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LOCALIZED AND COMPLETE RESONANCE IN PLASMONIC STRUCTURES ∗
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Abstract. This paper studies a possible connection between the way the time averaged electro-
magnetic power dissipated into heat blows up and the anomalous localized resonance in plasmonic
structures. We show that there is a setting in which the localized resonance takes place whenever the
resonance does and moreover, the power is always bounded and might go to 0. We also provide another
setting in which the resonance is complete and the power goes to infinity whenever resonance occurs;
as a consequence of this fact there is no localized resonance. This work is motivated from recent works
on cloaking via anomalous localized resonance.
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1. Introduction and statement of the main results

Negative index materials (NIMs) were first investigated theoretically by Veselago in [16] and were innovated
by Nicorovici et al. [13] in the electrical impedance setting and by Pendry [14] in the electromagnetic setting. The
existence of such materials was confirmed by Shelby, Smith, and Schultz in [15]. An interesting (and surprising)
property on NIMs is the anomalous localized resonance discovered by Nicorovici et al. in [13] for core-shell
plasmonic structures in two dimensions in which a circular shell has permitivity −1 + iδ while the core and the
matrix, the complement of the core-shell structure, have permitivity 1. Here δ describes the loss of the material
(more precisely, the loss of the negative index material part). A key figure of the phenomenon is the localized
resonance of the field, i.e., the field blows up in some regions and remains bounded in some others as δ → 0. This
is partially due to the change sign of the coefficient in the equation and therefore the ellipticity is lost as δ → 0;
the loss of ellipticity is not sufficient to ensure such a property as discussed later in this paper. Following [7],
the localized resonance is anomalous because the boundary of the resonant regions varies with the position of
the source, and their boundary does not coincide with any discontinuity in moduli.

An attractive application related to the anomalous localized resonance is cloaking. This was recognized by
Milton and Nicorovici in [7] and investigated in [1–5, 8] and the references therein. Let us discuss two results
related to cloaking via anomalous localized resonance obtained so far for non radial core shell structures in [1,5],
in which the authors deal with the two dimensional quasistatic regime. In [1], the authors provide a necessary
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and sufficient condition on the source for which the time averaged electromagnetic power dissipated into heat
blows up as the loss goes to zero using the spectral method. Their characterization is based on the detailed
information on the spectral properties of a Neumann–Poincaré type operator. This information is difficult to
come by in general. In [5], using the variational approach, the authors show that the power goes to infinity if
the location of the source is in a finite range w.r.t. the shell for a class of sources. The core is not assumed
to be radial but the matrix is in [5]. The boundedness of the fields in some regions for these structures is not
discussed in [1,5] except in the radial case showed in [1] (see also [7,13]). It is of interest to understand if there
is a possible connection between the power and the localized resonance in general.

In this paper, we present two settings in which there is no connection between the blow up of the power and
the localized resonance. To this end, the following two problems are considered.

Problem 1. The behaviour of uδ ∈ H1(BR) (R > 1) the unique solution to{
div(εδ∇uδ) = 0 in BR,

uδ = g on ∂BR,
(1.1)

where g ∈ H1/2(∂BR) and the way the power, which will be defined in (1.6), explodes as δ → 0+.

Here and in what follows Br denotes the ball centred at the origin of radius r for r > 0.

Problem 2. The behaviour of uδ ∈ W 1(R2) (see (1.16) for the notation) the unique solution converging to 0
as |x| → ∞ to

div(εδ∇uδ) = f in R
2, (1.2)

and the way the power, defined in (1.6), explodes. Here f is in L2(R2) with compact support in R2 \ B1 and
satisfies the compatible condition ∫

R2
f = 0. (1.3)

For 0 ≤ δ < 1, εδ is defined by

εδ :=

{
(F−1)∗I if |x| > 1

−1 + iδ if |x| < 1,
for d = 2, 3, (1.4)

where F : R
d \ B1 → B̄1 is the Kelvin transform w.r.t. ∂B1, i.e., F (x) = x/|x|2.

