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Abstract. In recent years, several RDF Stream Processing (RSP) sys-
tems have emerged, which allow querying RDF streams using extensions
of SPARQL that include operators to take into account the velocity of
this data. These systems are heterogeneous in terms of syntax, capabili-
ties and evaluation semantics. Recently, the W3C RSP Group started to
work on a common model for representing and querying RDF streams.
The emergence of such a model and its accompanying query language
is expected to take the most representative, significant and important
features of previous efforts, but will also require a careful design and
definition of its semantics. In this work, we present a proposal for the
query semantics of the W3C RSP query language, and we discuss how
it can capture the semantics of existing engines (CQELS, C-SPARQL,
SPARQLstream), explaining and motivating their differences. Then, we
use RSP-QL to analyze the current version of the W3C RSP Query Lan-
guage proposal.

1 Introduction

RDF Stream Processing (RSP) systems allow querying streams of RDF data,
extending the SPARQL language with operators that can handle the highly
dynamic and volatile nature of these data sources [3, 6, 10, 1]. These systems are
heterogeneous in terms of syntax and capabilities, due to the choice of operators
and syntax selected to extend SPARQL. In addition, they implement different
evaluation semantics for a set of constructs that may look similar in principle.
However, these engines have different assumptions on how the query processing
and delivery of results take place, which makes it difficult to describe, compare,
understand and evaluate their behavior.

Initiatives have started with the goal of proposing a common model and
query language for processing RDF Streams, converging in the RSP Community
Group of the W3C1. The emergence of such a model is expected to take the
1 W3C RSP Group: http://www.w3.org/community/rsp
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most representative, significant and important features of previous efforts, but
will also require a careful design and definition of its semantics. In this context, it
is essential to lay down the foundations of formal semantics for the standardized
RSP query model, such that we consider beforehand the notions of correctness,
continuous evaluation, evaluation time, and operational semantics, to name a
few.

To address this challenge, we have previously proposed RSP-QL [9], a uni-
fying formal model for representing and querying RDF streams, that reflects
the different semantics of existing RSP systems. RSP-QL extends the SPARQL
model and also takes into account two existing models coming from the stream-
ing data world: CQL [2] and SECRET [4]. This model, which already explains
the heterogeneous semantics of existing RSP systems, can be used as a basis for
the current RSP Group standardization effort. In this paper, we show that the
new language proposed in the RSP Group are covered by the RSP-QL model,
therefore providing a well-founded semantics for it. We also show that this new
language allows covering cases that previous RSP languages are unable or par-
tially able to address.

As running example, consider a social network micro-blogging stream, which
contains microposts emitted by users on different topics. Such stream contains
timestamped sets of RDF triples that represent posts, their authors, topics, etc.,
as in the following RDF stream snippet:

1 :post12 sioc:has_creator :susan [10]

2 :post12 sioc:topic :rsp2015 [10]

3 :post12 sioc:content "Workshop just started" [10]

Listing 1. RDF stream elements: each RDF stream is enriched with a time instant
representing its validity time.

The task we aim at solving is the search of the emerging topics on this
stream. One way of characterizing emerging topics is by finding out those which
are frequently appearing lately, and less before. This apparently simple query
contains some interesting elements that reveal differences among existing RSP
languages, and challenge some of their capabilities. This is first, due to the fact
that it requires looking at the same stream from two different perspectives: in
the one hand it needs to keep track of very recent topics, while on the other
hand needs to be aware of a longer time span, so that it can make sure that the
new topics were not present before. Moreover, as we will see later, current RSP
languages have implicit assumptions on how the results of a continuous query are
streamed out, and how they react to changes on the sliding windows. We showed
previously [9] that the RSP-SQL model is capable of covering these cases, while
–as we will see next– current systems cannot. We also show that existing RSP
languages present limitations that are partially solved by the current proposed
language of the RSP Group, and that the latter is also covered by the RSP-QL
model.

