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Abstract: Clustering and classification of replicated data is often performed using classical techniques that

inappropriately treat the data as unreplicated, or by complex modern ones that are computationally demand-

ing. In this paper we introduce a simple approach based on a ‘spike-and-slab’ mixture model that is fast,

automatic, allows classification, clustering and variable selection in a single framework, and can handle

replicated or unreplicated data. Simulation shows that our approach compares well with other recently pro-

posed methods. The ideas are illustrated by application to microarray and metabolomic data. The Canadian

Journal of Statistics xx: 1–22; 2015 c© 2015 Statistical Society of Canada

Résumé: Insérer votre résumé ici. We will supply a French abstract for those authors who can’t prepare it

themselves. La revue canadienne de statistique xx: 1–22; 2015 c© 2015 Société statistique du Canada

1. INTRODUCTION

Modern problems in the biosciences often involve data on many variables, measured on fewer

experimental units. As an example below we discuss metabolite fingerprinting, which involves

the spectra of the total composition of metabolites, based on experimental techniques such as

time-of-flight mass spectrometry, infrared spectrometry, or gas chromatography-mass spectrom-

etry (Gohlke and McLafferty, 1993). Once metabolite profile data have been obtained, it may

be desired to group different profiles and to classify new ones, and to say which metabolites are

key to doing so. The number of profiles, the sample size, is typically smaller than the number

of metabolites, or variables. In many cases the data are replicated, i.e., several observations are

taken on the same sample under the same or similar experimental conditions.

Dimension reduction is an essential element of the analysis of modern biological data. One

approach to this is projection to fewer dimensions, using techniques such as principal component

analysis (Yeung and Ruzzo, 2001), independent component analysis (Scholz et al., 2004), covari-

ance reparametrisation of Gaussian mixtures (Bergé et al., 2012) or projection pursuit (Friedman,

1987). It can be hard to interpret the results of these procedures, however, and they may obscure

the clustering (Chang, 1983). For this reason variable selection is generally preferred. Below we

describe simple fast variable selection procedures for classification and clustering with replicated

data, which can also be applied in non-replicated cases.
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FIGURE 1: Subset of metabolite data and illustration of mixture model. Upper panel: profile for T = 3
plants (WsWT, isa2, dpe2) each with R = 4 replicates measured on V = 15 metabolites (maltose.MX1,
. . ., aspartic.3). Lower panel: ideal (solid) and realized (dashed) profiles and data (grey lines) for three
classes, each with a single type, generated under the mixture model (1). Squares at the foot show variables

active under the model of §2.3.
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Figure 1 illustrates the type of data we consider. Its top part shows measurements on 15

metabolites obtained from three plants, each with four replicate measurements; see §4.2 for more

details. Without loss of generality, the data have been centered so that the metabolite-wise av-

erages equal zero. There is clear systematic variation of certain metabolites, but determination

of the most important among them requires a model, illustrated in the lower part of the figure,

where just four metabolites (shown by the squares) actively contribute to systematic variation in

the profiles (the solid black lines). This systematic variation is obscured by two further layers of

variability, one yielding the dashed profile, and another leading to the grey lines that represent the

observed data. Thus the data are regarded as stemming from a mixture of discrete and continuous

components, a so-called spike and slab model (Mitchell and Beauchamp, 1988).

Tadesse et al. (2005) and Kim et al. (2006), among others, have described fully Bayesian

mixture models for clustering and variable selection that are fitted using Markov chain Monte

Carlo simulation. Such models provide a coherent inferential framework, but the parameters of

prior distributions must be chosen, auxiliary elements such as proposal distributions may need to

be tuned and the convergence of a Markov chain to a complex distribution on a high-dimensional

space must be checked. Such convergence may be difficult to ascertain, and the algorithms are

sufficiently complex that a major effort is required to implement them; very often they cannot

be systematically compared with other approaches, because applying them to many simulated
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datasets is computationally infeasible.

In contrast, this paper describes a simple fast automatic approach. We aim to provide a ‘mix-

ture model-lite’, intermediate between overly simple and computationally complex procedures,

that mitigates some of the drawbacks of the former without paying the full tariff of the latter.

Our approach may be regarded as empirical Bayesian: the prior parameters may be estimated by

maximum likelihood. Despite its simplicity, in similar settings our procedure compares well with

the algorithms of Kim et al. (2006), Tadesse et al. (2005) and Witten and Tibshirani (2010).

We do not attempt to survey the vast literatures on clustering, classification and variable

selection, but rather give some key recent references. Classical clustering techniques (Kaufman

and Rousseeuw, 1990) are based on measures of the similarity of different observations, and

their outcomes are often represented graphically by a dendrogram. Modern clustering techniques

(Everitt et al., 2011) are mainly based on mixture models (e.g., McLachlan and Peel, 2000;

Ghahramani and Beal, 2000; Fraley and Raftery, 2002; Heller and Ghahramani, 2005; Heard

et al., 2006; Booth et al., 2008). Classification is a long-standing statistical problem with many

solutions that are well described by Hastie et al. (2009). The literature on variable selection

is huge; see Claeskens and Hjort (2008) for an overview of classical techniques, and Pan and

Shen (2007), Wang and Zhu (2008) and Guo et al. (2010) for work closer to that described here.

Bayesian variable selection and approximations thereto have been discussed by many authors,

including George and McCulloch (1997), Raftery and Dean (2006), Tadesse et al. (2005), and

Kim et al. (2006).

2. MIXTURE MODELS

2.1. Basic model

We suppose that measurements are available on a number of replicates of different types, and

that these types are themselves grouped into classes. For example, a type might represent a plant,

with replicates representing different leaves of that plant, and the goal would be to cluster the

plants into disjoint classes on the basis of variables measured on the leaves, while assigning

importances to the variables. In mathematical terms, we suppose that there are C classes, that

class c ∈ {1, . . . , C} consists of Tc types, that there are Rct replicates of the tth type, and that

V variables are measured on each replicate, for t ∈ {1, . . . , Tc}. The total number of types is

T =
∑C

c=1 Tc, the total number of replicates is
∑C

c=1

∑Tc

t=1 Rct, and the total number of mea-

surements is V
∑C

c=1

∑Tc

t=1
Rct. Often V is tens of thousands or more, whereas T is at very

most a few hundreds. If there is no replication, then Rct = 1 (t = 1, . . . , Tc; c = 1, . . . , C). The

result of each measurement is a scalar yvctr, which we assume may be expressed as

yvctr = µ+ γvcθvc + ηvct + εvctr, (1)

v = 1, . . . , V, c = 1, . . . , C, t = 1, . . . , Tc, r = 1, . . . , Rct,

where θvc, ηvct and εvctr are independent continuous random variables with zero means, and γvc
is a Bernoulli variable satisfying Pr(γvc = 1) = p. In equation (1), µ represents an overall value

for all the variables and types. If γvc = 1 then the corresponding variable-class combination is

said to be active, and in an ideal setting its mean would be µ+ θvc. If γvc = 0, then the combina-

tion is inactive and in an ideal setting its mean would be µ. No realizable setting is ideal, however,

and additional variation between types, perhaps due to varying experimental conditions, is repre-

sented by the variables ηvct, leading to a mean µ+ θvc + ηvct for the tth type and variable-class

combination (v, c). Further variability between replicates is due to measurement error, εvctr.