Here and in what follows, we use the following standard notation

T∗a(y) =
DT (x)a(x)DT T (x)

J(x)
and T∗f(y) =

f(x)
J(x)

· (1.5)

where x = T−1(y) and J(x) = | detDT (x)|, for f ∈ L2(D1), a ∈ [L∞(D1)]d×d, f ∈ L2(D1), and T a diffeomor-
phism from D1 onto D2.

It is easy to verify that, as noted in [9],

εδ :=

{
1 if |x| > 1

−1 + iδ if |x| < 1
for d = 2.

The media considered in Problems 1 and 2 where εδ is given in (1.4) have the complementary property (see [9]
for the definition and a discussion on various results related to these media in a general core shell structure).
The setting studied in [5] also inherits this property since the matrix is radial while the setting in [1] is not in
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general. As seen later, this property is not enough to ensure a connection between the blow up of the power
and the localized resonance.

In Problems 1 and 2, δ is the loss of the media (more precisely the loss of the negative index material in B1)
and the time averaged power dissipated into heat is given by (see, e.g., [1, 5])

Eδ(uδ) = δ

∫
B1

|∇uδ|2 dx. (1.6)

From the definition of uδ, one can derive that

∫
B1

|∇uδ|2 dx ≥

⎧⎪⎨
⎪⎩

C1

∫
BR

|∇uδ|2 − C2‖g‖2
H1/2(∂BR) in Problem 1,

C1

∫
R2

|∇uδ|2 − C2‖f‖2
L2 in Problem 2,

for some positive constants C1, C2 independent of δ, f , and g.
The main results of the paper are Theorems 1.1 and 1.5 below. Concerning Problem 1, we have.

Theorem 1.1. Let d = 2, 3, and g ∈ H1/2(∂BR) and uδ ∈ H1(BR) be the unique solution to (1.1). Then

1. Case 1: g is compatible to (1.1) (see Def. 1.3). Then
(‖uδ‖H1(BR)

)
remains bounded. Moreover, uδ → u0

weakly in H1(BR) as δ → 0 where u0 ∈ H1(BR) is the unique solution to{
div(ε0∇u0) = 0 in BR,

u0 = g on ∂BR.
(1.7)

2. Case 2: g is not compatible to (1.1). Then

lim
δ→0

‖uδ‖H1(BR) = +∞; (1.8)

however,
uδ → v weakly in H1(B1/R), (1.9)

where v ∈ H1(B1/R) is the unique solution to{
Δv = 0 in B1/R,

v(x) = h(x) := g(x/|x|2) on ∂B1/R.
(1.10)

Moreover, for all g ∈ H1/2(∂BR),

lim sup
δ→0

δ

∫
BR

|∇uδ|2dx < +∞, (1.11)

and for any 0 < α < 1/2, there exists g ∈ H1/2(∂BR) such that

0 < lim inf
δ→0

δ2α

∫
BR

|∇uδ|2dx ≤ lim sup
δ→0

δ2α

∫
BR

|∇uδ|2dx < +∞. (1.12)

Remark 1.2. Concerning (1.1), whenever resonance takes place3, it is localized in the sense that the field
blows up in some region and remains bounded in some others; moreover, the power remains bounded and might
converge to 0 as δ → 04.

3 In [1] and [5], the authors introduced the definition of resonance. Following them, a system is resonant if and only if the power
blows up as δ → 0.

4 Graeme Milton recently informed us that some examples on anomalous localized resonance (for dipole sources) without the
blow up of the power are given in [6]. We thank him for pointing this out. We note here that the setting in this paper is different from
the one in [6] where the negative index material part is in a shell not in a ball; the anomalous localized resonance and boundedness
of the power in the setting in [6] depend on the location of the source.
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In the statement of Theorem 1.1, we use the following definition.

Definition 1.3. Let g ∈ H1/2(∂BR). Then g is said to be compatible to (1.1) if and only if there exists a
solution w ∈ H1(B1 \ B1/R) to the Cauchy problem

{
Δw = 0 in B1 \ B1/R,

w = v and ∂νw = ∂νv on ∂B1/R,
(1.13)

where v is the function defined in (1.10). Otherwise, g is not compatible.

Remark 1.4. Figure 1 in Section 4 provides a numerical simulation illustrating Theorem 1.1.

