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Abstract 

Linear and nonlinear spectroscopy techniques are widely used to study numerous im-
portant chemical and physical processes. However, the interpretation of these experimental 
spectra often becomes very complicated because a particular spectrum constitutes a mere 
footprint of a host of various, possibly intertwined, effects. In this spirit, calculations in the 
time-dependent picture provide a useful tool for decoding such spectra. Nevertheless, the 
ultimate challenge is to devise a theoretical framework that could yield sufficient efficien-
cy as well as accuracy to describe the molecular system of interest in a satisfactory way. 

The strategy is relatively straightforward for low dimensional systems that are directly 
tractable, e.g., with exact quantum dynamics performed on an equidistant grid. Despite the 
formidable overall exponential scaling, these calculations can be significantly accelerated 
by using higher-order split-operator propagation schemes. In general however, one is 
forced to seek an affordable balance between physical accuracy on one hand and computa-
tional efficiency on the other by employing, for instance, some of the techniques from the 
broad family of semiclassical methods based on classical trajectories.  

To this end, the thawed Gaussian approximation (TGA) is combined with an on-the-fly ab 
initio scheme (OTF-AI). The resulting OTF-AI-TGA algorithm is efficient enough to treat 
all vibrational degrees of freedom (DOFs) on an equal footing even in case of larger mole-
cules such as pentathiophene (105 DOFs). Moreover, in sharp contrast to popular ap-
proaches based on global harmonic approximation, OTF-AI-TGA reproduces almost per-
fectly the absorption and photoelectron spectra of ammonia, i.e., spectra with strong de-
pendence on large amplitude motions. 

In addition to the mere reproduction of experimental spectra, a novel systematic approach 
is introduced to assess the importance and the dynamical couplings of individual vibration-
al DOFs. This is in turn used to gain a deeper insight into the associated physical and 
chemical processes by attributing specific spectral features to the underlying molecular 
motion. Specifically, in the case of oligothiophenes, this approach was used to assign the 
dynamical interplay between quinoid and aromatic characters of individual rings to par-
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ticular spectral patterns and, furthermore, to explain the changes in the vibrational line 
shape with an increasing number of rings. 

Furthermore, in systems that are too large to be treated with accurate quantum methods, 
efficient methods such as OTF-AI-TGA are expected to be useful as a preliminary tool for 
identification of the subspace of the important DOFs. On this subspace, one can then un-
leash some of the less efficient yet better-suited methods. In summary, OTF-AI-TGA com-
bined with this novel analysis approach is intended to provide the first crucial step in a 
hierarchical computational protocol for studying large molecules such as dyes. 

 

Keywords: On-the-fly ab initio semiclassical dynamics, accelerating quantum dynamics, 
split-operator method, linear spectroscopy, oligothiophene, ammonia, thawed Gaussian 
approximation 
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Résumé 

Les techniques de spectroscopie linéaire et non-linéaire sont de nos jours très répandues 
afin d'étudier de nombreux processus physique et chimique importants. Cependant, une 
interprétation des spectres obtenus est souvent très compliquée car un spectre donné consti-
tue l'empreinte d'une multitude d'effets différents et éventuellement entrelacés. Dans cette 
optique, effectuer des calculs en utilisant une image temporelle nous fournit ainsi un 
moyen très utile pour décoder de tels spectres. Néanmoins, le but ultime est de concevoir 
une structure théorique qui se veut efficace et précise afin de décrire le système molécu-
laire qui nous intéresse de manière satisfaisante. 

La stratégie à adapter est relativement directe pour des systèmes à faible dimension. En 
effet, ces derniers peuvent facilement être obtenus, e.g., par calcul de dynamique quantique 
exacte sur une grille équidistante. Malgré le fameux mur exponentiel qui est inévitable, ces 
calculs peuvent être très largement accélérés en utilisant des schémas de propagation du 
type split-operator d'ordres supérieurs. Cependant, le scientifique est en général obligé de 
choisir entre la précision physique d'un coté, et l'efficacité computationnelle de l'autre, en 
employant, par exemple, des techniques qui font parties de la grande famille des méthodes 
basées sur le calcul de trajectoires obéissant à des lois de la mécanique classique. 

A cette fin, l'approximation de “thawed Gaussian” (TGA) est combiné à un schéma ab 
initio réalisé à la volée (OTF-AI). L'algorithme résultant, OTF-AI-TGA, est suffisamment 
efficace pour traiter tous les degrés de liberté (DOFs) vibrationnels sur un pied d'égalité 
même dans le cas de grosses molécules comme un pentathiophène (105 DOFs). De plus, 
OTF-AI-TGA est en net contraste avec les approches basées sur l'approximation harmo-
nique globale puisqu'il est capable de reproduire de manière quasiment parfaite le spectre 
d'absorption et le spectre de photoélectron de l'ammoniac, i.e., des spectres qui sont gran-
dement dépendants d'une large amplitude de mouvement. 

En outre, une nouvelle approche systématique vient s'ajouter à la simple reproduction de 
spectres expérimentaux. Cette dernière est introduite afin d'évaluer l'importance et le cou-
plage dynamique de chaque DOF vibrationnel individuel. Elle est à son tour utilisée pour 
acquérir une compréhension plus profonde des processus physiques et chimiques associés 
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en attribuant des caractéristiques spectrales spécifiques au mouvement moléculaire sous-
jacent. Plus spécifiquement, dans le cas des oligothiophènes, cette approche a été utilisée 
pour assigner certains motifs spectraux à l'intéraction dynamique entre les caractères qui-
noïdes et aromatiques des anneaux individuels ainsi que pour expliquer les changements 
dans la forme de la ligne vibrationnelle avec l'augmentation du nombre d'anneaux. 

Pour des systèmes trop larges pour être traités avec les méthodes quantiques précises, des 
méthodes comme OTF-AI-TGA sont attendues à être utilisées comme des objets prélimi-
naires permettant d'identifier le sous-espace des DOFs importants. Sur ce sous-espace, il 
est alors possible d'utiliser une méthode plus coûteuse mais mieux adaptée. En résumé, 
OTF-AI-TGA combinée à cette nouvelle approche d'analyse est destinée à fournir la pre-
mière étape dans un protocole de calcul hiérarchique pour étudier les grandes molécules 
telles que les colorants. 

 

Mots clés: Dynamique semiclassique à la volée ab initio, accelération de la dynamique 
quantique, split-operator, spectroscopie linéaire, oligothiophène, ammoniac, approximation 
de thawed Gaussian 
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 Introduction Chapter 1

1.1 Overview 

Electronic spectroscopy, ranging from simple absorption and emission to multi-photon 
time-resolved spectroscopy, belongs among the most important experimental tools for 
studying chemical and physical processes that occur on the femtosecond (10-15 second) 
time scale. Such ultrafast spectra contain valuable information about the molecular 
structure, electronic states, or underlying dynamics. Theoretical methods then help not 
only to predict the experimentally measured spectra but also to do the nontrivial “decod-
ing” of such spectra by attributing specific spectral features to particular dynamic pro-
cesses, for example. 

Before even starting such simulations, one is faced with two main questions: First, 
which theoretical method reproduces the experimental spectrum with desired accuracy. 
Second, how does the simulation have to be analyzed to gain new insight? Clearly, the 
dimensionality of the system of interest constitutes one of the main limiting factors for 
both questions.  

For low-dimensional systems, the most accurate and straightforward approach is to 
solve directly the time-dependent Schrödinger equation (TDSE) 

 
 
i
d

dt
|ψ (t)〉 = Ĥ |ψ (t)〉.   (1.1) 

We show in Chapter 2 that using higher-order split-operator methods can significantly 
accelerate quantum dynamics performed on a fixed equidistant grid. However, these 
acceleration techniques cannot ameliorate the inherent exponential scaling of the com-
putational costs with dimensionality. Thus the dimensionality of the system is typically 
still limited to a few, say, 5 degrees of freedom (DOFs).  

In practice, one has to resort to methods that provide a good compromise between accu-
racy and computational efficiency. Of these, the broad family of trajectory-based semi-
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classical methods remains a popular choice. Such methods typically employ an ensem-
ble of classical trajectories augmented with a complex phase factor that gives rise to 
interference effects. Although not exact, these methods can describe various quantum 
effects that are inaccessible to standard classical molecular dynamics. It should be noted 
that the accuracy typically deteriorates at longer times. However, thanks to the ultrafast 
character of the dynamics, this is in practice of minor importance.   

Although trajectory-based semiclassical methods tend to be computationally much more 
efficient than full quantum dynamics and, hence, open the door to larger systems, the 
number of classical trajectories required for convergence usually grows rapidly with 
dimensionality. Thus, one is restricted to rather small chemical systems comprised of a 
few atoms. How then to include quantum effects, at least to some extent, in case of large 
systems? We can either use: 

1. Highly efficient multi-trajectory semiclassical methods, e.g., the dephasing rep-
resentation (DR) of quantum fidelity (see Subsection 1.3.1). This semiclassical 
method, for which the number of trajectories required for converging the calcu-
lation is, perhaps counterintuitively, independent of dimensionality. 

2. Semiclassical methods based merely on a single trajectory, e.g., the thawed 
Gaussian approximation (TGA) (see Section 1.4). 

Thanks to their favorable properties, these methods can be applied to molecules as large 
as dyes.  TGA especially is a promising method for computing absorption or emission 
spectra of larger (Chapter 3) and/or floppy molecules (Chapter 4). 

As a crucial ingredient for each method, we have to define the potential energy sur-
face(s) (PESs) – the landscapes, defined by the electrons of the molecule, on which the 
nuclear wave function evolves. Traditionally, one aspires to determine these PESs a 
priori, which introduces a significant practical bottleneck for larger molecules. General-
ly,  evaluations of the PES are required assuming an equidistant grid, an -
dimensional system, and  grid points per dimension. Subsequent interpolation of the 
PES further increases the already formidable computational costs. However, because 
only local knowledge of the PES is required for trajectory-based methods and most 
parts of the PES are not explored at all during the dynamics, one can conveniently em-
ploy an on-the-fly (OTF) scheme. The PES is then computed only where needed and the 
exponential scaling with  is thus avoided. 

The main goal of theoretical studies is to provide new insights into the underlying phys-
ical and chemical processes and not the mere reproduction of experimental results. In 
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contrast to an experimentalist, a theorist has access to a very large amount of infor-
mation that is collected during the dynamics. The analysis of this host of information 
can be then understood, in a modern parlance, as a data-mining problem: How can we 
extract the essential information from the simulation data and how can we transform it 
into an understandable picture? This question is even more important when an OTF 
scheme is used, since then the PES is not explicitly available and the dynamics is the 
only source of information about the system under consideration. In this respect, we 
present a novel approach in Chapter 3 that allows decoding spectra calculated within the 
TGA. In Chapter 5 this framework is further studied within the limit of a harmonic 
model system. 

1.2 Time-dependent picture of linear spectroscopy 
In the time-dependent approach, pioneered by Heller,1 the molecular spectrum is deter-
mined by the Fourier transform of an appropriate correlation function whose shape is 
modulated by the nuclear motion induced by the electronic excitation. While the time-
dependent and time-independent approaches provide complementary pictures for linear 
spectroscopy, the former is the obvious natural choice for time-resolved spectra. 

Here, we briefly illustrate the theoretical framework of linear spectroscopy formulated 
in the wave-packet language2-3 using the example of electronic absorption. We follow 
closely the derivation presented in Ref. [4], in which, however, a more general treat-
ment on the basis of density-operator formalism is used.  

In the following, we consider the total Hamiltonian to be of the form 
, where  represents the time-independent molecular Hamiltonian and  

describes the interaction of the molecule with a classical electromagnetic field. Here, we 
are interested in electronic transitions in the range of visible or UV light. Therefore, we 
can invoke the electric-dipole approximation, which is valid if the characteristic wave 
length is much larger than the spatial extent of the molecule, i.e., the spatial part of the 
radiation field is approximated by . Further, assuming linearly polarized elec-

tric field , the interaction potential  takes a simple form 

  V̂int (t) = −μ E(t),   (1.2) 

where  is the molecular electric dipole operator projected on the unit polarization vec-
tor , i.e., 

   μ = μ ⋅ε.  (1.3) 
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The rate of change of the molecule’s energy  in state  is easily evaluated 
as the time derivative of the expectation value of the total Hamiltonian 

 
 

d

dt
H tot (t) =

d

dt
〈ψ (t) |H tot (t) |ψ (t)〉 = −P(t) d

dt
E(t),   (1.4) 

where we introduced the polarization 

 P(t) = 〈ψ (t) | μ̂ |ψ (t)〉.   (1.5) 

The total energy absorbed per unit frequency is then found by expressing the right hand 
side of Eq. (1.4) in the frequency domain. The unitarity of the Fourier transform and the 
Fourier-derivative relations readily yield 

 
 
ΔH (ω ) = −2πω Im P(ω )* E(ω )⎡⎣ ⎤⎦.  (1.6) 

The spectrum, or more precisely, the frequency-dependent cross section for the energy 
transfer from the field to the molecule is then given by  

 

 

σ (ω ) = ΔH (ω )
I0 (ω )

= − 4πω
c

Im P(ω )* E(ω )⎡⎣ ⎤⎦
E(ω )

2 ,  (1.7) 

where  denotes the speed of light in vacuum and the incident energy per area 

 is found by integrating the incident energy flux 

 over all times.  

It should be noted that the nonperturbative expression for the spectrum in Eq. (1.7) re-
tains its validity independent of the strength and/or character of the field. Moreover, it is 
applicable to linear as well as nonlinear phenomena.  

The time-dependent polarization of Eq. (1.5) constitutes the crucial, and in general 
computationally costly, ingredient for the evaluation of the spectrum in Eq. (1.7). For 
weak interactions, one can employ the time-dependent perturbation theory (TDPT) and 
expand the polarization  in a perturbative manner. The first two leading terms are 

  P
(0)(t) = 〈ψ (0)(t) | μ |ψ (0) 〉   (1.8) 

  P
(1)(t) = 〈ψ (0)(t) | μ |ψ (1) 〉 + c.c.   (1.9) 
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,where  denotes the th term in the expansion of the wave function in a power se-
ries in , i.e., The even-order terms, notably , vanish in 
isotropic media when averaged over the orientation of the molecule (or, equivalently, 
over the orientation of the unit polarization vector ). Therefore, the first-order polariza-
tion  is of primary interest. To demonstrate its evaluation on a particular exam-
ple, we consider absorption in a two-level system where the levels are coupled exclu-
sively via the electric field and only the ground state is initially populated, i.e.  

 

Ĥmol =
Ĥg 0

0 Ĥe

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
,

V̂int =
0 −μ̂ge E(t)

−μ̂eg E(t) 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

ψ (0) =
|ψ g (0)〉

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 (1.10) 

Now, the chief contribution to the  absorption process originates in the first term 
of the right-hand side of Eq. (1.9). In the setting of Eq. (1.10), we denote this term as 

. Within TDPT we directly obtain 

 
 
Pge
(1)(t) = i

dt ' E(t − t ')Cμ (t ')
0

∞

∫   (1.11) 

  Cμ (t) = 〈ψ g (0) | e
iH gt / μgee

− iH et / μeg |ψ g (0)〉,   (1.12) 

where  is the so-called dipole time autocorrelation function. To calculate the ab-

sorption spectrum via Eq. (1.7) we need to express  in the frequency domain. 

Thus, we first introduce the causal form of , namely

 Sμ (t) =
Cμ (t) t > 0

0 t < 0

⎧
⎨
⎪

⎩⎪
,  (1.13) 

since this permits to express  as a convolution, i.e., . Fou-

rier convolution theorem then immediately yields the desired spectral representation of 
the first-order polarization as 
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Pge
(1)
(ω ) = 1

2π
Pge
(1)(t)eiωt dt = 2πi E

−∞

∞

∫ (ω )Sμ (ω ). (1.14) 

The linear absorption spectrum, still assuming a fixed orientation of the molecule, is 
then given by combining Eqs. (1.14) and (1.7) 

 
 
σ abs (ω ) =

8π 2ω
c
Re Sμ (ω )⎡⎣ ⎤⎦ =

2πω
c
Re Cμ (t) e

iωt dt
0

∞

∫ .   (1.15) 

Note that the final expression for the absorption spectrum does not contain any explicit 
dependence on the field. Equation (1.15) is thus valid for pulsed as well as continuous-
wave experiments. In isotropic media, an experimentally accessible spectrum  is 
obtained by averaging  over all orientations of the molecule. However, this averag-

ing produces merely a constant scaling factor, namely, .  

Further assuming that the transition dipole moment is coordinate independent, i.e. 
, which is known as the Condon approximation, the dipole time autocorrelation 

function [Eq. (1.12)] simplifies as 

 Cμ (t) = μ 2
f (t)   (1.16) 

  f (t) = 〈ψ (0) | eiH gt / e− iH et / |ψ (0)〉,   (1.17) 

where the correlation function  may be called “fidelity” amplitude (see Section 1.3.1). 
The well-known equation relating the spectrum to the Fourier transform of the autocor-
relation function  

  C(t) = 〈ψ (0) | e− iH et / |ψ (0)〉   (1.18) 

 follows then from employing the low temperature limit, i.e.  :  

 
 
σ iso,abs (ω ) = Aω Re C(t) eit (ω+E0 / )

0

∞

∫  , (1.19) 

where  is a constant prefactor and represents the energy of the vi-
brational ground state of the ground electronic state. 

In summary, the TDPT picture significantly simplifies interpretation of the absorption 
spectrum by providing the connection with the Fourier transform of the corresponding 
autocorrelation function that is determined by nuclear motion on the excited electronic 
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surface. Analogously, the correlation function relevant for emission spectrum is com-
puted by propagating ground vibrational state of the excited electronic state on the 
ground electronic surface. Finally, let us note that for calculations of nonlinear spectra, 
such as time-resolved stimulated emission spectra, the polarization  has to be expand-
ed to third order. 

1.3 Multi-trajectory semiclassical methods 

The following section summarizes various semiclassical methods based on classical 
trajectories applicable for evaluation of the correlation function in Eq. (1.17) central to 
the previous section. While the dephasing representation detailed in Subsection 1.3.1 
provides an approximation directly for the correlation function  [Eq. (1.17)], the 
Herman-Kluk propagator and frozen Gaussians approximation (FGA) constitute “dy-
namical methods”, i.e., the two copies of the initial state in Eq. (1.17) are independently 
propagated with two different Hamiltonians, and the correlation function  is then 
evaluated explicitly as an overlap of the evolving states. 

Although the semiclassical Van Vleck propagator5 had been known for decades, the 
numerical difficulties associated with its direct application amplified by the limited 
computational power at that time hindered its widespread use in practical calculations. 
In the now seminal paper by Herman and Kluk,6 the authors proposed to formulate the 
propagator (HK propagator) in a “mixed representation” of coherent states. In this spirit, 
the evolving state is represented as a superposition of independent (uncoupled) Gaussi-
ans 

 
 
〈q | qt , pt 〉 = detγ

π D

⎛
⎝⎜

⎞
⎠⎟
1/4

exp −(q − qt )T ⋅ γ
2
⋅(q − qt )+ i

(pt )T ⋅(q − qt )⎡
⎣⎢

⎤
⎦⎥

 (1.20) 

the phase-space centers  of which are guided by classical trajectories and 
each Gaussian is moreover equipped with a phase and a complex prefactor.6-9 Formally 

 
 
|ψ (t)〉 = 1

2π
⎛
⎝⎜

⎞
⎠⎟
D

d∫ q0dp0C(q0, p0,t)e
i
Scl (q

0 ,p0 ,t )
| qt , pt 〉〈q0, p0 |ψ (0)〉,  (1.21) 

where  denotes the classical action and the prefactor  reads 

 
 
C q0, p0,t( ) = det 1

2
Mqq

t +Mpp
t + γ

i
Mqp

t + i

γ
Mpq

t⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1/2

  (1.22) 
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Here, is the stability matrix that indicates the “sensitivity” of a given 
trajectory with respect to the initial conditions. 