The lower part of Figure 1 illustrates the model. The addition of ηvct to the solid ideal profile

µ+ γvcθvc (v = 1, . . . , V ) corresponding to class c yields the dashed line of the realized profile
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for the tth type, µ+ γvcθvc + ηvct (v = 1, . . . , V ), which is further obscured by adding the

measurement errors εvctr. If the continuous random variables are independent and Gaussian,

with θvc ∼ N(0, σ2
θ), ηvct ∼ N(0, σ2

η) and εvctr ∼ N(0, σ2), where σ2, σ2
θ > 0, σ2

η ≥ 0, the γvc
are independent Bernoulli variables with success probability p ∈ (0, 1), and −∞ < µ < ∞, then

(1) is a variant of the classical mixed effects model in which a random component disappears if

γvc = 0.

With this choice of Gaussian variables, one can readily compute the marginal density of the

data for a specified variable-class combination. With a slight abuse of notation, let y with fewer

indices denote a vector of measured quantities—for example, yv denotes the data available for

variable v, yc denotes the data in class c, and yvc denotes the data available for the combination of

the vth variable and cth class—and let f denote a generic probability density. Then a calculation

given in the Appendix shows that the joint density of yvc may be written as

f(yvc) = pf1(yvc) + (1− p)

Tc
∏

t=1

f0(yvct), (2)

where

f0(yvct) = (2π)−Rct/2σ1−Rct(Rctσ
2
η + σ2)−1/2

× exp

{

−
1

2σ2

(

Rct
∑

r=1

y2vctr −Rcty
2
vct

)

−
(yvct − µ)2

2(σ2
η + σ2Rct)

}

,

in which yvct = R−1
ct

∑Rct

r=1
yvctr, and f0(·) and f1(·) are the joint densities when the variable-

class combination (v, c) is respectively active and inactive. The joint density f1(·) when the

combination is active depends on the distribution of θvc. If θvc is Gaussian, then f1(·) corre-

sponds to a
∑Tc

t=1
Rct-dimensional multivariate Gaussian variable, with mean µ1, where 1 is a

column vector of ones, and covariance matrix Σ having σ2 + σ2
η + σ2

θ on the main diagonal, and

off-diagonal elements equal to σ2
η + σ2

θ for observations from the same type and to σ2
θ for those

from different types.

2.2. Asymmetric Laplace effects

If it is preferred to use an asymmetric density for the variable-class combinations, or a density

with heavier tails, one can give the θvc an asymmetric Laplace distribution (Bhowmick et al.,

2006) by taking −XL or XR with probabilities 1/2, where XL and XR are independent expo-

nential random variables with rates σ−1
θL

, σ−1
θR

> 0. This yields an asymmetric distribution with

median zero and variance σ2
θL

+ σ2
θR

; the usual Laplace distribution appears when σθL = σθR . In

the asymmetric case the mean is non-zero, and so minor changes to the description of the model

(1) are needed. Under this model the marginal density of the data for a variable-class combination

with γvc = 0 is unchanged, but

f1(yvc) = k0(kLIL + kRIR), (3)
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where

k0 = (2πσ2)−
∑

Tc

t=1
Rct/2(2πσ2

η)
−Tc/2(2πσ2

η/Tc)
1/2 ×

(2π)Tc/2|A|−1/2 exp

{

−
1

2σ2

Rct
∑

r=1

Tc
∑

t=1

y2vctr

}

,

kL = (2σθL)
−1 exp

(

σ2
η

2Tcσ2
θL

−
µ

σθL

)

, (4)

IL = exp

(

1

2
b
′
LA

−1
bL

)

Φ

(

cL + d
′
LA

−1
bL

√

1 + d′
LA

−1dL

)

,

kR = (2σθR)
−1 exp

(

σ2
η

2Tcσ2
θR

+
µ

σθR

)

, (5)

IR = exp

(

1

2
b
′
RA

−1
bR

)

Φ

(

cR + d
′
RA

−1
bR

√

1 + d′
RA

−1dR

)

.

Here Φ denotes the standard Gaussian distribution function, |A| denotes the determinant of the

Tc × Tc symmetric positive definite matrix A = (Rctσ
−2 + σ−2

η )I− (T−1
c σ−2

η )11′, where I is

an identity matrix, bL =
(

Rctyvctσ
−2 + T−1

c σ−1

θL

)

1, bR =
(

Rctyvctσ
−2 − T−1

c σ−1

θR

)

1, dL =

−T
− 1

2

c σ−1
η 1 and dR = T

− 1

2

c σ−1
η 1 are Tc × 1 vectors, and cL = {µ− σ2

η/(TcσθL)}/(σ
2
η/Tc)

1/2

and cR = {−µ− σ2
η/(TcσθL)}/(σ

2
η/Tc)

1/2 are constants.

2.3. Variable selection model

The model (1) treats all variable-class combinations as independent. A natural generalization is

to add indicators that determine whether each variable is active, thereby yielding

yvctr = µ+ δvγvcθvc + ηvct + εvctr, (6)

v = 1, . . . , V, c = 1, . . . , C, t = 1, . . . , Tc, r = 1, . . . , Rct,

where the δv are independent Bernoulli variables with probability q. Thus q is the proportion of

active variables, and p is the proportion of active classes, given that a variable is active. Under

this model the joint density of the data yv for variable v is f(yv;ϕ) = qf(yv | δv = 1) + (1 −

q)f(yv | δv = 0), where f(yv | δv = 1) =
∏C

c=1
f(yvc) is defined in (2) and f(yv | δv = 0) =

∏C
c=1

∏Tc

t=1
f0(yvct). A similar model can be constructed using an asymmetric Laplace density

for the θvc.

3. INFERENCE

3.1. Introduction

Ready computation of the marginal density of the data, (2), has useful consequences; for ex-

ample, we shall see in Section 3.3 that it allows a fast algorithm for agglomerative clustering.

