypotheses cannot be fully validated by observations99

and rather can only be falsified by observations. Several authors, such as Tarantola [36], Beven [37] and100

Beck [26], underlined the advantages of this philosophy since it avoids biasing observations by hypotheses.101

For structural identification, hypotheses are usually represented by models and observations by behavior102

measurements. In addition, basic knowledge is composed of experience, such as information acquired by103

structural drawings and other inspection reports that may have been established during the service life of104

the structure, and this serves to develop early-stage hypotheses. Combining structural mechanics theory105

with such basic knowledge is not usually sufficient for complete definition of the model class in order to106
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describe structural behavior. Thus, it is often necessary to return to previous steps in order to iteratively107

converge upon a correct diagnosis using several model classes.108

In Figure 1, an iterative identification process is illustrated where the engineer is in the center of the109

process. Six tasks are necessary for supporting engineers; modeling, in-situ inspection, monitoring, model110

falsification, diagnostics and prognosis. The engineer starts anywhere and at any stage, and he might go111

back to previous steps. Tasks are carried out iteratively and the direction taken for the next step is based112

on engineering decisions based on either the information available at the current step or his knowledge.113

Data-interpretation tools are available to help engineers solve each task.
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Figure 1: Iterative structural identification framework showing tasks in circles and data-interpretation tools

in rectangles. Finite-element model (FEM), sensitivity analysis (SA), measurement-system design (MSD)

and nondestructive testing (NDT).

114

The operating principles of this framework are:115

• The process is guided by the engineer who performs tasks and decides the next task to perform based116

on his knowledge and the information acquired in the current and previous tasks. It is likely that he117

would have to perform a task several times.118

• Based on the principle of parsimony (Ockham’s razor), simpler model classes are preferred over more119

complicated classes.120

• Model falsification may lead to the conclusion that modeling assumptions are not compatible with121

observed behavior. Especially after decades of service life, structures may behave in a complex manner122

because of degradation of elements. In such situations, it is important to explore a range of model123
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classes that might explain observed behavior. This exploratory approach allows the rejection of an124

entire class of models. It is thus possible to explore the compatibility of several model classes with125

observations. In situations where several model classes are compatible with observations, the engineer126

may compare the performance of each model class and decide to use one or more model classes to127

support decision making.128

• Following iteration, diagnostics and prognosis are typical terminal tasks. Thus, after these tasks,129

robustness of the results and future performance of the structure are evaluated.130

2.1. Modeling task131

The modeling task consists of building a physics-based model that describes the structural behavior and a132

statistical model of the errors associated with the physics-based model. For the physics-based model, finite-133

element (FE) models are most suitable for representing the behavior of complex structures. In addition, such134

models are usually associated with uncertainties caused by unknown physical properties, simplifications and135

omissions. Among the sources of modeling uncertainties, some may be parametrized and then identified by136

comparing them with measurements.137

Other sources of uncertainty may be avoided by including them explicitly in the FE model; for example,138

components such as reinforcement bars in concrete decks, barriers, diaphragms, etc. Some sources however139

cannot be included in the FE model either due to the time spent modeling them or due to the computational140

demand in the FE analysis. These uncertainties may be either of random or of systematic nature. If not141

included in the FE model, these sources of uncertainty lead to model-prediction errors that should be taken142

into account when comparing predicted and measured responses. For this reason, errors associated with143

the simplifications of the physics-based model are estimated for each measurement location using statistical144

models. Special care is taken when modeling systematic uncertainties since they are usually not centered on145

zero and are non-Gaussian [38]. Since the statistical model of modeling errors is related to the physics-based146

model, both models define the model class.147

Parametrized variables are usually uncertain material and geometrical properties as well as stiffness of148

boundary conditions and connections. Among these variables, some have more influence than others on149

the structural response. Sensitivity analysis (SA) tools may be used to distinguish the importance of these150

variables in order to select those having the most importance to be identified [39, 40]. The number of151

parameters to be identified is limited by the computational demand required in following tasks. However,152

several full-scale examples of civil structures have shown that the number of parameters is usually less than153

ten [41–43].154
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2.2. In-situ inspection task155

In-situ inspection comprises visual inspection and other nondestructive testing (NDT) techniques. This156

task includes comparing basic knowledge of the real structure with results of inspection and thus, collecting157

information on site that would not be on structural drawings and previous inspection reports. Deterioration158

may be detected and initial knowledge of physical properties may be revised. The engineer may then modify159

the model class based on this information. Also, NDT techniques may provide information on material160

properties that refine the estimation of initial model-parameter ranges and thus, help to refine the results.161

2.3. Monitoring task162

Measuring the response, either static or dynamic, at judicious locations allows the engineer to test163

hypotheses related to the structural behavior. Measurements are able to falsify incorrect model classes164

in order to uncover erroneous assumptions made by the engineer. They can also reduce the uncertainty165

associated with diagnostics and prognosis tasks [43].166

As shown by Goulet and Smith [44], more measurements does not mean higher performance of structural167

identification. Indeed, they demonstrated that over-instrumentation appears when the new information168

provided by additional measurements is exceeded by the amount of uncertainty provided by the additional169

measurements. In addition, Pasquier et al. [45] argued that the higher the number of measurements used for170

structural identification, the greater the probability of making a diagnostic error in the case of misevaluation171

of modeling uncertainties.172

Measurement-system-design (MSD) strategies such as [44, 46] may be used to guide the choice of mea-173

surement locations. However, redundancy in the monitored locations is required in order to prevent the loss174

of erroneous measurements. In addition, when performing static load tests, it is preferable to take measure-175

ments for several load configurations in order to increase information related to the structural behavior.176

This task also involves the choice of a subset of measurements to be compared with model predictions.177

Subsets of measurements are usually used in a first step to limit computational demand for preliminary178

comparison. As knowledge is acquired, the size of measurement sets may increase.179

2.4. Model falsification task: error-domain model falsification180

Proposed by Goulet and Smith [3], the error-domain model falsification approach aims to obtain possible181

values for θ = [θ1, . . . , θnθ ]
ᵀ, describing a vector of nθ parameter values of a physics-based model using182

information provided by measurements. Model parameters describe material, physical and geometrical183

properties of a structure. Estimates for i = 1, . . . , ny characteristic responses Yi of a structure can be184

provided by models as well as by behavior measurements. Let gκ(xi,θκ) denote model predictions from a185

model class Gκ and take as input the locations of the predicted degrees of freedom xi and a set of random186

variables Θκ describing parameter values θκ, ŷi denotes observations, and {Ui,gκ , Ui,ŷ} respectively denotes187
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random variables describing model-prediction and measurement errors for the ith structural characteristic188

response. The relationship between a characteristic response and a model prediction is given by189