Concerning Problem 2, we have.

Theorem 1.5. Let f ∈ L2(R2) be such that supp f ⊂⊂ Rd \ B1 and (1.3) holds and let uδ ∈ W 1(R2) be the
unique solution converging to 0 as |x| → ∞ to (1.2). Then

1. Case 1: f is compatible to (1.2) (see Def. 1.8). Then

uδ = U :=

{
w ◦ F − w(0) in R2 \ B1,

−w(0) in B1.
(1.14)

Here w will be defined in (1.17).
2. Case 2: f is not compatible to (1.2). Then

0 < lim inf
δ→0

δ2

∫
O

|∇uδ|2 dx ≤ lim sup
δ→0

δ2

∫
O

|∇uδ|2 dx < +∞, (1.15)

for any open subset O of R2.

Remark 1.6. Inequalities (1.15) implies that the field blows up in any open subset of R2 at the same rate5.

Remark 1.7. Theorem 1.5 also holds for d = 3 (see the proof of Thm. 1.5 and Rem. 2.3, which is about
representations in B1). However, in this case, the existence of uδ belongs to some Sobolev spaces with weight
since (F−1)∗I is not bounded from below by a positive constant at infinity due to the fact d = 3. We do not
treat this case in this paper to keep the presentation simple.

For U a smooth open region of R2 with a bounded complement (this includes U = R2), we use the following
standard notation:

W 1(U) =
{

u ∈ L2
loc

(U); ∇u ∈ [
L2(U)

]2 and
u

|x| log(2 + |x|) ∈ L2(U)
}

. (1.16)

Part of Theorem 1.5 was considered in [5]. More precisely, in [5], the authors showed that Eδ(uδ) → ∞ for f
with supp f ⊂ ∂Br for r > 16. In this paper, we make one step further. We show that when resonance occurs,
it is complete in the sense that (1.15) holds; there is no localized resonance here. Otherwise, the field remains
bounded. In fact it is independent of δ by (1.14).

In the statement of Theorem 1.5, we use the following definition.

5 Graeme Milton recently informed us that for a single dipole source outside B1, the resonance is not localized.
6 In fact, such an f is not in L2(R2), however our analysis is also valid for this case. Our presentation is restricted for f ∈ L2 so

that the definition of
(
F−1

)
∗f makes sense without introducing further notations.
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Definition 1.8. Let f ∈ L2(R2) with supp f ⊂ R2 \B1. Then f is said to be compatible to (1.2) if and only if
there exists a solution w ∈ H1(B1) to the Cauchy problem{

Δw = F∗f in B1,

∂νw = w = 0 on ∂B1.
(1.17)

Otherwise, f is not compatible.

Remark 1.9. Figure 2 in Section 4 provides a numerical simulation illustrating Theorem 1.5.

From Theorems 1.1 and 1.5, we conclude that in the settings considered in this paper, there is no connection
between the unboundedness of the power and the localized resonance. Though the settings in Problems 1 and 2
are very similar, the essence of the resonance are very different. A connection between these phenomena would
be linked not only to the location of the source but also to the geometry of the problem, i.e., the definition
of εδ. Using the concept of (reflecting) complementary media introduced in [9], one can extend the results this
paper in a more general setting.

The definitions of compatibility conditions have roots from [9]. The analysis for the compatible cases is
inspired from there. The analysis in the incompatible case is guided from the compatible one. One of the main
observations in this paper is the localized resonant phenomena in (1.9) (one has localized resonance by (1.8)).
The localized resonance is also discussed in the context of superlensing and cloaking using complementary
media in [10,11] where the removing of localized singularity technique was introduced by the first author to deal
with localized resonance in non radial settings. In recent work [12], the first author introduces the concept of
doubly complementary media for a general shell-core structure and shows that cloaking via anomalous localized
resonance takes place if and only if the power blows up. To this end, he introduces and develops the technique
of separation of variables for a general structure.

The paper is organized as follows. In Sections 2 and 3, we prove Theorems 1.1 and 1.5 respectively. In
Section 4, we provide numerical simulations illustrating these results.