Moreover, the parameters ϕ = (µ, σ2, σ2
η, σ

2
θ , p) of the prior density may be estimated by maxi-

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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mizing the log likelihood

ℓ(ϕ) =

V
∑

v=1

C
∑

c=1

log f(yvc;ϕ). (7)

In the unreplicated case, Rct ≡ 1, only σ2 + σ2
η is estimable, but by fixing σ2

η = 0 we can es-

timate the other parameters. Maximum likelihood estimation can likewise be performed for the

parameters of the other models, based on (3) and on the corresponding marginal densities for

those in §2.3.

Such estimators are not robust to all features of real data, so are best regarded as indicating

a likely range for the parameters, rather than as optimal values for use at all costs. In particular,

the data may contain little information about the probabilities p and, if present, q, and in practice

we find it helpful to tune the model by varying p and q while estimating the other parameters.

Bayes factors provide insight when assessing the importance of variables and variable-class

combinations. Under model (6), the Bayes factor for variable δv is defined as Bv = f(yv | δv =
1)/f(yv | δv = 0), while that for γvc is Bvc = f(yvc | δv = 1, γvc = 1)/f(yvc | δv = 1, γvc =
0).

3.2. Classification

Suppose that data y1, . . . , yC are available from C distinct classes, with yc representing the Tc

types known to belong to class c, and that a new and independent dataset y∗ must be classified

to one of these classes, or declared to be of a previously unseen class. We define the multino-

mial variable U taking values in {1, . . . , C, C + 1}, where U = u will denote that y∗ should be

classified to the class u, and class C + 1 allows y∗ to arise from an as-yet unobserved class. The

probability density for yc under (6) is

f(yc;ϕ) =
V
∏

v=1

[

q

{

pf1(yvc) + (1 − p)

Tc
∏

t=1

f0(yvct)

}

+ (1− q)

Tc
∏

t=1

f0(yvct)

]

,

c = 1, . . . , C,

where ϕ represents the vector of parameters, and if U = c ∈ {1, . . . , C}, then

f(y∗, yc;ϕ) =

V
∏

v=1

q

{

pf1(y
∗
v , yvc) + (1 − p)f0(y

∗
v)

Tc
∏

t=1

f0(yvct)

}

+

(1 − q)f0(y
∗
v)

Tc
∏

t=1

f0(yvct),

in which f1(y
∗
v , yvc) is the joint density of yvc and the data on the vth variable from the unknown

type, y∗v , treated as a single group of observations with the same θvc but a potentially different

ηvct. If U = C + 1, then we may write formally

f(y∗, yC+1;ϕ) ≡ f(y∗;ϕ) =

V
∏

v=1

[q {pf1(y
∗
v) + (1− p)f0(y

∗
v)}+ (1 − q)f0(y

∗
v)] .

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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As the type data are independent conditional on the model parameters, we have

Pr(U = u | y∗, y1, . . . yC ;ϕ) =
Pr(U = u)f(y∗, yu;ϕ)

∏

c 6=u f(yc;ϕ)
∑C+1

c′=1
Pr(U = c′)f(y∗, yc′ ;ϕ)

∏

c 6=c′ f(yc;ϕ)
,

for u ∈ {1, . . . , C, C + 1}, thus yielding the posterior classification for y∗.

When the probability p = 0, no variable-class combination is active and every type is inde-

pendent a posteriori; then the prior and posterior distributions for U are the same. Similarly, when

q = 0 no variable-class combination is allowed and types are independent a posteriori. In our ex-

perience, higher values of p for a fixed positive q lead to more certain classifications, whereas

small values of p lead to just a few active variable-class combinations and reduce over-fitting.

3.3. Agglomerative hierarchical clustering

Agglomerative hierarchical clustering is the sequential partitioning of types, initially assuming

that all types are separate clusters, and then successively merging the two closest types until

finally there is a single cluster. This requires a metric to measure the distance between two clus-

ters, which a probability model provides through the change in posterior when they are merged.

However a prior distribution on clusterings is required for Bayesian inference on them.

Consider a partition C of T types partitioned into |C| = C ∈ {1, . . . , T } blocks, with T1 types

in cluster 1, T2 types in cluster 2, and so forth. We assume prior exchangeability in the grouping

of types, and hence need only specify a prior for the number of blocks in the partition and for

their sizes. Heard et al. (2006) suggest a uniform discrete prior Pr(C) = 1/T (C = 1, . . . , T ),
for the number of distinct clusters of the partition, and the uniform multinomial-Dirichlet prior

for the cluster sizes T1, . . . , TC given C, thereby yielding

Pr(C) ∝
(C − 1)!T1! . . . TC !

T (T + C − 1)!
, |C| = C,

C
∑

c=1

Tc = T. (8)

Although equation (8) allows empty clusters to appear, this causes no difficulties for hierarchical

clustering because dropping empty clusters always makes a partition more probable.

In our algorithm, every type is initially regarded as a separate cluster, so the initial parti-

tion has T blocks, each with one type. At each step every possible merger of pairs of blocks

is considered, and the merger that maximizes the posterior probability of the resulting partition

C′ is applied. Suppose that the current partition is C, and that the data for types comprising its

T + 1− C blocks are denoted Y1, . . . ,YT+1−C , containing T1, . . . , TC types respectively. If a

proposed partition C′ merges blocks Yi and Yj of C to form a new block whose data are denoted

Yij , then since the only change between C and C′ concerns Yi and Yj , the ratio of posterior

probabilities for C and C′ is

Pr(C′)

Pr(C)

∏

c∈C′ f(Yc;ϕ)
∏

c∈C f(Yc;ϕ)
=

(T + C − 1)(Ti + Tj)!

(C − 1)Ti!Tj !

f(Yij ;ϕ)

f(Yi;ϕ)f(Yj ;ϕ)
, (9)

where f(Yi;ϕ) denotes the marginal density of the data for the types in block Yi. The new

partition C′ is chosen to maximize (9) over all possible pairs of blocks of C.

When p or q equals zero, the posterior probability of any partition C equals the prior prob-

ability (8), and the most probable prior clustering is a single cluster containing all the types. If

pq > 0, then usually the largest ratio (9) at each step of the algorithm exceeds unity up to a certain

number of mergers, and then takes values less than unity. The log ratio provides a natural scale

for comparison of different partitions, and so provides lengths for the arms of the dendrogram

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



8 VAHID PARTOVI NIA AND ANTHONY C. DAVISON Vol. xx, No. yy

corresponding to the successive partitions chosen by the algorithm. A monotone height function

is needed to draw a dendrogram and can be obtained using a signed difference of marginal log

posteriors. Let ℓ̂C denote the log marginal posterior for partition C, and let ℓ̂′C = ℓ̂C −maxC ℓ̂C ;

thus ℓ̂′
Ĉ
= 0 for the optimal clustering Ĉ found by the agglomerative algorithm. When drawing a

dendrogram we take the length between two successive partitions C ⊂ C′ to be |ℓ̂′C − ℓ̂′C′ |.