Yi = gκ(xi,Θκ) + Ui,gκ , ∀i = 1, 2, . . . , ny (1)190

and between a characteristic response and a measurement is191

Yi = ŷi + Ui,ŷ, ∀i = 1, 2, . . . , ny (2)192

The joint PDF fUŷ
(uŷ) describing the measurement error is in common cases estimated from repeated cal-193

ibration experiments performed in controlled conditions. In the case of civil structures, such estimation is194

usually not possible for the joint PDF of model-prediction errors, fUgκ
(ugκ); instead, fUgκ

(ugκ) is commonly195

estimated based on heuristics and engineering experience, including systematic errors. Examples of sources196

of modeling uncertainty are idealized support and connection conditions, temperature effects, load amplitude197

and load position, Bernoulli-beam hypothesis, geometric variability of the structure, constitutive law of ma-198

terials, etc. For FE models, examples are also mesh refinement and interpolation, element-type choices, the199

presence of singularities, etc. Since modeling uncertainty associated with complex civil structures commonly200

has a larger variance than measurement uncertainty, the joint PDF describing the combination of model-201

ing and measurement uncertainties, fUc
(uc) ∼ Uŷ −Ugκ is also dominated by heuristics and engineering202

experience.203

Error-domain model falsification performs structural identification by generating an initial set of nΩ204

model instances Ωκ = {Θκ,m, m = 1, 2, . . . , nΩ} of a model class Gκ and then falsifies instances that are not205

compatible with observations given measurement uncertainties and modeling uncertainties associated with206

the model class Gκ. The candidate model set Ω∗κ consists of the initial model set minus the falsified models207

so that208

Ω∗κ = {θκ ∈ Ωκ : ui,low ≤ g(xi,θκ)− ŷi ≤ ui,high,∀i} (3)209

where ui,low and ui,high are threshold bounds defining the shortest intervals including a probability φ
1/ny

d for210

the marginal PDFs of fUc
(uc), where φd ∈ [0, 1] is the target identification reliability usually set at 0.95.211

In addition, the number of model instances in the candidate-model set is nΩ∗ and each instance is equally212

likely to be the correct representation of the structure.213

All model instances that have been falsified are assigned a probability of 0 so that214

Pr(Θκ = θκ 6∈ Ω∗κ) = 0 (4)215

and all model instances belonging to the candidate-model set are assigned a constant probability216

Pr(Θκ = θκ ∈ Ω∗κ) =
1∫

θκ∈Ω∗
κ

dθκ
(5)217
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Figure 2: Model falsification example for a simple beam. (a) Model-instance falsification and acceptance

using three measurements. (b) Sensor plot describing the falsification of a set of model instances for a single

measurement location. Falsified model predictions that lay within the threshold bounds are predictions of

model instances that are falsified at other measurement locations.

Figure 2a presents examples of falsification and acceptance of a model instance for a simple beam based218

on three measurement locations. A model instance which predictions do not lay within the threshold bounds219

for the three locations is falsified. A model instance with a different combination of parameter values which220

predictions lay within the thresholds for every location is a candidate model. Figure 2b shows a sensor221

plot which compares a single measured value with the predictions of the initial model set and the threshold222

bounds. Candidate-model predictions are within the thresholds. Falsified model predictions that lay within223

the threshold bounds are predictions of model instances that are falsified at other measurement locations.224

In some cases, it is possible that EDMF leads to ∀θκ : Pr(Θκ = θκ) = 0 which results in the complete225

falsification of the initial population of model instances, Ω∗κ = ∅. This means that there is a likely error226

in assumptions that led to model-class building and thus, the model class Gκ is falsified. Such diagnosis227

guides the engineer to search for erroneous assumptions and to explore alternative model classes that may228

be compatible with the set of measurements.229

In practice, a sensitivity analysis is carried out during the modeling task (see Section 2.1) for determining230

the relative importance of each uncertainty source. The uncertainty of the model response at the measured231

locations due to the parametrized sources are evaluated through Monte Carlo sampling and the FE model.232

Parametrized sources that have the major importance are included in the primary parameter vector θκ and233

are used to generate the initial model set Ωκ. Parametrized sources with minor importance are included234

in the secondary parameter vector γκ = [γ1, γ2, . . . , γnγ ]ᵀ. These secondary parameters induce modeling235

uncertainties Vgκ that should be taken into account when comparing model predictions with measurements.236

The secondary parameter uncertainties are given by237

Vgκ = g(x,θκ,Γκ)− g(x,θκ,γκ) (6)238
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where secondary parameters γκ are described by random variables Γκ, and θκ and γκ are mean values of239

Θκ and Γκ.240

Other sources of uncertainties, Wgκ , are estimated based on heuristics and engineering experience as241

presented in Section 2.1. Vgκ is added to the other modeling uncertainties Wgκ , such that the combined242

uncertainties243

Uc = Uŷ −Ugκ = Uŷ − (Vgκ + Wgκ) (7)244

In this way, systematic and zero-mean random modeling uncertainties are included in the model-falsification245

process. Note that usually, the simpler the FE model, the greater the variance of the modeling uncertainty246

Ugκ , which cannot be reduced using model falsification. Conversely, the random uncertainty associated with247

primary parameters θ is reduced by the information provided by measurements.248

Several sampling techniques are available in order to generate the initial model set Ωκ. Depending on the249

number of parameters nθ and precision of the identified parameter values, either uniform sampling or Latin250

hypercube sampling (LHS) is used. If necessary, Markov Chain Monte Carlo sampling [18] may be used251

in situations where LHS leads to excessive computation times. Structural identification of existing bridges252

commonly necessitates less than ten parameters. Whatever sampling method is used, the initial distribution253

of the parameter values is usually uniform with bounds determined based on engineering judgment and254

depending on the nature of the physical parameter.255

2.5. Diagnostics task256

The diagnostics is the task that makes sense of the identification results of physical properties of the257

structure and leads to conclusions about the structural conditions. When the model class is compatible with258

the set of measurements, a candidate model set is identified, Ω∗κ 6= ∅, and candidate parameter values are259

determined. This solution may be used to confirm assumptions about the structural behavior that were260

made during the modeling task and thus increase the knowledge of the structural behavior.261