The remainder of this paper is structured as follows. We introduce the RSP-
QL model in Section 2, including its main definitions. In Section 3, we provide



a summary of the main semantic differences between existing RSP languages.
Afterwards, we compare the syntactical limitations of these languages, compared
to RSP-QL model, in Section 4. Section 5 is dedicated to explaining how the
language proposed by the W3C RSP Group covers some of these limitations,
and we show that it is also covered by the RSP-QL model. Finally, we conclude
and provide final remarks on Section 6.

2 RSP-QL semantics

The main difference between RDF Stream Processing and traditional RDF/S-
PARQL processing is given by the time dimension. In RSP, time plays a main
role, and it has to be taken into account in both the data and query models. In
the following, we present extensions of those models, and we will use them in
the remaining of the paper to analyze existing languages.

Data model. The RDF data model does not take into account the time, as
stated in the RDF 1.1 recommendation [13]:

The RDF data model is atemporal: RDF graphs are static snapshots of
information.

For this reason, the RDF data model has to be extended to take into account
the time dimension. We propose two different extensions, that bring data to be
roughly classified in two classes: RDF stream and background data.

An RDF stream is a sequence of timestamped data items (di, ti), where
each di is a RDF statement2 and ti is the time instant associated to di:

S = ((d1, t1), (d2, t2), . . . , (dn, tn), . . .)

Given a RDF stream S, the time stamps are in a non-decreasing order (i.e.
for each i, ti ≤ ti+1). Consumers usually access RDF streams through push
paradigms: they register themselves to the RDF stream producers, and they
start to receive the new streamed data.

Background data identifies the data that does not change (static) or changes
very slowly w.r.t. data stream rate (quasi-static), and it is usually used to solve
more complex queries (e.g., combining a stream of micro-posts with the graphs
of authors) [7]. Background data includes RDF data stored in SPARQL end-
points, RDF repositories and sets of RDF data (that are usually fetched by the
query processor). In this case, the time dimension is pushed through the notions
of time-varying and instantaneous graphs. The former captures the dynamic
evolution of a RDF graph over time: a time-varying graph G is a function that
maps time instants to RDF graphs

G : T → {g|g is an RDF graph}

The latter is the value of G at a fixed time instant t: the instantaneous graph
G(t) identifies an RDF graph.
2 In this work we consider the case where data items are RDF statements.



Query model. The time dimension also affects the query model, moving the
evaluation from one-time paradigm to a continuous one. While SPARQL allows
to issue queries that are evaluated once, RSP-QL allows to register continuous
queries (i.e. issued once) and evaluated multiple times. The answer of a contin-
uous query is composed by listing the results of each evaluation iteration. We
define RSP-QL queries as extension of SPARQL queries, in order to maintain
backward compatibility with the SPARQL query model. The intuition behind
this choice is that the continuous evaluation can be viewed as a sequence of
instantaneous evaluations, so, fixed a time instant, the operators can work in a
time-agnostic way.

A SPARQL query [12] is defined through a triple (E,DS,QF ), where E is
the algebraic expression, DS is the data set and QF is the query form. We ex-
tend this definition for RSP-QL: a RSP-QL query is defined through a quadruple
(SE, SDS,ET,QF ), where SE is an RSP-QL algebraic expression, SDS is an
RSP-QL dataset, ET is the sequence of time instants on which the evaluation
occurs, and QF is the Query Form. While the Query Form values are the same
of SPARQL (i.e. SELECT, CONSTRUCT, DESCRIBE and ASK), dataset and algebraic ex-
pression are extended to take into account the time dimension.

ET is the set of time instants on which the evaluation occurs. This notion is
useful for modelling the RSP-QL query, but it is worth to note that it is hard to
use it in practice when designing the RSP-QL syntax or implementing the RSP
engines. In fact, the ET sequence is potentially infinite, so the syntax needs a
compact representation of this set. Moreover, ET could be unknown when the
query is issued: the time instants on which the query has to be evaluated can
depend on the data in the RDF stream, e.g. the query should be evaluated every
time the window content changes. For this reason, we relate ET to policies,
as defined in SECRET [4]. Policies allow to determine when the query has to
be evaluated, e.g. evaluation can be periodical or can depend on the status of
window content.