We perform parameter estimation for clustering at the first step of the algorithm, assuming

that every type is a different cluster, and leaving the estimates unchanged during the agglom-

eration. Apart from the one-time optimization needed to provide initial estimates of ϕ before

starting the hierarchical clustering, the number of computations is of order O(V T 3). In many

applications V ≫ T , so the algorithm is rapid; see §§5, 6.

Like many other procedures for hierarchical clustering, our approach does not attempt an

exhaustive search of all possible dendrograms. This is a disadvantage relative to more complex

procedures, but if desired, the stability of the resulting optimal cluster may be explored using

Markov chain Monte Carlo methods, such as the spilt-merge algorithm of Booth et al. (2008) or

the delayed sampling algorithm of Green and Mira (2001).

4. DATA EXAMPLES

4.1. Microarray data

We first apply our approach to the Golub et al. (1999) leukaemia data. Patients had either acute

lymphoblastic leukaemia (ALL) or acute myeloid leukaemia (AML). Affymetrix arrays were

used to collect measurements for 7129 genes over 47 ALL tissues and 25 AML tissues. The data

were processed in several stages to remove apparently aberrant values, finally giving 2030 log-

expression ratios that are available in the supplementary materials of McNicholas and Murphy

(2010) and have been analysed several times (e.g., Dudoit et al., 2002; McLachlan et al., 2002;

Kim et al., 2006) as a benchmark for classification and clustering.

In order to compare our approach with other recent proposals, we applied the R package

sparcl, which embodies the framework for sparse feature selection in clustering proposed

by Witten and Tibshirani (2010), under which an objective function that uses the elements of

a weighted dissimilarity matrix is optimized under simultaneous L1 and L2 constraints on the

weights. Using a sufficiently constrained L1 penalty will provide variable selection by setting

certain of the weights to zero; variables with large weights contribute strongly to the clustering.

This approach does not incorporate an automated way to cut the dendrogram, so the number of

clusters must be set manually.

Kim et al. (2006)’s Bayesian analysis using Dirichlet mixtures suggest a clustering of the

Golub data into seven groups. In order that our model for these unreplicated data be identifiable,

we set σ2
η = 0, and estimated the other parameters by maximizing the log likelihood (7), giving

σ̂2 = 0.87 (0.01), σ̂2
θ = 3.31 (1.45), µ̂ = −0.01 (0.00), p̂ = 0.04 (0.03), q̂ = 0.93 (0.11). Since

this value of q is high, and the profile log likelihood shows that it is poorly-determined, we

experimented by varying q and estimating the other parameters; the results below are with q =
0.06, which gives σ̂2 = 0.93, σ̂2

θ = 8.14, µ̂ = −0.01 and p̂ = 0.04. The top panel of Figure 2

shows the hierarchical tree built using our method with these parameter values, and the bottom

panel shows the hierarchical tree built using sparclwith its default options. In order to compare

the methods, both trees are cut at seven groups. With this choice, sparcl gives one very large

cluster containing a mixture of ALL and AML tissues.

The Rand index (Rand, 1971; Lau and Green, 2007) can be used to compare clustering perfor-

mance. Suppose the data grouping is coded in the label vector d = (d1, . . . , dT ), whose elements

are integers 1, 2, . . .. Data belonging to same cluster have the same integer in d, so the number

of groups C = max(d). If the labels d1, . . . , dT allocating types to clusters are estimated by

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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FIGURE 2: Dendrograms for the Golub data using our method (top panel) and sparcl (bottom panel).
Both dendrograms are cut at seven groups.
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d̂1, . . . , d̂T , then the Rand index may be written as

RI =
2

T (T − 1)

T
∑

t=2

∑

t′<t

(

I{dt=d
t′
,d̂t 6=d̂

t′
} + I{dt 6=d

t′
,d̂t=d̂

t′
}

)

, (10)

where I{·} denotes the indicator function; small values of RI are preferable. This index was

0.43 for our method, and was 0.45 for sparcl, confirming that our method clusters the data

somewhat better, with this number of groups.

Figure 3 shows the dendrogram for our method, but for the maximum a posteriori height.

This has 25 groups, just three of which contain both AML and ALL tissue types. This is a

large number of clusters, but the image plot of the gene expression data shows the presence of

clear sub-groups within the ALL and AML tissue types, which are found by our method. The

corresponding Rand index equals 0.505, but this is considerably better than a chance finding, as

shown in Figure 4, which compares the values of RI when the dendrograms in Figure 2 are cut

at heights yielding from 2 to 25 clusters. Our approach produces lower values of RI for a wide

range of cluster sizes, and when compared to results from data in which the sample labels were

permuted, it does much better than chance over most of the range, unlike sparcl.

We also applied HDclassif (Bergé et al., 2012), a recent partitioning method that clus-

ters high-dimensional data through projection in a subspace, but does not implement variable

selection or provide a dendrogram. With its default settings HDclassif found a single cluster

containing all the tissues.

4.2. Metabolomic data

These data consist of 14 profiles each comprising 43 metabolites, all but one profile being repli-

cated four times; the overall number of profiles is 55. The goal of the study from which the

data were drawn was to use gas chromatography-mass spectrometry spectra for different plant

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



10 VAHID PARTOVI NIA AND ANTHONY C. DAVISON Vol. xx, No. yy

FIGURE 3: Analysis of Golub data. Left: dendrogram for clustering using our method (left side), cut at the
maximum a posteriori point (dashed grey line), which gives the 25 clusters shown at the right. The image

plot of the log expression values (center) is shown for the 305 genes with logBv > 5.
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FIGURE 4: Rand index RI for clusterings for the Golub data found using our method (left) and sparcl
(right). The black lines show how RI depends on the cuts in the dendrograms in Figure 2. The grey circles
and whiskers show the average and the upper and lower 2.5% quantiles for RI for 1000 datasets in which

the sample labels were randomly permuted.
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phenotypes to classify forward genetic mutants of Arabidopsis thaliana. The data involve three

wildtype plants, WsWT, RLDWT, and ColWT; two mutants defective in starch biosynthesis, pgm

and isa2; four mutants defective in starch degradation, sex1, sex4, mex1, and dpe2; a mutant that

accumulates starch as a pleiotropic effect, tpt; and four unknown mutants, d172, d263, ke103 and

sex3. There are only three replicates of the wildtype ColWT. The idea was to use the classifica-

tion of the four unknown mutants to indicate what avenues should be explored first when seeking

to characterize them, and which metabolites are important for this task. The raw data were first

preprocessed and 43 reliably detected metabolites were selected from the many available; then

the data were rescaled to allow for experimental variation between different runs, as assessed by

the inclusion of the same wild types in each run; see Messerli et al. (2007). The data analysed

below are the log profiles.
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WsWT RLDWT tpt pgm sex4 mex1 dpe2 New

ColWT 34.04 29.35 20.69 0.44 6.57 0 0 8.92

isa2 0.28 0.14 0.02 5.36 63.72 0 0 30.48

sex1 2.53 0.53 1.97 93.04 1.72 0 0 0.21

d172 0.44 1.06 0.17 0.88 97.33 0 0 0.13

d263 1.56 3.88 0.73 5.12 87.88 0 0 0.83

ke103 25.41 6 44.86 20.31 1.57 0 0 1.84

sex3 16.24 64.7 7.96 0.02 2.08 0 0 9.00

TABLE 1: Posterior classification percentages for the asymmetric Laplace variable selection model,

assuming a uniform classification prior. The maximum a posteriori percentages are boxed.