Robustness-evaluation techniques may be used to determine the diagnostic sensitivity to conditions such262

as misevaluation of uncertainties and changes in correlations between measurements at different measurement263

locations. These tools provide help in minimizing the false positive and false negative diagnostics either at264

the model-class or the model-instance level.265

For example, when performing structural identification with a high number of sensors and several load266

cases, some measurements may have faulty behavior during load tests. These measurements may not be267

detected using engineering common sense and outlier detection procedures. However, these measurements268

may either bias the diagnostics or wrongly falsify a correct model class. A study of the sensitivity to269

erroneous measurements is thus conducted in order to evaluate diagnosis robustness. For this purpose, it270

is proposed to carry out model falsification iteratively by removing individually each measurement under271

any load case. Thus, ny − 1 measurements are compared with model predictions for each iteration. In a272
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second step, each measurement is removed one by one for every load case since it is likely that an erroneous273

measurement remains erroneous during other load cases. During the two processes, the number of candidate274

models obtained for each iteration is stored and the sensitivity to erroneous measurements can be evaluated275

through the variation in the number of candidate models.276

2.6. Prognosis task277

This task involves using identification results for predicting quantities under conditions other than those278

prevailing during monitoring, for example, model extrapolation for other load configurations [14]. An ex-279

ample in the field of civil engineering is prediction of remaining fatigue life of bridge critical details under280

traffic loads [43]. The results of prognosis tasks lead to important knowledge necessary for decision making281

involving retrofit, repair and replacement of existing structures. In this framework, predictions are performed282

based on the candidate models obtained using EDMF. The prediction of a quantity qj at nq locations of a283

structure is given by284

Qj = g(xj ,Θ
∗
κ) + Uj,gκ , ∀j = 1, . . . , nq (8)285

in agreement with Eq. (1), where Θ∗κ is described by the PDF286

fΘ∗
κ
(θκ) =


1∫

Ω∗
κ

dθκ
, if θκ ∈ Ω∗κ

0, otherwise
(9)287

that is based on Eq. (4) and (5). Thus, Qj is a random variable describing the distribution of the predicted288

quantity qj that is obtained by the combination of the predictions of random candidate-model instances289

and the distribution of modeling uncertainties associated with model class Gκ at the jth prediction location,290

Uj,gκ . The lower and the higher threshold bounds of Qj are then determined based on the target prediction291

reliability φp ∈ [0, 1] usually set at 0.95. They define the shortest intervals including a probability φ
1/nq
p292

for each PDF Qj . Consecutively, since the identification reliability is φd, the probability of having the293

true prediction value included between prediction thresholds for each location is at least φd · φp, given the294

estimated PDF of uncertainty.295

Prognosis performance evaluation may be carried out in order to determine whether or not the uncertainty296

associated with the predicted quantity is acceptable for making good decisions regarding the management of297

the structure. In situations where the prediction is too uncertain, sensitivity analysis may be used to identify298

the main uncertainty sources and guide the engineer in the next iteration of the framework. Examples of299

next steps are monitoring at locations that are related to high uncertainty sources and intervention in order300

to either repair or replace bridge components that contribute to uncertainty.301

2.7. Framework summary and example302

The proposed framework supports structural identification based on an iterative falsification process and303

reasoning with engineering knowledge. This approach is suitable for ill-defined tasks such as structural304
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identification where information is obtained gradually. The engineer is at the core of the process and makes305

decisions regarding next steps among the six tasks in order to increase knowledge of structural behavior.306

An example of this process is presented in Figure 3 where arrows describe engineering decisions. It starts307

with an in-situ inspection, continues with the model-class modeling based on structural drawings, then308

monitoring of judicious locations and model falsification using these measurements. In this case, the model309

class is falsified due to erroneous assumptions in the preliminary modeling task and thus no diagnostics is310

provided. The engineer decides to further inspect the structure in order to understand the cause of model-311

class falsification. After correction of the model class, the model falsification returns candidate models from312

which structural diagnosis is possible. In the last step, a prognosis can be made in the scope of structural313

management decision making. If the performance evaluated in the prognosis step is adequate, the process314

ends and the engineer makes a decision. In the case where the prognosis is too uncertain, the engineer315

may decide to perform additional structural monitoring, focusing on the locations that induce high behavior316

uncertainty.

START
In-situ

inspection 
Modeling Monitoring

Model

falsification 

END:

make decision
Modeling Diagnostics

Adequate 
performance?Prognosis

Adequate 
diagnostics?
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Model

falsification 

New
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 ...

NO: iteration 2
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YES YES

Figure 3: Iterative structural identification process example.

317

3. Case study: full-scale bridge in Wayne, New Jersey318

This thirty-year-old bridge carries US202/NJ23 through Wayne, in New Jersey (USA). The bridge carries319

eight traffic lanes over four simply-supported spans. The focus is on the second southbound span four lanes320

that are displayed in Figure 4a. This bridge span has eight steel girders acting in a composite manner321

with a concrete deck (see Figure 4b). The span geometry is skewed and slightly curved in elevation. The322

straight-side girders are supported by eight fixed bearing devices and the skewed-side girders are supported323

by expansion bearing devices. A static load test is carried out using several truck load-case configurations324

and measuring, for each configuration, twelve vertical displacements (see Figure 5).325

Displacement sensors were positioned in a grid manner on the bottom flanges of girders 1, 3, 6 and 8 at326

the quarter, half and three quarter spans. Load configurations of LC-1 to LC-3 consisted of three full trucks327

positioned on three lanes at the quarter, half and three quarter spans. The fourth lane was open to traffic328
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Figure 4: (a) Bridge elevation view; (b) bridge cross-section view (Adapted from [38]).
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during the static load test. For LC-4 to LC-6, the position was similar and the configurations involve six full329

trucks weighing around double of the load in LC-1 to LC-3.330

Structural identification is carried out using four load cases (LC-1, 2, 3 and 5) and the twelve vertical331

displacements as shown in Figure 5. Load cases LC-4 and LC-6 are kept for the verification of the identifi-332

cation results. This bridge is a typical example of an aging structure that needs better management. The333

objective of structural identification is to make a diagnosis for structural health management and discuss334

the possibility of making a prognosis. The iterative structural identification framework presented in Section335