A dataset represents the data against which the algebraic expression is eval-
uated. Given that we moved from RDF graphs to time-varying graphs and RDF
streams, the notion of dataset as in SPARQL needs to be extended accordingly.
In particular, fixed an evaluation time instant t ∈ ET , we aim at having a
SPARQL-compliant data set. That is, we need a way to move from time-varying
graphs and RDF streams to RDF graphs. Regarding the former, we already in-
troduced the notion of instantaneous graph, that identifies an RDF graph at
time t; regarding the latter, we use the notion of sliding window to determine
a subset of the RDF stream to be taken into account at time t. A time-based
sliding window W takes as input a stream S and produces a time-varying
graph GW. W is defined through a set of parameters (α, β, t0), where: α is the
width parameter, β is the slide parameter, t0 is the time instant on which W
starts to operate. A sliding window generates a sequence of windows, i.e., por-
tions of data items in the stream that can be queried as RDF graphs. We can
finally define a RSP-QL dataset SDS as a set composed by an optional default
graph G0, n named graphs (ui, Gi) and m named sliding windows over o ≤ m



streams (wi,Wi(Sj)):

SDS ={G0,

(u1, G1), . . . , (un, Gn),
(w1,W1(S1)), . . . , (wj ,Wj(S1)),
(wj+1,Wj+1(S2)), ..., (wk,Wk(S2)),
. . .

(wl,Wl(So)), . . . , (wm,Wm(So))}

An RSP-QL expression uses all the SPARQL operators. As explained above,
fixed an evaluation time t, the RSP-QL dataset SDS can be converted in a
SPARQL dataset, and consequently the SPARQL operators can be used in order
to process it (additional details on the evaluation semantics can be found in [9]).
Additionally, a new class of *streaming operators is introduced: they transform
sequences of solution mappings in sequences of timestamped solution mappings.
Those operators are required to prepare the part of the answer to be appended
to the output stream. These operators have been first introduced in [2], and are
named Rstream, IStream and Dstream. Rstream streams out the computed
set of mappings at each step; its answers can be verbose as the same mapping
could be in different portions of the output stream computed at different steps.
It is suitable when it is important to have the whole SPARQL query answer
at each step, e.g., discover popular topics in the last time period in a social
network. Istream streams out the difference between the current set of solution
mappings and the one computed at the the previous step. In this case, answers
are usually shorter than Rstream ones (they contain only the difference) and
consequently this operator is used when data exchange is expensive. Finally,
Dstream does the opposite of Istream: it streams out the difference between
the solution mappings computed at the previous step and the current one.

3 Heterogeneity in RSP engines

Existing RSP query languages have different underlying semantics, and even
if their syntax is similar, these differences have fundamental consequences at
query evaluation time. This analysis involves the query models of C-SPARQL,
SPARQLstream and CQELS, as well as their query language syntaxes. In the
case of C-SPARQL [3], the stream processor is built on top of Esper3 and Jena,
combining them to process windows over streams with the first, and SPARQL
execution with the second. CQELS [10] has a completely native implementation
aimed at achieving higher performance. Finally, SPARQLstream [5] adopts an
ontology-based data access to stream processing engines through query rewriting.
All these systems support a subset of SPARQL 1.1 operators [14] and they are
heterogeneous in the way they process the RDF streams and report the results.
3 Esper: http://esper.codehaus.org/



Some of the differences in RSP engines are reflected in how the query dataset
is constructed and how the windows are declared. For instance, CQELS as-
sociates a named (time-varying) graph to each window in the query, and the
window content is accessed with the STREAM clause, analogous to the GRAPH in
SPARQL. However, it is not possible to declare the sliding window in such a
way that its content is included in the default graph of the dataset. On the
contrary, C-SPARQL does not allow to name the time-varying graphs computed
by the sliding windows, but all the graphs computed by the sliding windows are
merged and set as the default graph. Similarly, in SPARQLstream named stream
graphs can be declared but not used inside the query body. This allows writ-
ing simpler queries in C-SPARQL and SPARQLstream, as all sliding windows
are declared before the WHERE clause and the data from the streams is available
in the default graph. Nevertheless, this does not allow defining more complex
queries, such as those with multiple sliding windows over the same stream, which
is possible in CQELS.