The parameter estimates and standard errors for the Gaussian model without variable

selection obtained by maximizing (7), were µ̂ = 0.083 (0.028), σ̂2 = 0.159 (0.005), σ̂2
η =

0.373 (0.032), σ̂2
θ = 5.155 (2.773) and p̂ = 0.034 (0.019). However the standard error for p

is of doubtful value, because the profile log likelihood is not quadratic: the 95% confidence in-

terval for p based on the profile likelihood, (0.015, 0.064), is very different from what would be

obtained from a normal approximation to the distribution of p̂. The estimates and standard errors

for the corresponding asymmetric Laplace model were µ̂ = 0.085 (0.028), σ̂2 = 0.159 (0.005),
σ̂2
η = 0.350 (0.043), σ̂2

θL
= 0.983 (0.778), σ̂2

θR
= 1.547 (2.361) and p̂ = 0.078 (0.071), with

95% profile likelihood confidence interval (0.038, 0.134) for p; similar comments apply as for

the Gaussian model. The asymmetric Laplace model gives a smaller variance, σ2
θ = σ2

θL
+ σ2

θR
,

and a larger p, than the Gaussian model. The maximized values of the log likelihood for the Gaus-

sian, symmetric Laplace and asymmetric Laplace models are ℓ̂G = −1938.98, ℓ̂SL = −1938.24
and ℓ̂AL = −1938.11, respectively: as judged by AIC, the symmetric Laplace model is best, but

the differences are so small that the Gaussian model could also be chosen.

In order to find those metabolites important in classifying the different plants, we apply the

Laplace variable selection model. To obtain results readily comparable with those for the models

without variable selection, we fixed σ2, σ2
η , σ2

θL
, σ2

θR
and µ, which have the same interpretations

in both models, to the estimates above, and with these fixed we found p̂ = 0.83 and q̂ = 0.183.

Figure 5 shows the data, with metabolites sorted according to the Bayes factors Bv computed

using the model (6). Six metabolites have logBv > 5, namely maltose.MX1, raffinose2, X18,

L.ascorbic, glumatic.3, and X16. A similar result is obtained using the Gaussian model.

Table 1 shows the posterior classification percentages using the Laplace variable selection

model, applied both to the unknown types and to some known ones used as references. The clas-

sification probability for the reference wild type ColWT is spread between the other wild types

WsWT and RLDWT, and also tpt; classification of ColWT to tpt is not surprising, because Fig-

ure 5 shows that the wild types and tpt have similar profiles. The reference plant isa2 defective in

starch biosynthesis is close to sex4 but may also be a previously-unobserved class. The reference

sex1 defective in starch degradation is classified to pgm with high probability, and likewise the

unknown d172 and d263 are classified with sex4. The unknown mutant ke103 is classified to tpt,

but may also be from pgm or WsWT. The unknown mutant sex3 is closest to RLDWT.

The right panel of Figure 6 displays the dendrogram produced using the the asymmetric

Laplace model with the data. The vertical line cutting the dendrogram shows the optimal par-

tition into four components. The Gaussian model yields a similar dendrogram, but with five

components. Both models successfully clustered wild types differently from the known mutants

pgm, isa2, sex1, sex4, dpe2 and mex1. The log posterior plot in the top left panel of Figure 6

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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FIGURE 5: Metabolomic profiles, with variable and variable-class Bayes factors for the asymmetric Laplace
variable selection model. The profiles in the upper part of the figure correspond to known types, and those
in the lower part to the classifying types. In log Bayes factor calculation for classification, every known
class is treated as a separate cluster. The metabolites, given in the middle of the figure, are sorted from left
to right according to the Bayes factors Bv , shown by the horizontal heat bar. The scale for the Bayes fac-
tors is: clearly important (red, logBv > 5), important (dark orange, 3 < logBv ≤ 5), somewhat important
(light orange, 1 < logBv ≤ 3), and negligible (yellow, 0 < logBv ≤ 1); negative values of logBv are not

shown. Blobs correspond to the Bayes factor Bvc and use the same heat scale.
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tpt

pgm

sex4

mex1

dpe2

sex3

ke103

d263

d172

sex1

isa2

ColWT

confirms that for the Gaussian and the asymmetric model the marginal posteriors for the four-

, five- and six-cluster groupings are close, whereas the asymmetric Laplace model is superior.

The bottom panel shows the log Bayes factors Bv of the asymmetric Laplace model. Cluster-

ing uses the grouping with the highest posterior is used to compute the log Bayes factors, and

yields more variables with logBv > 0. The variables with logBv > 5 are the same as those in

the classification reported in Figure 5, except for mannitol which was unimportant (logBv < 0)

in classification, but appears important (logBv > 5) for clustering.
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FIGURE 6: Agglomerative clustering for the metabolomic data. Top left panel: Log marginal posterior as a
function of the number of clusters when performing agglomerative clustering, for the Gaussian (circle) and
asymmetric Laplace (crosses) models. The best clusterings found are shown by the vertical lines, and the
values of the marginal log posterior at the optimal point are shown by the horizontal lines. Top right panel:
Data, with dendrogram obtained using the asymmetric Laplace model, with the optimal clustering given by
the vertical line cutting the dendrogram, and by the grouping at the right of the panel. Bottom panel: Log
Bayes factor Bv for metabolites calculated using the asymmetric Laplace clustering of the top right panel,

for the color scale of the bar chart see caption to Figure 5.
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5. SIMULATION STUDIES

5.1. First comparison

Our first set of simulation experiments compares our approach with sparcl (Witten and Tibshi-

rani, 2010) and HDclassif (Bergé et al., 2012), for data generated from our assumed model.

sparcl is a hierarchical method for clustering high-dimensional data, and like our technique it

produces a dendrogram and selects variables. HDclassif performs partitioning through pro-

jection into a subspace; it neither implements variable selection nor provides a dendrogram.
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Our procedures are fully automatic, but neither sparcl nor HDclassif provides an esti-

mated number of clusters. We therefore used the true number of clusters to provide a grouping

estimation of simulated data using sparcl and HDclassif, and used a variant of our proce-

dure with the true number of clusters; even if this number is known, the estimated groupings may

be incorrect. Since sparcl and HDclassif do not handle replicated data, we treat the data as

unreplicated for all the methods. We only describe results for our Gaussian model, as those for

the asymmetric Laplace model were similar.