The prefactor  constitutes a significant computational bottleneck because its 
evaluation requires the stability matrix which in turn necessitates evaluation of the Hes-
sians. Unfortunately, already relatively low-dimensional systems seem to require a ra-
ther high number of trajectories to achieve convergence.10-11 To alleviate this difficulty, 
Tatchen et al.12 proposed the “poor-person's HK propagator” within which the prefactor 
is assumed to be common for all Gaussians (trajectories), i.e., only one Hessian per step 
is required. Alternatively, one can also profit from the log-derivative formulation of the 
prefactor as suggested by Gelabert et al.13 or various other techniques such as time aver-
aging,14 time slicing,15or smoothening of the integral over initial conditions in terms of 
(generalized) Filinov filter.16-17 

The main prescription for the HK propagator [Eq. (1.21)] closely resembles the “Frozen 
Gaussians approximation”.18 Within this approach, the evolving state is also represented 
as a superposition of independent Guassians as in Eq. (1.20), however, there is no addi-
tional prefactor and the classical action is replaced with an “effective” action that is 
“non-local”. In general, it is necessary to calculate this ingredient approximately, e.g., 
by applying local harmonic approximation to the potential. Thus, it is tempting to in-
voke the HK propagator [Eq. (1.21)] ignoring the prefactor altogether. Although this 
“unit-prefactor” HK propagator12 rapidly looses normalization per se, it was used suc-
cessfully in ab initio setting to reproduce the absorption spectrum of formaldehyde.19 
However, around 6000 trajectories were required in this 6-dimensional on-the-fly calcu-
lation.  

1.3.1 Dephasing representation of quantum fidelity 

The dephasing representation20-22 (DR), inspired by the semiclassical perturbation theo-
ry of Miller and coworkers,23-24 is a semiclassical approximation for quantum fidelity 

, which has been introduced by Peres25 to measure the sensitivity of quantum dy-
namics to perturbations. This quantity is defined as the time-dependent overlap of two 
copies of an initial state propagated with an unperturbed Hamiltonian  and a per-
turbed Hamiltonian : 

 
 
FQM = 〈ψ (0) | eiH 2t / e− iH1t / |ψ (0)〉

2

= f (t)
2
.   (1.23) 



 

9 

We see directly that  can be interpreted as the square of the time-correlation func-
tion [Eq. (1.17)] employed in electronic spectroscopy. We can then approximate this 
time-correlation function by the DR amplitude , which is expressed as an interfer-
ence integral over “dephasing trajectories” with initial conditions  and 
weighted by the Wigner function  of the initial state  

 

 

fDR (t) = dx0 ρW (x
0 )e− iΔS(x

0 ,t )/∫
ρW (x

0 ) = h−D dsψ * q + s
2

⎛
⎝⎜

⎞
⎠⎟ψ q − s

2
⎛
⎝⎜

⎞
⎠⎟ exp i

q p⎛
⎝⎜

⎞
⎠⎟∫

 . (1.24) 

The phase is given by the time integral  of the poten-

tial difference along the trajectory with initial condition  propagating on the average 
potential . 

In electronic spectroscopy, closely related approximations like Mukamel’s phase aver-
aging,26-27 Wigner-averaged classical limit, or linearized semiclassical initial value rep-
resentation28-29 have been used by several authors.28-34 DR also has many other applica-
tions—it provides a measure of the accuracy of quantum molecular dynamics on an 
approximate potential energy surface35-36 or describes the transition from the Fermi-
Golden-Rule to the Lyapunov regime of fidelity decay in the field of quantum chaos.37-

40 Its generalization to multiple surfaces is important in the study of nonadiabatic ef-
fects: It has been used to measure the dynamical importance of diabatic,41 
nonadiabatic,42 or spin-orbit couplings.43 Furthermore, by using multiple-surface DR, 
non-adiabatic effects have been included into absorption and time-resolved stimulated 
emission spectra computations of pyrazine.4  

Mollica and Vanicek44 have shown analytically that the number of trajectories required 
for convergence of Eq. (1.24) is independent of the system’s dimensionality, Hamiltoni-
an, or total evolution time. Furthermore, the computational efficiency of the DR can be 
further increased in the spirit of Heller’s cellularization,45 in which the contribution of 
neighboring trajectories is considered analytically.46-48  

Here, we want to briefly describe the drawbacks of DR for computing electronic spectra 
of isolated molecules. Consider two electronic potentials each described by a harmonic 
model. It has been shown that DR is exact in displaced harmonic oscillators.26-27  How-
ever, if these harmonic potentials are not displaced, but their force constants are differ-
ent, the DR breaks down. This situation is common in molecular systems because only a 
few DOFs are strongly affected, e.g. displaced, by a (de)excitation. The remaining 



 

10 

DOFs are “silent”, and their frequencies are only slightly perturbed. But these silent 
DOFs introduce decay in DR, and therefore, the information about the interesting DOFs 
is covered.  

Figure 1 demonstrates this effect:  decays when one DOF with perturbed fre-
quency is added, whereas the corresponding  oscillates closely to 1. This decay 
introduces an artificial broadening in the spectrum.  Therefore, the bigger the molecule, 
the faster DR decays and the broader is the spectrum. Hence, DR is not well-suited for 
linear spectroscopy, e.g. absorption and emission, because one is often interested in vi-
brationally resolved spectra. In the case of time-resolved electronic spectra, the energy 
resolution is less important than its time-dependence, which is well reproduced by DR.  

Figure 1: Influence of perturbing the harmonic force constant on the correlation function computed 

with dephasing representation (DR) [Eq. (1.24)]. In the one-dimensional harmonic model (1D), 

ground state  and the excited state  are displaced ( ). Both states have the same harmonic 

force constant . For the two-dimensional model (2D), a further dimension is added 

that is characterized by a change in the force constants between the states, i.e., , , 

and by no displacement . This new degree of freedom affects strongly the DR result, where-
as the exact quantum (QM) correlation function is only slightly perturbed. 

Zambrano and Ozorio de Almeida49 proposed a prefactor that qualitatively corrects—at 
least in some cases—the artificial decay of DR. However, the cost per trajectory as well 
as the required number of trajectories increase significantly.46 

1.4 Thawed Gaussian approximation 

Another possibility to compute vibronic spectra for large molecules is to use semiclassi-
cal methods based on one trajectory like the celebrated thawed Gaussian approxima-
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|f
(t
)|

Time

QM (2D)
DR (2D)

QM or DR (1D)



 

11 

tion50-51 (TGA) of Heller. TGA belongs among the earliest practical semiclassical ap-
proaches to quantum dynamics. The main idea is exceedingly simple—since a Gaussian 
wave packet (GWP) evolving in a globally harmonic potential retains its functional 
form, one expects that propagating a single thawed GWP using a local harmonic ap-
proximation for the potential can provide a reasonable approximation in many applica-
tions. This is especially true when the dynamics of interest have ultrafast character.  

Within TGA, the evolving GWP is assumed to take the form of 

 
 
ψ t (q) = N 0 exp −(q − qt )T ⋅At ⋅(q − qt )+ i

(pt )T ⋅(q − qt )+ γ t⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

, (1.25) 

where  is a normalization constant,  denotes the GWP’s phase-space 
center,  is a complex, symmetric width matrix, and  represents an overall phase 
factor. Note that  is a time-dependent complex number. Its imaginary part guarantees 
normalization of  for . The key ingredient of the method consists in express-
ing the potential  in the local harmonic approximation (LHA). This in turn yields a 
time-dependent effective potential  

 Veff
t (q) =V |

qt
+ gradqV |qt( )T ⋅ q − qt( ) + 1

2
q − qt( )T ⋅HessqV |qt ⋅(q − qt ).  (1.26) 

Here, the potential , gradient , and Hessian  are evaluated at 

the current coordinate center  of the evolving GWP at time . As already alluded to 
above, the second-order Taylor expansion (1.26) ensures that the ansatz (1.25) is plausi-
ble even for . Denoting by  

 H eff
t := pT ⋅(G−1 / 2) ⋅ p +Veff

t   (1.27) 

the effective Hamiltonian and inserting the ansatz (1.25) into the TDSE  

 
 
i

∂
∂t
ψ t (q) = H eff

t ψ t (q),   (1.28) 

gives equations of motion for , , and :   

  x
t = {x,H eff

t },   (1.29) 

 
 
At = −2i At ⋅G−1 ⋅At + i

2
∇2V (qt ),   (1.30) 
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   γ
t =Leff

t − 2 Tr[G−1 ⋅At ],   (1.31) 

where  is the mass matrix and  denotes Lagrangian dual to . Numerical integra-
tion of the classical equations of motion (1.29) is easily carried out in a symplectic fash-
ion. In order to integrate Eq. (1.30), Lee and Heller51  proposed to factorize matrix  by 
two auxiliary matrices  and  as 

 
 
At = − i

2
Pt ⋅ Zt( )−1 .   (1.32) 

Since this decomposition is clearly not unique, a further constraint is imposed, namely  

  Z
t =G−1 ⋅Pt .   (1.33) 

In matrix notation, the unique solution of Eqs. (1.32) and (1.33) can be written as  

 Zt

Pt

⎛

⎝
⎜

⎞

⎠
⎟ =M

t ⋅ Z 0

P0
⎛

⎝
⎜

⎞

⎠
⎟ ,   (1.34) 

with initial conditions  and . The time-dependent matrix 
 is the stability matrix corresponding to the evolving phase-space point . 

Finally, by inserting Eqs. (1.32) and (1.34) into Eq. (1.31) and by employing the matrix 
identity , one directly obtains an explicit solution for  in the 
form  

 
  
γ t = Leff

τ dτ
0

t

∫ + i
2
ln(detZt ).   (1.35) 

The real part of the complex number  represents an overall phase factor while its im-
aginary part guarantees normalization of  for . Note that since the matrix  
is complex, one has to ensure that a proper branch of the logarithm be taken to make  
continuous in time. 

If the potential happens to be globally quadratic, the effective potential of Eq. (1.26) 
ceases to be time-dependent because the particular point with respect to which one con-
structs the Taylor expansion is irrelevant. Also, the classical phase-space trajectory  
and the stability matrix  are in this case easily accessible analytically.  

Although the accuracy of the single GWP description is clearly limited and its error 
increases in time, effects of anharmonic or double-well potentials are, at least, partially 
captured by TGA. More importantly, TGA can treat all vibrational degrees of freedom 
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on an equal footing even in a large system due to its moderate computational cost. Fur-
thermore, the single GWP dynamics provides a tractable picture and interpretation of 
rather complicated physical processes such as absorption, emission and Raman spec-
troscopy.1, 51-55 

1.5 On-the-fly scheme 

Traditional quantum dynamics requires an a priori determination of the PESs. As men-
tioned above, this constitutes a computational bottleneck especially for larger systems 
unless the PESs can be described, e.g., by global harmonic approximation. For trajecto-
ry-based methods such as classical molecular dynamics, semiclassical dynamics, or 
methods employing Gaussian basis sets, an alternative strategy is to use an on-the-fly 
(OTF) scheme. 

Within OTF, also known as direct, scheme,56-57 the PESs are evaluated only where 
needed by solving the electronic Schrödinger equation at the relevant nuclear geometry 
using ab initio (AI) electronic-structure methods. Employing the Born-Oppenheimer 
approximation, the time-dependent Schrödinger equation for the nuclear wave packet 
reads  

 
 
i
∂ψ (t,R)

∂t
= T̂ +V (R)⎡⎣ ⎤⎦ψ (t,R),   (1.36) 

where   is the nuclear kinetic energy operator and  denotes a particular geometry of 
the nuclei. The effective potential energy  for given  is obtained by solving the 
electronic time-independent Schrödinger equation 

 Ĥ el (r;R)ψ el (r;R) =V (R)ψ el (r;R),   (1.37) 

where el denotes the electronic Hamiltonian describing electron-electron, electron-
nuclear, and nuclear-nuclear interactions as well as the electronic kinetic energy. Note 
that the electronic wave function el depends on the nuclear geometry  only paramet-
rically. Within the Born-Oppenheimer approximation, the couplings between the elec-
tronic states corresponding to different solutions in Eq. (1.37) are neglected, and there-
fore the nuclear motion follows a specific electronic state. These couplings would give 
rise to non-adiabatic effects that are beyond the scope of this work.  

Equation (1.37) is solved approximately during the nuclear dynamics by standard soft-
ware packages tailored for electronic-structure calculations. For a given nuclear geome-
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try , these packages typically provide the energy, the gradient, and, if required, even 
the more expensive Hessian.  

OTF-AI simulations are conceptually simple, but the “art” consists in the design of the 
ab initio setup. This controls the accuracy to which Eq. (1.37) is solved as well as the 
overall computational costs. Whereas highly accurate electronic structure methods com-
bined with large basis sets are affordable for smaller molecules and/or methods based 
on a few trajectories, one is forced to seek an optimal balance between accuracy and 
computational efficiency for larger molecules. This is especially true when excited state 
calculations are involved for which less efficient electronic structure methods are avail-
able. Here, the ab initio level of theory has to be chosen with great care.  

In an OTF-AI dynamics, the required potential information is provided in Cartesian 
coordinates  at each propagation step by an electronic-structure package. In contrast to 
classical trajectory propagation, which necessitates only evaluation of the force, TGA 
(among other semiclassical methods) requires repeated evaluation of the Hessian along 
the evolving trajectory because the Hessian is needed for propagation of the stability 
matrix .  

1.5.1 On-the-fly ab initio thawed Gaussian wave packet dynamics 

In the case of OTF-AI-TGA, the evolving GWP is properly defined only in the subspace 
of the vibrational degrees of freedom of the molecule of interest. Therefore, a germane 
choice of the coordinate system is essential. We illustrate the procedure employed in the 
numerical calculations done in Chapter 3 and in Chapter 4 on a specific scenario of two 
PESs—ground and excited. The initial GWP corresponding to the ground vibrational 
state of the ground PES is subsequently propagated on the excited PES. We published 
this framework in Ref. [58]. 

Let us consider a reference equilibrium geometry  on the ground PES where  is a 
Cartesian -vector with  denoting the number of atoms in the molecule. Any dis-
placed molecular configuration  obtained, e.g. by propagation on a different PES, can 
be related to the normal-mode coordinates  as  

 ξ −ξref =G
−1
2 ⋅O ⋅η =T ⋅η,  (1.38) 

with  and  denoting the orthogonal matrix that diagonalizes the mass-
scaled Cartesian Hessian matrix evaluated at , i.e., . Here, 
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 is the diagonal matrix containing the normal-mode frequencies. 
Note that  in Eq. (1.38) has  components, i.e., also incorporates the 3 translational 
and 3 rotational degrees of freedom. However, the initial values of these displacements 
are zero and one would also like to preserve this constraint during the dynamics on the 
excited PES. The translational modes are easily projected out by shifting the center of 
mass to the origin of the Cartesian frame of reference. Next, to minimize the coupling to 
the remaining 3 rotational modes, we closely follow the axis-switching procedure de-
vised by Hougen and Watson.59-60 In this spirit, any displaced configuration  is rotated 
relatively to  in order to satisfy Eckart’s conditions:  

 ma (Pa ⋅ξref )× Pa ⋅(Λ⋅ξ )] = 0
a=1

N

∑ .   (1.39) 

In Eq. (1.39), the sum runs over all  atoms,  is a  block-diagonal matrix, 
where each of the  blocks is a copy of a -dimensional rotation matrix , and the 

 matrix  is defined as . Application 
of  to a configuration  essentially selects coordinates of the th atom. Having mini-
mized the coupling to the rotational modes, one can afford to consider in Eq. (1.38) only 
the first  columns of the matrix . In that case, the transformation matrix  
also reduces to a  form. Kudin and Dymarsky showed61 that the rotation 
matrix  solving Eq. (1.39) can be obtained by minimizing the mass-weighted root-
mean-square distance of  with respect to the reference configuration . In practice, 
this is efficiently achieved by employing direct methods based on singular value de-
composition or quaternion formalism.62-63 

The transformation from the Cartesian to the vibrational normal-mode coordinates is 
thus performed in three consecutive steps. First, the configuration  is shifted to the 
center-of-mass system. Second, it is rotated to the Eckart frame, and finally it is project-
ed onto the vibrational normal modes, i.e.,  

 η =W ⋅ Λ ⋅ ξ − Δ( )−ξref⎡⎣ ⎤⎦,   (1.40) 

where  and the center-of-mass vector  is defined as  

 Δ :=
a=1

N

∑Pa⎛
⎝⎜

⎞
⎠⎟

T

⋅
a=1

N

∑maPa ⋅ξ
a=1

N

∑ma .   (1.41) 

Finally, one also needs to express the Cartesian gradient  and the Cartesian Hes-
sian matrix  in the -coordinates:   
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 gradηV = gradξV ⋅(W ⋅Λ)T ,   (1.42) 

 HessηV = (W ⋅Λ) ⋅HessξV ⋅(W ⋅Λ)T.   (1.43) 

Every step in an OTF-AI-TGA calculation is well defined—there is no “free parameter” 
to be set up. First, an optimization followed by a frequency computation are performed 
on the initial electronic surface using an ab initio electronic structure package to deter-
mine the initial wave packet and the normal mode coordinates. Second, the geometries, 
gradients, and Hessians along the trajectory propagated on the final electronic state are 
evaluated in Cartesian coordinates by an ab initio electronic structure package and then 
transformed to normal mode coordinates using Eqs. (1.40), (1.42), and (1.43).

In practice, the ab initio results evaluated along the trajectory are stored for two reasons: 
First, the OTF-AI-TGA calculations can be further accelerated by using an interpolation 
scheme for the expensive Hessians (see Subsection 3.3.2). Second, the analysis of the 
GWP dynamics using the approach introduced in Subsection 3.3.3 requires reevalua-
tions of the dynamics on different subspaces.  

The main idea for constructing the OTF-AI-TGA framework was to compute electronic 
spectra of molecular systems that are not accessible by traditional semiclassical meth-
ods. In Chapter 3 we show via the emission spectra calculation of oligothiophenes, that 
OTF-AI-TGA is efficient enough for molecules up to 37 atoms. We also test a common 
situation among floppy molecules. The excitation from an electronic state with a single 
minimum on a final electronic state features double minima along non-totally symmet-
ric modes. The excited (totally symmetric) DOFs are, however, rather harmonic in the 
case of oligothiophenes. Therefore, the performance of OTF-AI-TGA in the case of 
large amplitude motions is addressed in Chapter 4. In addition, the limit of OTF-AI-
TGA for describing higher-resolved spectra where long time dynamics is required is 
probed in Subsection 4.5.2.  

1.5.1.1 Computational protocol 

Even though OTF-AI-TGA is an efficient semiclassical method, the associated ab initio 
computations can still pose significant bottleneck, especially for larger molecules. One 
is thus forced to optimize the computational protocol within the limits of the available 
computational resources. Therefore, we usually first propagate the classical ab initio 
trajectory since this requires only the evaluation of the gradient. This step is performed 
using our in-house code ‘Dynamics’ that provides an interface to quantum chemistry 
codes in terms of a collection of Perl scripts. In the next step, the expensive ab initio 
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Hessian evaluations are dealt with in a parallel fashion in order to fully profit from the 
available HPC infrastructure. The CPU time per step for various on-the-fly calculations 
can be found in Table 1.   

Finally, the ab initio data (in Cartesian coordinates) are assembled into a single data-
base. The TGA dynamics (Section 1.4) and the required Cartesian to normal-mode co-
ordinate transformation [Eqs. (1.40), (1.42), and (1.43)] are then performed by reading 
the constructed database using a code written in Wolfram Mathematica.64 Mathematica 
provides many powerful functions for computation and visualization that are especially 
useful for analyzing spectra computed with OTF-AI-TGA (Subsection 3.3.3).  

Table 1: CPU time in second for gradient or Hessian evaluations performed with Gaussian09 
package65 for different OTF-AI-TGA calculations presented in this thesis. These calculations were 

done on an AMD Opteron 2427 CPU running at 2.2 GHz. 

Molecule Ab initio setup Gradient CPU time [sec.] Hessian CPU time [sec.] 