2 is used to perform this task.336

3.1. Identification framework iteration 1337

The structural identification framework first iteration starts with the monitoring phase where the full338

data set is acquired. The next step of the framework is modeling using the basic knowledge acquired from339

structural drawings and engineering experience. The engineer decides to build a FE model. When modeling340

such a complex structure, several assumptions are made resulting in modeling uncertainties. Some sources of341

modeling error have a random nature while other sources are systematic; they are caused by aspects such as342

inappropriate model forms and simplified boundary conditions. When the FE model does not account for a343

source of uncertainty, the modeling uncertainty induced has to be taken into account when comparing model344

predictions with measurements. Thus, the more aspects included in the FE model, the less uncertainties345

to be taken into account for the model falsification task and the better performance obtained for structural346

identification.347

For the performance of structural identification, a detailed 3D FE model whose model predictions are348

described by g1(x, ·) is built. The rows of matrix x = xkl represents the prediction locations k ∈ {1, 2, . . . , 12}349

related to the measured locations and the columns, the load cases l ∈ {1, 2, . . . , 6} under which the predictions350

are calculated. Each element in xkl refers to a measurement location i in Section 2.4 and the number of351

elements is thus equal to the number of measurements ny. This model includes the concrete deck with352

reinforcement bars, concrete barriers and the sidewalk, wind-braces, diaphragms and stiffeners as shown in353

Figure 6. Also, special care is taken to include the bridge curvature, distributed truck-wheel loads instead354

of ideal point loads and the support eccentricity to the cross-section center (see Figure 7 and 8). For the355

connection of the girder bottom flange and the bearing pin, rigid links are used such that the rotation of356

the girder is rigidly transmitted to the pin. In order to allow the longitudinal displacement of the expansion357

bearing, a pinned rigid link connects the central pin to the bottom bearing. By releasing only the rotational358

degree of freedom of the bottom pin, the displacement of the central pin is possible. Since friction may359

exist in the pin, rotational springs are modeled with unknown rotational stiffness parameter values γrot.360

Parametrized uncertainty sources such as material Young’s moduli (γconc and γsteel), the Poisson’s ratio of361

concrete (γ∆ν), the thickness of the concrete deck (γ∆T ) and steel plates (γ∆t) and truck loads (γ∆w ) are362
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Figure 6: Bridge finite-element model.
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also parametrized. These sources and there statistical models are displayed in Table 1 from #1 to #7. Their363

PDFs describe the uncertainty associated with their parameter value γ that is estimated using engineering364

heuristics and field observations. Their effects on the structural response is then quantified through Monte365

Carlo simulations using the FE model and Eq. (6).366

Table 1: Sources, probability density functions and relative importances of modeling and measurement un-

certainties for identification framework iteration 1. PDFs of sources #1 to #7 are related to their parameter

values. PDFs of sources #8 to #15 are associated with characteristic responses. The relative importance

values are averaged over all measurement locations.

Uncertainty source PDF Unit Mean/Min SD/Max Relative importance

1. Rotational stiffness of bearings log-uniform log(Nmm/rad) 6 12 47 %

2. Young’s modulus of concrete Gaussian GPa 21.5 4.5 16 %

3. Young’s modulus of steel Gaussian GPa 200 5 3.4 %

4. ∆ν Poisson’s ratio of concrete Gaussiana - 0 0.025 2.4 %

5. ∆T concrete deck thickness Gaussian % 0 2.5 1.3 %

6. ∆t steel plate thickness Gaussian % 0 1 1.9 %

7. ∆w truck load per wheel Gaussian N 0 225 0.7 %

8. Simplifications and FEM uniform % −8 1 4.3 %

9. Mesh refinement uniform % −1 0 0.9 %

10. Truck position Gaussian % −1 0.8 2.7 %

11. Sensor resolution Gaussian mm 0 0.13 12 %

12. Cable losses Gaussian % 0 0.4 1.5 %

13. Repeatability Gaussian % 0 0.5 2.0 %

14. Traffic noise Gaussian mm 0 0.02− 0.1b 2.7 %

15. Additional uncertainties Gaussian % −1 1 1.2 %

aGaussian distribution that is truncated at 0.03 and 0.33.

bMinimum and maximum standard deviation over all measured values.

For the rotational stiffness of bearings, the range of values is evaluated based on the relation between the367

stiffness value and the displacement responses that are represented in Figure 9. This figure shows that for368

values lower than 106 Nmm/rad and values higher than 1012 Nmm/rad, the response is not sensitive to the369

stiffness value. For such ranges of values, the bearing acts either as a pinned or as a fixed support. Thus,370

the initial significant parameter range is between 106 and 1012 where the parameter value influences the371

response.372

The other sources of uncertainty that cannot be included in the FE model are estimated using engineering373

judgment with respect to model predictions generated with the mean value of the parameters #1 to #7.374
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Figure 9: Relation between support rotational stiffness values and displacement responses.

These sources listed in Table 1 from #8 to #10 are model simplifications and FEM idealization (Wsimp), mesh375

refinement (Wmesh) and truck position (Wtp). For source #8, simplifying assumptions are the non-inclusion376

of concrete-deck cracks, partially connected barrier, barrier joints that reduce the predicted displacement. In377

addition, FE models are usually stiffer than reality. Thus, these aspects lead to overestimate displacement378

predictions. The lower bound −8 % was determined based on this reasoning and engineering judgment. The379

non-inclusion of the fence, which increases predicted displacements, explains the value of +1 % of the upper380

bound of source #8. An extensive description of sources and forms of uncertainties is available in [38].381

In order to compare model predictions and measurements, measurement uncertainties are also estimated382

(#11 to #15). These sources are sensor resolution (Ures), cable losses (Uloss), measurement repeatability383

(Urep) and traffic noise (Utraf) during static load tests. Additional uncertainties (Uadd) are a conservative384

estimation for all other phenomena that individually have a negligible influence.385

Table 1 also presents the relative importance of each uncertainty source on the structural response. This386

relative importance is averaged over all measurement locations under all load configurations. This shows387

that the rotational stiffness of bearings is the main source of uncertainty with 47 % of influence. The second388

most important source is the Young’s modulus of concrete with 16 % relative importance. Due to their high389

influence on the structural response, these two parameters are selected to generate the initial model set. The390

other parametrized uncertainties have too low of an influence to be identifiable. However, they are included391

with the remaining uncertainties in fUc
(uc) as described in Eq. (7) for the calculation of threshold bounds392

during the falsification process. Note also the high influence of the sensor resolution with 12 % relative393

importance.394

The first model class G1 is thus composed of g1(xkl,θ1) with θ1 = [θrot, θconc]ᵀ being the rotational395

stiffness and the Young’s modulus of concrete, and the combination of modeling uncertainties #3 to #10,396
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Ug1
displayed in Table 1 and calculated using Eq. (10).397