2. Proof of Theorem 1.1

2.1. Preliminaries

In this section, we present two elementary lemmas which are very useful for the proof of Theorem 1.1. The
first one (Lem. 2.1) is on the change of variables for the Kelvin transform. Lemma 2.1 is a special case of ([9],
Lem. 4) which deals with general reflections.

Lemma 2.1. Let d = 2, 3, 0 < R1 < R2 < R3 with R3 = R2
2/R1, f ∈ L2(BR2 \ BR1), a ∈ [L∞(BR2\R1)]

d×d

be a uniformly elliptic matrix – valued function, and K : BR2 \ B̄R1 → BR3 \ B̄R2 be the Kelvin transform w.r.t
∂BR2 , i.e.,

K(x) = R2
2x/|x|2.

For v ∈ H1(BR2 \ BR1), define w = v ◦ K−1. Then

div(a∇v) = f in BR2 \ BR1

if and only if
div(K∗a∇w) = K∗f in BR3 \ BR2 .

Moreover,
w = v and K∗a∇w · ν = −a∇v · ν on ∂BR2 .

The second lemma is on an estimate related to solutions to (1.1).
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Lemma 2.2. Let d = 2, 3, f ∈ H−1(BR), and let Uδ ∈ H1
0 (BR) be the unique solution to

div(εδ∇Uδ) = f in BR.

We have
‖Uδ‖H1(BR) ≤ C

δ
‖f‖H−1

for some positive constant C independent of f and δ.

Proof. Lemma 2.2 follows from Lax–Milgram’s theorem. The details are left to the reader. �

2.2. Proof of Theorem 1.1

The proof is divided into 6 steps.

Step 1. We prove that if there exists a solution u ∈ H1(BR) to{
div(ε0∇u) = 0 in BR,

u = g on ∂BR,
(2.1)

then g is compatible. Moreover, the solution to (2.1) is unique in H1(BR).

In fact, define V in B1 \ B1/R by
V = u ◦ F−1.

We have, by Lemma 2.1,
V = u

∣∣∣
ext

and ∂rV = ∂ru
∣∣∣
ext

on ∂B1.

Set
W = u − V in B1 \ B1/R.

By Lemma 2.1, W ∈ H1(B1 \ B1/R) is a solution to the Cauchy problem{
ΔW = 0 in B1 \ B1/R,

∂νW = W = 0 on ∂B1.

By the unique continuation principle, W = 0. This implies

u = V = h on ∂B1/R.

Therefore, u = v in B1/R where v is defined in (1.10). It follows that u satisfies (1.13) and g is compatible. The
uniqueness in H1(BR) of (2.1) is also clear from the analysis.

Step 2. We prove that if g is compatible then uδ → u weakly in H1(BR) where

u =

⎧⎪⎨
⎪⎩

v in B1/R,

w in B1 \ B1/R,

w ◦ F in BR \ B1,

where w is given in (1.13).

It is clear that u ∈ H1(BR) is a solution to (2.1). The uniqueness of u follows from Step 1. Define

Uδ = uδ − u in BR.
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Then Uδ ∈ H1
0 (BR) is the unique solution to

div(εδ∇Uδ) = div
(
(ε0 − εδ)∇u

)
in BR.

This implies, by Lemma 2.2,
‖Uδ‖H1(BR) ≤ C‖∇u‖L2(BR).

Since uδ = Uδ + u, (uδ) is bounded in H1(BR). W.l.o.g. one may assume that uδ converges weakly in H1(BR)
to a solution to (2.1). Since (2.1) is uniquely solvable in H1(BR), the conclusion follows.

Step 3. We prove that if lim infδ→0 ‖∇uδ‖L2(R2) < +∞ then g is compatible.

Since lim infδ→0 ‖∇uδ‖L2(R2) < +∞, there exists a solution u ∈ H1(BR) to (2.1). The conclusion now is a
consequence of Step 1.

After Steps 1–3, the first statement of Theorem 1.1 and (1.8) are established. We next prove (1.9), (1.11),
and (1.12). We will only consider the two dimensional case. The proof in three dimensions follows similarly (see
Rem. 2.3). In what follows, we assume that d = 2.