Dithiophene 

(Chapter 3) 

CAM-B3LYP/6-31+G(d,p) 50 430 

Pentathiophene 

(Chapter 3) 

CAM-B3LYP/6-31+G(d,p) 460 6900 

 MP2/ aug-cc-pVTZ 100 1520 

 

(Chapter 4) 

CCSD/ aug-cc-pVTZ 3180 172920 
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 Accelerating calculations of Chapter 2
ultrafast time-resolved electronic spectra 
with efficient quantum dynamics methods  

The motivation for this work was twofold: First, speeding up the full quantum 

calculation and, second, to use it as a reference for various semiclassical approxima-

tions. The semiclassical methods have been implemented by M. Šulc, whereas I extend-

ed our in-house code with new split-operator methods needed for accurate quantum cal-

culations. The two-dimensional model potentials for the ground and excited electronic 

states of a collinear NCO molecule were small enough to converge all semiclassical 

approximations, but not too trivial to preclude reliable conclusions. The content of this 

chapter has been published in the CHIMIA issue dedicated to NCCR-MUST: “A New 

Swiss Research Priority in Molecular Ultrafast Science and Technology".11 

2.1 Abstract 

We explore three specific approaches for speeding up the calculation of quantum time 
correlation functions needed for time-resolved electronic spectra: The first relies on 
finding a minimum set of sufficiently accurate electronic surfaces. The second approach 
increases the time step required for convergence of exact simulations by using different 
split-step algorithms to solve the time-dependent Schrödinger equation. The third ap-
proach lowers the number of trajectories needed for convergence of approximate semi-
classical dynamics methods.  
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2.2 Introduction 

Typical chemical reactions occur on the femtosecond (fs) time scale. In order to under-
stand the reaction process in detail, one needs to observe it with a femtosecond time 
resolution. Once a femtosecond time-resolved spectrum is obtained, however, it is often 
nontrivial to translate the spectrum into a picture of the quantum dynamics (QD) occur-
ring during the reaction. For a theorist, on the other hand, the dynamical picture is fre-
quently the starting point. While the time-dependent picture is extremely useful even for 
understanding continuous wave spectra,1 for time-resolved spectra it is obviously a nat-
ural choice. Instead of inferring the dynamics of the system from the measured spectra, 
the theorist does exactly the opposite: he or she computes the QD first and converts it to 
a time-resolved spectrum later. The main problem is the calculation of a certain time-
correlation function; the spectrum is then obtained easily by a Fourier transform. E.g., 
for the pump-probe stimulated emission spectrum, within the electric dipole approxima-
tion, time-dependent perturbation theory, and for ultra short pulse length, the correlation 
function of interest is 

 
 

Cst.em.(t,τ ) = Epu
2 Epr Tr[ρ0 (T )μ01U1(−t −τ )μ10U0 (t)μ01U1(τ )μ10 ],

Uj (t) = exp(−iH j t / ).
 (2.1) 

Here Epu and Epr are the amplitudes of the pump and probe pulses, ρ0 (T )  is the nuclear 

density operator in the electronic ground state at temperature T, Uj is the quantum (QM) 
evolution operator for the nuclei on the jth surface, μij is the dipole moment between 

states i and j, τ is the time delay between the pump and probe pulses, and t is time after 
the probe pulse. In order to focus on (and enhance) the QD nature of the problem, let us 
assume T = 0. Adopting the Franck-Condon approximation, the correlation function 
(2.1) becomes C(t, τ) = (Epu)2Epr |μ10|4 f(t, τ) where the so-called “fidelity” amplitude is 

 fst.em.(t,τ ) = ψ 0 U1(−τ )U1(−t)U0 (t)U1(τ )ψ 0  (2.2) 

and ψ0 is the vibrational ground state on the ground electronic surface. The time-
resolved stimulated emission spectrum is given by the Fourier transform 

 σ st.em.(ω ,τ )∝ fst.em.(t,τ )e
iωt dt

−∞

∞

∫ .  (2.3) 

Below, we will not consider the contribution to the pump-probe spectrum from the 
ground-state absorption (or “bleach”), which can be computed from Eq. (2.2) by ex-
changing the roles of ground and excited surfaces during the dynamics. While playing 
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a role in the pump-dump-pump-probe experiment we shall analyze below, the bleach is 
independent of the delay time for the strict pump-probe experiment, in which the initial 
state is stationary, and hence can be subtracted from the time-resolved spectrum. Note 
that a general pulse shape, nonperturbative effects, and non-Franck-Condon transitions 
can be included similarly as nonadiabatic couplings discussed below. The finite temper-
ature effects can be treated via averaging with a QM Boltzmann factor, using, e.g., path 
integral Monte Carlo or path integral molecular dynamics methods that are used in our 
group for computing thermal rate constants and isotope effects.66-68 The hardest part, 
however, remains, namely the calculation of the time-dependent state of the system, i.e., 
solving the time-dependent Schrödinger equation (TDSE), 

 
 
i
d

dt
ψ (t) = Ĥ ψ (t) ,  (2.4) 

or, more generally, the Liouville-von Neumann equation for the density operator. 

There are two general ways to solve the TDSE. One can either solve it numerically ex-
actly, which unfortunately scales exponentially with the number (D) of QM degrees of 
freedom, or use an approximation that scales favorably with D and hope that the ap-
proximation is good enough for the given system. In both cases, the calculations are 
usually much more expensive than, e.g., molecular dynamics, and so one has to com-
promise between the accuracy of the method and its efficiency. 

In this chapter, we will explore three specific approaches for speeding up the calculation 
of time correlation functions needed for time-resolved electronic spectra: The first relies 
on a choice of a minimum set of sufficiently accurate electronic surfaces. The second 
approach increases the required time step in exact simulations by using different split-
step algorithms to solve the TDSE. The third approach lowers the number of trajectories 
needed for convergence of approximate semiclassical (SC) dynamics methods. 

2.3 Finding a minimum set of sufficiently accurate electronic surfaces 

Before starting a QD calculation, one has to decide how many coupled electronic poten-
tial energy surfaces (PESs) to include in the calculation and choose an appropriate 
method to compute these surfaces as well as nonadiabatic or spin-orbit couplings be-
tween them. Ability to find a minimum number of sufficiently accurate surfaces is the 
first important contribution to the efficiency of a QD simulation. 

The calculation of PESs can be done either beforehand or “on the fly”, i.e., simultane-
ously with the QD. The surfaces and couplings must be accurate enough, yet not too 
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expensive since the QD itself is very expensive. However, it is very difficult to predict 
the effect of the accuracy of a PES on the QD without performing the QD itself. Mollica 
and Vanicek have found an efficient SC method that can do exactly this.35 The accuracy 

at time t is defined as the QM fidelity F(t) = f (t)
2 , i.e., the squared fidelity amplitude 

or the overlap of the time-dependent wave functions propagated on the accurate (but 
expensive) and approximate (yet cheap) surfaces. The fidelity is evaluated with a SC 
approximation, called dephasing representation21-22 (DR) which only requires running 
classical dynamics on the approximate surface (and some potential, but not force evalu-
ations on the accurate surface). 

Knowing how to balance accuracy and efficiency for a given PES, one must further 
decide how many coupled PESs to include in the calculation. Including additional PESs 
makes the calculation more accurate but also much more expensive. Moreover, the im-
portance of additional surfaces depends on the dynamics (in particular, on the initial 
condition): so in principle, one would have to perform the QD on many coupled surfac-
es to determine which surfaces are needed for the dynamics. It turns out that there is 
a simple way to estimate the dynamical importance of nonadiabatic (or spin-orbit or 
diabatic) couplings between PESs, using the DR of QM fidelity.41 E.g., the significance 
of nonadiabatic couplings is measured by “nonadiabaticity,” i.e., fidelity defined as the 
overlap between the wave functions propagated using the uncoupled Born-Oppenheimer 
Hamiltonian and the fully coupled Hamiltonian.  

2.4 Accelerating quantum dynamics with high order split operator 
methods 

Once the choice of PESs has been made, the numerically exact QD can be performed on 
either a fixed or moving grid. The moving grid approaches, such as the multi-
configuration time-dependent Hartree method (MCTDH),69 allow treating a higher 
number of degrees of freedom, but it is more difficult to estimate rigorously their er-
rors.70 Here we focus on fixed-grid methods. 

If the QM state ψ (t) at time t is known, the state at time t + Δt is computed as 

  ψ (t + Δt) = e− iHΔt / ψ (t) .  (2.4) 

One way to increase the time step Δt in a simulation without sacrificing the accuracy is 
to realize that the TDSE (2.4) is not any differential equation, but a very specific one 
with many nice properties, such as time-reversibility, unitarity (the norm of the wave 
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function is preserved under time-evolution), and symplecticity (a somewhat technical 
generalization of unitarity).70 A method that preserves these properties is more likely to 
remain accurate with a longer time step Δt. Among such methods are the so-called split 
operator methods71-77 

 
 
e− iΔtH / = e− ia jΔtV / e− ibjΔtT /

j=1

n

∏ +O(Δt m+1),  (2.5) 

where V is the potential energy, T is the kinetic energy, and m is the order of the meth-
od. For real aj, bj, all such methods are automatically symplectic and unitary since both 
the kinetic and potential propagations themselves are. If the splitting (2.5) is also sym-
metric, then the method is time-reversible. Below we implement and compare several 
such methods. 

The simplest method, a discrete-time implementation of the Lie-Trotter formula,78 is the 
first order split operator (SO1) algorithm (n = 1, a1 = 1, b1 = 1), which is however not 
time-reversible. The algorithm works as follows: 

i) wave function in position representation is Fourier-transformed to momentum 
representation in which T is diagonal [with the cost O(n log n), where n is the di-
mension of the Hilbert space representing the state], 

ii) kinetic propagation is trivially done by multiplication [with a cost O(n)], 

iii) momentum wave function is inverse-Fourier-transformed back to the position 
representation in which the potential is diagonal [cost O(n log n)], 

iv) potential propagation is done by multiplication [cost O(n)]. 

For this as well as other algorithms, the most expensive part is the Fast Fourier Trans-
form (FFT), and so the cost of an algorithm for a given Δt is estimated by the number of 
FFTs. The SO1 algorithm requires two FFT operations (f = 2) and it is of first order in 
Δt (m = 1).  

An improved algorithm is the second order split operator (SO2) algorithm71 (n = 2, a1 = 
a2 = ½, b1 = 1, b2 = 0, f = 2, m = 2), which requires also only two FFTs, but is accurate 
to second order in Δt. It is possible to design algorithms of any order, but they become 
increasingly complicated and beyond fourth order are rarely used. Hence we consider 
three types of fourth order split-operator algorithms that differ significantly in their de-
sign. The most straightforward one is an algorithm with all real coefficients [SO4-R, n = 
4, a1 = a4 = α / 2, a2 = a3 = α (1 – 21/3)/2, b1 = b3 = α, b2 = -21/3 α, b4 = 0 where α = (2 - 
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21/3)-1, f = 6, m = 4].72-73, 77  While this is an optimal fourth order algorithm (i.e., an algo-
rithm minimizing f) with all real coefficients, one can lower the number of the FFT op-
erations by either considering complex coefficients or by allowing commutators of T 
and V in the splitting defined by Eq. (2.5). 

The former approach starts with a 3rd order algorithm with complex coefficients SO3-C, 
n = 3, a1 = a3* = β / 4, a2 = ½, b1 = b2* = β / 2 where β = 1 + 3-1/2 i, f = 4, m = 4],75-76 
which unfortunately is not strictly unitary. The order is increased by concatenating the 
SO3-C algorithm for odd steps with its conjugate algorithm SO3-C* for even time 
steps, resulting in the 4th order algorithm SO4-C. The error is measured by the norm of 
the difference of the approximate and exact wave functions. [If the error is only meas-
ured by the (less stringent) overlap of the two wave functions, the 4th order can be 
reached simply by renormalizing the wave function after each step of the SO3-C algo-
rithm.76 

The latter approach generalizes the splitting by permitting the exponential of the com-
mutator 

 
 
V , T ,V[ ]⎡⎣ ⎤⎦ =

2

mi

(∇iV )
2

i
∑  (2.6) 

in the splitting (6). An optimal resulting algorithm, requiring only four FFTs, is an algo-
rithm with the gradients of V (SO4-G, n = 3, f = 4, m = 4),74, 79 

 

 

e− iΔtH / = e
− i1
6
ΔtV /

e
− i1
2
ΔtT /

e
− i2
3
ΔtVeff /

e
− i1
2
ΔtT /

e
− i1
6
ΔtV /

+O(Δt 5 ),

Veff =V − 1

48

Δt⎛
⎝⎜

⎞
⎠⎟
2

V , T ,V[ ]⎡⎣ ⎤⎦.
 (2.7) 

2.5 Semiclassical dynamics for time-resolved spectroscopy 

An alternative approach to speeding up QD calculations is to use SC dynamics. While 
not exact, SC methods can approximately describe all types of QM effects, such as in-
terference, coherence, tunneling, zero-point energies, etc. This distinguishes SC dynam-
ics from classical molecular dynamics that describes the motion of nuclei purely classi-
cally even though it may use ab initio quantum chemistry methods to compute the elec-
tronic PESs. 

All SC methods use classical trajectories, but in addition attach phase information to 
each trajectory.  When contributions of various trajectories are added up, this phase 
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permits interference effects, absent in purely classical dynamics. A SC wave function 
can be generally written as 

 ψ (q,t) = Aje
iφ j

j
∑ ,  (2.8) 

where the sum runs over classical trajectories j, Aj is the square root of classical proba-
bility to be at point q at time t, and φj is the corresponding phase. As a result, SC dy-
namics resembles very much geometrical optics, making QM phenomena more intui-
tively understandable.  

A starting point in all SC methods is the so-called Van-Vleck-Gutzwiller propagator80 
describing the probability amplitude to get from point q' to point q'' in time t. This prop-
agator is hard to use in practice because in many-dimensional systems it is very difficult 
(and expensive) to find all classical trajectories from q' to q'' in time t. A clever solution 
was provided by Miller's initial value representation that transforms this boundary value 
problem to an initial value problem which is much easier to solve.81-82 One has to sam-
ple the initial coordinates and momenta from a distribution in phase space describing 
the initial QM state, run trajectories, and at time t compute the wave function using 
a formula similar to Eq. (2.8).  

Here we focus on four SC initial value methods that provide extensions to Miller's idea 
by applying it to the coherent states, i.e., Gaussian wave packets (GWPs).6, 16, 18, 83 The 
propagated GWPs smooth out wild oscillations in the Van Vleck-Gutzwiller propagator 
and, as a consequence, GWPs lead to faster convergence. All four methods can be writ-
ten in the same general form that describes the overlap of an initial GWP gxi  centered at 

xi with a final GWP gxf centered at xf, 

 
 
gxf e

− iHt / gxi = h−D dDx0C(x0,t)R(x0,t)eiS(x
0 ,t )/ ,∫  (2.8) 

where S(x0,t) is the classical action at time t along a trajectory starting at a phase space 
point x0 = (q0, p0) and ending at point xt , and C and R are factors depending on the 
method. In the original Frozen Gaussian Approximation (FGA),18 the C and R factors 
are the simplest possible, 

 
CFGA(x

0,t) = gxf gxt g
x0
gxi ,

RFGA(x
0,t) = 1.

 (2.8) 
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In words, the FGA covers the initial state with GWPs, propagates their centers to time t 
while neglecting their spreading (i.e., Gaussians are “frozen” like snowballs18), com-
putes the action along each trajectory, and averages the phase factor  exp i S( ) over the 

trajectories. While the FGA is remarkably simple and works surprisingly well, it can be 
improved in two ways: First, Herman and Kluk corrected the R factor to get a more ac-
curate and, in fact, uniform SC approximation called the Herman-Kluk (HK) propaga-
tor, in which R depends on the classical stability matrix.6 Second, the convergence of 
the FGA can be sped up by smoothing the frozen Gaussians via (who could have 
guessed?) new Gaussians. This procedure modifies the C factors and results in the cellu-
lar dynamics (CD).83 Both ideas were used simultaneously in the cellularized Herman-
Kluk (CHK) propagator, originally called cellularized frozen Gaussian 
approximation,16 which is both the most accurate (due to improved R) and the most ef-
ficient (due to improved C) of the four methods. 

Finally, we will compute the correlation function f(t, τ) and the time-resolved stimulated 
emission spectrum using the DR of fidelity, a SC method used to measure the sensitivity 
of QD to perturbations.21 In the present setting, 

 
 
fDR (t,τ ) = h

−D dx0ρW x0( )exp i
dt '

τ

τ+t

∫ V1 q
t '( )−V0 qt '( )( )⎛

⎝⎜
⎞

⎠⎟∫  (2.8) 

where ρW is the Wigner-Weyl transform of the initial state and Vj is the jth PES. Each 
trajectory xt’ is propagated on the excited PES V1 for time τ and subsequently on the 
average PES (V0 + V1)/2 for time t. The method is analogous to the phase averaging of 
Mukamel84 which has been previously used for computing transient absorption spectra 
by several authors.28, 32-33 

2.6 Results and discussion 

2.6.1 The system  

For numerical tests we chose a two-dimensional system describing the vibrational dy-
namics of a collinear NCO molecule. Li et al.85 give an analytical fit to the ab initio data 
for the X2Π ground and A2Σ+ excited electronic states, where the NC and CO bond 
lengths are confined to the interval [2.0-2.6] a.u. In the SC approach it was necessary to 
have the potential defined on a larger domain and we have thus used an approximate fit 
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to this potential by a sum of two Morse terms defined in the bond-length coordinates rj
as 

 V (r1,r2 ) =V0 + Dj ⋅ 1− exp(−β j ⋅(rj − Rj ))( )2
j=1,2
∑ , (2.8) 

and coupled via the kinetic term. The fitted parameters (atomic units are used through-
out this paper) are listed in Table 2. In mass-scaled normal mode coordinates and within 
the harmonic approximation, the ground vibrational state of the X2Π surface is a single 
GWP with the widths equal to 14.44 and 10.35. The exact ground state was found by 
imaginary-time propagation86 of the above-mentioned GWP. In numerical tests, this 
exact ground state was approximated by fitting to a Gaussian form, which resulted in 
slightly different widths, namely 14.55 and 10.43. For calculation of the pump-probe 
spectra, a nonstationary initial state was generated by a pump-dump technique,87 in 
which the original state was promoted to the upper surface, propagated there for a net 
time of 520 a.u., dumped to the lower surface, and propagated there for additional 480 
a.u. The shape of the resulting wave packet resembled again a single shifted GWP88 to 
which it was fitted. 

Table 2: Parameters (in a.u.) of the approximative potential fit from Eq. (12). 

 R1 R2 D1 D2 β1 β2 V0 

X2Π 2.302 2.246 0.1273 0.1419 1.414 1.718 -167.653 

A2Σ+ 2.234 2.232 0.1432 0.1417 1.516 1.816 -167.548 

2.6.2 Efficiency of various split-operator methods  

Before showing the time-resolved spectra, we compare the efficiency of the various 
split-operator methods. Besides the number of FFTs, the efficiency is determined pre-
dominantly by the size Δt of the time step that introduces a fixed discretization error 
(determined, e.g., by machine precision) to the wave function after each step. The faster 
a propagation method converges, the larger the time step can be chosen. Figure 2 shows 
the error of the wave function propagated for time t = 128 a.u. on the A2Σ+ PES as 
a function of Δt for different split operator algorithms. The error is defined as ||ψΔt(t) - 

ψ0(t)|| where ψ0(t) is the benchmark wave function propagated with the same method 
and a very small time step of  2-9, i.e., 0.00195 a.u. 

Figure 2 shows that the complex propagation schemes SO3-C and SO4-C are unstable 
for time steps larger than 6.4 and 4 a.u., respectively, due to the non-unitary propaga-
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tion.76 A rough estimate on the maximal time step size can be deduced from the near-
unitarity condition on the kinetic evolution operator UT. Employing the Heisenberg un-
certainty relation, the maximal momentum is related to the grid spacing Δq as

 pmax ≤ π / Δq . In order for UT to be almost unitary, the time step Δt has to fulfill the 

condition 

 
 
Δt < 2mΔq2

π 2 Im z
,  (2.9) 

where z is the complex splitting constant. The denser the grid in coordinate space, the 
larger the maximal phase in the kinetic term, and the smaller the maximal Δt for com-
plex splitting propagation. For a grid spacing of 4 a.u. in each dimension Δt has to be 
smaller than 22 a.u. which corresponds to the actual behavior of the SO4-C and SO3-C 
methods. The earlier breakdown of the SO4-C method is due to the combined effect of 
the last and the first splitting step of each time step, resulting in a larger effective time 
step. 

Figure 2 - Error of the quantum wave function (at time t = 128 a.u.) as a function of the time step 

Δt (in a.u.) for various split-operator methods. 

Incidentally, for very dense grids, the 4th order splitting with real coefficients (SO4-R) 
also runs into difficulties by effectively exhibiting a second order behavior. The culprit 
could be related to the numerical issues resulting from large phase factors in the kinetic 
evolution operator following again directly from the uncertainty relations. Finally, in the 
opposite case of a very low grid density, the predicted 4th order convergence of SO4-G 
deteriorated to the 2nd order. To conclude, high order methods can result in much small-
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er errors and a much higher efficiency, but they must be used with great care as the er-
rors depend strongly on the grid spacing.70 

2.6.3 Time-resolved spectra and correlation functions  

Numerical tests consisted in the computation of the correlation function and transient 
spectrum, i.e., quantities defined in Eqs. (2.2) and (2.3), where U0 and U1 denote the 
evolution operators corresponding to the X2Π and A2Σ+ electronic states, respectively.  
Panel (a) of Figure 3 depicts the resulting benchmark QM transient stimulated emission 
spectra89 calculated using the 4th order split operator method SO4-R with a time step Δt 
= 5 a.u. Prior to the actual spectra calculation by the Fourier transform (2.3), the correla-
tion function (2.2) was damped16 by a Gaussian decay function exp(− t 2 T 2 )with T set 

to 104 a.u. (see Figure 4). 