Ug1
= Vsteel + V∆ν + V∆T + V∆t + V∆w + Wsimp + Wmesh + Wtp (10)398

Measurement uncertainties are combined based on Eq. (11).399

Uŷ = Ures + Uloss + Urep + Utraf + Uadd (11)400

The rotational stiffness value is the same for all 16 supports since there is no information at this step regarding401

different stiffnesses of bearing devices. The next step involves the model falsification and the initial model402

set is generated based on a uniform sampling for which the range given in Table 1 is divided into 11 intervals403

for both parameters, leading to a set Ω1 = {Θ1} of nΩ1 = 144 model instances. Using ny = 24 displacement404

measurements of load cases LC-2 and 5 (in xkl, l ∈ {2, 5}). Only a subset of the measurement data set is405

used to reduce the computing demand of the initial iteration.406

This process leads to the complete falsification of the initial model set and thus the falsification of model407

class G1. As a result, no diagnostic can be provided and a likely error is present in assumptions that led to408

model-class building.409

3.2. Identification framework iteration 2410

Since at this stage, information is lacking regarding the source of this model-class error, the engineer411

decides to make in-situ visual inspection for the purpose of comparing his prior assumptions about the412

structure with the real structure. Thus, a second iteration of the identification framework starts. On site,413

a penetrating crack is observed on the pier cap under the support of girder 1 on the straight bridge side.414

This crack may reduce the stiffness of the pier cap and thus the assumption of infinite vertical stiffness415

of the support is no more valid. In addition, a severe state of corrosion deterioration is observed on the416

bearing devices, particularly on the exterior bearing devices, i.e. the supports of girder 1 and 8. The visual417

inspection also reveals that the concrete deck is orthotropic by observing a steel deck plate on the lower side418

of the bridge.419

In the next step of the identification process, the engineer decides to include the components observed420

during in-situ inspection in a new model class G2. The FE model is modified to incorporate the orthotropic421

deck and a vertical spring with unknown stiffness under the support where the pier cap crack is located.422

The spring stiffness is another uncertain parameter that adds to the other modeling uncertainties. A similar423

study of the relation parameter value to displacement response as the one of the rotational spring stiffness424

(see Figure 9) is undertaken. This study leads to a significantly sensitive range of values between 102 and425

108 N/mm.426

In order to include the effect of the severe corrosion of the exterior bearings, two distinct parameters are427

used to describe either the uncertainty of the averaged stiffness of the exterior bearings (i.e. bearings under428
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girder 1 and 8) or the averaged stiffness of the interior bearings. Although larger stiffness values are expected429

on the exterior bearing than on the interior’s, the range of values of both parameters remains identical as430

the values displayed in Table 1. Table 2 presents the sources and the relative importances of uncertainties431

associated with the identification of model class G2.

Table 2: Sources and relative importances of parameter, modeling and measurement uncertainties for identifi-

cation framework iteration 2. The relative importance values are averaged over all displacement measurement

locations.

Uncertainty source Relative importance

Exterior bearing rotational stiffness 14 %

Interior bearing rotational stiffness 32 %

Young’s modulus of concrete 16 %

Modeling uncertainties 18 %

Measurement uncertainties 19 %

Pier-cap stiffness 1.0 %

432

Exterior and interior bearing stiffnesses and the Young’s modulus of concrete have a high importance433

and thus are selected as identification parameters. The pier-cap stiffness uncertainty (Vpier) has very low434

influence on the displacement response and thus is added to modeling uncertainties Ug1 , which remains in435

this model class, for the determination of Ug2
as described by436

Ug2
= Ug1

+ Vpier (12)437

where Ug2
is then used for the determination of fUc

(uc).438

As a result, the new model class G2 is composed of g2(xkl,θ2) with parameters [θrot-ext, θrot-int, θconc]ᵀ439

to identify and the modeling uncertainties Ug2
based on Eq. (12). For the next model-falsification step, an440

initial model set is generated based on a uniform sampling of the three parameters θ2. Each parameter range441

is divided into 11 intervals leading to an initial set Ω2 = {Θ2} of nΩ2
= 1, 728 model instances of model442

class G2. Using the ny = 24 displacement measurements of LC-2 and 5, no compatibility is found between443

the model instances and the measurements (Ω∗2 = ∅). Model class G2 is also falsified. The diagnostics of444

iteration 2 is thus inadequate.445

In order to locate the source of the erroneous assumptions leading the falsification of the model class, the446

measurements of LC-1 and 3 are also included in the set of measurements used for model falsification. Then,447

subsets of the measurement set are used in order to identify candidate models. By successively selecting the448

12 displacements of a single load case, it is observed that only LC-2 and LC-3 are able to identify candidate449

models. When selected together, these load cases identify 11 candidate models.450
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Figure 10: Comparison of model predictions and measured values for LC-1, 2, 3 and 5. (a) Sensor D-3-3 ;

(b) Sensor D-8-1.

Figures 10a and 10b show the initial model predictions (dots) and the eleven candidate-model predictions451

(crosses) for sensors D-3-3 and D-8-1. In these figures, the measured values, the combined uncertainty and452

the threshold bounds are also represented. Under LC-2 and LC-3, the candidate-model predictions lay in453

the region bounded by the thresholds. Predictions that are between the threshold bounds and that are454

not candidate-model predictions are predictions from model instances that are falsified by the other sensor455

locations of LC-2 and LC-3.456

Candidate-model predictions of LC-1 and LC-5 lay outside the region bounded by the thresholds for457

sensor D-3-3. These predictions reflect an over-stiff behavior of the candidate models for these locations.458

Note that this behavior is common to all sensors located on girders 1 and 3. In addition, for sensor D-8-1459

under LC-5, candidate-model predictions reflect that candidate-model instances have a softer response than460

that which was measured. Note also that this behavior is common to sensor D-8-2. The sensor plot of D-8-1461
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under LC-1 depicts an example of a redundant sensor, i.e. a sensor that is not able to falsify additional462

model instances.463

These observations may be correlated with the in-situ measurements as a result of the stepwise increasing464

loading that is used during static load tests. Figure 11 presents the relation between measured displacement465

values for several sensors and the truck load on the bridge for configurations of trucks positioned at the466

quarter, half and three quarter spans. This figure involves LC-1 to LC-6 and also empty-truck load cases that467

are not represented in Figure 5 and not used for identification since the amplitude of measured displacement468

values is not high enough compared with the sensor resolution to be used for structural identification. This
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Figure 11: Non-linear relation of displacement responses and truck loads for trucks positioned at the quarter,

half and three quarter of the bridge span.