Regarding the evaluation time of windows, the query models of C-SPARQL,
SPARQLstream and CQELS allow controlling the width and slide of windows.
However, they provide no way to determine the time when the first window opens
(known as t0 in [8]), as this parameter is managed internally by the systems. An-
other important but diverging aspect in available RSP systems, is related to the
report policy and strategy, which are implementation-dependent. This is a major
source of heterogeneity, as these systems do not allow explicitly specifying con-
trol policies and strategies in the query syntax. As analyzed in [8], C-SPARQL
and SPARQLstream adopt a Window Close and Non-empty Content policy to
the windows of the query, while CQELS implements the Content-Change policy,
evaluating the query every time new statements enter the window. Finally, an-
other important feature that is supported differently is the streaming operator,
i.e. Rstream, Istream and Dstream. Only SPARQLstream actually supports them
in its syntax. C-SPARQL implicitly uses only the Rstream operator, streaming
out the whole output at each evaluation, while CQELS works only in Istream
mode. As a result, C-SPARQL answers can be more verbose, as the same so-
lutions can be present in the output stream, computed at different evaluation
times. Conversely, CQELS streams out the difference between the set of map-
pings computed at the last and previous evaluation steps.

4 Syntactical limitations in RSP Languages

The heterogeneity of existing RSP engines described previously is reflected by
their syntaxes. Their different design choices brought differences in the RSP
engines and in their execution models. In this section, we use the RSP-QL model
and the running example described above to highlight those differences. The task
we want to solve is the identification of all the most emerging topics in the last
10 minutes. Emerging topics are identified as those that appear at least a certain
amount of times in the latest 10 minutes, and sensibly less in a longer time span
of 120 minutes.



CQELS. First, we analyze CQELS. In Listing 2, we report the CQELS-QL
query that models the task described above in the running example.

1 CONSTRUCT {?topic a :EmergingTopic}

2 WHERE{

3 STREAM :in [RANGE 120m STEP 10m] {

4 SELECT ?topic (COUNT(*) AS ?totalLong)

5 WHERE { ?m1 sioc:topic ?topic.}

6 GROUP BY ?tlong}

7 STREAM :in [RANGE 10m STEP 10m] {

8 SELECT ?topic (COUNT(*) AS ?totalShort)

9 WHERE { ?m2 sioc:topic ?topic. }

10 GROUP BY ?tshort}

11 FILTER (totalShort-totalLong/12 > threshold)

12 }

Listing 2. CQELS query to find the emerging topics

The query declares two sliding windows over the same input stream :in: the
first, WCQ

l (Line 3), has width αl = 120 minutes and slide βl = 10 minutes;
the second, WCQ

s (Line 7), has width and slide αs = βs = 10 minutes (it is
a tumbling window). Each sliding window contains a subquery to compute the
topics and the total number of their appearances (respectively ?totalLong and
?totalShort). The emerging value is computed at Line 11: if this value is greater
than a threshold value, then the topic is selected as emergent, and it is streamed
out according to the CONSTRUCT clause at Line 1. The RSP-QL dataset of this
query is the following:

SDSCQ = {(wl,WCQ
l (:in)), (ws,WCQ

s (:in))}

The syntax of CQELS-QL brings to assign an implicit name to each sliding
windows (in the example, WCQ

l and WCQ
s ). In other words, it is not possible to

assign explicit identifiers to the sliding windows. In this way, the language gains
in usability, but it forbids to add sliding windows contents to the default graph.