Figure 3 - Pump-probe stimulated emission spectra: (a) Quantum results (contours are plotted for 
intensities from -0.34 to 0.2 at intervals of 0.04). (b) Semiclassical results for the delay time of 300 

a.u. (the number of trajectories used is shown after the name of the approximation). 

Panel (b) of Figure 3 compares QM and converged SC spectra computed at a specific 
delay time τ of 300 a.u. All SC calculations used a SC symplectic integrator that we 
have designed based on Chin’s 4th order classical symplectic integrator utilizing force 
gradients.79 Chin’s integrator, in turn, is a classical analog of the QM propagator SO4-
G.  

The original FGA method reproduces the spectrum at least qualitatively; nevertheless it 
is improved by a repeated renormalization of the correlation function f [see Figure 3(b)]. 
While the HK method with filtering (to be explained below) gives almost exact spec-
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trum, the DR spectrum is reasonably accurate yet converges with much fewer trajecto-
ries. 

A stringent criterion on the accuracy of various SC methods is the undamped correlation 
function f(t, τ); its absolute value squared is shown in Figure 4. In agreement with con-
clusions made by Kay as well as Walton and Manolopoulos,16, 90-91 we observed that the 
convergence of the HK is significantly slowed down by just a few trajectories the 
prefactor of which grows exponentially fast in time [see Figure 4(a)]. We were unable 
to obtain sensible results based on the implementation of the original HK method for 
times larger than, roughly, 104 a.u. Similar observation led Walton and Manolopoulos to 
the introduction of the CHK method mentioned above.16 Nevertheless, as pointed out by 
Kay,90 even a much simpler heuristic approach, consisting in a repeated elimination of 
trajectories with the largest prefactors, can lead to reasonable results. Figure 4(a) sup-
ports this claim: The green dashed line represents HK results for 64000 trajectories 
whereas the solid red line corresponds to the “filtered HK” results obtained using this 
heuristic procedure with just 16000 trajectories (fewer than 1% of the trajectories had to 
be discarded). Finally, Figure 4(b) compares the FGA and the DR with the QM result. 
Once again, the renormalization greatly improves the FGA. Unlike the filtered HK 
method and renormalized FGA, the DR cannot unfortunately describe the recurrence of 
|f(t,τ)| after 8000 a.u. However, this should not matter at finite temperature or in the 
condensed phase where the magnitude of the recurrence will be greatly diminished due 
to the coupling to the environment, and its effect on the spectrum will be very small. 
This was already demonstrated by Figure 3(b), where the spectra were computed from 
damped correlation functions. We should also highlight the computational efficiency of 
the DR which, unlike the HK method, does not require the Hessian of the potential, and, 
moreover, as can be seen in Figure 4(a), converges with much fewer trajectories than 
both the FGA and the HK method. In fact, the work in our group has demonstrated that 
under quite general assumptions, the number of trajectories required in the DR is inde-
pendent of dimensionality.44 Finally, we currently work on speeding up the DR even 
further, using ideas similar to those behind the CD or CHK propagator. 
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Figure 4 - The magnitude of the time-dependent correlation function as a function of time comput-
ed with various SC methods. (The number of trajectories used is shown after the name of the 

method.) (a) The slow convergence of the HK method can be remedied by heuristic filtering out of 

trajectories with exponentially growing prefactors. (b) The improvement of the FGA by renormal-

ization and the fast convergence of the DR. [The displayed correlation functions were multiplied 
by the damping function (shown by a dashed gray curve) in order to obtain finite-resolution spec-

tra in Figure 3.] 

2.7 Conclusion   

In summary, we have presented, analyzed, and compared several conceptual approaches 
intended for speeding up the quantum dynamics calculation of ultrafast time-resolved 
spectra. 

In case of quantum dynamics performed on an equidistant grid using split operator ap-
proach, higher-order splitting schemes yield higher efficiency, but care has to be taken 
as to their numerical stability with respect to the grid spacing. 

As for the semiclassical methods, we demonstrate that the DR requires much fewer tra-
jectories than the FGA and HK propagators even if one employs renormalization in the 
former or primitive "cellularization" by means of trajectory filtering in the latter case. 
However, unlike FGA and/or HK, the DR reproduces with sufficient accuracy only the 
first decay of the correlation function. Nevertheless, for reasons discussed above, the 
importance of the recurrences in the correlation function is typically marginal. For prac-
tical purposes, the DR spectra are thus competitive with the, otherwise presumably 
more accurate, HK spectra. This is especially attractive from the computational point of 
view since the DR does not require any costly renormalization and/or knowledge of the 
Hessian of the PES. 
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Finally, we would like to remark that the method denoted above as FGA is not, strictly 
speaking, a direct implementation of the original Frozen Gaussian Approximation pro-
posed by Heller.18 The main discrepancy lies in the fact that the action in the phase fac-
tor accompanying each evolving GWP is calculated on the basis of local potential, i.e., 
it corresponds to the classical action of the classical trajectory traced out by the evolving 
GWP's center, while the original approach employs potential averaged over the full 
GWP, i.e., mean value of the potential in the GWP state instead of the value of the po-
tential at the GWP's center. In this spirit, our modified FGA propagator employing clas-
sical action and repetitive renormalization closely resembles the poor-person's HK 
propagator published almost simultaneously by Tatchen et al.12 
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 On-the-fly ab initio semiclas-Chapter 3
sical dynamics: Identifying degrees of free-
dom essential for emission spectra of oli-
gothiophenes 

Chemists are not only interested in small molecules. Well-established semi-

classical methods, however, already require several thousand trajectories in a 2-

dimensional system (see Chapter 2), and DR can only describe the envelopes of the 

electronic spectra of larger molecular systems (see Subsection 1.4). The approach I have 

chosen is to take a rather crude approximation—the thawed Gaussian approximation 

(TGA) and combine it with an on-the-fly scheme to avoid a cumbersome prescreening 

of the potential energy surfaces. The TGA has several desirable properties: First, in 

harmonic systems, the most important simplified models of molecules, it is exact. Se-

cond, the initial dynamics, which is the most important determinant of moderately re-

solved spectra, is well described for general potentials. Finally, the TGA is simple and 

computationally less expensive than other semiclassical methods.  

Oligothiophenes were suitable to study this approach due to their scalability and marked 
dependence of the emission spectra on the number of rings. In order to explain this ef-
fect, we introduced a systematic approach to decode spectra computed with TGA. The 
content of this chapter has been published in the Journal of Chemical Physics.58 

3.1 Abstract 

Vibrationally resolved spectra provide a stringent test of the accuracy of theoretical cal-
culations. We combine the thawed Gaussian approximation (TGA) with an on-the-fly 
ab initio (OTF-AI) scheme to calculate the vibrationally resolved emission spectra of 
oligothiophenes with up to five rings. The efficiency of the OTF-AI-TGA permits treat-
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ing all vibrational degrees of freedom on an equal footing even in pentathiophene with 
 vibrational degrees of freedom, thus obviating the need for the global harmonic 

approximation, popular for large systems. Besides reproducing almost perfectly the ex-
perimental emission spectra, in order to provide a deeper insight into the associated 
physical and chemical processes, we also develop a novel systematic approach to assess 
the importance and coupling between individual vibrational degrees of freedom during 
the dynamics. This allows us to explain how the vibrational line shapes of the oligothio-
phenes change with increasing number of rings. Furthermore, we observe the dynamical 
interplay between the quinoid and aromatic characters of individual rings in the oli-
gothiophene chain during the dynamics and confirm that the quinoid character prevails 
in the center of the chain.  

3.2 Introduction 

Polythiophenes (T ) and their functional derivatives belong among the most studied 
compounds among -conjugated polymers due to their potential in organic 
electronics,92-95 since they combine remarkable conductivity with excellent thermo- and 
chemo-stability. Detailed experimental investigations of polythiophenes have shown 
that their optical properties are closely related to the structure of the polymer backbone: 
For instance, the –  transition energies are approximately a linear function of , 
where  is the number of thiophene rings in the polymer.96-98 Bandgap computations 
confirmed validity of this semi-empirical rule for short polymers as well as its violation 
for longer chains.99-101 

For a direct comparison with experiments it is, however, crucial to calculate the vibra-
tionally resolved spectra.102-103 Here, we therefore determine the vibrationally resolved 
emission spectra of oligothiophenes T  with two to five rings, i.e., n∈{2,3,4,5} , since 

the vibrational line shape is changing drastically in this range of .98 

The cost of computing a vibrationally resolved spectrum is much higher than the cost of 
vertical transition energy calculations since the spectrum calculation requires the 
knowledge of the involved potential energy surfaces (PESs). As it is often difficult to 
describe PESs accurately in terms of analytical functions, a popular approach, especially 
for larger molecules is to approximate the PESs by harmonic potentials with respect to 
certain reference structures.104-107 The absorption and emission line shapes of dithio-
phene have been calculated by Stendardo et al.108 using a double-well potential describ-
ing the torsional mode and global harmonic approximation in the remaining degrees of 
freedom. In order to get a good correspondence with experiment, the authors show that 
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an appropriate choice of these reference structures is essential, e.g., the ground PES 
reference structure for the emission spectrum calculation is found using symmetry con-
straints. 

Alternative strategy employs trajectory-based methods in combination with an on-the-
fly (OTF) ab initio (AI) scheme, in which the required potential energies, forces, and 
Hessians are computed with an electronic structure package during the dynamics. It is 
becoming increasingly clear that ab initio semiclassical dynamics provides a powerful 
spectroscopic tool useful, e.g., for evaluating internal conversion rates109 or vibrational-
ly resolved spectra.19, 110-113 Not only do the evolving trajectories provide an intuitive 
classical-like picture of the underlying physical and chemical processes, but via inter-
ference, they also partially account for the most important nuclear quantum effects. The 
overall computational cost, however, restricts almost all of these methods to small sys-
tems. 

As a result, one is forced to strike a balance between physical accuracy and computa-
tional efficiency. In this spirit, OTF-AI Gaussian wave packet propagation can provide 
a useful compromise. Within the thawed Gaussian approximation (TGA), the nuclear 
wave packet is guided by a central classical trajectory, which feels the anharmonicity of 
the potential, while its width is propagated using the local harmonic approximation.50 
Hence, the effects of anharmonic or double-well potentials are partially captured by 
TGA; moreover, the OTF-AI framework obviates the need of an a priori knowledge of 
the landscape of the final PES. More importantly, due to its moderate computational 
cost, TGA can treat all vibrational degrees of freedom on an equal footing even in large 
systems, while in smaller systems, it permits using a more accurate electronic structure 
description. A well-known shortcoming of the TGA is that it captures accurately only 
the short-time dynamics and, therefore, only describes the broad spectral features.1 Nev-
ertheless, due to interaction with solvent and other phenomena contributing to spectral 
broadening, the experimental spectra are also typically not fully vibrationally resolved. 

Although rewarding, a mere reproduction of an experimental spectrum, no matter how 
accurate, does not provide a deeper insight into the associated physical and chemical 
processes; it is a careful analysis of the simulation that can provide such information. 
The extraction of this essential information, which is often omitted, can be as difficult 
as the simulation itself, especially for larger molecules. For example, explanation of 
changes in the vibrational line shape of the spectra due to increasing polymer chain 
length, which is done here for oligothiophenes, increases drastically the complexity of 
the analysis. Therefore, in addition to providing an efficient computational protocol for 
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computing vibrationally resolved electronic spectra we also present a systematic ap-
proach for extracting the essential information about the underlying dynamics. 

3.3 Theory 

3.3.1 Emission spectrum calculation 

Analogously to absorption spectrum evaluation [Eqs. (1.18) and (1.19)], the correlation 
function relevant for emission spectrum is computed by propagating ground vibrational 
state of the excited electronic state  on the ground electronic surface . Within the 
electric dipole approximation, time-dependent perturbation theory, and Condon approx-
imation, the correlation function is  

    Cem (t) = 〈Ψ init | e− i H S0t / |Ψ init 〉,   (3.1) 

where  is the ground vibrational state of  with energy . The spectrum is then 
obtained via Fourier transform  

 
   
σ (ω ) = Aω k ∫Cem (t)ei(ω+ES1

/ )tdt,   (3.2) 

where  for the line shape and  for the emission spectrum in constrast to ab-
sorption spectrum [Eq. (1.19)] for which . Prefactor  is a constant factor depend-
ing on the type of spectra.102, 104, 114 Since it is constant, in our calculations  was cho-
sen so that the spectra are normalized in the  norm, i.e., the highest spectral peak is of 
unit intensity. 

3.3.2 Stability matrix propagation: Symplecticity and effect of Hessian interpolation 

The GWP’s center and the accompanying stability matrix  are propagated classically 
using the second-order symplectic algorithm.10 Propagation of  is the most expensive 
part of the entire OTF-AI calculation since it requires knowledge of the Hessian of the 
PES along the evolving trajectory. 

The associated computational costs can be alleviated by employing a Hessian update 
scheme, within which the Hessian is evaluated directly only once every  steps and 
approximated at the remaining steps with an extrapolation method requiring gradients. 
Note that these Hessian update schemes are in the context of dynamics typically used 
for the propagation of the classical trajectory itself, e.g., within the framework of high-
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er-order predictor-corrector schemes (see Refs. [115-119] and references therein). In 
contrast, in Refs. [109], [120], and [121] as well as in the present work, approximative 
treatment of the Hessian is used only for the propagation of . However, whereas in 
Refs. [109], [120], and [121] the Hessian update is based on extrapolation, in this work 
polynomial interpolation of order  is used to obtain the Hessian at intermediate steps. 
A Hessian extrapolation update scheme would be convenient in cases for which analyti-
cal ab initio Hessians are not available, e.g., for absorption spectrum calculation. 

Note that our approach requires propagating the full classical trajectory and storing the 
necessary information regarding the potential first, and interpolating the Hessian later. 
The TGA GWP is computed in the second pass through the stored data. The advantage 
of this approach is twofold: First, the independent Hessian calculations in the second 
pass are easily parallelized. Second, one can perform a global analysis of the trajectory ( 
see Subsection 3.3.3) over the entire propagation range. 

As the first test, we check the conservation of the symplectic condition   

   M t T ⋅ J ⋅ M t = J   (3.3) 

by the  stability matrix , where J is the standard symplectic matrix  

 

  

J :=
0D ID

− ID 0D

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (3.4) 

and  is the -dimensional identity matrix. The deviation from Eq. (3.3) is evaluated in 
terms of the error  

    ε
t := M t T ⋅ J ⋅ M t − J F ,   (3.5) 

where  denotes the Frobenius norm of ma-

trix  and the exact stability matrix satisfies  

   ε
t = 0.   (3.6) 

For instance, in the T  calculation, Eq. (3.6) is well satisfied even for Hessian interpo-
lated from AI values computed only every 2, 4, 8, or 16 steps [see Figure 5(a)]. It is 
important to note that any violations of Eq. (3.5) are due to round-off errors, since in an 
infinite-precision arithmetics, Eq. (3.6) would be satisfied even if the true Hessian were 
replaced by an arbitrary symmetric matrix . The only additional requirement is that 
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 be propagated symplectically,10 since the symmetry of  is guaranteed by the in-
terpolation algorithm. Incidentally, note that Eq. (3.6) is much more stringent than the 
widely used Liouville condition, which only requires conservation of the phase-space 

volume, expressed by the requirement , and automatically follows 
from symplecticity [Eq. (3.6)]. 

Figure 5: Effects of Hessian interpolation scheme of second order  for several sizes of the 

interpolation interval .  Panel (a): Extent of the violation of the symplectic contition Eq. (3.6).  

Panel (b): Accuracy of the quantum dynamics measured with fidelity  introduced in Eq. 

(3.7). 

The influence of the interpolation procedure with  on the GWP evolved 
with the TGA is quantified in terms of fidelity—a quantity introduced by Peres25 to 
measure sensitivity of quantum dynamics to perturbations. In our setting, the fidelity is 
defined as the squared magnitude of the time-dependent overlap of GWPs propagated 
using the TGA with and without interpolation:  

 
  
Fs,b(t) := 〈ψ 1,b

t |ψ s,b
t 〉

2
.   (3.7) 
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In the T  case, e.g., interpolating every four steps using the second order interpolation 
( ) has almost no effect on the propagated GWP [see Figure 5(b)], while the OTF-
AI calculation is accelerated almost four times. 

3.3.3 Identification of the essential DOFs 

Perhaps the greatest advantage of trajectory-based methods is the possibility to visualize 
the dynamics and directly study its influence on the resulting spectra. However, direct 
analysis can become quite cumbersome for systems of high dimensionality. Moreover, 
the dynamical couplings among individual degrees of freedom (DOFs) pose additional 
complications since all the coupled DOFs must be analyzed simultaneously. In this sub-
section, we introduce a particular approach for extracting the essential characteristics of 
the dynamics of a generic system with  vibrational DOFs. To some extent, this method 
shares common grounds with other “effective modes” techniques aspiring to identify the 
modes responsible for the main spectral features, e.g., methods tailored for the descrip-
tion of nonadiabatic transitions.122-123 However, in contrast to Refs. [122-123], the iden-
tification of the essential DOFs is here performed on the fly. The “tool” proposed here 
is used in Subsection 3.5.2 for analyzing and interpreting the emission spectra of the 
oligothiophene T  family. 

In order to simplify the discussion below, we introduce the symbol  to denote the 
space spanned by all  DOFs. Any subspace of  is then identified with the subset of 
indexes of those DOFs that span the given subspace. In this spirit,  itself is identified 
with the set   D = 1,2,…,D{ } . Note that the set of normal mode coordinates provide a 

natural physical realization of , nevertheless our approach is not limited to this par-
ticular choice. 

Briefly put, our strategy is as follows. First, we decompose the set  of all vibrational 
DOFs into mutually disjoint subsets, where the DOFs in different subsets can be 
thought of as approximately dynamically independent. Second, we identify the dynami-
cally most important DOFs and then consider only those subsets of  which contain at 
least one of these “important” DOFs. 

To quantify the coupling between various DOFs, we utilize the stability matrix to meas-
ure the information flow among individual DOFs. The “flow”  between th and th 
DOF is then defined as  
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Bij :=

βij

βii

,with β := 1
T

dtκ T ⋅ M t ⋅κ
0

T

∫ ,   (3.8) 

where  and  denotes a two-component vector, each component 

of which is a -dimensional identity matrix. The value of  is rescaled in Eq. (3.8) by 

 in order to make the diagonal elements unital ( ), as in uncoupled systems, 
and to focus solely on the coupling effects among different DOFs ( ).  

The decomposition of  into (approximately) dynamically decoupled subsets of DOFs 
is then constructed by means of the concept of -partitioning:  

 
    
D =

α=1

c (D ,εB )

∪ Dα

εB ,   (3.9) 

where  denotes the number of mutually disjoint subsets  defined as the 
maximal connected components of an undirected graph with adjacency matrix  

 
  
Eij :=

1 if max{Bij ,Bji}≥ ε B

0 otherwise
,

⎧
⎨
⎪

⎩⎪
  (3.10) 

with a particular threshold value . 

Any nontrivial decomposition (3.9), where each subset  is interpreted as uncoupled, 
yields a partially separable dynamics. Depending on the value , this separation 
can significantly reduce computational costs, since the total correlation function can be 
obtained as a product of individual contributions evaluated independently on each sub-
space (i.e., subset ). 

Next, we identify the set  of the dynamically most important DOFs. For this 
purpose, we employ the relative displacement vector , the th component of which is 
defined as the maximal relative displacement in the coordinate , describing the th 
DOF, where the maximum is understood to be taken over the total propagation range 

, i.e.,  

 
   

i :=
0≤t≤T
max |ς i

t | ( Aii
0 / ln2)1/2 for1≤ i ≤ D.   (3.11) 

Here, the scaling factor containing the diagonal element  of the width matrix of the 
initial GWP ensures that the spread of the nuclear wave function be taken into account: 
A small displacement of a high-frequency (stiff) mode modulates the correlation func-
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tion much more than the same displacement of a low-frequency (soft) mode. The set 
 of dynamically most important modes is then defined by  

 
   
i ∈G

ε ⇔ ρi ≥ ε ,   (3.12) 

where  is a prescribed threshold value. A particular DOF is thus interpreted as “dy-

namically important” if the dynamics displaces it sufficiently relative to the width of the 
initial vibrational state. 