Step 4. Proof of (1.9).

Set
vδ = uδ ◦ F−1 in B1 \ B1/R.

Then vδ ∈ H1(B1 \ B1/R) and
Δvδ = 0 in B1 \ B1/R.

One can represent vδ as follows

vδ = a0 + b0 log r +
∞∑

n=1

∑
±

(an,±rn + bn,±r−n)e±inθ in B1 \ B1/R, (2.2)

for a0, b0, an,±, bn,± ∈ C (n ≥ 1). Similarly, one can represent uδ by

uδ = c0 +
∞∑

n=1

∑
±

cn,±rne±inθ in B1, (2.3)

for c0, cn,± ∈ C (n ≥ 1). Using the transmission conditions on ∂B1, we have

vδ = uδ

∣∣∣
int

and ∂νvδ = (1 − iδ)∂νuδ

∣∣∣
int

on ∂B1. (2.4)

A combination of (2.2)–(2.4) yields{
an,± + bn,± = cn,±

an,± − bn,± = (1 − iδ)cn,±,
for n ≥ 1,

and {
a0 = c0

b0 = 0.
(2.5)

This implies {
an,± = (2 − iδ)cn,±/2

bn,± = iδcn,±/2
for n ≥ 1. (2.6)
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From the definition of vδ, it is clear that

vδ = h = h0 +
∞∑

n=1

∑
±

hn,±e±inθ on ∂B1/R, (2.7)

for some h0, hn,± ∈ C (n ≥ 1). Since vδ = h on ∂B1/R, it follows from (2.2), (2.5)–(2.7) that

1
2

[
(2 − iδ)R−n + iδRn)

]
cn,± = hn,± for n ≥ 1 (2.8)

and
c0 = h0. (2.9)

We claim that
uδ − vδ → 0 weakly in H1/2(∂B1/R). (2.10)

In fact, by (2.5) and (2.6), we have

uδ − vδ =
∞∑

n=1

∑
±

1
2
iδcn,±(R−n − Rn)e±inθ on ∂B1/R. (2.11)

We derive from (2.8) and (2.11) that

uδ − vδ =
∞∑

n=1

∑
±

iδ(R−n − Rn)[
2R−n − iδ(R−n − Rn)

]hn,±e±inθ on ∂B1/R. (2.12)

Claim (2.10) follows since

lim
δ→0

iδ(R−n − Rn)[
2R−n − iδ(R−n − Rn)

] = 0 for all n ≥ 1

and ∣∣∣∣∣ iδ(R−n − Rn)[
2R−n − iδ(R−n − Rn)

]
∣∣∣∣∣ ≤ 1 for all n ≥ 1.

The conclusion of Step 4 is now a consequence of Claim (2.10) and the fact that Δ(uδ − v) = 0 in B1/R.

Step 5. Proof of (1.11):

Since Δuδ = 0 in BR \ ∂B1 and uδ = g on ∂BR, it suffices to prove that

lim sup
δ→0

δ‖uδ‖2
H1/2(∂B1)

≤ C‖h‖2
H1/2(∂B1/R).

In this proof, C denotes a positive constant independent of δ and g. From (2.3), (2.8), and (2.9), we have

C‖uδ‖2
H1/2(∂B1) ≤ |h0|2 +

∞∑
n=1

∑
±

n|hn|2
4R−2n + δ2(Rn − R−n)2

·

We derive that

C‖uδ‖2
H1/2(∂B1)

≤ sup
n≥0

1
4R−2n + δ2(Rn − R−n)2

(
|h0|2 +

∞∑
n=1

∑
±

n|hn,±|2
)
. (2.13)
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Since R > 1, it follows that

R−2n + δ2(Rn − R−n)2 ≥ C(R−2n + δ2R2n) ≥ 2Cδ ∀n ≥ 1. (2.14)

A combination of (2.13) and (2.14) yields

Cδ‖uδ‖2
H1/2(∂B1)

≤ ‖h‖2
H1/2(∂B1/R);

hence (1.11) follows.