469

figure depicts a non-linear relation between displacement and loading. In addition, for sensors D-1-1 and470

D-3-3, the behavior is softer as the loading increases and for sensors D-6-2 and D-8-1, the behavior is stiffer in471

the same conditions. Note that these trends are similar for the majority of measurements. Thus, observations472

made in Figure 10a and particularly the underestimation of the displacements made by the candidate-model473

instances is thus caused by the non-linear behavior observed in Figure 11 since the model class G2 assumes a474

linear behavior under increasing loading conditions. The same correlation can be made between the sensor475

plot of D-8-1 in Figure 10b and the behavior of displacement values with increasing loading, except that in476

this case the candidate-model predictions overestimate the displacement values due to the stiffer observed477

behavior.478

From the severe corrosion of the bearing devices that is observed during in-situ inspection and the high479

influence of the stiffness in the displacement response of the bridge, it can be deduced that non-linear480

behavior is caused by the bearing devices. Indeed, the non-linear concave behavior observed on girders 1481

and 3 may be the result of the corrosion that creates a high rotational stiffness on the support for low loading482

values and this blocking may be released for increasing loads due to increasing moment at support. This483

behavior does not appear for girders 6 and 8 that have a shorter span than girders 1 and 3 and rather, an484
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increasing load may further block the bearings due to low values of moments in these supports. Based on485

these observations, the engineer decides to start a third iteration.486

3.3. Identification framework iteration 3487

This new iteration of the identification framework starts with the modeling of non-linear spring behavior488

of the bearing devices. As more information is not available, it is assumed that the bearings follow a bilinear489

rotation-moment relation instead of the linear behavior that has been modeled up until this point. Figure 12490

shows a schematic description of the bilinear relationship and the unknown parameters C1, C2 and ϕ that491

describe the behavior of the bearings. The parameters C1 and C2 represent the stiffnesses of the rotational
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Figure 12: Schematic bilinear model of the moment-rotation relationship of the bearing devices.

492

springs and ϕ the rotation value for which the stiffness changes from C1 to C2. Based on the behavior493

observed in Figure 11, the value of C1 may be higher or lower than the value of C2 and may be different494

for each bearing device. Their initial range of values is thus the same as the ranges of rotational stiffness495

values of model classes G1 and G2 presented in Table 1. Based on bearing rotation values obtained with the496

11 candidate models of the previous falsification, a conservative range of values is estimated for ϕ between497

0 and 0.03 radians. Note that a value of 0 rad implies a linear relationship with C2 as single parameter.498

In order to identify the bearing stiffnesses having the main influence in the bridge response and thus499

reduce the number of parameters θ, a sensitivity analysis is carried out by varying the stiffness value of500

all bearings. Table 3 presents the relative importance of the stiffness parameter for each bearing device501

for the linear FE model. The rotational stiffness of the bearings located on the skewed bridge side show a502

significantly greater importance than the bearings located on the other side. This means that the influence of503

a potential non-linear behavior of the straight-side bearing devices is negligible, and thus, they are modeled504

with linear behavior.505

As a result, the identification parameters of the new model class G3 includes only the stiffness parameters506

of the skewed side and thus, the unknown parameters of the bilinear model are selected only for these bearings.507

This reduces the number of parameters to identify from 49 to 25 (i.e. C1, C2 and ϕ for each bearing on508

the skewed side and the Young’s modulus of concrete) and θ3 = [θrot-1s-C1
, θrot-1s-C2

, θrot-1s-φ, . . . , θconc]ᵀ. In509
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Table 3: Relative importance of rotational stiffness parameter of the 16 bearings. The relative importance

values are averaged over all measurement locations. For the stiffness parameters, the number refers to the

girder and ”s” refers to bridge skewed side.

Stiffness parameter Relative importance

rot-1 1.1 %

rot-2 0.8 %

rot-3 1.3 %

rot-4 1.0 %

rot-5 1.8 %

rot-6 1.5 %

rot-7 1.2 %

rot-8 1.7 %

rot-1s 17 %

rot-2s 8.4 %

rot-3s 8.1 %

rot-4s 8.1 %

rot-5s 11 %

rot-6s 14 %

rot-7s 12 %

rot-8s 11 %
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addition, the modeling uncertainties include the uncertainty associated with stiffness values of linear-behavior510

bearings rot-1 to rot-8:511

Ug3
= Ug2

+

8∑
r=1

Vrot-r (13)512

Since the number of parameters is too high to generate the initial model set using uniform sampling, Latin-513

hypercube sampling is employed to generate the initial model set Ω3 = {Θ3} of nΩ3 = 10, 000 model instances514

of model class G3. However, in this model-falsification step, all model instances are falsified leading to the515

rejection of model class G3. This means that the assumed bilinear behavior of the bearings is an erroneous516

assumption. This implies that the real behavior of the bearing is more complex than this simplified bilinear517

model. In addition, although the corrosion of the bearings is an important source of non-linear behavior, the518

geometrical complexity introduced by the skewed bridge side may also add some difficulties when identifying519

the true behavior of the bearings. Indeed, under some load cases, support reactions under girder 8 appear520

to be negative (uplift). However, bearings were not designed to accommodate such behavior. Even if the521

FE model is modified to include this possibility, it is still not sure that the bilinear behavior is a correct522

assumption. For this reason, the engineer decides to start a fourth iteration of the identification framework523

with a new model class that includes for the non-linear behavior uncertainty of the bearings as a source of524

modeling uncertainty.525

3.4. Identification framework iteration 4526

In this fourth iteration, the engineer decides to estimate the uncertainties associated with the non-linear527

behavior of the bearings in order to include them in a new model class G4. The error due to the non-linear528

behavior is estimated through the comparison of the measured values and a model that behaves linearly with529

respect to the loading. Based on the representation of the relationship between measured displacement and530

truck load, coordinates of points A, B and C are known (see Figure 13). The linear model should pass by
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Figure 13: Schematic representation of the estimation of the error associated with the non-linear bridge

behavior.