Finally, we combine the two ideas, i.e. the decoupling based on the -partitioning [Eq. 
(3.9)], and the selection of important modes based on the relative displacement  [Eq. 
(3.11)], to form an “active space”  comprised of all subsets  containing at 
least one dynamically important DOF from :  

 
    
A

εB ,ε =
α∈S
∪Dα

εB , with S :={β:G ε ∩Dβ
εB ≠ ∅}.   (3.13) 

Note that the number  of contributing subsets  is in general small-

er than  of Eq. (3.9). In order to obtain a contiguous labeling of the subsets in 
decomposition (3.13), we introduce a bijective (but otherwise arbitrary) mapping  be-
tween sets  and   {1,…,c(D,εB ,ε } . This allows to restate Eq. (3.13) as  

 
    
A

εB ,ε =
α=1

c(D ,εB ,ε )

∪ Aα
εB ,ε ,where Aα

εB ,ε := Dl (α )
εB .   (3.14) 

The subsets  are in the following referred to as groups. (Mathematically, these 
“groups” are just “sets” and should not be confused with a precise mathematical nota-
tion of group.) 

In summary, individual DOFs are by definition considered to be coupled only within 
groups the union of which forms the space . Each group then contains at least 
one DOF classified as dynamically important on the basis of the rule (3.12). The total 
number of groups  and their structure is mainly determined by the values of 
the two thresholds  and  which have to be chosen appropriately according to the 

system and process of interest. 

Let us now demonstrate the approach outlined above on one particular example of T , 
the dithiophene molecule. Since an oligothiophene T  is comprised of  
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   N (n) = 7n+ 2   (3.15) 

atoms, the space  is of dimensionality , i.e., in the case of 
T  ( ), there are  vibrational DOFs. To be explicit, these vibrational DOFs are 
identified with normal-mode coordinates of PES . Individual modes are in Figure 6 
represented by colored circles with juxtaposed vibrational frequencies. Now, for 

, one obtains  subsets in the decomposition (3.9), i.e., . Fur-
ther, we identify the set of important modes  using rule (3.12). With threshold value 

, we isolate  modes, i.e., . These modes are shown in red color in 

Figure 6. Finally, we see that for this choice of the thresholds, we obtain only one group 
in the decomposition (3.14) since  only for . Thus  

and the bijective mapping  is merely an identity. 

Figure 6: Partitioning of  normal-mode coordinates of dithiophene T  into approximately inde-

pendent subsets for the threshold value  [see Eq. (3.9)]. Colored circles represent indi-

vidual modes, i.e., elements of . The dynamically important modes [Eq. (3.12)] comprising  

with the threshold value  are shown in red. Finally, solid lines represent inter-mode cou-

plings above the threshold . Vibrational frequencies are given in cm-1. 

In practical calculations,  and  must be chosen carefully. For high threshold values 

, one can profit from an approximate separability of the model. However, too high 
values of either  or  might yield inaccurate results. 

3.3.4 TGA in subspaces of reduced dimensionality 

One of the main goals of the normal mode analysis elaborated in previous subsection is 
identifying the normal modes essential for the dynamics. Restriction to these most im-
portant modes allows one to devise a simplified model of reduced dimensionality, e.g., 
in the spirit of the well-studied pyrazine vibronic coupling model.124 Moreover, this 
reduction also broadens the class of computationally available methods. After the reduc-
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tion, one may be able to employ, e.g., the Gaussian basis methods,125-127 or various ap-
proaches from the family of the semiclassical initial value representation.7, 17, 128-129 

Let us consider a system with  vibrational DOFs. In a typical OTF-AI-TGA calcula-
tion, one evolves the -dimensional GWP by classically propagating its center  and 
by evaluating the phase factor  and the complex time-dependent width matrix  by 
means of Lee and Heller’s -  algorithm51 summarized in Section 1.4 [Eqs. (1.32) and 
(1.35)]. 

As in Subsection 3.3.3, we identify the -dimensional space of vibrational DOFs with 
the set  D = {1,…,D} . We would like to take advantage of the stored -dimensional tra-

jectory information, and, at the same time, to restrict ourselves to a subset  of 
only  most important vibrational degrees of freedom and define a linear projec-
tion  from the full space of  vibrational DOFs to the subspace of physical 
interest. Formally  

 
   
π ij := δ

Pi , j for 1≤ i ≤ d and 1≤ j ≤ D,   (3.16) 

where  denotes the th element of the ordered set . 

The “reduced” -dimensional GWP is again propagated using the -  formalism. How-
ever, if  denotes the trajectory followed by the original, -dimensional GWP, 
then the center of the reduced Gaussian follows a classical trajectory  in 
the reduced, -dimensional phase space. Also, the initial conditions for the time-
dependent  matrices must be replaced with   

   Z
0 = π ⋅π T = Id ,   (3.17) 

    P
0 = 2i π ⋅ A0 ⋅π T.   (3.18) 

Here, -dimensional matrices are denoted with a bar and  is the initial width matrix 
of the -dimensional GWP. 

Finally, we need to isolate the -contribution to the effective Lagrangian , which is 
required in Eq. (1.35) for evaluating the time-dependent complex phase . This is con-
veniently done using conservation of energy, since in all our calculations we consider 
only stationary initial states. Therefore,   

 
  
1
2
ζ t T ⋅ζ t +V (η t ) = V (η0 ),   (3.19) 
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with  denoting momentum conjugated to ; mass factors do not explicitly appear since 
 is already mass-scaled. Using Eq. (3.19), the -contribution to  in Eq. (1.35) then 

reads  

 

   

Leff
τ dτ

0

t

∫ = 1
2

(ζ τ )T ⋅ζ τ −V (ητ )
⎡

⎣⎢
⎤

⎦⎥
dτ

0

t

∫ = (ζ τ )T ⋅ζ τ −V (η0 )⎡⎣ ⎤⎦dτ
0

t

∫

= (ζ τ )T ⋅ζ τ dτ −V (η0 )t
0

t

∫ .
 (3.20) 

The part of this expression pertinent to the dynamics within the subset of vibrational 
DOFs  is then easily obtained by replacing  with , i.e.,  

 
   

Leff
τ dτ

0

t

∫
P

= (π ⋅ζ τ )T ⋅(π ⋅ζ τ )dτ −V (η0 )t
0

t

∫ .   (3.21) 

The term  generates an overall phase depending linearly on  and is responsible 
only for shift of the resulting spectrum without altering its shape. 

3.4 Computational details 

All ab initio calculations were performed with the Gaussian09 package.65 Its output was 
extracted directly from the checkpoint file. The ground PES  was handled with the 
density functional theory (DFT), whereas the first excited singlet PES ( ) was de-
scribed with the time-dependent DFT (TD-DFT). Following the work of Stendardo et 
al.,108 our TD-DFT calculations were based on the long-range corrected CAM-B3LYP 
functional with 6-31+G(d,p) basis set. Within this TD-DFT setup, the energy gap be-
tween the  and  PESs of oligothiophenes is described quite accurately. Although 
Gaussian09 provides analytical gradients for both DFT and TD-DFT, analytical Hessi-
ans are available only for DFT. No symmetry constraints were enforced and the “fine” 
and “ultra fine” integration grids were used for OTF-AI calculations and geometry op-
timization, respectively. 

In order to find the physically relevant equilibrium geometry of  for each oligothio-
phene T , we first performed an  geometry optimization of the “all-trans” conformer, 
the rings of which are oriented in an anti conformation with respect to their neighbors. 
The work by Becker and co-workers98 suggests that this is the most stable conformer. 
The  geometry optimization was started from this  equilibrium geometry. It has 
been well-established that in contrast to the inter-ring twisted  equilibrium geometry 
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and its shallow potential,  exhibits a steep, deep, harmonic-like well in the vicinity of 
its planar equilibrium geometry.98, 130 The  equilibrium geometry, served as the refer-
ence structure for the OTF-AI-TGA dynamics. 

Within the OTF-AI-TGA, the GWP was propagated for the total time of 
 with a time step of  using the second order symplectic algorithm. 

The resulting spectra were subjected to a phenomenological (inhomogeneous) Gaussian 
broadening with half-width at half-maximum (HWHM) of . 

3.5 Results and discussion 

3.5.1 Comparison with experimental spectra 

Our results confirm the utility of the OTF-AI-TGA approach for electronic spectra cal-
culation, since all important features of the experimental spectra are almost perfectly 
reproduced. Figure 7 demonstrates the agreement with the overall shape, peak intensi-
ties, as well as the trend of the spectra to gradually shift towards lower frequencies with 
increasing number of rings in the molecule. Note that particular experimental condi-
tions, notably the interaction with the solvent (here, ethanol glass at K), can produce 
a shift of the spectrum. However, we disregard this effect since the resulting shift is 
expected to be small for a broad class of solvents.98, 130-131 Also, the exact prediction of 
the spectrum position is partly beyond the level of the ab initio setup employed here 
(see Sec. 3.4). 



 

46 

Figure 7: Emission spectra of the oligothiophene T  family for: Comparison of experimental 
emission spectra (exp., dashed green line) with the full-dimensional OTF-AI-TGA calculations us-

ing all 21  normal modes (solid black line). 

Becker et al.132 reported a significant red shift of the oligothiophene absorption spectra 
at low temperatures and attributed this phenomenon to the twisted planar conforma-
tional transition induced by solvent freezing. Interestingly, this shift was not observed in 
the emission spectra, which suggests that in the whole temperature range it is only the 
planar conformation that plays a significant role in this process. Even without imposing 
explicit planarity constraints, no deviations from the planar conformation were observed 
during the ground-state gas-phase OTF-AI dynamics due to planarity of the initial ge-
ometry. This fact makes the comparison of our gas-phase results to the experimental 
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data more legitimate. Finally note that the ab initio ground state equilibrium geometry is 
twisted in contrast to the equilibrium geometry in ethanol glass at K. Therefore, the 

 torsional degrees of freedom connecting the planar and twisted geometries of T  
have imaginary frequencies. Since our approach is unable to describe wave-packet split-
ting, the TGA GWP only spreads along these degrees of freedom ( see Subsec. 3.5.5). 
However, since we are mainly interested in short-time dynamics, this behavior is quali-
tatively correct. Hence, the OTF-AI-TGA approach remains in this case robust even for 
floppy molecules and the question about the “harmonicity” of the system is of much 
lesser importance due to the employment of the local harmonic approximation. Alt-
hough the global harmonic approximation is quite adequate for T ,108 small changes of 
the peak positions and intensities can be observed as compared to OTF-AI-TGA (see 
Subsec. 3.5.6). 

To facilitate comparison between line-shape spectra of oligothiophenes with different 
numbers of thiophene rings, the spectra shown in Figure 8(a) are first  normalized 
and subsequently shifted so that the “ -peaks” overlap at zero energy. This reveals that 
the relative peak positions are rather insensitive to , while their prominence is increas-
ing with increasing . The peak at the highest energy (in our notation: ) in the emis-
sion spectrum is attributed to the –  transition.133 The position of the -peak is close 
to the vertical transition energy , which, in loose terms, justifies its dominance in 
Figure 8(a). More detailed classification of individual spectral peaks into the  
groups and their interpretation from the dynamical viewpoint is discussed in Subsection 
3.5.2. 

It has been found experimentally that the –  transition energy  in the polythio-
phene family T  is a linear function of .96-98, 101 In accordance with this observation 
and our identification of  with , we found that  is accurately described by the 

function . Good agreement with the experiment can be 

directly inferred from Figure 7. Furthermore, from the ab initio data, we determined in a 
similar fashion that . Fits of ,  and  are 

shown in Figure 8(b). 
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Figure 8: Emission in the oligothiophene T  family for n∈{2,3,4,5} . (a) -normalized line-

shape spectra. To facilitate their comparison, the spectra are shifted independently for each  so 

that the  peak appears at zero energy. (b) Dependence of the vertical-transition energy  and 

positions of the  and -peaks  on  (see text for details). Linear fits are denoted 

with lines. 

Note that the relative intensity of the -peak, identified with the –  transition, in Fig-
ure 8(a) increases with . This can be related to the fact that the slope of  is larg-
er than the slope of  [see Figure 8(b)], using the following heuristic argument: 
Neglecting the difference between the  and  zero-point energies, the –  transition 
energy depends solely on the energy gap between these PESs. On the other hand,  
is influenced also by the relative displacement of the  and  potential minima. There-
fore, if  decreases more slowly with increasing  than does the –  transition ener-
gy, one can expect a decrease not only in the energy gap between  and  PESs but 
also in the relative displacement of their minima, which, in turn, is responsible for the 
gain in intensity of the –  transition, i.e., the -peak. This observation is in agreement 
with the Huang-Rhys analysis performed by A. Yang et al.96 on fluorescence spectra of 
T  for n∈{3,4,5,6} . 
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3.5.2 Vibrational analysis 

To gain a deeper understanding of the emission spectra shown in Figure 7 and Figure 8, 
we employ independently for each oligothiophene T  the analysis proposed in Subsec-
tion 3.3.3 adapted to the normal-mode coordinates of the  PES of T . To this end, we 
closely follow the example presented at the end of Subsection 3.3.3. The normal-mode 
classification based on decompositions Eq. (3.14) with  and  results 

for all T  in an active space  comprised of six groups of modes (see Table 3). This 
space is spanned by ten “active” modes (i.e., ) for T -T , while  for 
T . The thresholds were chosen in order to obtain a minimal set  of active modes with 
as many subsets as possible on condition that the reduced OTF-AI-TGA spectrum  
recovers all important features of the “complete” spectrum . For clarity, the subscript 
of  denotes explicitly the set of modes taken into account in the spectra calculation. 
Formally, the spectrum  can be thought of as the computationally cheapest, yet still 
sufficiently accurate approximation of . 

For details regarding correlation function and spectra calculations within proper sub-
spaces of  we refer to the Subsection 3.3.4. From now on, to simplify notation, the 
implicit dependence of, e.g.,  on the threshold values  and  will not be denoted 
explicitly. 

Figure 9(a) demonstrates that ten modes were sufficient to essentially reproduce the 
complete spectrum  for T . The simplification achieved is the most striking for T  
[Figure 9(b)], for which eight modes were sufficient and hence the dimensionality was 
reduced more than ten times without losing any major feature in the spectrum. Howev-
er, note that the “ -mode” spectra in Figure 9 are slightly shifted due to dependence 
of the zero-point energy on the choice of .  

The modes in  are by definition considered to be coupled only within individual 
groups. Therefore, one can attempt to assign a characteristic vibrational movement of 
the entire molecule induced by excitation of the modes belonging to a particular group. 
Among the  groups (  oligothiophenes   groups per oligothiophene), we 
identified  characteristic motions shown on the examples of T  and T  molecules in 
Figure 10. In Table 3, these characteristic motions are distinguished with a superscript.   

 



 

50 

Figure 9: Emission spectra of oligothiophenes T (a) and T (b): comparison of the full-

dimensional OTF-AI-TGA spectrum  (solid black line) with the spectrum  (dotted green line) 

computed within the subspace  of the active modes and the spectrum  (dashed blue line) 

taking into account only modes belonging to the classes  and  (see Figure 11 and Table 3) in-

troduced in Eq. (3.22). 

Next, the six groups of normal modes are, for each n∈{2,3,4,5} , merged into three 

disjoint classes , , and  as  

 
   
C1 := A1, C2 := A2 , and C3 :=

α=3

6

∪Aα .   (3.22) 

The reason for introducing an additional logical layer is the observation in Figure 11 
that the overall character of the spectrum  corresponding to the th group is only 

mildly influenced by , whereas the dependence on  is dominant. In loose terms, the 
first group  comprises inter-ring stretch modes and is mainly reflected in the “ -
peaks” of the complete spectrum  [see Figure 8(a)]. The second group  consists of 
a ring-squeeze mode and produces the “ -peaks” in Figure 8(a). Finally, the modes con-
tained in the third group cause merely an overall broadening of the spectrum. Such a 
classification of vibrational modes, essential for a theoretical interpretation of the emis-
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sion spectra, is also useful in practice, e.g., in the design of organic light-emitting diodes 
(OLEDs).134 

The difference between individual classes is further emphasized by introducing an 
“overall relative displacement” of the th class as . We have found that 

 is highly correlated with  while  with . Therefore, for low , the dynamical 
importance of the class  decreases faster with increasing . This results in less struc-
tured spectra, shown in Figure 8(b), in which the -peaks are almost invisible already 
for T . 

In summary, the inter-ring stretch motion is seen to have a dominant effect on the T  
spectra, especially for . Comparing the relative displacements of the classes  
and  helps to further corroborate the hypothesis (stated above) that the  and  ge-
ometries become less displaced with increasing  since the –  transition energy 

 decreases faster than the vertical excitation energy . 

Figure 10: Characterization of the active normal modes in the set  [see Eqs. (3.14) and 

(3.22)] by the nature of the deformation which they exert on the oligothiophene T  skeleton. To 

cover all cases presented in Table 3, these deformations are shown on the examples of T  and T  . 

Panel labels correspond to the classification in Table 3. 
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Table 3: Normal-mode classification based on decompositions (3.14) and (3.22) with  

and  for the oligothiophene T  family, Vibrational frequencies  are given in cm , 

while the maximum relative displacements  of Eq. (3.11) are dimensionless. The modes are fur-

ther classified into  groups by the character of the deformation which they exert on the oligothio-
phene skeleton. These groups are distinguished by superscript labels next to frequency values. For 

schematic depiction of these deformations see Figure 10. 

 

Figure 11: Classification of normal modes of the oligothiophene T  family according to their in-
fluence on the resulting emission spectrum see Eqs. (3.14) and (3.22)]. Detailed description of in-

dividual classes is contained in Table 3. (a) Inter-ring stretch modes responsible for the -peaks 

shown in Figure 8. (b) Ring-squeeze mode reflected in the -peaks in Figure 8. (c) Remaining 

modes causing overall broadening of the spectra 

class group
ωi [cm−1] ρi

T2 T3 T4 T5 T2 T3 T4 T5

C1 A1

1657.7(a) 1630.5(a) 1615.5(a) 1598.6(a) 2.57(a) 2.50(a) 2.41(a) 1.93(a)

1507.2(a) 1553.9(a) 1545.2(a) 1590.1(a) 1.23(a) 1.10(a) 1.12(a) 1.35(a)

1450.0(a) 1501.2(a) 1581.3(a) 1548.5(a) 0.88(a) 0.86(a) 0.56(a) 1.13(a)

1211.2(a) 1461.9(a) 1498.2(a) 0.59(a) 0.36(a) 0.55(a)

3243.6(a) 1341.6(a) 1462.6(a) 0.25(a) 0.34(a) 0.36(a)

C2 A2 673.7(b) 696.7(b) 704.7(b) 710.8(b) 2.05(b) 1.56(b) 1.32(b) 1.17(b)

C3

A3 290.4(e) 210.1(e) 162.3(e) 122.5(c) 1.27(e) 1.92(e) 2.15(e) 0.99(c)

A4 386.5(c) 350.3(c) 333.0(c) 136.7(c) 1.61(c) 1.49(c) 1.39(c) 2.09(c)

A5 712.7(g) 739.6(g) 1112.9(f) 322.6(c) 1.09(g) 0.64(g) 0.63(f) 1.35(c)

A6 1096.3(f) 1261.6(d) 1275.0(d) 1109.5(f) 0.78(f) 0.70(d) 0.66(d) 0.78(f)
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3.5.3 Quinoid structure of  

The extent of -conjugation along the oligomer chain is reflected in the quinoid struc-
ture of individual rings. The degree of the quinoid/aromatic character of the th ring in 
T  can be quantified in terms of the so-called bond length alternation135-137 (BLA)  

 
  
BLA i = Rβi

− (Rαi
+ R

α i
' ) / 2,   (3.23) 

where  denotes the length of the , , and  bonds of the th ring (see Figure 12) 
Hence, quinoid rings have a negative BLA, while aromatic rings have a positive BLA. 

The  equilibrium geometries of T  in Figure 12 reveal that for , both quinoid 
and aromatic ring types are present in the chain: The inner rings are quinoid, while the 
end rings are aromatic. On the other hand, both rings of T  have quinoid character. 
However, the large difference between the lengths of  and  bonds suggests a double-
bond character of the outer  bond in T . In general, the DFT  geometries exhibit 
more pronounced quinoid character in comparison with the  geometries calculated at 
the MNDO level,137 which describe T  as slightly aromatic. 

Figure 12: Equilibrium  geometry of oligothiophenes T  family. Corresponding bond lengths 

for different oligothiophenes T  are juxtaposed with each other next to individual bonds, whereas 

the dashed lines represent the end of the half-chain for each T . E.g., to the right of the dashed line 

marked as T  there are only one or two bond-length values since those bonds are not present in the 

half-chain of T  and T . 