We generated datasets under two configurations suggested by §4.2, with data simulated from

our Gaussian model using V = 50 variables measured on T = 10 types, each replicated Rct =
4 times. The number of clusters was chosen uniformly in the range 2, . . . , 5 and types were

allocated using the uniform multinomial-Dirichlet law. The model parameters were µ = 0 and

p = q = 0.5. The variables in (6) had Gaussian distributions with σ2 = 1, σ2
η = 4, once with

small clustering signal σ2
θ = 9, and once with large clustering signal σ2

θ = 36.

We simulated 1000 datasets, and estimated the parameters of the Gaussian model for each of

them. We also used oracle versions of our model. In one version we fixed the parameters to their

true values and cut the dendrogram at the correct number of clusters G̃+; even if the true number

of clusters is used, the corresponding clustering may be incorrect.

Another variant of our method, denoted G̃, assumes known parameters but estimates the

number of clusters. Comparison of G̃ and G̃+ shows how much the quality of clustering changes

when the number of clusters is unknown. In another version, we considered that there is knowl-

edge about the proportion of effective variables, q, which we set to its true value 0.5 while

estimating the other parameters. This gives us two further variants of our procedure, one with the

correct number of clusters inserted in the procedure, Ǧ+, and one with the number of clusters

estimated by the maximum a posteriori value, Ǧ. Comparing G̃ with Ǧ and G̃+ with Ǧ+ shows

how much clustering improves when the proportion of effective variables is known. We also in-

cluded the fully automatic version of our proposed method, denoted by G, which estimates both

the parameters and the number of clusters. Comparing G with G̃, and G+ with G̃+, shows the

effect of parameter estimation on our procedure.

As a benchmark we also report agglomerative clustering with average linkage over the acti-

vated variables, with its tree cut at the correct number of clusters, E∗
+. Comparison of E∗

+ with

the other techniques subscripted by + shows how knowing the true active variables can improve

clustering accuracy.

In the tables we use the subscript + if the number of clusters is set to its true value, a super-

script ∗ if the procedure is implemented using only the true active variables,˜ if the parameters

for our procedures are set to their true values, andˇfor our procedures with parameter q set to its

true value but the others estimated. We use the Rand index (10) as a clustering loss function, and

compare variable selection properties using the false positive and false negative rates, and their

sum, the total error. Note that E∗
+ uses the true variables and HDclassif does not implement

variable selection.

The empirical losses are shown in Table 2. None of the techniques beats E∗
+ in terms of

clustering loss, since E∗
+ knows the true clustering variables but the others do not. Clustering

performance depends heavily on knowledge of the clustering variables. If the number of clusters

(but not their composition) is known, then estimating all the parameters increases the loss for our

method from 0.35 to 0.43 for σ2
θ = 36, whereas not knowing the number of clusters increases

the loss from 0.35 to 16.48. A similar pattern is observed for small signal to noise ratio, σ2
θ = 9.

Thus, the major increase comes from estimating the number of clusters rather than from esti-

mating the parameters. Fixing parameters to their true values, as for G̃ and Ǧ, helps in finding

the correct grouping, but is less efficient for finding the correct clustering variables. sparcl,

implemented as the oracular S+ which knows the true number of clusters, has lower losses than

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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TABLE 2: Empirical clustering loss and false positive and false negative probabilities (×100) for data

generated under the Gaussian model. We use a subscript + if the number of clusters is set to its true value,

a superscript ∗ if the procedure is implemented using only the true active variables,˜ if the parameters for

our procedures are set to their true values, andˇ if the proportion of active variables q is set to its true

value. The clustering procedures used are: as a benchmark, agglomerative clustering using Euclidean

distance on the true active variables and the dendrogram cut at the true number of clusters (E∗

+); variants

of our Gaussian method (G̃+, G̃, Ǧ+, Ǧ, G+ and G), sparcl (S+) and HDclassif (H+) with their

default settings and the number of clusters set to the true value. The largest standard errors for the

differences of two clustering losses, two false positive and two false negative sums are 0.06, 0.08 and

0.08, respectively.

Procedure

E∗

+ G̃+ G̃ Ǧ+ Ǧ G+ G S+ H+

σ2
θ = 36 Clustering Loss 0.04 0.35 16.48 0.43 15.83 0.43 15.96 0.92 1.90

False Positive (%) — 68 68 53 53 47 47 45 —

False Negative (%) — 8 8 13 13 15 15 27 —

Sum — 76 76 66 66 62 62 72 —

σ2
θ = 9 Clustering Loss 4.71 12.89 22.28 11.94 21.18 13.07 21.51 9.20 122.5

False Positive (%) — 85 85 82 82 68 68 33 —

False Negative(%) — 6 6 7 7 13 13 46 —

Sum — 91 91 89 89 81 81 79 —

does G; the comparable oracle method G+ based on our model has a lower loss for σ2
θ = 36 and

a similar loss for σ2
θ = 9. HDclassif is less efficient than S+ and G+ even though it is applied

as H+, with the true number of clusters known.

False negative and positive percentages averaged over the 1000 simulated datasets show that

our method works better if the signal is considerable, σ2
θ = 36, while sparcl has larger false

negative rates than the variants of our procedure. This perhaps explains why S+ can have smaller

clustering loss than G+: our procedure does not perform hard selection of variables, whereas

sparcl guards against including noise variables, and therefore has a larger false negative rate.

Table 3 shows that a good clustering method may be poor at selecting active variables. It ap-

pears that clustering with a small subset of clustering variables, i.e., clustering with a large false

negative selection, can be more efficient than a method that weights clustering variables more

appropriately.

5.2. Second comparison

For a second comparison, we consider high-dimensional data with just a few important variables.

Data are simulated under the setting of Kim et al. (2006), in which a latent binary vector indi-

cates the discriminating variables and a Dirichlet process mixture defines the cluster structure.