Step 6. Proof of (1.12).
Since Δuδ = 0 in BR \ ∂B1 and uδ = g on ∂BR, it suffices to find h ∈ H1/2(∂B1/R) such that

0 < lim inf
δ→0

δ2α‖uδ‖2
H1/2(∂B1)

≤ lim sup
δ→0

δ2α‖uδ‖2
H1/2(∂B1)

< +∞. (2.15)

Recall that h(x) = g(x/|x|2). Let nδ = [12 | ln δ/ lnR|] be the smallest integer that is greater than or equal to
1
2 | ln δ/ ln R| (R−2nδ ∼ δ). We have

‖uδ‖2
H1/2(∂B1) ∼|h0|2 +

∞∑
n=1

∑
±

n|hn,±|2
4R−2n + δ2(Rn − R−n)2

∼|h0|2 +
nδ∑

n=1

∑
±

n|hn,±|2
R−2n

+
∞∑

n=nδ+1

∑
±

n|hn,±|2
δ2R2n

·

Set
0 < γ = 1 − 2α < 1

and choose

h0 = 0 and hn,± =
R−nγ

√
n

for n ≥ 1.

It follows that, since γ < 1 and R > 1,

|h0|2 +
nδ∑

n=1

∑
±

n|hn,±|2
R−2n

= 2
nδ∑

n=1

R2n(1−γ) ∼ R2(1−γ)nδ ∼ δ−2α (2.16)

and, since γ + 1 > 0 and R > 1,

∞∑
n=nδ+1

∑
±

n|hn,±|2
δ2R2n

=
2
δ2

∞∑
n=nδ+1

R−2n(γ+1) ∼ 1
δ2

R−2(γ+1)nδ ∼ δ−2α. (2.17)

A combination of (2.16) and (2.17) yields (2.15).
It is clear that, since γ > 0 and R > 1,

‖h‖2
H1/2(∂B1/R) ∼

∞∑
n=1

∑
±

n|hn,±|2 = 2
∞∑

n=1

R−2nγ < +∞.

The proof is complete. �
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Remark 2.3. We only prove (1.9), (1.11), and (1.12) for the two dimensions. The proof in the three dimensions
follows similarly. In fact, in this case, vδ, uδ, and hδ can be represented by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vδ(x) =
∞∑

n=0

n∑
k=−n

(ak
nrn + bk

nr−n)Y k
n (x/|x|) in B1 \ B1/R,

uδ(x) =
∞∑

n=0

n∑
k=−n

ck
nrnY k

n (x/|x|) in B1,

h(x) =
∞∑

n=0

n∑
k=−n

hk
nY k

n (x/|x|) on ∂B1/R.

The rest of the proof is almost unchanged.

3. Proof of Theorem 1.5

Step 1. We show that if there exists a solution u ∈ W 1(R2) to

div(ε0∇u) = f in R
2,

then f is compatible. This step is not necessary for the proof; however, it gives the motivation for the definition
of the compatibility condition and it guides the proof.

Define v in B1 by
v = u ◦ F−1.

We have, by a change of variables, ∫
B1\Br

|∇v|2dx =
∫

Br−1\B1

|∇u|2dx. (3.1)

Since v is bounded in a neighborhood of the origin, it follows that v ∈ H1(B1) and Δv = F∗f in B1 by
Lemma 2.1. We have, by Lemma 2.1 again,

v = u
∣∣∣
ext

and ∂rv = −∂ru
∣∣∣
ext

on ∂B1.

It follows that
v = u

∣∣∣
int

and ∂rv = ∂ru
∣∣∣
int

on ∂B1. (3.2)

Set
w = v − u in B1.

Then w ∈ H1(B1) is a solution to the Cauchy problem{
Δw = F∗f in B1,

∂νw = w = 0 on ∂B1

by (3.2). Therefore f is compatible.

Step 2. Proof of statement 1.

It is clear that U ∈ W 1(R2) is a solution converging to 0 as |x| → ∞ to (1.2). Statement 1 now follows from
the uniqueness of such a solution.

Step 3. Proof of statement 2.
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From (1.2) and (1.5), we have ∫
B1

F∗f = 0.