The time dependence of BLA, displayed for T  in Figure 13 shows emission-induced 
oscillations between the quinoid and aromatic characters of individual rings. The inner 
rings are seen to be subjected to larger structural variations, while the outer rings remain 
aromatic, although the degree of aromaticity changes periodically. Hence, the quinoid 
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character of T  in  is well localized over just -  rings, as was shown also by Bel-
jonne et al.,137 while the emission process triggers deformation of the whole chain. 

Figure 13: Time dependence of the bond length alternation (BLA) parameter during the dynamics 

induced by the emission in pentathiophene T  [see Eq. (3.23) and Figure 12]. The character of the 

outer rings (rings  and ) is mainly aromatic (positive BLA), while the transition to the quinoid 

structure (negative BLA) occurs almost exclusively within the inner ring (ring ). 

3.5.4 Analysis of the effective conjugation coordinate 

Oligomer spectra are usually analyzed in terms of the so-called effective conjugation 
coordinate138-140 (ECC), i.e., the totally symmetric internal coordinate the excitation of 
which triggers the conformational change between the aromatic to the quinoid structures 
of the molecule. This approach is especially popular within Raman spectroscopy.136, 141-

144  For the oligothiophene family T , ECC captures the alternation between adjacent 
bonds and is defined as  

 
   
R:= 1

N a=1

N

∑(−1)a−1ra ,   (3.24) 

where  is the Cartesian vector connecting the th and th carbon atoms of the 
backbone comprised of  C-C bonds in total. Further insight is gained by 
restating Eq. (3.24) in the normal-mode coordinates. By employing transformation 
(1.38), we obtain  

    R=R ref+ R ⋅η, with R := S ⋅T and R ref:= S ⋅ξref ,   (3.25) 

where  is the transformation matrix of Eq. (1.38),  denotes Cartesian coordinates of 
a reference geometry, and  
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S := 1

N a=1

N

∑(−1)a (Pa − Pa+1)   (3.26) 

is a generalization of the projector  defined below Eq. (1.39). 

Then, the normalized “ coupling strength”  of the th normal mode to  reads  

 
  
ν j := TrYj

T⋅RT⋅R ⋅Yj

TrRT⋅R
,   (3.27) 

where the square matrix  is defined as . 

However, the quantity  changes during the dynamics and its variations are described 
in terms of  

    δR t:=R t−R 0= R ⋅η t , withη t := (η t −η0 ).  (3.28) 

Now, in order to assess the importance of a particular normal mode with respect to , 
we cannot use Eq. (3.27) directly, since  provides only a static picture. To remedy 
this, we introduce a more appropriate measure of dynamical coupling:  

 

  

υ j := ς j

k
∑ς k , with ς j :=

0

t

∫ dtη t ⋅Yj
T⋅RT⋅R ⋅Yj ⋅η

t ,   (3.29) 

where the summation runs over all normal modes. 

A comparison of individual normal modes for T , n∈{2,3,4,5} , in terms of  and  

is shown in Figure 14, which demonstrates clearly that only certain modes contributing 
to  are excited during the fluorescence process. This means that an analysis based 
merely on  would be incomplete. 

In Subsection 3.3.3, individual normal modes were classified into independent groups 
 [see Eq. (3.14)]. Using Eq. (3.29), we can estimate the dynamical influence of a par-

ticular group  on  by employing  

 
   
κ i :=

j∈Ai

∑υ j .   (3.30) 

Table 4 demonstrates that variations in  can be assigned mostly to the group , and, 
hence, the -peaks [see Figure 8(a)] originate from the change of the ECC during the 
dynamics induced by the fluorescence process. 
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Figure 14: Comparison of the static,  [see Eq. (3.27)], and dynamic,  [see Eq. (3.29)], contribu-

tion of individual normal modes to the ECC  of Eq. (3.24) for the oligothiophenes T , 

n∈{2,3,4,5}  

Table 4: Contribution of the th group  to ECC in terms of  introduced in Eq. (3.30). 

                 

T    0.947   0.013   0.006   0.006   0.008   0.015  

T    0.962   0.010   0.009   0.001   0.000   0.003  

T    0.942   0.009   0.010   0.002   0.004   0.013  

T    0.927   0.008   0.000   0.012   0.001   0.025  

 

In summary, Oligomer vibrational line shapes are usually analyzed in terms of the ef-
fective conjugation coordinate138-140 (ECC)—a totally symmetric internal coordinate 
describing the variation of adjacent C-C backbone stretches, responsible for the change 
from the aromatic to quinoid structure. A detailed analysis of the dynamics shows that 
only some of the modes coupled to ECC are also excited by the fluorescence process. 
The overall contribution of the  group to the ECC is more than % for all 
olighothiophenes and, hence, the -peaks originate from the change of the ECC during 
the dynamics induced by the fluorescence process. 
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3.5.5 Time dependence of the width matrix of the OTF-AI-TGA GWP 

In floppy molecules, torsional degrees of freedom are typically associated with a poten-
tial of mild double-well character. In the electronic ground state of oligothiophene Tn, 
the  floppy inter-ring torsional modes connect the twisted geometries through a 
planar “transition” geometry. An initial nuclear wave packet located at this planar “tran-
sition” geometry then splits into two parts moving towards the local minima. Obviously, 
a single-classical- trajectory approach such as OTF-AI-TGA can capture this behavior 
“only” qualitatively: the TGA GWP spreads along these torsional degrees of freedom 
(see Figure 15). This effect in turn causes damping of the correlation function and, 
hence, broadening of the resulting spectrum. Since these torsional degrees of freedom 
are usually low-frequency modes, they are less important in short-time dynamics. Note, 
that the OTF-AI-TGA is still robust even in this worst-case scenario and, should the 
need arise, the analysis of the TGA GWP width evolution in combination with the anal-
ysis techniques presented in Subsection 3.3.3 allows to identify these particular degrees 
of freedom so that they can be treated by more adequate methods.  

Figure 15: Time dependence of the Gaussian “nuclear-density” width  along 

the th mode in oligothiophenes T5. The quantity  is shown for the four different modes in which 

the spreading of the GWP is most pronounced.  

3.5.6 Comparison of the OTF-AI-TGA approach to the global harmonic approxima-
tion 

A natural question in connection with the OTF-AI-TGA approach in our setting is 
whether and possibly to what extent does the popular global harmonic approximation 
(HA) of the PESs capture all important features of the emission spectrum in the oli-
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gothiophene T  family. Figure 16 provides direct answer. There we see that the agree-
ment of HA with OTF-AI-TGA is quite good and that this agreement further improves 
with increasing  in accordance with the heuristic arguments provided in Subsection 
3.5.1. The OTF-AI-TGA spectrum of T2 reproduces relative intensities of individual 
peaks better than the HA spectrum while the spectra of T5 are almost identical.  

However, the HA method is in our context plagued with one major obstacle, namely the 
choice of the reference structure of . We consider two different choices: the “  twist-
ed” model is based on the ground-state twisted ab initio equilibrium (i.e., global mini-
mum) geometry, while the “  planar” employs planar geometry obtained with con-
strained optimization. The planar  structure of T  does not correspond to a local po-
tential minimum since there are  imaginary frequencies attributed to the  
torsional modes. In the calculations presented in Figure 16, these imaginary frequencies 
are projected out. For T , this leads thus to a harmonic 

 dimensional model [see Eq. (3.15)] which is exactly solvable with TGA. Figure 16(a) 
shows that the choice of the reference structure is of paramount importance: The agree-
ment of “  twisted” with OTF-AI-TGA and/or experimental data is rather poor.  

In contrast to the HA, OTF-AI-TGA does not require an a priori knowledge of the land-
scape of the ground PES and thus in this sense provides a more robust tool for calcula-
tion of emission spectra in large molecules.  
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Figure 16: Emission spectra of the oligothiophenes T  family: Comparison of global harmonic ap-

proximation (“  planar” and “  twisted”) to the OTF-AI-TGA approach and the experimental 

data. The “  twisted” case is shown only for T2. 

 

3.6 Conclusion 

All features of the experimental emission spectra of oligothiophenes with up to five 
rings (i.e., up to  vibrational DOFs) are well reproduced by our OTF-AI-TGA calcu-
lations. The efficiency of the TGA formulation is found to allow treating all vibrational 
DOFs on an equal footing even in case of larger systems especially since the OTF-AI 
scheme does not require an a priori knowledge of the potential energy surfaces and the 
TGA approach remains robust for floppy molecules. No symmetry considerations are 
necessary; in particular, neither the dynamics nor the analysis relies on any symmetry 
assumptions. Moreover, further considerable gain in efficiency without loosing any sub-
stantial information can be obtained by employing Hessian interpolation. 

Experimentalists try, often successfully, to translate the spectral features into a dynam-
ical picture, which for theoreticians is often the starting point. The extraction of the es-
sential information from the dynamical simulation, however, is often as difficult as the 
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simulation itself. We presented, therefore, a novel systematic approach to identify 
groups of vibrations that are essential for the dynamics and for the spectrum. This ap-
proach even allowed us to compare different oligothiophenes T  and to study changes 
in their spectra with increasing : Their vibrational line shapes are modulated by inter-
ring stretch and ring-squeeze vibrations, the latter contributing to the spectral broaden-
ing for longer chains. The ground and excited potential energy surfaces become more 
similar as the chain length increases; this, in turn, reduces the amplitude of the dynam-
ics induced by emission and results in a shift of the intensity toward the –  transition. 
The phenomenon is also reflected in the different dependences of the –  and vertical 
transition energies on . 

The OTF-AI-TGA scheme also allowed us, by evaluating the bond length alternation, to 
study directly dynamical oscillations between the quinoid and aromatic characters of 
individual rings in the oligothiophene chain. 

OTF-AI-TGA is also useful as a preliminary test. The expensive OTF-AI information 
stored during the TGA simulation can be reused in other semiclassical methods such as 
poor person’s Herman-Kluk (HK) propagator, where the HK prefactor is for all contrib-
uting trajectories assumed to be equal to the prefactor of the central trajectory.12 In sys-
tems, which are too large to be treated with a more sophisticated quantum or semiclassi-
cal method, but for which the TGA is insufficient, e.g., due to the importance of inter-
ference effects, the analysis of the OTF-AI-TGA results can be used to define a sub-
space of reduced dimensionality, in which the most important dynamics occurs. Within 
this subspace, the effects that cannot be described with the TGA may be studied with 
less efficient yet better-suited methods.145 Alternative approaches for constructing the 
information-flow matrix in order to maximize the decoupling of the DOFs with minimal 
impact on the resulting spectrum are the subject of our ongoing research. 

Finally, let us note that the computational protocol presented here is not limited to linear 
spectroscopy; nonlinear spectra such as time-resolved stimulated emission can also be 
evaluated with the OTF-AI-TGA. 
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 On-the-fly ab initio semiclas-Chapter 4
sical dynamics of floppy molecules: Ab-
sorption and photoelectron spectra of am-
monia 

Because oligothiophenes are rather harmonic, we next studied how OTF-AI-

TGA performs in situations where large amplitude anharmonic motions are crucial for 

spectra calculations. Therefore, we computed the absorption and photoelectron spectra 

of NH3, which depends strongly on the well-known umbrella motion. The content of 

this chapter has been published in the Journal of Physical Chemistry A.146 

4.1 Abstract 

We investigate the performance of on-the-fly ab initio (OTF-AI) semiclassical dynam-
ics combined with the thawed Gaussian approximation (TGA) for computing vibration-
ally resolved absorption and photoelectron spectra. Ammonia is used as a prototype of 
floppy molecules, whose potential energy surfaces display strong anharmonicity. We 
show that despite complications due to the presence of large amplitude motion, the main 
features of the spectra are captured by the OTF-AI-TGA, which—by definition—does 
not require any a priori knowledge of the potential energy surface.  Moreover, the com-
puted spectra are significantly better than those based on the popular global harmonic 
approximation.  Finally, we probe the limit of the TGA to describe higher-resolution 
spectra, where long time dynamics is required.  
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4.2 Introduction 

 Ab initio semiclassical methods have proven to provide a powerful tool for decoding 
molecular spectra:4, 19, 109-110, 113, 147-149 Not only do the classical trajectories underlying 
such methods help visualize the relevant physical and chemical processes, but, in con-
trast to popular ab initio classical molecular dynamics, nuclear quantum effects are tak-
en into account at least approximately.  Since the propagation requires only a local 
knowledge of the potential energy surface (PES), an on-the-fly ab initio (OTF-AI) 
scheme (see Subsection 1.5.1) can be applied, circumventing the construction of global 
PESs.  The overall cost, however, limits almost all semiclassical methods to small sys-
tems.   

Challenged by this limitation, we showed on the example of oligothiophenes that the 
efficiency of Heller’s thawed Gaussian approximation (TGA) (see Ref. [50] or Section 
1.4) combined with the OTF-AI scheme permits calculating vibrationally resolved spec-
tra of large systems with up to 105 degrees of freedom (DOFs) (see Chapter 3). Fur-
thermore, we showed that this OTF-AI-TGA can sometimes capture qualitatively the 
effect of transitions to PESs with a double-well character, such as in the emission spec-
tra of oligothiophenes the equilibrium geometries of which are twisted in the ground 
state and planar in the excited state. Within the OTF-AI-TGA, the nuclear vibrational 
wave function is described by a single Gaussian wave packet (GWP) whose time-
dependent width is propagated using the local harmonic approximation of the PES (see 
Sections 1.4 and 1.5).  Since the short-time dynamics is often well described by a 
thawed GWP, the OTF-AI-TGA has been developed with the purpose of computing 
broad vibronic spectra. 

Here, we focus on how the OTF-AI-TGA performs on floppy molecules, the spectra of 
which depend strongly on large amplitude motions, and hope to find an improvement 
over the standard approach based on the more drastic, global harmonic approximation 
for the PESs.  When the vibronic spectra of floppy molecules are calculated within the 
global harmonic approximation,104, 106-107, 150-154 the choices of the coordinate system 
and reference structures are crucial. Furthermore, to produce satisfactory results, the 
global harmonic approximation often had to be combined with anharmonic potentials 
for the floppy DOFs,152, 155 requiring a preliminary exploration of the PESs, which is 
rather cumbersome if not impossible for larger molecules.  In contrast, the OTF-AI-
TGA completely avoids this “prescreening” and treats all DOFs on an equal footing; 
yet, the anharmonicity is captured partially, and, if needed, the PES can be studied af-
terwards by extracting the most important DOFs using, e.g., the approach described in 
Subsection 3.3.3. 
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We use ammonia (NH3) as a prototype of a floppy molecule, on which, due to its small 
size, different and rather accurate levels of theory for the OTF-AI scheme can be com-
pared, permitting to separate the errors due to electronic structure evaluation from those 
due to the dynamical approximation. The    absorption spec-
trum of ammonia is dominated by a long progression resulting from the activation of its 
well-known umbrella vibration,156-158 along which the PES of the  state has a 
shape of a double well with two degenerate minima with pyramidal geometry of C3v 
symmetry. In contrast, the trigonal planar equilibrium configuration of the  excit-
ed state belongs to the D3h point group.  Such a non-planar to planar electronic transi-
tion involves a substantial displacement between equilibria and, as a result, induces a 
large-amplitude nuclear motion exploring anharmonic regions of the excited PES. The 
spectral broadening is caused by the short lifetime of the  state, which has been as-
signed to strong pre-dissociation.159-160 While we do not explore it here, the photodisso-
ciation of NH3 due to the quasi-bound nature of the Franck-Condon region of  and its 
influence on the diffuse character of the spectrum have been studied by full-dimensional 
nonadiabatic quantum dynamics calculations.161-165  

We also probe the limits of the OTF-AI-TGA’s capability to describe long-time propa-
gation required for higher-resolution vibronic spectra such as the  pho-
toelectron spectrum of that shows both a strong and weak progres-
sions (see Edvardsson et al.166 and references therein), and has served as a benchmark 
for spectra calculations of floppy molecules.152, 155 The relevant dynamics is similar to 
the dynamics responsible for the absorption spectrum: The equilibrium geometry of the 
ionic ground state is also planar with D3h symmetry and the main vibration induced by 
the excitation is the umbrella motion resulting in a long, intense progression.  In con-
trast to the absorption spectrum, however, another, weak progression appears.  Theoret-
ical studies using the multiconfiguration time-dependent Hartree (MCTDH) quantum 
dynamics method combined with high-level ab initio PESs167-169 assigned this weak 
progression to the totally symmetric stretching motions.167-168  

Our OTF-AI-TGA calculations of absorption and photoelectron spectra are compared 
with different global harmonic models in order to evaluate the effect of the global har-
monic approximation on the peak spacing and progressions appearing in the spectra.  
Experimental absorption and photoelectron spectra serve as benchmarks. 
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4.3 Theory  

4.3.1 Absorption and photoelectron spectra calculations 

According to Section 1.2 [Eq. (1.19)], the spectrum is obtained, using the electric-dipole 
approximation, time-dependent perturbation theory, and Condon approximation, as the 
Fourier transform  

 
   
σ (ω ) = 2π

3 c
μge

2
ω Cμ (t)∫ eit (ω+E0 / )  (4.1) 

of the autocorrelation function  

    C(t) = 〈ψ init | e− iĤet / |ψ init 〉,   (4.1) 

the shape of which is modulated by the nuclear motion induced by the electronic excita-
tion. The initial nuclear state , stationary in the ground electronic state with energy 

, starts to evolve with the excited-state Hamiltonian  after excitation.  Whereas the 
NH3 absorption spectrum arises from the light-induced nuclear motion on the 

electronic surface, the photoelectron spectrum is determined by the nuclear mo-
tion on the cationic surface  generated by the ejection of an electron from the neu-
tral molecule. 

4.3.2 Global harmonic potential construction 

When computing vibronic spectra, it is popular to approximate the relevant PESs glob-
ally by multidimensional harmonic oscillators; we refer to this as the global harmonic 
approximation and will show its limitations below. The reason for the widespread use of 
the global harmonic approximation is the existence of efficient exact algorithms allow-
ing the treatment of even large molecules in this setting.104, 170-171 However, one can also 
(and we do) evaluate the global harmonic spectra with the TGA since it, too, is exact in 
globally quadratic PESs. 

The harmonic model for the PES i expressed in vibrational normal mode coordinates 
about the reference geometry  has the general form 

 ( ) ( )0,
1)(
2

T
i i i i iV q d qV q K d= − ⋅ ⋅ −+ , (4.2) 

with a minimum  at position di and the force matrix Ki given by  
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where the energy , gradient , and Hessian  are the results of 

ab initio calculations at geometry  and transformed into normal mode coordinates 

using Equations (1.40), (1.42), and (1.43). Finally,  

is the rearrangement energy.   

The global harmonic models are usually based on the following choices for  and 

:104, 107 In the ground state global harmonic approximation,  is diagonal and  

since the ground state equilibrium geometry serves as a reference state .  As 
for the excited state, there are two natural yet different choices for the harmonic PES: 
The adiabatic harmonic PES corresponds to ab initio data computed at the excited state 
equilibrium geometry , whereas the vertical harmonic PES is constructed using ab 
initio data evaluated on the excited state at the ground state equilibrium geometry .  
We constructed all three harmonic PESs; all of them had only real frequencies. 

4.3.3 Derivation of the TGA Gaussian wave packet energy 

The key ingredient of OTF-AI-TGA, the methods used here to calculate the spectra, is 
the local harmonic approximation (see Section 1.4). This approximation results in a 
time-dependent effective potential [Eq. (1.26)] and, therefore, the total GWP energy 

 is not conserved. We follow the strategy used for Gaussi-
an basis set methods48 to derive an explicit expression for , which is then used in 
Subsection 4.5.2 to analyse the limit of the TGA to describe higher-resolution spectra, 
where long time dynamics is required. 

In the derivation, we will use the following three basic Gaussian integrals: 
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where  and are  positive definite symmetric complex matrices and  denotes a 
D-dimensional complex vector.  