531

the coordinates (0; 0) and the point A where the load is caused by the three empty trucks. For this load, the532
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bridge behavior is assumed to be linear. However, since the measured value at point A is associated with a533

measurement error whose upper bound is 0.25 mm. By adding this upper-bound error value to the measured534

value in A, a second point is determined in order to draw the linear model that represents the worst case535

scenario for the error associated with the non-linear behavior. These errors εB and εC are then represented536

by the difference between points B and C and the linear model. These values represent an upper bound537

for the uncertainty. The lower bound is set to 0 and thus the uncertainty associated with the non-linear538

behavior Wnl is assumed to follow a uniform PDF with boundaries 0 and either εB or εC .539

With this additional source, the uncertainties associated with model class G4 become540

Ug4 = Ug3 + Wnl (14)541

The FE model is modified in order to account for linear behavior of the bearings as it was for model class542

G2 such that g4 ≡ g2. The parameters θ4 = [θrot-ext, θrot-int, θconc]ᵀ are the rotational stiffness of the exterior543

bearings, the rotational stiffness of the interior bearings and Young’s modulus of concrete. As determined544

for model class G3, the bearing stiffness of the straight bridge side are included in the uncertainties Ug4
due545

to their low influence on the displacement responses. Thus, only the stiffnesses of bearings located on the546

skewed side are parameter values requiring identification.547

For the next model-falsification step, an initial model set Ω4 = {Θ4} of nΩ4 = 1, 728 model instances is548

generated by dividing the parameter ranges to 11 uniform intervals. Using the ny = 48 measurements of LC-549

1, 2, 3 and 5 and model predictions g4(xkl,Θ4), xkl with k ∈ {1, 2, . . . , 12} and l ∈ {1, 2, 3, 5}, 4 candidate550

models are identified and more than 98 % of the initial population is falsified. Although this means that the551

model class G4 is correct, before making conclusions in the diagnostic step, a study of model-class robustness552

should be carried out due to the high ratio of rejected models.553

3.4.1. Diagnosis robustness554

The sensitivity to erroneous measurements is conducted in order to evaluate diagnosis robustness as555

presented in Section 2.5. Thus, in the first step, ny = 47 measurements corresponding to the removal of a556

single element in the matrix xkl are compared with model predictions for each model-falsification iteration557

assuming that only one measurement may be erroneous. In the second step, each measurement is removed558

one by one for every load case since it is likely that an erroneous measurement remains erroneous during559

other load cases. Thus, for each falsification iteration, a row is removed from the matrix xkl. During the560

two processes, the number of candidate models obtained for each iteration is stored and the sensitivity to561

erroneous measurements can be evaluated through the variation in the number of candidate models.562

Figure 14 shows the result of both processes for model class G4. When removing individually a single563

measurement and thus using ny = 47 measurements, the model falsification leads to the same 4 candidate564

models as found using the set of 48 measurements, except under removal of x2,1 and x2,3 measurements565
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Figure 14: Diagnosis sensitivity to single measurement removal for any load case and for each load case for

model class G4.

referring to sensor D-3-3 under LC-1 and LC-3. The identification results are sensitive to the removal of566

these measurements since the number of candidate models increases to 152 and 36, respectively. In addition,567

when removing the measurements for each load case during the model falsification (comparison of ny = 44568

measurements), each measurement configuration obtained leads to the same 4 candidate models except when569

removing sensor D-3-3 for which the number of candidate models increases to 193.570

This investigation shows a high sensitivity of the diagnostics to sensor D-3-3, particularly under LC-1571

and LC-3. This means that keeping this sensor in the identification process may hide hundreds of possible572

solutions. Since the removal of this sensor for two load cases shows diagnostic sensitivity, a robust approach573

is the removal of this sensor for each load cases and keeping the identification of 193 candidate models as574

the diagnostic result. In addition, the robust set of 193 candidate models includes the 4 candidate models575

previously identified.576

Figure 15 presents a pairwise comparison of the candidate-model parameter values that are identified for577

the three parameters. Each axis represents the initial possible values for every parameter. Although this578

figure shows that the 193 candidate models do not reveal a significant reduction in the parameter ranges,579

it presents a significant reduction in the number of permutations of the interior bearing stiffness values and580

concrete Young’s modulus values. In addition, the pairwise comparison of exterior and interior bearing581

values confirms that they are likely unequal due to the difference of their deterioration state.582

Note that this sensitivity study is also carried out for model class G1 to G3 in order to guarantee that583

a single measurement is not responsible for the model-class falsification. Each process returns an empty584

candidate-model set for any sensor removed ensuring the robustness of the model-class falsification.585
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Figure 15: Pairwise comparison of parameter values that are identified using the identification framework.

3.4.2. Prognosis and next steps586

In the next step, since the diagnostics is adequate, the 193 candidate models are used to predict displace-587

ment for LC-4 and LC-6 and to verify the diagnostics. To do this, the procedure presented in Section 2.6588

is employed with φp = 0.95. In Eq. (8), the uncertainty term Uj,gκ is Uj,g4
− Uj,ŷ, including the measure-589

ment uncertainty, since the prognoses here is compared with measured values. The predicted ranges that590

are bounded by the prediction threshold includes the measured value for all locations. Figure 16 presents591

a prognosis example for sensor D-1-2 under LC-6 as well as the prognosis that is obtained with the initial592

model set (i.e. if structural identification would have not been performed). A high reduction in uncertainty
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Figure 16: Comparison of prediction distribution and measured value for displacement of sensor D-1-2 under

LC-6.

593

is revealed between the initial-model-set and candidate-model-set predictions. However, even after identifi-594

cation the prediction range is large (between −6 and −13 mm). This is due to the modeling uncertainties595

that include the non-linear behavior uncertainty which has a high influence, as presented in Table 4.596

This table shows that the non-linear behavior uncertainty has 25 % importance before identification,597

which is the highest relative importance. However, this uncertainty source cannot be identified as the598

parameters θ4 and cannot be reduced using information provided by measurements. Also, this table depicts599

that the parameter relative importance decreases significantly after identification showing the benefits of600
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Table 4: Relative importances of parameter, modeling and measurement uncertainties for identification

framework iteration 4. The relative importance values are averaged over all displacement measurement

locations.