Another limit of CQELS is given by the *streaming operator: as explained
above, CQELS uses an Istream operator to produce the output. That is, it cannot
produce an Rstream with the whole result of each operator. In other words, the
algebraic expressions of CQELS-QL always assume Istream as outer element of
the algebraic expression.

C-SPARQL. The example query cannot be written in one C-SPARQL query, as
the syntax of C-SPARQL does not allow to distinguish among multiple windows
defined over the same stream. Let us consider the query in Listing 3, the RSP-QL
dataset built by the query is the following:

SDSCS = {G0 = {WCS
l (:in),WCQ

s (:in)}

The dataset SDSCS has the two sliding windows in the default graph posi-
tion, i.e., the graphs produced by the sliding windows are merged in the default



graph. In fact, C-SPARQL does not allow to name the sliding windows, and
consequently, the generated windows.

1 REGISTER STREAM :out AS

2 CONSTRUCT {?tshort a :EmergingTopic}

3 FROM STREAM :in [RANGE 120m STEP 10m]

4 FROM STREAM :in [RANGE 10m STEP 10m]

5 WHERE{

6 ?m sioc:topic ?topic.

7 }

Listing 3. C-SPARQL Query: the triple pattern is evaluated against the union of the
two sliding windows

It is actually possible to solve the running example task through a network
of three C-SPARQL queries. First, QCS

1 and QCS
2 process the input stream :in

in order to process the number of topics in the long and in the short windows.
Listings 4 shows QCS

1 .

1 REGISTER STREAM :longStream AS

2 CONSTRUCT {?topic :totalLong ?totalLong}

3 FROM STREAM :in [RANGE 120m STEP 10m]

4 WHERE{

5 SELECT ?topic ((COUNT(?topic) AS ?totalLong)

6 WHERE{ ?m1 sioc:topic ?topic. }

7 GROUP BY ?topic

8 }

Listing 4. C-SPARQL Query QCS
1 : it counts the number of topics in the previous 120

minutes

The query builds a stream :longStream, that brings the topics and the number
of appearance of the topics in the last 120 minutes (according to the sliding
window definition at Line 3). Similarly, query QCS

2 (we omit it for brevity, but
it is similar to QCS

1 – it changes the window size, the name of the output stream
and the property name in the CONSTRUCT close) builds a stream :shortStream with
the topics and their number of appearance in the previous 10 minutes. Those
streams are the input of query QCS

3 , reported in Listing 5, which computes
the trending value of the topics, and add the topic in the output stream :out

if the emerging value is greater than the threshold one (Line 7). In this case,
the output contains the whole list of topics, as C-SPARQL uses Rstream as
*streaming operator.

1 REGISTER STREAM :out AS

2 CONSTRUCT {?tshort a :EmergingTopic}

3 FROM STREAM :longStream [RANGE 10m STEP 10m]

4 FROM STREAM :shortStream [RANGE 10m STEP 10m]

5 WHERE{

6 ?topic :countLong ?totalLong; :countShort ?totalShort.

7 FILTER (?totalShort-?totalLong/12 > threshold)

8 }



Listing 5. C-SPARQL Query QCS
3 : computation of the trending topics

SPARQLstream. The case of SPARQLstream, is similar to the one of C-SPARQL.
Named stream graphs can be declared but the names cannot be used inside the
query body. Therefore, graphs derived by sliding windows are logically merged in
the default graph of the query dataset. As stated before, the Rstream operator
can be explicitly indicated in the query.

5 Analysis of the W3C RSP Query Language proposal

In this section, we briefly analyze the language under development by the W3C
RDF Stream Processing community group4. Listing 6 shows the query that cap-
tures the running example task.