The expectation value of the kinetic operator in the GWP state is  

 ( )
2

† 1ˆ grad ra
2

( ) g d ,t t t
q qT dq Gψ ψ−〈 〉 = ⋅ ⋅∫  (4.5) 

where  denotes the mass matrix (G is simply the identity matrix in mass-scaled coor-
dinates, but we keep a general G here since the calculations are not more difficult) and 
the gradient of the normalized GWP [Eq. (1.25)] is given by 

 grad 2 ( )t t t t t
q

iA q q pψ ψ ⎧ ⎫= − −⎨ + ⎬
⎩ ⎭

. (4.6) 

Using the Gaussian integrals from Eq. (4.4) and separating the total kinetic energy 
 into a “classical” (cl) kinetic energy of the central trajectory and a 

“semiclassical” (sc) contribution due to the width of the wavepacket, we can write: 
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  (4.7) 

Since the effective potential  [Eq. (1.26)] is expanded to the second order due to 
the local harmonic approximation we can use the same strategy to evaluate the expecta-
tion value of the potential operator  

 ( )* eff
ˆ t t t tV dq Vψ ψ〈 〉 = ⋅ ⋅∫ .  (4.8) 

Applying the Gaussian integrals [Eq. (4.4)] and separating the potential energy into 
classical and semiclassical contributions, we can write 
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=
 (4.9) 

The same separation can be applied to the total energy of the wave packet, 
, where corresponds to the total classical energy of the 

central trajectory, whereas the total semiclassical energy  is related 
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to the finite size of GWP. Note that  is conserved exactly since the central trajectory 
feels the exact, time-independent potential.   

4.4 Computational Methods  

Dunning’s correlation consistent triple-zeta basis set including polarization functions 
(aug-cc-pVTZ) was used in all ab initio calculations. The  absorption 
spectrum calculations were performed with either B3LYP or CASPT2 methods, where 
B3LYP denotes a DFT calculation for the ground state and TD-DFT calculation for the 
excited state, both using the b3lyp functional, and CASPT2 stands for a CASPT2 calcu-
lation with a CASSCF(8/8) reference electronic wave function of the ground or excited 
state depending on whether  or  calculations were performed.  Photoelectron 
spectra were calculated with CCSD and MP2 methods.  Here, the neutral NH3 molecule 
and NH3

+ cation defined the ground and excited electronic states for the calculations.  
Therefore, the unrestricted versions of the CCSD and MP2 methods were required for 
excited electronic state calculations. The Molpro2012.1172 package was used for 
CASPT2 and GAUSSIAN0965 for B3LYP, CCSD, and MP2 calculations. In the pack-
ages used, analytical gradients were available for all these methods, but analytical Hes-
sians had been only implemented for MP2 and DFT. The initial GWP was the ground 
vibrational eigenstate of the harmonic fit to the PES at one of the two degenerate equi-
librium geometries of the   state. The classical trajectory and stability matrix were 
propagated using the second order symplectic algorithm in the OTF-AI calculation and 
using an analytical formula in the global harmonic calculations.  The GWP was propa-
gated with a time step of 8 a.u. ≈ 0.2 fs for 1000 steps (a total time of 8000 a.u ≈ 193.5 
fs) for absorption spectra and for 2000 steps (a total time of 16000 a.u. ≈ 387.0 fs) for 
photoelectron spectra. The resulting spectra were shifted (Table 5) to eliminate the sys-
tematic errors of ab initio vertical excitation energies and broadened by a phenomeno-
logical (inhomogeneous) Gaussian with half-width at half-maximum of either 200 cm-1 
≈ 0.025 eV (for absorption spectra) or 50 cm-1 ≈ 0.006 eV (for photoelectron spectra). 

Table 5: Overall energy shifts in eV introduced into the spectra. 

 B3LYP CASPT2 MP2 CCSD 

OTF-AI-TGA 0.57 -0.04 -0.9 0.10 

Vertical harmonic model 0.55 -0.05 -0.114 0.08 

Adiabatic harmonic model 0.60 0.05 0.00 0.00 



 

68 

4.5 Results and discussion  

4.5.1 Absorption spectrum 

A single long progression due to the umbrella motion of NH3 is observed in the experi-
mental absorption spectrum (see Figure 17), which exhibits substantial broadening, es-
pecially in the higher energy region, largely due to photodissociation.  Such diffuse 
spectra depend only on short-time dynamics,1 during which the OTF-AI-TGA GWP 
remains trapped in the quasi-bound region of , making the comparison with global 
harmonic models straightforward; in all our calculations, the broadening was taken into 
account phenomenologically.  

Figure 17 compares the experimental spectrum173 with spectra calculated with the adia-
batic harmonic, vertical harmonic, and our OTF-AI-TGA approach using CASPT2 and 
B3LYP levels of theory.  In the adiabatic harmonic model, the stretching modes are 
overly excited due to their coupling to the bending mode in the Cartesian representation, 
which results in unphysical progressions.150, 152, 155 Furthermore, the adiabatic harmonic 
model is very sensitive to the ab initio level of theory: Small changes in equilibrium 
geometries have a dramatic effect on the spectrum.  The vertical harmonic model suffers 
much less from these two problems and, in addition, it obviously provides a better de-
scription of the Franck-Condon region important for spectra calculations.106, 150, 174 Still, 
it is clear that neither of the two harmonic models can reproduce the anharmonic peak 
spacing.  In contrast, the local harmonic approximation employed in the OTF-AI-TGA 
captures partially the anharmonicity of the PES, resulting in an almost perfect peak 
spacing in the OTF-AI-TGA spectrum.  Furthermore, the progression is longer than in 
the vertical harmonic spectrum and the relative intensity distribution matches well the 
experiment.  Finally, by comparing the B3LYP and CASPT2 calculations we conclude 
that the ab initio level of theory affects more the intensity distribution than the peak 
spacing.   
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Figure 17: Absorption spectrum of NH3: Comparison of the experimental spectrum173 recorded at 
the temperature of 175 K with the spectra computed with the OTF-AI-TGA, vertical harmonic 

(VH), and adiabatic harmonic (AH) models within the B3LYP and CASPT2 ab initio methods. All 

spectra are rescaled so that the highest spectral peak in each spectrum is of unit intensity. 

4.5.2 Photoelectron spectrum 

Figure 18 compares the experimental photoelectron spectrum166 with spectra calculated 
using the OTF-AI-TGA, vertical harmonic, and adiabatic harmonic models within the 
CCSD and MP2 levels of theory.  As expected, the adiabatic harmonic model fails 
completely, while the vertical harmonic spectrum contains both the intense and weak 
progressions, but the main progression is too short and the peak spacing is poor.  Com-
pared with the vertical harmonic model, the OTF-AI-TGA significantly improves both 
the peak spacing and intensity distribution of the main progression.  Yet, the spectral 
intensities obtained with the OTF-AI-TGA combined even with the expensive CCSD 
method decay faster with increasing distance from the highest peak than do the experi-
mental intensities because the TGA cannot capture the nonlinear spreading of the wave 
packet due to anharmonicities in the exact potential. Here this effect is stronger than in 
the absorption spectra since the photoelectron spectra depend on much longer dynamics, 
allowing the nonlinearities to accumulate. Interestingly, this affects mainly the spectral 
intensities and not the peak positions, implying that in the photoelectron dynamics of 
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ammonia the local harmonic approximation for the PES remains accurate for the phase 
of the thawed Gaussian but not for its density.  Also, the weak progression is hidden: 
The OTF-AI-TGA spectrum exhibits noise and negative intensities, which appear, to a 
much lower extent, also in the lower-resolution absorption spectrum (see Figure 17).  
The origin of these negative intensities goes back to the local harmonic approximation, 
which results in a time-dependent effective potential [Eq. (1.26)] and, therefore, non-
conservation of energy — positive intensities in spectra are only guaranteed for time-
independent Hamiltonians.  To explore this phenomenon in more detail, one can write 
the total energy of the GWP as a sum of the classical energy  along the central trajec-
tory and semiclassical energy  due to the finite size of the nuclear wave packet (see 
Subsection 4.3.3).  Figure 19 shows that in the OTF-AI propagation scheme,  is con-
served exactly since the central trajectory feels the exact, time-independent potential, 
while  is growing with time. As a result, the total GWP energy is not conserved, 
which is reflected as noise in the spectrum.  This effect does not appear in quadratic 
PESs (for which the local harmonic approximation does not change the exact potential), 
and is also negligible for short times. 

Figure 18: Photoelectron spectrum of NH3: Comparison of the experimental spectrum166 with the 

spectra computed with the OTF-AI-TGA, vertical harmonic (VH), and adiabatic harmonic (AH) 
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models using MP2 and CCSD ab initio methods.  All spectra are rescaled so that the highest spec-

tral peak in each spectrum is of unit intensity. 

Figure 19: Time dependence of the classical ) and semiclassical ( ) energies for the OTF-AI-

TGA and vertical harmonic (VH) model using CCSD level of theory. The total GWP energy  

is the sum of  evaluated along the central trajectory and  resulting from the nuclear GWP 

width. The TGA is exact for quadratic PESs and, consequently,  is constant in the VH model. 

For general potentials, however,  stays constant, whereas  increases with time due to the time 

dependence of the effective potential.  

4.6 Conclusion  

In conclusion, we used ammonia as a prototype of floppy molecules in order to probe 
the ability of the OTF-AI-TGA to depict large amplitude nuclear motions.  Additional-
ly, we pushed the OTF-AI-TGA method to its limit by performing long time propaga-
tion in order to assess the accuracy of this approach in describing higher-resolution 
spectra.  The absorption and photoelectron spectra were calculated within the OTF-AI-
TGA method and compared with experiment and popular global harmonic approaches.  
As expected, the adiabatic harmonic model is not usable for floppy molecules with 
strongly anharmonic PESs, whereas the vertical harmonic model reproduces the main 
spectral features. The accuracy of the spectra is further significantly improved with the 
less severe local harmonic approximation employed in the OTF-AI-TGA. We found 
that in ammonia the simple OTF-AI-TGA is adequate even in the case of large ampli-
tude motions: Both the peak spacing and intensity distributions of experimental spectra 
are well reproduced.  Two drawbacks of the method are that, in contrast to, for example, 
methods employing Gaussian bases,16, 79, 175-176 OTF-AI-TGA cannot describe wave 
packet splitting and that in the limit of long-time propagation necessary for higher-
resolution spectra, the local harmonic approximation used in the OTF-AI-TGA induces 
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noise in the spectra that can hide weak progressions. Yet, the computed spectra are bet-
ter than spectra obtained with the popular global harmonic approaches.  Finally, alt-
hough the OTF-AI-TGA is obviously less accurate than the full quantum dynamical 
calculation on analytical surfaces, it is much less expensive and does not require any 
prescreening of the PESs. 
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 Influence of decoupling a Chapter 5
thawed Gaussian wave packet dynamics on 
spectrum calculations 

In Chapter 3, we decoupled the OTF-AI-TGA dynamics in order to decode oli-

gothiophene spectra. For this, we employed a measure of the importance of the cou-

plings between the DOFs based on the stability matrix [Eq. (3.8)]. This measure, how-

ever, captures only the couplings due to the propagation and not the couplings resulting 

merely from the properties of the initial GWP. This fact is not a problem for linear spec-

troscopy because the normal mode coordinates and the initial GWP are typically based 

on the same ab initio calculation and, therefore, the initial GWP width matrix is diago-

nal. However, for nonlinear spectra such as the time-resolved emission spectrum pre-

sented in Chapter 2, both sources of couplings should be captured. We accordingly test 

a measure based on the correlation of the GWP width that is able to capture both types 

of couplings, among others.177 

5.1 Abstract 

The thawed Gaussian approximation combined with on-the-fly ab initio (OTF-AI-TGA) 
makes it possible to not only efficiently calculate semiclassical vibronic spectra of me-
dium-sized molecules but also to further analyze the underlying dynamics. This analysis 
is in general non-trivial since the degrees of freedom are typically coupled among them-
selves. Our strategy relies on estimating the strength of the couplings among individual 
degrees of freedom and assembling them into a so-called information flow matrix on the 
basis of which we then separate the overall dynamics. We employ several definitions of 
the information flow matrix with the goal of maximizing the extent of the decoupling 
while minimizing the impact on the final spectrum. Our study, which takes place within 
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a 15-dimensional harmonic model system of dithiophene, demonstrates that the compu-
tation can be significantly accelerated – with almost no impact on the spectrum – if the 
couplings are neglected in the correct frame of reference.  

5.2 Introduction  

In the course of spectroscopic calculations one is typically interested not only in the 
final result (i.e., in the computed spectrum) but more importantly also in its analysis to 
gain additional insight into associated physical and chemical processes. However, ana-
lyzing the spectral line shape of a vibronic spectrum is often as difficult as it is to calcu-
late the spectrum particularly when an on-the-fly (OTF) scheme is used. Here, the only 
source of information is dynamics since the global potential energy surface (PES) is not 
available. One such method is the thawed Gaussian approximation (TGA)50 combined 
with OTF ab initio (AI) implementation, which will be denoted below as OTF-AI-TGA. 
The phase-space center of the Gaussian wave packet (GWP) evolves classically on the 
corresponding PES; its time-dependent width matrix propagates within the local har-
monic approximation (LHA) of the PES (see Sections 1.4 and 1.5 for additional details). 
Despite the apparent simplicity of OTF-AI-TGA we showed in Chapter 3 that it is suffi-
ciently accurate and efficient to treat all 105 vibrational degrees of freedom (DOF) of 
pentathiophene. 

Inspired by the marked dependence of the vibrational line shape of oligothiophenes T  
on the number  of elementary rings, we proposed a novel approach in Subsection 3.3.3 
for analyzing emission spectra computed with OTF-AI-TGA. This approach allowed us 
not only to identify the most important DOFs but also to attribute specific spectral fea-
tures of the oligothiophenes to the dynamical interplay between the quinoid and aro-
matic character of individual rings. Here, we provide a brief overview of our approach 
introduced in Subsection 3.3.3. 

The principal idea is as follows: In order to globally assess couplings among individual 
DOFs, we assemble the presumed “measure” of the coupling strength for every pair of 
DOFs into the so-called information flow matrix . The particular choice of the quantity 
measuring the coupling strength for the process of interest is of course not unique. 
However, we assume that it is chosen in such a way that higher values of  imply 
higher importance of the coupling among the ith and jth DOFs. In loose terms, we ex-
pect that a high value of  reflects a high “flow of information” among the corre-
sponding DOFs. Within this spirit we can identify approximately decoupled subsets of 
DOFs; this step in turn simplifies any dynamical description of the studied process. The 
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full spectrum, for example, can then be computed from the individual contributions of 
these decoupled subsets. 

Thus, we introduce a threshold  and decompose the set of all DOFs  in terms of the 
so-called -partitioning as 

 
  
D =

α=1

c(D ,εB )

∪ Dα
εB  , (5.1) 

where  is the number of mutually disjoint subsets  defined as the maximal 
connected components of an undirected graph with adjacency matrix  

 
 

Gij :=
1 if max{Bij , Bji} ≥ εB
0 otherwise

.
⎧
⎨
⎪

⎩⎪
  (5.2) 

Briefly put, the spectrum is then decomposed into contributions stemming from indi-
vidual subsets . Furthermore, we have found that each subspace  can be typical-
ly associated with a characteristic motion: The induced classical motion within the sub-
space spanned by the DOFs belonging to    

From the construction of the partitioning of Eq. (5.1), one can directly conclude that a 
larger threshold  implies a greater extent of decomposition  However, we 
highlight that low values of  do not necessarily guarantee small errors per se in 
the resulting spectrum caused by the neglected couplings since the error also depends on 
the particular choice of  (see Subsection 5.3.3). Hence, we are interested in how vari-
ous definitions of  perform for separating the  emission spectrum calculation 
of dithiophene. In addition, we also study the influence of neglecting different kinds of 
couplings, denoted initial and dynamical couplings (see Subsection 5.3.2), on the spec-
trum calculations. Since TGA is exact for quadratic potentials we evaluate the spectrum 
within a 15-dimensional harmonic model system, which employs totally symmetric 
DOFs of the  and the  PESs.  

5.3 Theory 

5.3.1 Spectrum calculation  

According to Section 1.2 and Subsection 3.3.1, the emission spectrum is obtained as the 
Fourier transform  
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σ (ω ) ∝ C(t)ei(ω+ES1

/ )t

∫  (5.3) 

of the autocorrelation function 

    C(t) = 〈ψ init | e− iĤS0
t / |ψ init 〉,   (5.4) 

where the initial nuclear state , stationary in the excited electronic state with en-
ergy , starts to evolve under the influence of the ground-state Hamiltonian  after 

undergoing a Franck-Condon transition. Within the -partitioning of Eq. (5.1), the 
complete correlation function  of Eq. (5.4) is approximated as the product of indi-
vidual contributions evaluated independently on each subspace  [see Eq. (5.1)].  

5.3.2 Harmonic model  

Within the harmonic model employed in this work, we use an adiabatic approach104, 107 
and approximate the ground  and excited  PESs of dithiophene using globally har-
monic potentials constructed with respect to the corresponding equilibrium geometries. 
As shown in the literature, the relevant equilibrium geometries for both electronic states 
exhibit  symmetry and are planar even though the global equilibrium gas-phase ge-
ometry of is twisted.108 

Here, we construct the harmonic model in terms of Duschinsky rotation between two 
sets of normal mode coordinates. Let  be the number of atoms (  for dithio-
phene) and let  denote the -vector representing the equilibrium geometry of the th 
electronic state in Cartesian coordinates. The normal-mode vector  associated with  
is then defined by 

 Oi ⋅qi = G
1/2 (ξ −ξi ),   (5.5) 

where  is the  diagonal mass matrix.  represents the leading  
submatrix of the  orthogonal matrix  diagonalizing the mass-scaled Cartesian 

Hessian of the th PES evaluated at , i.e., , where 

 denotes the diagonal matrix of the  normal frequencies sorted in descending or-
der. 

In our model, we only consider the 15 totally symmetric modes of dithiophene (Table 6) 
since only these modes are active. This choice significantly reduces the complexity of 
our analysis. Formally, if we reorder the diagonal of so that the frequencies associat-



 

77 

ed with the totally symmetric modes appear first,  reduces to the  leading 
submatrix of , and  can be identified with its projection onto the domain of . 

The globally harmonic potential of the th PES in the (reduced) vibrational normal 
mode coordinates  then reads  

 Vi (qi ) =
1

2
qi
T ⋅Ωi ⋅qi .   (5.6) 

Furthermore, given two PESs  and , we can express the normal modes coordinates 
 in terms of  by using Eq. (5.5) as 

 
qB = J ⋅(qA − d)

J =OB
T OA

d =OA
TG1/2 (ξB −ξA ),

  (5.7) 

where  is a rotation matrix known as the Duschinsky matrix174 and  represents the 
displacement vector. Inserting Eq. (5.7) into Eq. (5.6) yields  expressed in the normal 
modes coordinates , namely 

 
VB(qA ) =

1

2
(qA − d)

T ⋅KB ⋅(qA − d)

KB = J
TΩBJ.

  (5.8) 

Here, the Duschinsky matrix  is immediately seen to cause couplings since the new 
Hessian  is obtained via a similarity transformation employing . 

To construct the harmonic model of dithiophene we can freely choose between the nor-
mal-mode coordinates of either the  or the  PES. However, the typical choice for 
OTF-AI-TGA is to use the normal modes of  since this choice is natural for specifica-
tion of the initial wave packet . In this setup the width matrix  of the initial GWP 
is diagonal and the couplings among individual DOFs arise merely due to the dynamics 
on , which are denoted dynamical couplings below. In contrast, in an alternative 

setup where the potential is expressed in the normal modes coordinates of , the dy-
namics is performed on the uncoupled potential , but the width matrix  of the 

initial GWP is coupled and these couplings due to the initial condition are denoted as 
initial couplings.  

Therefore, these two options allow us to study two different types of couplings that can 
arise: The dynamical couplings are due to the propagation of the initial GWP on a cou-
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pled PES; the initial couplings, on the other hand, result merely from the properties of 
the initial GWP that is then propagated on an uncoupled PES.  

5.3.3 Construction of the information flow matrix  

In this section we present several options for the choice of the information flow matrix 
 introduced above. We utilize only those quantities that are already essential for the 

propagation of the GWP itself so that no significant computational overhead is incurred.  

In Subsection 3.3.3 the matrix  was defined in terms of the stability matrix  as 

 
Bij
M =

βij
M

βii
M

βM = 1
T

dt Mqq
t + Mqp

t + Mpq
t + Mpp

t( )
0

T

∫ ,

  (5.9) 

where  denotes absolute value. 

In addition to the original formulation of , we test also the symmetrized version here: 

 Bij
M
=

βij
M

βii
M β jj

M
.   (5.10) 

Irrespective of how appealing Eqs. (5.9) and (5.10) might seem, if the potential on 
which the dynamic is performed is uncoupled then  is diagonal and therefore  and 

 describe only the dynamical couplings and not the initial couplings (see Subsection 
5.3.2).  