Let w ∈ H1(B1) with
∫

B1

w = 0 be the unique solution to

{
Δw = F∗f in B1,

∂νw = 0 on ∂B1.
(3.3)

Define

Uδ =

{
uδ in B1,

uδ − w ◦ F in R2 \ B1.
(3.4)

Similar to (3.1), we have Uδ ∈ W 1(R2 \ ∂B1). It is clear that

ΔUδ = 0 in R
2 \ ∂B1.

Hence, one may represent Uδ as

Uδ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0 +
∞∑

n=1

∑
±

an,±rne±inθ in B1,

b0 +
∞∑

n=1

∑
±

bn,±r−ne±inθ in R2 \ B1,

(3.5)

for a0, b0, an,±, bn,± ∈ C (n ≥ 1). Assume that, on ∂B1,

w = w0 +
∞∑

n=1

∑
±

wn,±e±inθ, (3.6)

for w0, wn,± ∈ C (n ≥ 1). From (3.4), we have⎧⎨
⎩

Uδ

∣∣∣
ext

− Uδ

∣∣∣
int

= −w,

∂νUδ

∣∣∣
ext

− (−1 + iδ)∂νUδ

∣∣∣
int

= 0.
(3.7)

This implies
an,± = bn,± + wn,± and (1 − iδ)an,± = bn,±, ∀n ≥ 1. (3.8)

It follows that
an,± =

wn,±
iδ

and bn,± =
(1 − iδ)wn,±

iδ
, ∀n ≥ 1. (3.9)

for all n ≥ 1. Noting that either wn,+ �= 0 or wn,− �= 0 for some n ≥ 1 since f is not compatible, we obtain (1.15).
The Proof of Theorem 1.5 is complete. �

4. Numerical illustrations

In this section we present some numerical results to illustrate Theorems 1.1 and 1.5. Figure 1 corresponds to
Theorem 1.1 and presents a simulation on the localized resonance in which R = 3 and g =

∑∞
n=1

1
n2 einθ. Figure 2

corresponds to Theorem 1.5 and presents a simulation on the complete resonance in which f = Δ(φg)χR2\B1

where χ denotes the characteristic function, g =
∑∞

n=1
rn

6n einθ and φ ∈ C2(R2) is the radially symmetric function
such that φ = 1 in B2 and φ = 0 in R2 \B3

7. In both simulations, g is approximated by its first hundred terms.

7 We take φ(r) = 513 − 1080 r + 900 r2 − 370 r3 + 75 r4 − 6 r5 in B3 \ B2.



752 H.-M. NGUYEN AND L.H. NGUYEN

Figure 1. The graphs of uδ when δ = 10−14, 10−18 and 10−20 from the 1st to the 3rd row.
Left: the real part of uδ; right: the imaginary part of uδ.
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Figure 2. The graphs of uδ when δ = 10−10, 10−10.4 and 10−10.8 from the 1st to the 3rd row.
Left: the real part of uδ; right: the imaginary part of uδ.
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Available at http://dx.doi.org/10.1016/j.anihpc.2014.01.004.

[11] H.M. Nguyen, Cloaking using complementary media in the quasistatic regime.
Available at http://arxiv.org/pdf/1310.5483.pdf.

[12] H.M. Nguyen, Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime.
Available at http://arxiv.org/abs/1407.7977.

[13] N.A. Nicorovici, R.C. McPhedran and G.M. Milton, Optical and dielectric properties of partially resonant composites. Phys.
Rev. B 49 (1994) 8479–8482.

[14] J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85 (2000) 3966–3969.

[15] R.A. Shelby, D.R. Smith and S. Schultz, Experimental verification of a negative index of refraction. Science 292 (2001) 77–79.

[16] V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Usp. Fiz. Nauk 92 (1964)
517–526.

http://arxiv.org/abs/1204.1518
http://dx.doi.org/10.1016/j.anihpc.2014.01.004
http://arxiv.org/pdf/1310.5483.pdf
http://arxiv.org/abs/1407.7977

	Introduction and statement of the main results
	Proof of Theorem 1.1
	Preliminaries
	Proof of Theorem 1.1

	Proof of Theorem 1.5
	Numerical illustrations
	References