Uncertainty source Relative importance

Before identification After identification

Exterior bearing rotational stiffness 10 % 5.0 %

Interior bearing rotational stiffness 23 % 6.0 %

Young’s modulus of concrete 12 % 3.0 %

Modeling uncertainties 17 % 23 %

Measurement uncertainties 13 % 21 %

Non-linear behavior 25 % 42 %

structural identification.601

Note also that using the measurements of all load cases (LC-1 to LC-6), model falsification leads to602

the same 4 candidate models obtained using only four load cases. This shows that the four load cases are603

sufficient to identify the structural behavior of this bridge.604

Assuming that a prognosis of the remaining fatigue life is required, it is likely that the prognosis perfor-605

mance will be inadequate by extrapolating results from Figure 16. Indeed, the uncertainty associated with606

the predictions is too large and the source of uncertainty that is responsible for this is difficult to estimate607

for conditions other than those prevailing during monitoring due to the lack of knowledge of the true bearing608

device behavior. Two scenarios may be examined in order to guide the engineer in his decision related to609

the subsequent steps:610

• Scenario I: Prognosis results are required. The next step should be a new monitoring task focusing on611

the bearing-device behavior that will lead to a new diagnostic and a more accurate prognosis.612

• Scenario II: The cause of the non-linear behavior has been identified, and thus intervention is required613

to avoid other bridge components from being damaged by such unexpected behavior. The intervention614

would be the replacement of the bearing devices on the skewed side since those on the straight side615

have shown to have a low influence on the bridge response. Then, further monitoring is required to616

identify a new model class in order to carry out a revised prognosis.617

In such situations, the engineer should compare the costs of both scenarios. Scenario II could be more618

appropriate since bearing devices are likely to be replaced as a result of scenario I.619
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4. Summary and discussion620

This example demonstrated that an iterative process is necessary for acquiring important information and621

knowledge to perform structural identification. Figure 17 summarizes the iterations and the steps required622

in this case study where arrows illustrate decisions of the engineer. Although the case study of US202/NJ23

START
Model

falsification
Modeling

Monitoring

In-situ

inspection 
Modeling

Modeling

Adequate 
diagnostics?

Adequate 
diagnostics?

Adequate 
diagnostics?

Modeling Diagnostics
Adequate 

diagnostics? Prognosis
Adequate 

performance?

 New

monitoring

Model

falsification

Model

falsification

Model

falsification

Modeling

NO: iteration 2

NO: iteration 3

NO: iteration 4 

NO: iteration 5

iteration 1

YES

 ...

full data set

Monitoring

data subset

Monitoring

full data set

Model

falsification

Figure 17: Iterative structural identification process for US202/NJ23 Bridge.

623

Bridge presents a partial structural identification process, it illustrates the process of the engineer acquiring624

knowledge to make better decisions regarding structural health management. Indeed, starting with a naive625

model class originating from his basic knowledge, the iterative process increased the engineer’s knowledge626

of the structural behavior to a state at which a decision is possible. As shown in Table 5, each iteration627

increases the knowledge acquired either by raw information on the structure or interpreting measurement628

data.

Table 5: Summary of the iterative structural identification framework applied to US202/NJ23 Bridge.

Iter. Model class Acquired information Acquired knowledge

1 G1 = {g1(x,θ1)} ∪ {Ug1}a,
θ1 = [θrot, θconc]ᵀ

Ω∗
1 = ∅, measurements,

drawings
Basic knowledge

2 G2 = {g2(x,θ2)} ∪ {Ug1 + Vpier},
θ2 = [θrot-ext, θrot-int, θconc]ᵀ

Ω∗
2 = ∅, deteriorations

(inspection)
Pier-cap crack low impor-
tance, bearing non-linear
behavior

3 G3 = {g3(x,θ3)} ∪ {Ug2 +
∑8
r=1 Vrot-r},

θ3 = [θrot-1s-C1 , θrot-1s-C2 , θrot-1s-φ, . . . , θconc]ᵀ
Ω∗

3 = ∅ Inadequate bilinear behav-
ior

4 G4 = {g4(x,θ4)} ∪ {Ug3 + Wnl},
θ4 = [θrot-ext, θrot-int, θconc]ᵀ

Ω∗
4 = {Θ4}, nΩ∗

4
= 193 Complex non-linear behav-

ior, inaccurate predictions

aUncertainties are composed of numbers #3 to #10 of Table 1.

629
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In such a process, the falsification perspective and engineering heuristics play the main role, since they630

help engineers structure their knowledge through discarding wrong hypotheses about the structural behavior.631

Thus, he could falsify the bilinear behavior model of the bearing and confirm the low influence of the straight-632

side bearing stiffness. This limits interventions to the skewed-side bearing devices. In addition, the low633

influence of pier-cap-cracks on bridge behavior is confirmed by identifying the 193 candidate models and634

thus temporarily rejecting the retrofit of this bridge component.635

For complex structures, the right physics-based model is never uniquely identified. However, using the636

structural identification framework, engineers are supported through reasoning with discrete populations637

of model instances. By testing hypotheses under the form of model classes through the model-falsification638

task, engineers gain a better understanding of the sources of discrepancies between model predictions and639

measurements. Such knowledge may be then helpful for increasing accuracy related to the prognosis task.640

Lack of precise prognosis originates from the fact that given available knowledge, modeling uncertainty is641

too high. Further investigation is required to reduce this uncertainty. While a calibrated model may always642

give an answer, it may not result in reliable structural identification and thus may lead to wrong predictions643

and unnecessary actions, particularly when extrapolating [3, 14].644

Nevertheless, improvements are necessary in order to increase the robustness of the approach. Indeed,645

the non-linear behavior is identified only by LC-1 and LC-5 in addition to LC-2 and LC-3. Without the data646

of these load cases, a wrong model class could have been identified. In addition, the non-linear behavior647

uncertainty would have been difficult to estimate if the static-load test had not been carried out by step-wise648

increases in loading. Thus, more effort is required to determine optimal loading strategies.649

5. Conclusion650

This paper proposes a new iterative structural identification framework for the diagnosis and prognosis of651

existing structures. A full-scale study involving US202/NJ23 Bridge illustrates the benefits of the framework.652

This study leads to the following conclusions:653

• This approach is able to support structural identification through combining engineering heuristics654

with on-site measurements and is robust to modeling systematic uncertainties.655

• The iterative structural identification framework explores the compatibility of several model classes by656

model-class falsification.657

• The study of the bridge in Wayne shows that the modeling uncertainty is dominated by complex non-658

linear behavior of the bearing devices, thereby leading to the need for additional monitoring campaign659

for better identification.660
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with Nonlinear Hysteretic Devices, in: J. Rodellar, A. Güemes, F. Pozo (Eds.), Proceedings of the 6th World Conference691

on Structural Control and Monitoring (WCSCM), Barcelona, Spain, 2478–2488, 2014.692

[11] N. Dubbs, F. Moon, Comparison and Implementation of Multiple Model Structural Identification Methods, Journal of693

Structural Engineering in press (2015) 04015042.694

31
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