To remedy this situation we introduce an alternative definition of  employing the con-
cept of correlation matrix of a multi-dimensional GWP. Specifically, the correlation  
of the ith and jth DOFs of a GWP density at time  is defined as  

 

  

ρij
t =

Σ ij
t

Σ ii
t Σ jj

t

Σ ij
t = 〈ψ t | (q̂− qt )i(q̂− qt ) j |ψ t 〉 = 1

4
Re At( )−1⎡

⎣⎢
⎤

⎦⎥ij

,

  (5.11) 
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where  denotes the covariance of the ith and jth DOFs. The overall strength of the 
couplings is then estimated by the global time-average of the correlation matrix ele-
ments 

 Bij
ρ = 1

T
dt ρij

t

0

T

∫ .   (5.12) 

Clearly,  takes into account the dynamical as well as the initial couplings (see Sub-
section 5.3.2). 

Within the harmonic model [Eq. (5.8)], couplings among the DOFs arise due to the lin-
ear coordinate transformation described by the Duschinsky matrix J. The strength of the 
coupling between the ith and jth DOFs can then be estimated by 

 Bij
J = Jik J jk

k
∑ .   (5.13) 

We call  ‘static’ since it employs only information deduced from the particular form 
of the harmonic potential and as such cannot be directly applied to general potentials or 
OTF-AI simulations.  

5.4 Computational details 

The ab initio calculations were performed with the Gaussian09 package.65 The DFT and 
TD-DFT calculations for the ground and excited states were based on the long-range 
corrected CAM-B3LYP functional with the 6-31+G(d,p) basis set. Optimizations were 
performed on the  as well as on the  state. We obtained  planar geometry with 
constrained optimization since its global ab initio equilibrium geometry is ‘twisted’. As 
noted above, the globally harmonic potential was constructed within the subspace 
spanned by the totally symmetric normal modes corresponding to the frequencies listed 
in Table 6. The GWP was propagated for a total time of 80000 au = 1935 fs in order to 
assure the convergence of , , and . The resulting spectra were broadened by a 
phenomenological (inhomogeneous) Gaussian with half-width at half-maximum of 50 
cm-1 = 0.0062 eV and shifted by the zero-point energy difference of the full  and  
harmonic potentials. 
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5.5 Results and discussion 

5.5.1 Effect of fully decoupled harmonic models on the spectrum 

We begin by studying the limit of high threshold  so that all DOFs become essentially 
decoupled, i.e., . Figure 20 then compares the spectra within this limit 
neglecting either all dynamical or all initial couplings with the spectrum evaluated by 
taking all couplings into account. Furthermore, we also consider the spectrum calculated 
within the approximation , i.e., disregarding the Duschinsky rotation matrix in Eq. 
(5.8). 

Figure 20: Spectrum of the harmonic model system: Comparison of the exact spectrum with the 

spectra calculated within three different decoupled harmonic models by neglecting the Duschinsky 

rotation ( ), neglecting the dynamical couplings (“negl. dyn. coup.”), or neglecting the initial 

couplings (“negl. init. coup.”). 

The character of the potential  determines the positions of the spectral peaks [after 

substrating the global shift  in Eq. (5.3)]; the peak intensities are modulated by the 

initial GWP  defined by potential . The initial couplings are therefore less im-
portant in the spectrum calculations: The decoupling procedure in terms of the -
partitioning affects only , which typically results only in marginal changes in the 
spectral intensities compared with the exact spectrum (see Figure 20). On the other 
hand, the omission of the dynamical couplings alters the spectrum more significantly, 
especially its intensities. However, even though the intensity can change quite drastical-
ly, no “unphysical” peaks typically appear in contrast to the spectrum calculated with 
Duschinsky matrix rotation matrix set to identity matrix. The importance of mode mix-
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ing due to Duschinsky rotation is well known and explicitly demonstrated by investigat-
ing the correlation function or the vibronic spectrum as a function of rotation angles.175-

176 

In summary, our results strongly suggest that if one wishes to employ a (partially) un-
coupled harmonic model potential of a molecule then this model should be constructed 
in terms of the normal modes of the final PES [the target PES of the (de)excitation] tak-
ing into account the Duschinsky rotation and then neglecting the off-diagonal terms in 
the Hessian of the initial PES. 

5.5.2  Effect of consecutive decoupling on the spectrum 

The next question that we wish to address concerns the choice of the information flow 
matrix  for which the error introduced into the spectrum increases the slowest as a 
function of . In other words, we seek to understand which measure of the cou-
pling strength exhibits the smallest error for a given order of the -partitioning. We 
quantify the error of the spectrum as  

 δ (n) =
dE∫ σ full (E)−σ n (E)[ ]2

dE∫ σ full (E)[ ]2
,   (5.14) 

where the threshold  is implicitly defined for a given number of subsets . 
The exact spectrum is calculated with no decoupling ( ), while the spectrum 

 is constructed from individual contributions from the  subspaces . Note that the 
quantity  takes into account changes in intensities as well as in peak positions. When 
Duschinsky rotation is neglected  attains a value of 0.50. 

Furthermore, the spectrum calculation can be significantly accelerated since the correla-
tion function , necessary for the spectrum evaluation [Eq. (4.1)], can now be ob-
tained as a product of individual contribution evaluated independently on each subset 

. This separation significantly reduces the computational costs (CC) that we esti-
mate by 

 
 
CC(εB ) = card(Di

εB )3

i=1

c(D ,εB )

∑ ,   (5.15) 

where  denotes the cardinality of the subset  and the third power corre-
sponds to the anticipated scaling of the computational costs of the TGA dynamics with 
dimensionality due to the inherent determinant and matrix inverse operations. 
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5.5.2.1 Effect of dynamical couplings 

First, we test the influence of the dynamical couplings on the spectrum  the couplings 
that are due to the propagation on a couled PES. Here, the harmonic model system is 
constructed in  normal-mode coordinates, which results in a coupled harmonic poten-
tial . It is important to note that the dynamical couplings due to the propagation 

of the GWP on the  PES cannot be avoided for general potentials. The density plots of 
, , and  displayed in Figure 21 reveal similar patterns that show, in contrast to 

the pattern in the plot of , strong coupling in the vicinity of the diagonal, i.e., DOFs 
with close frequencies are linked more strongly.  

 

Figure 21: Density plots showing the extent of the couplings between different DOFs. The cou-

plings are estimated by different choices for the information flow matrix  [Eqs. (5.9), (5.10), 

(5.12), (5.13)]. Here, the couplings arise due to the propagation of the GWP on the coupled har-

monic potential, i.e., the dynamical couplings. The 15 normal mode coordinates  are labeled 

consecutively starting with the coordinate associated with the lowest frequency. Darker shades 
correspond to stronger couplings between two DOFs. 

In Figure 21 we also show , the information flow matrix based on the stability ma-
trix [Eq. (5.9)] that corresponds to the OTF-AI-TGA dynamics performed in Chapter 3. 
While the overall pattern of  and its harmonic analogue  are similar,  is 
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slightly wilder. This fact indicates that the couplings are more pronounced in the OTF-
AI dynamics even in a rather harmonic molecule such as T2. For instance,  pre-
dicts that mode 13 is coupled to mode 11, which is not described by . Note that due 
to the short-time nature of the OTF-AI dynamics, the elements of  corresponding 
to low-frequency DOFs do not converge to the same relative accuracy as the high-
frequency components. 

Figure 22 shows the error of the spectrum introduced by increasing  for a par-
ticular choice of . Note that this error is not guaranteed to increase monotonically with 
increasing . This fact is observed especially for .  In terms of the density plot 
pattern, , , and  perform similarly with a slightly better error progression for 

. For low decoupling order, i.e. ,  outperforms the other alternatives. 
However, the error increases drastically at . A closer look at the adjacency 
matrices, displayed in Figure 23, reveals that the drastic change in the error at 

 and for  and at  for , , and  is due to the decou-
pling of the 12th DOF from DOFs 11 and 12. This phenomenon can be explained by the 
concept of relative displacement  [Eq. (3.11)] that was introduced in Subsection 3.3.3 
to estimate the “dynamical importance” of a DOF. The width of the GWP is taken into 
account in the formulation of  because a small displacement of a high-frequency (stiff) 
mode affects the spectrum much more than the same displacement of a low-frequency 
(soft) mode. In the case of a harmonic potential, the relative displacement for the th 
DOF can be defined as 

  i := 2di (Aii
0 / ln2)1/2 ,   (5.16) 

where the scaling factor  is the diagonal width matrix element of the initial GWP. 
Since the relative displacement of a DOF is associated with its importance for the spec-
trum evaluation, a small error introduced by decoupling DOF 12 (which has the largest 

; see Table 6) yields a pronounced change in . Obviously,  underestimates the 
couplings of this important DOF since its decouplings causes a large jump in error at 

. The adjacency matrices furthermore support the observation that , , 
and  measure coupling strengths between DOFs on the same level, which results in 
the same structure of subsets in the -partitioning with only a few exceptions (see Fig-
ure 23). The corresponding adjacency matrices exhibit a block-diagonal pattern in con-
trast to the adjacency matrices for  in which the DOFs associated with significantly 
different frequencies remain coupled even for higher decoupling orders.  
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Figure 22: Error in the spectrum calculation [defined in Eq. (5.14)] introduced as a function of the 

extent of the decoupling  [Eq. (5.1)]. Here, the couplings arise due to the propagation of 

the GWP on the coupled harmonic potential, and these dynamical couplings are measured by 

, , or  introduced in Subsection 5.3.3. 
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Figure 23: Adjacency matrices [Eq. (5.2)] as a function of the extent of the decoupling  (1 

to 15) and different measure of couplings ( , , ) introduced in Subsection 5.3.3. Each 

adjacency matrix shows which pairs of modes are coupled (black squares) and which are decou-

pled (white squares). In the panel “dynamical couplings” the couplings arise due to the propaga-

tion of the GWP on the coupled harmonic potential; the couplings in the panel “initial couplings” 
are due to the properties of the initial GWP. The frequencies of the corresponding normal mode 

coordinates increase from top to bottom and from left to right. 
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Figure 24 shows that the computational costs can be reduced by an order of magnitude 
with only a minimal impact on the spectrum of . Neglecting all dynamical cou-
plings, i.e., , introduces a smaller error in the spectrum 

=0.33 than neglecting the Duschinsky rotation; the computational costs 

are the same for both uncoupled harmonic model systems .  

Figure 24: Error in the spectrum [defined in Eq. (5.14)] as a function of computational cost of 

spectrum calculations estimated using Eq. (5.15). The error in the spectrum calculations is due to 
neglecting the couplings among the DOFs, i.e., forming uncoupled subsets. The couplings are 

measured by , , or , and they are due here to the propagation of the GWP on the cou-

pled harmonic potential, i.e., dynamical coupings.  

5.5.2.2 Effect of initial couplings 

Here, the GWP dynamics is performed on the uncoupled  and the -

partitioning, and a particular choice of  affects the initial GWP width matrix . Ne-
glecting all initial couplings results in an error of =0.033, which is an or-
der of magnitude smaller than that when neglecting all dynamical couplings 

 This finding agrees with the almost perfect reproduction of the 
exact spectrum (see Figure 20). As expected, matrices  and  exhibit quite different 
patterns in Figure 25, which are, however, similar to their counterparts in the dynamical 
couplings picture (Figure 21). The largest jumps in error occur at  for the 

 and at  for the  -partitionings that are shown in Figure 26. Con-
sidering the adjacency matrices in Figure 23, these jumps can be related to the decou-
pling of DOFs 1 and 2 with DOF 3. It is important to note that a drastic increase in error 
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occurs when the coupled low-frequency DOFs have a large relative displacement of 
 (see Table 6). This finding is in contrast with dynamical-coupling studies, where 

couplings between higher frequency DOFs are responsible for a drastic increase in the 
error.  The importance of the couplings of these low-frequency DOFs is better estimated 
using  and it therefore outperforms  in this case.  

Figure 25: Density plots showing the extent of the couplings between different DOFs. The cou-

plings are estimated by two different choices for the information flow matrix  [Eqs. (5.12), (5.13)

]. Here, the couplings are due to the properties of the initial GWP, which are then propagated on 

an uncoupled PES, i.e., initial couplings. The 15 normal mode coordinates  are labeled consec-

utively starting with the coordinate associated with the lowest frequency. Darker shades corre-

spond to stronger coupling between two DOFs. 

Figure 26: Error in the spectrum calculation [defined in Eq. (5.14)] introduced as a function of the 

extent of the decoupling  [Eq. (5.1)]. Here, the couplings are the initial couplings, due to 

the properties of the initial GWP, which is then propagated on an uncoupled PES. These couplings 

were measured using  or  introduced in Subsection 5.3.3. 
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Table 6: Frequencies , given in cm-1, and relative displacements Eq. (5.16) corresponding to the 

normal mode coordinates of , i.e., , and , i.e., .  

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  297.3 385.0 696.8 762.6 880.9 1082.8 1118.2 1271.6 1294.7 1424.3 1532.4 1642.5 3238.9 3253.5 3287.6 

 1.09  1.59 1.84  1.22  0.06 0.71   0.55   0.18  0.07  0.02  2.12 1.6 0.05 0.05 0.03 

  290.4 386.5 673.7 712.8 873.2 1102.9 1106.0 1211.3 1316.7 1450.0 1507.2 1657.7 3243.6 3259.2 3282.6 

 1.11  1.54 2.16 0.54 0.18  0.36 0.41  0.7  0.44  0.24 0.64  2.57 0.04 0.03 0.02 

 

5.6 Conclusions 

We tested the performance of four particular choices to estimate the coupling strength 
between the DOFs with the intent to separate the TGA dynamics and thus decompose 
the resulting spectra into individual independent contributions. We focused on testing 
four particular choices for measuring the importance of the couplings on a 15-
dimensional harmonic model system, employing the totally symmetric DOFs of the  
and the  PESs of dithiophene. As a byproduct, we were able to reduce the computa-
tional costs while keeping the error, introduced due to neglecting some of the couplings, 
small. 

We found that if the spectrum was evaluated within a harmonic model, its analysis 
should be done in the final state normal-mode coordinates. Omission of the initial cou-
plings, which are due to the initial condition, results in a spectrum that is almost indis-
tinguishable from the exact one. The computational costs, however, are significantly 
reduced since the spectrum can be now evaluated in an uncoupled harmonic system. In 
contrast, the vibronic spectra calculated within an uncoupled harmonic model system 
that is constructed by neglecting Duschinsky rotation are much harder to interpret due to 
the appearance of spurious unphysical peaks. 

In the case of what we call dynamical couplings, the couplings are due to the propaga-
tion of the initial GWP on a coupled PES. Here, measures of their importance bases on 
the stability matrix ( , ) or the Duschinsky rotation matrix ( ) decouple the sys-
tem in a similar way by forming block-diagonal adjacency matrices, i.e., the DOFs as-
sociated with neighboring frequencies mix more strongly. On the other hand, a measure 
based on the correlation of the GWP width ( ) couples the DOFs more uniformly and, 
consequently, the resulting partitioning forms different subsets.  In general,  underes-
timates the strength of the couplings among the DOFs associated with higher frequen-
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cies; , , and  exhibit coupling strengths that are too low for low-frequency 
DOFs.  

For general potentials – and especially when an OTF scheme is applied – the reference 
coordinate system is often fixed and couplings are inevitable. Only  can feel the ini-
tial couplings and the dynamical couplings in this situation. However,  can still be 
used for separating the dynamics even when initial couplings are present: The initial 
couplings affect the spectrum only weakly and the importance of the high-frequency 
DOFs couplings is better estimated using . Moreover, these couplings are more im-
portant due to the shorter timescales of an OTF calculation. 

Knowledge is often limited about the PES on which the dynamics is performed when 
the OTF scheme is employed in calculations. The OTF-AI-TGA can provide useful in-
formation for defining subspaces of reduced dimensionality. In the spirit of Grossmann 
and coworkers145, 178-180, the few DOFs of the subspaces that are important for the spec-
tral features can be studied using less-efficient but better-suited methods and the re-
maining DOFs, loosely interpreted as the bath, can be calculated within OTF-AI-TGA. 
To this end, alternative approaches for constructing the information flow matrices that 
maximize the degree of decoupling and minimize the impact on the resulting spectrum 
and the computational costs are an ongoing subject of our research. An optimized coor-
dination reference frame that minimizes all types of couplings could then be extracted 
from this information.  
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 Conclusion and outlook Chapter 6

In this thesis, we explored different ways to accelerate the calculations of electronic 
spectra and presented a systematic approach for their analyses.  

First, we showed that the efficiency of quantum dynamics performed on an equidistant 
grid using a split-operator approach, suitable for small systems, is increased with high-
er-order splitting schemes. However, care has to be taken as to the numerical stability of 
these splitting schemes with respect to the grid spacing. 

We combined the thawed Gaussian approximation (TGA) with an on-the-fly ab initio 
(OTF-AI) scheme to consider, at least to some extent, the nuclear quantum effects for 
larger molecular systems for which direct quantum treatment meets its demise. While 
the TGA wave packet dynamics is efficient enough to treat all vibrational DOFs on an 
equal footing, the OTF-AI scheme overcomes the problem of the computationally costly 
construction of the potential energy surfaces required in alternative methods.  

This efficient framework, despite its apparent simplicity, reproduces almost perfectly 
the emission spectra of oligothiophenes as well as the absorption and photoelectron 
spectra of ammonia. Hence, the OTF-AI-TGA paves the way for semiclassical calcula-
tions of spectra of larger systems. Furthermore, it yields good performance especially 
for spectra that depend strongly on large amplitude motions. 

In spectroscopic calculations, one is usually interested not only in the final product, i.e., 
in the resulting spectrum, but more importantly also in its analysis. It is the analysis that 
provides additional insight into the associated physical and chemical processes. There-
fore, we presented a novel approach for analyzing spectra computed with OTF-AI-
TGA: Information gathered during the dynamics is used to identify groups of the most 
important DOFs. This not only allows specific spectral features to be attributed to the 
underlying motion, but also to explain their differences (see Figure 27). 
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Figure 27: Overview of the analysis approach: First, groups of the most important DOFs are iden-

tified on the basis of OTF-AI-TGA dynamics. Second, the underlying classical motion within the 

DOFs comprising these groups is attributed to specific spectral features.

Note that the OTF-AI-TGA framework is not restricted merely to linear spectroscopy; 
nonlinear spectra such as time-resolved stimulated emission spectra (displayed in Figure 
28) can also be simulated. To be able to explain, for example, the change in line shape 
with increasing delay times between pump and probe pulses, the analysis approach in-
troduced in Subsection 3.3.3 and further studied in Chapter 4, has to be extended. Clear-
ly, this generalization would constitute a useful tool in the investigation of such ques-
tions. It would ensure that the relevant information does not get obscured in the high 
complexity of the process (and/or system) or by the amount of data generated.  

Figure 28: Time-resolved stimulated emission spectrum [Eq. (2.3)] of dithiophene computed with 

OTF-AI-TGA using b3lyp/6-31+G(d,p) ab initio setup. The larger the delay time  between the 

pump and the probe pulses, the better the resolution of the spectrum. Such effects were already re-

ported in experiments with similar molecules.181 
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The OTF-AI framework has become steadily more and more popular thanks to increas-
ing availability of computational resources and advances in electronic structure meth-
ods. In this field, pragmatic methods such as OTF-AI-TGA fill the gap between classi-
cal and full quantum treatments. Although many purely quantum effects such as inter-
ference, wave-packet splitting, or non-adiabatic transitions cannot be captured by OTF-
AI-TGA, this method undoubtedly provides a useful preliminary test in such situations. 
The analysis of the OTF-AI-TGA dynamics can be used to define a subspace of reduced 
dimensionality, within which the most important dynamics occurs. Consequently, less 
efficient yet better-suited methods can be used within this subspace.  

For example, employing the multi-trajectory Herman-Kluk method on the important 
subspace combined with TGA for the remaining DOFs (loosely interpreted as the bath) 
results in the semiclassical hybrid dynamics introduced by Grossmann.145, 178-180 In-
spired by these ideas, we intend to combine OTF-AI-TGA with, in principle, exact 
quantum dynamics in an OTF-AI time-dependent Gaussian basis generated with an op-
timized sampling algorithm. Within this framework, the number of trajectories is ex-
pected to be drastically reduced versus the pioneering semiclassical OTF-AI study by 
Tatchen and Pollak19 who calculated the Herzberg-Teller absorption spectrum of for-
maldehyde.   

The OTF-AI-TGA method opens the door to large molecules: Its simplicity, efficiency, 
and robustness are well-suited for tackling a priori unknown molecular systems and—in 
combination with the novel analysis approach—provides the first crucial step in a pos-
sible hierarchical protocol for computing and analyzing spectra of large systems.  
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