These variables and the clusters are sought using a Metropolis–Hastings algorithm involving

split-merge moves, and whose performance depends on parameters that must be specified by the

user. These authors tested their algorithm using simulated Gaussian data with 15 independent

profiles comprising 1000 variables. The profiles are split into four clusters by only 20 of these

variables, through the expression

yvt ∼ I{1≤t≤4}N(µ1, σ
2
1) + I{5≤t≤7}N(µ2, σ

2
2) + I{8≤t≤13}N(µ3, σ

2
3) + I{14≤t≤15}N(µ4, σ

2
4),(11)
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for v = 1, . . . , 20, where I{·} denotes the indicator function. The means and variances µi and σ2
i

are chosen uniformly from [−5, 5] and [0.01, 1], respectively. The remaining noise variables yvt
(v = 21, . . . , 1000; t = 1, . . . , 15) are generated as independent standard normal variates.

After 100, 000 iterations of their Metropolis–Hastings algorithm, the last 60, 000 of which

were used for inference, Kim et al. (2006) were able to identify the correct clustering and 17 of

the variables that led to it, though this latter number varied somewhat with the parameter values

used. Tadesse et al. (2005) constructed a reversible jump algorithm for a related model and tested

it on several datasets close to that of Kim et al. (2006), showing rather better ability to identify

all 20 active variables.

We generated 1000 datasets from this model, and applied different variants of our Gaussian

procedure. As the data are not simulated from our model there are no ‘correct’ parameter values,

so we both used the ‘vanilla’ version of our procedure, which estimates the parameters by max-

imum likelihood, and also tried tuning it by choosing the parameters, as we now explain. The

parameter σ2 is the variance of data in noise clusters, so we set σ2 = 1. The mean of clusters

is generated according to U [−5, 5], and we set σ2
θ = 8.3 equal to the variance of the U [−5, 5]

distribution. The experimental noise variance is set as σ2
η = 0 to make the model identifiable for

these unreplicated data. The overall mean is set to to µ = 0, and the proportion of active variables

is set to q = 0.02 = 20/1000. The proportion of the active cluster-type combinations for active

variables p ≈ 1, since all clusters centers differ from µ for activated variables. We attempted to

compare the performance of our procedures with sparcl and with HDclassif, but the latter

frequently stopped our simulations due to convergence problems, so finally we had to exclude it.

It appears that HDclassif is difficult to apply when the proportion of clustering variables is

tiny, as it is in this simulation.

Table 3 shows that the correct cluster structures for all 1000 simulated datasets are found us-

ing our method when the parameters are manually tuned, and that the oracle version of sparcl,

with the correct number of clusters known, was able to recover the clustering structure in all

cases. When the parameters are estimated, however, our method G may not find the correct clus-

tering, though it finds the correct variables. The table shows that inserting more information

about the parameters of our model improves the clustering, but can undermine variable selection.

All variants of our procedures, except those with manually tuned parameters, selected the

correct 20 active variables, yielding 0% false positives and 0% false negatives, whereas sparcl

may incorrectly drop active variables. It thus appears that our very simple approach is at least

competitive with that of Kim et al. (2006) in terms of accuracy and variable selection and much

faster and more straightforward to use in practice. If there is no information about the number of

clusters, our method is applicable, but sparcl is not.

The time for a single clustering using our approach on a laptop was 5s, of which around 4s

were needed for the parameter estimation, and the only parameter that had to be fixed, σ2
η = 0,

was required for the model to be identifiable.

6. DISCUSSION

Our approach entails Bayesian variable selection (George and McCulloch, 1997) adapted for

classification and clustering, with covariates taken to be independent variates, and is related to

contributions of Heard et al. (2006) and Tadesse et al. (2005). It may be adapted for any Bayesian

model with a closed form marginal density and provides supervised, semi-supervised, and un-

supervised clustering combined with variable selection. Simulations suggest that it has a similar

performance to the sophisticated Bayesian model proposed by Kim et al. (2006), despite not

requiring the user to run a Markov chain algorithm. Although direct comparison with recently

proposed methods like sparcl is not possible, since such methods typically do not provide an
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TABLE 3: Empirical clustering loss and false positive and false negative probabilities (×100) for data

generated with 1000 variables and 15 clustering types using (11). V variables are active, and values for the

others are simulated independently from a standard normal distribution. The largest standard error is 0.2

for the difference of two clustering losses and that for the difference of the two false positive or false

negative sums is 0.28; see the caption to Table 2 for more details, though here ∼ indicates that the

parameters have been tuned as explained in the text, rather than set to their correct values.

Procedure

E∗

+ G̃+ G̃ Ǧ+ Ǧ G+ G S+

V = 20 Clustering Loss 0.00 0.00 0.00 0.25 9.71 0.25 9.71 0.00

False Positive (%) — 3 3 0 0 0 0 0

False Negative (%) — 0 0 0 0 0 0 26

Sum — 3 3 0 0 0 0 26

V = 10 Clustering Loss 0.00 0.00 0.01 2.94 10.86 2.94 10.86 0.00

False Positive (%) — 3 3 0 0 0 0 1

False Negative (%) — 0 0 0 0 0 0 8

Sum — 3 3 0 0 0 0 9

automatic way to choose the number of groups, oracle versions seem to be comparable, with our

method typically having a slight edge, and it provides automatic clustering. Our method is much

faster: clustering of the metabolite data took 0.1s and parameter estimation took about 0.06s on an

ordinary laptop. Its computational complexity can be reduced from O(V T 3) to O(V T 2 logT ),
where V and T are the numbers of variables and of types, if the marginal posterior has the

Lance–Williams (1967) property, but this seems worthwhile only if T > 100.

Our approach ignores correlations between variables. At first sight this seems unwise, but

previous authors have also found that ignoring correlations in high-dimensional data can yield

good classifiers. Empirical experience supporting this is described by Hand (2006) and Hand and

Yu (2001), and some theoretical explanation is provided by Bickel and Levina (2004) and Hall

et al. (2005). Work not reported here supports this: we found that our procedure performs reason-

ably well on simulated data with correlated variables, and that if cluster centres are sufficiently

separated, correlation has little effect on clustering performance.

The mixing distribution in the proposed models has little effect on the performance of the

clustering algorithm, but parameter estimation may be awkward for the asymmetric Laplace

model. Usually large values of p and q result in more clusters. If the estimates of p or q seem

unreasonably large, setting the parameter 0 < q ≤ 1 to some reasonable value and treating p or

the signal to noise ratio σ2
θ/σ

2 as a tuning parameter may be appropriate.

An R-package embodying our approach, bclust, is available through the R-CRAN repository

(http://cran.r-project.org); for details see Partovi Nia and Davison (2012).

ACKNOWLEDGEMENTS

We thank the editor, associate editor and reviewers for constructive comments that have greatly

improved the paper, and Gaelle Messerli and Sam Zeeman for bringing the problem to our at-

tention. The work was supported by the Swiss National Science Foundation and the Natural

Sciences and Engineering Research Council of Canada.