1 REGISTER STREAM :out

2 AS CONSTRUCT RSTREAM{ ?tshort a :EmergingTopic }

3 FROM NAMED WINDOW :lwin ON :in [RANGE PT120M STEP PT10M]

4 FROM NAMED WINDOW :swin ON :in [RANGE PT10M STEP PT10M]

5 WHERE{

6 WINDOW :lwin{

7 SELECT ?topic (COUNT(*) AS totalLong)

8 WHERE { ?m1 sioc:topic ?topic. }

9 GROUP BY ?topic }

10 WINDOW :swin{

11 SELECT ?topic (COUNT(*) AS totalShort)

12 WHERE { ?m2 sioc:topic ?tshort. }

13 GROUP BY ?topic }

14 FILTER(?totalShort-?totalLong)/12 > threshold)

15 }

Listing 6. The running example modelled through the W3C RSP Query Language

Observing the query, it is possible to note that the new language puts together
the features of C-SPARQL, CQELS and SPARQLstream in order to overcome
some of the limits highlighted in the previous sections.

First, the new language allows to declare the *streaming operator (Rstream,
at Line 2). Moreover, the new language allows to build both CQELS and C-
SPARQL data sets: it is possible due to the the sliding windows declarations
in the FROM clause, combined with the use of the NAMED keyword (Lines 3 and 5).
Next, in the WHERE clause, the WINDOW keyword is used to refer to the content of
the named sliding windows (similarly to the GRAPH keyword in SPARQL). The
RSP-QL dataset built by the query is:

SDSRSP = {(:lwin,WRSP
l (:in)), (:swin,WRSP

s (:in))}
4 We refer at the version of the language available at July 2015



Nevertheless, this syntax is not enough to determine a unique query following
th RSP-QL model. As we explained in Section 3, there is no explicit information
to determine which is the report policy and when the sliding windows start to
work (i.e., the t0 value). A possible solution for the latter problem can be the
introduction of a STARTING AT command to express the t0 value. Alternatively, the
language could allow to define a pattern to express the t0 value.

6 Conclusions

In this paper, we presented RSP-QL, a formal query model that extends SPARQL
for evaluating continuous queries over RDF streams. We first used the model to
inspect the query languages of three RSP engines, namely C-SPARQL, CQELS
and SPARQLstream. As we discussed, RSP-QL can capture the semantics of
those different engines and languages. Having well-defined RSP engine models
would enable interoperability through common query interfaces, even if the im-
plementations architectural approaches.

We then used RSP-QL to discuss the language under development at the
W3C RSP Community Group. On the one hand, we provided evidence that
the new language overcomes some limitations of C-SPARQL, CQELS-QL and
SPARQLstream; on the other hand, it still lacks some features that could lead
in misinterpretations and in different implementations. We strongly believe that
those aspects need to be addressed at a syntactic or and semantic level, in
order to guarantee that a query is associated to one RSP-QL query. This would
guarantee the possibility of determining a unique answer given the query and
the data. In this sense, RSP-QL aims at constituting a contribution to ongoing
efforts in the Semantic Web community to provide standardized and agreed
definition of extensions to RDF and SPARQL for managing data streams.

The RSP-QL model can be used, not only to characterize and define new
RDF stream query languages, but also to define and develop new tools and op-
timizations in RSP systems. As an example, in [8] we use RSP-QL to provide
foundations for defining RSP benchmarks that take into account the often dis-
regarded problem of correctness in stream processing. RSP-QL can also be used
to understand the behavior and capabilities of RSP engines, from theoretical to
practical perspectives.

Several challenges are in the scope of future works around the RSP-QL model.
The current version of the model focuses on window-based continuous query
languages, but other paradigms can also be studied, such as those inspired in
Complex Event Processing [1]. This may include the need for studying intervals
on RDF streams and additional operators such as sequences. Furthermore, it
might be worth considering the possibility of implementing an engine that follows
RSP-QL, and validate the execution model. We also foresee to include stream
reasoning in RSP-QL, currently absent in the model, which is one of the key
features of Semantic Web systems [11]. We are convinced that a well-defined and
unified RSP query language will contribute to the overall goal of establishing a
model that is both well-founded and applicable in real RSP systems.
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