APPENDIX

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



18 VAHID PARTOVI NIA AND ANTHONY C. DAVISON Vol. xx, No. yy

The marginal density can be calculated using a hierarchical representation of equation (5) of the

paper, i.e.,

yvctr | ηvct
iid
∼ N(ηvct, σ

2),

ηvct | θvc
iid
∼ N(θvc, σ

2
η),

θvc | γvc
iid
∼ N(µ, γvcσ

2
θ),

γvc
iid
∼ B(δvp),

δv
iid
∼ B(q).

We note that ηvct, θvc, and γvc in this model differ from those of equation (1), but this does not

affect the result, because they are integrated out.

Joint density

Since the models impose independent variables f(y) =
∏V

v=1
f(yv), by conditioning on δv we

can write

f(y) =

V
∏

v=1

{qf(yv | δv = 1) + (1− q)f(yv | δv = 0)} , (1)

but when δv = 0, no variable-class combination is active, yielding

f(yv | δv = 0) =

C
∏

c=1

Tc
∏

t=1

f0(yvct),

where f0(yvct) = f(yvct | δv = 0) = f(yvct | δv = 1, γvc = 0). For active variables, however,

only data in different classes are independent, that is f(yv | δv = 1) =
∏C

c=1
f(yvc | δv = 1).

By summing over values of the Bernoulli variable γvc we may write

f(yvc | δv = 1) = pf1(yvc) + (1 − p)

Tc
∏

t=1

f0(yvct),

where f1(yvc) = f(yvc | δv = 1, γvc = 1) corresponds to a density with an active variable-class

(cluster) combination, sharing the same θvc, but involving types with different values of ηvct
(t = 1, . . . , Tc). The density f(yvc | δv = 1, γvc = 0) equals

∏Tc

t=1
f0(yvct), because when the

variable-class (cluster) combination is inactive, the types inside the class are independent.
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Calculation of f0(·)

The density f0(·) does not depend on the effects θvc, so under both Gaussian and asymmetric

Laplace models it is

f0(yvct) = f(yvct | δv = 1, γvc = 0) =

∫ ∞

−∞

Rct
∏

r=1

f(yvctr | ηvct)f(ηvct)dηvct

= (2πσ2)−Rct/2(2πσ2
η)

−1/2

×

∫ ∞

−∞

exp

[

−
1

2σ2

{

Rct
∑

r=1

(yvctr − ηvct)
2

}

−
1

2σ2
η

(ηvct − µ)2

]

dηvct,

which reduces to equation (3) of the paper on completing the square in the exponent and simpli-

fying.

Calculation of f1(·) for the Gaussian model

When the variable-class (cluster) combination is active, i.e., f1(yvc) = f(yvc | δv = 1, γvc = 1),
the Gaussian model is a variance components model. Letting ηvc be a vector of length Tc with

elements ηvct and Z be a design matrix with
∑Tc

t=1
Rct rows and Tc columns, we may re-express

the reduced model as

yvc | ηvc ∼ N∑
Tc

t=1
Rct

(

µ+ Zηvc, σ
2
I
)

, ηvc ∼ NTc
(0,Ω),

where Nd represents a d-variate Gaussian distribution. The covariance matrix ΩTc×Tc
has di-

agonal elements σ2
η + σ2

θ and off-diagonal elements σ2
θ , obtained after integration over a uni-

variate θvc. Using standard mixed effects calculations (McCulloch and Searle, 2001, p. 159) the

marginalized model over the vector ηvc is

yvc ∼ N∑
Tc

t=1
Rct

(µ1,Σ = σ2
I+ ZΩZ

′),

where Σ has diagonal elements σ2 + σ2
η + σ2

θ and off-diagonal elements σ2
η + σ2

θ for observa-

tions of the same type and σ2
θ for observations from different types.

Calculation of f1(·) for the asymmetric Laplace model

If ηvc denotes a vector of length Tc with elements ηvct, then the required density f(yvc | δv =
1, γvc = 1) is

∫ ∞

−∞

· · ·

∫ ∞

−∞

{

Rct
∏

r=1

f(yvctr | ηvct)

}

f(ηvct | δv = 1, γvc = 1)dηvc.

We first calculate f(ηvct | δv = 1, γvc = 1), which equals

(2πσ2
η)

−Tc/2(2σθL)
−1

∫ µ

−∞

exp

{

−
1

2σ2
η

Tc
∑

t=1

(ηvct − θvc)
2 +

θvc − µ

σθL

}

dθvc

+(2πσ2
η)

−Tc/2(2σθR)
−1

∫ +∞

µ

exp

{

−
1

2σ2
η

Tc
∑

t=1

(ηvct − θvc)
2 +

µ− θvc
σθR

}

dθvc.
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If we write ηvc = T−1
c

∑Tc

t=1 ηvct, the first integral may be expressed as

(2πσ2
η/Tc)

1/2 exp







−
1

2σ2
η

Tc
∑

t=1

η2vct −
µ

σθL

+
Tc

2σ2
η

(

ηvc +
σ2
η

TcσθL

)2






Φ







µ− ηvc − σ2
η/(TcσθL)

√

σ2
η/Tc







,

and the second integral as

(2πσ2
η/Tc)

1/2 exp







−
1

2σ2
η

Tc
∑

t=1

η2vct +
µ

σθR

+
Tc

2σ2
η

(

ηvc −
σ2
η

TcσθR

)2






Φ







ηvc − µ− σ2
η/(TcσθR)

√

σ2
η/Tc







.

Hence

f(yvct | δv = 1, γvc = 1) = (2πσ2)−
∑

Tc

t=1
Rct/2 exp

(

−
1

2σ2

Tc
∑

t=1

Rct
∑

r=1

y2vctr

)

(kLJL + kRJR),

where kL and kR are defined in equation (4) of the paper, the term JL can be written using the

positive definite matrix A, the vectors bL, dL and the constant cL defined in §2.2 as

JL =

∫ ∞

−∞

· · ·

∫ ∞

−∞

exp {η′vcAηvc − 2b′
Lηvc}Φ (cL + d

′
Lηvc) dηvc

= (2π)Tc/2|A|−1/2 exp

(

1

2
b
′
LA

−1
bL

)

Φ

(

cL + d
′
LA

−1
bL

√

1 + d′
LA

−1dL

)

,

and

JR =

∫ ∞

−∞

· · ·

∫ ∞

−∞

exp {η′vcAηvc − 2b′
Rηvc}Φ (cR + d

′
Rηvc) dηvc

can be evaluated in a similar way. The required density (4) is obtained after putting the pieces

together.
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